Sample records for evolution differential rotation

  1. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  2. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  3. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  4. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  5. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  6. On the stability and maximum mass of differentially rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that `quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  7. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  8. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  9. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  10. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  11. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.

  12. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  13. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  14. Arterial cannula shape optimization by means of the rotational firefly algorithm

    NASA Astrophysics Data System (ADS)

    Tesch, K.; Kaczorowska, K.

    2016-03-01

    This article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm, is introduced. It is shown that the rotational firefly algorithm allows for better exploration of search spaces which results in faster convergence and better solutions in comparison with its standard version. This is particularly pronounced for smaller population sizes. Furthermore, it maintains greater diversity of populations for a longer time. A small population size and a low number of iterations are necessary to keep to a minimum the computational cost of the objective function of the problem, which comes from numerical solution of the nonlinear partial differential equations. Moreover, both versions of the firefly algorithm are compared to the state of the art, namely the differential evolution and covariance matrix adaptation evolution strategies.

  15. Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.; Link, Bennett

    1999-08-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.

  16. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  17. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  18. The 2D dynamics of radiative zones of low-mass stars

    NASA Astrophysics Data System (ADS)

    Hypolite, D.; Mathis, S.; Rieutord, M.

    2018-02-01

    Context. Helioseismology and asteroseismology allow us to probe the differential rotation deep within low-mass stars. In the solar convective envelope, the rotation varies with latitude with an equator rotating faster than the pole, which results in a shear applied on the radiative zone below. However, a polar acceleration of the convective envelope can be obtained through 3D numerical simulations in other low-mass stars and the dynamical interaction of the surface convective envelope with the radiative core needs to be investigated in the general case. Aim. In the context of secular evolution, we aim to describe the dynamics of the radiative core of low-mass stars to get a deeper understanding of the internal transport of angular momentum in such stars, which results in a solid rotation in the Sun from 0.7R⊙ to 0.2R⊙ and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture the latitudinal variations of the differential rotation. Methods: We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a conical or cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number ℛo = ΔΩ/2Ω0 measuring the latitudinal differential rotation at the radiative-convective interface. We provide a 2D description of the differential rotation and the associated meridional circulation in the incompressible and stably stratified cases using the Boussinesq approximation. Results: The imposed shear generates a geostrophic flow implying a cylindrical differential rotation in the case of an isotropic viscosity. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant when the Rossby number is high enough (ℛo ≥ 1) with a cylindrical rotation profile. For low Rossby numbers (ℛo < 1), the baroclinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators (Ω0 < 30Ω⊙) are expected to have a cylindrical rotation profile. Fast rotators (Ω0 > 30Ω⊙) may have a shellular profile at the beginning of the main sequence in stellar radiative zones. Conclusions: This study enables us to predict different types of differential rotation and emphasizes the need for a new generation of 2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has a strong impact on the dynamics of the underlying radiative zone in low-mass stars. However, it cannot produce a flat internal rotation profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal directions.

  19. Magnetic Field Generation Processes Involving Gravity and Differential Rotation. Solitary Plasma Rings Formation around Black Holes

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-10-01

    A clear theoretical framework to describe how magnetic fields are generated and amplified is provided by the magneto-gravitational modes that involve both differential rotation and gravity and for which other factors such as temperature gradients can contribute to their excitation. These modes are shown to be important for the evolution of plasma disks surrounding black holes.footnotetextB. Coppi, Phys. Plasmas 18, 032901 (2011) Non-linear and axi-symmetric plasmas and associated field configurations are found under stationary conditions that do not involve the presence of a pre-existing ``seed'' magnetic field unlike other configurations found previously.footnotetextIbid. The relevant magnetic energy density is of the order of the gravitationally confined plasma pressure. The solitary plasma rings that characterize these configurations are localized radially over regions with vanishing differential rotation and can be envisioned as the saturated state of magneto-gravitational modes. The ``source'' of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it.

  20. Solitary plasma rings and magnetic field generation involving gravity and differential rotation

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-12-01

    A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.

  1. Late stages of accumulation and early evolution of the planets

    NASA Technical Reports Server (NTRS)

    Vityazev, Andrey V.; Perchernikova, G. V.

    1991-01-01

    Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.

  2. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  3. GrowYourIC: an open access Python code to facilitate comparison between kinematic models of inner core evolution and seismic observations

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Day, E. A.; Waszek, L.

    2017-12-01

    The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow super-rotation is able to recreate some of the more intricate details of the seismic observations. Specifically we are able to "grow" an inner core that has an asymmetric shift in isotropic hemisphere boundaries with increasing depth in the inner core.

  4. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  5. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  6. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  7. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  8. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Courtney R.; Pinsonneault, Marc H., E-mail: epstein@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with amore » range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.« less

  9. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  10. The structure and evolution of galacto-detonation waves - Some analytic results in sequential star formation models of spiral galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Rybicki, G. B.

    1982-01-01

    Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.

  11. Two-dimensional models of early-type fast rotating stars: the ESTER project

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    In this talk I present the latest results of the ESTER project that has taken up the challenge of building two dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I focus on main sequence massive and intermediate mass stars. I show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangent cylinder of the core. I also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I also discuss how 2D models can help to recover the fundamental parameters of a star.

  12. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  13. The Longitudinal Evolution of Equatorial Coronal Holes

    NASA Astrophysics Data System (ADS)

    Krista, Larisza D.; McIntosh, Scott W.; Leamon, Robert J.

    2018-04-01

    In 2011, three satellites—the Solar-Terrestrial RElations Observatory A & B, and the Solar Dynamics Observatory (SDO)—were in a unique spatial alignment that allowed a 360° view of the Sun. This alignment lasted until 2014, the peak of solar cycle 24. Using extreme ultraviolet images and Hovmöller diagrams, we studied the lifetimes and propagation characteristics of coronal holes (CHs) in longitude over several solar rotations. Our initial results show at least three distinct populations of “low-latitude” or “equatorial” CHs (below 65^\\circ latitude). One population rotates in retrograde direction and coincides with a group of long-lived (over sixty days) CHs in each hemisphere. These are typically located between 30° and 55^\\circ , and display velocities of ∼55 m s‑1 slower than the local differential rotation rate. A second, smaller population of CHs rotate prograde, with velocities between ∼20 and 45 m s‑1. This population is also long-lived, but observed ±10° from the solar equator. A third population of CHs are short-lived (less than two solar rotations), and they appear over a wide range of latitudes (±65°) and exhibit velocities between ‑140 and 80 m s‑1. The CH “butterfly diagram” we developed shows a systematic evolution of the longer-lived holes; however, the sample is too short in time to draw conclusions about possible connections to dynamo-related phenomena. An extension of the present work to the 22 years of the combined SOHO–SDO archives is necessary to understand the contribution of CHs to the decadal-scale evolution of the Sun.

  14. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    PubMed

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triana, S. A.; Moravveji, E.; Pápics, P. I.

    The internal angular momentum distribution of a star is the key to determining its evolution. Fortunately, stellar internal rotation can be probed through studies of rotationally split nonradial oscillation modes. In particular, the detection of nonradial gravity modes (g modes) in massive young stars has recently become feasible thanks to the Kepler space mission. Our goal is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels.more » We show that these kernels can resolve differential rotation within the radiative envelope if a smooth rotational profile is assumed and if the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to 163 ± 89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to determine the physical conditions that control the internal rotation profile of young massive stars, with the aim of improving the input physics of their models.« less

  16. Structure and tectonic evolution of the NE segment of the Polish-Ukrainian Carpathians during the Late Cenozoic: subsurface cross-sections and palinspastic models

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan; Baran, Urszula

    2016-08-01

    The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.

  17. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  18. Star formation with disc accretion and rotation. I. Stars between 2 and 22 M⊙ at solar metallicity

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2013-09-01

    Context. The way angular momentum is built up in stars during their formation process may have an impact on their further evolution. Aims: In the framework of the cold disc accretion scenario, we study how angular momentum builds up inside the star during its formation for the first time and what the consequences are for its evolution on the main sequence (MS). Methods: Computation begins from a hydrostatic core on the Hayashi line of 0.7 M⊙ at solar metallicity (Z = 0.014) rotating as a solid body. Accretion rates depending on the luminosity of the accreting object are considered, which vary between 1.5 × 10-5 and 1.7 × 10-3 M⊙ yr-1. The accreted matter is assumed to have an angular velocity equal to that of the outer layer of the accreting star. Models are computed for a mass-range on the zero-age main sequence (ZAMS) between 2 and 22 M⊙. Results: We study how the internal and surface velocities vary as a function of time during the accretion phase and the evolution towards the ZAMS. Stellar models, whose evolution has been followed along the pre-MS phase, are found to exhibit a shallow gradient of angular velocity on the ZAMS. Typically, the 6 M⊙ model has a core that rotates 50% faster than the surface on the ZAMS. The degree of differential rotation on the ZAMS decreases when the mass increases (for a fixed value of vZAMS/vcrit). The MS evolution of our models with a pre-MS accreting phase show no significant differences with respect to those of corresponding models computed from the ZAMS with an initial solid-body rotation. Interestingly, there exists a maximum surface velocity that can be reached through the present scenario of formation for masses on the ZAMS larger than 8 M⊙. Typically, only stars with surface velocities on the ZAMS lower than about 45% of the critical velocity can be formed for 14 M⊙ models. Reaching higher velocities would require starting from cores that rotate above the critical limit. We find that this upper velocity limit is smaller for higher masses. In contrast, there is no restriction below 8 M⊙, and the whole domain of velocities to the critical point can be reached.

  19. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  20. Turbulence closure for mixing length theories

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  1. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2017-12-01

    The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.

  2. Differences of RNA Expression in the Tendon According to Anatomic Outcomes in Rotator Cuff Repair.

    PubMed

    Ahn, Jin-Ok; Chung, Jin-Young; Kim, Do Hoon; Im, Wooseok; Kim, Sae Hoon

    2017-11-01

    Despite increased understanding of the pathophysiology of rotator cuff tears and the evolution of rotator cuff repair, healing failure remains a substantial problem. The critical roles played by biological factors have been emphasized, but little is known of the implications of gene expression profile differences at the time of repair. To document the relationship between the perioperative gene expression of healed and unhealed rotator cuffs by RNA microarray analysis. Case-control study; Level of evidence, 3. Superior (supraspinatus involvement) and posterosuperior (supraspinatus and infraspinatus involvement) tears were included in the study. Samples of rotator cuff tendons were prospectively collected during rotator cuff surgery. Three samples were harvested at the tendon ends of tears from the anterior, middle (apex), and posterior parts using an arthroscopic punch. Seven patients with an unhealed rotator cuff were matched one-to-one with patients with a healed rotator cuff by sex, age, tear size, and fatty degeneration of rotator cuff muscles. mRNA microarray analysis was used to identify genetic differences between healed and unhealed rotator cuff tendons. Gene ontology and gene association files were obtained from the Gene Ontology Consortium, and the Gene Ontology system in DAVID was used to identify enhanced biological processes. Microarray analyses identified 262 genes that were differentially expressed by at least 1.5-fold between the healed and unhealed groups. Overall, in the healed group, 103 genes were significantly downregulated, and 159 were significantly upregulated. DAVID Functional Annotation Cluster analysis showed that in the healed group, the genes most upregulated were related to the G protein-coupled receptor protein signaling pathway and to the neurological system. On the other hand, the genes most downregulated were related to immune and inflammatory responses. BMP5 was the gene most upregulated in the healed group, and the majority of downregulated genes were involved in the immune/inflammatory response. The downregulation of inflammatory response genes and the upregulation of cell differentiation genes in torn rotator cuffs at the time of surgery are related to rotator cuff healing. These results provide useful baseline information for future biological studies on rotator cuff healing.

  3. Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2016-10-01

    Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.

  4. Aspects of the Solar Tachocline

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1997-01-01

    The splitting of the frequencies of p-mode multiplets enables information to be gained about the internal rotation of the sun. Such data have revealed a transition at the base of the convection zone from differential rotation similar to that observed at the surface to almost solid-body rotation in the radiative interior. This transition region, known as the tachocline, has been found to be relatively narrow and centered below the base of the convection zone. In this paper, the evolution of the transition region is investigated numerically. Without a large anisotropic viscosity, the depth to which it would spread in one solar age, under the assumption of a constant prescribed differential rotation at the base of the convection zone, is found to be greater than its extent as inferred from helioseismology. In the second part of the paper a highly anisotropic turbulent viscosity with a large horizontal component, as suggested by Spiegel & Zahn (1992), is assumed. In this case, a steady tachocline is formed in which the advection of angular momentum balances the Reynolds stresses. The horizontal component of turbulent viscosity required to match the thickness of the tachocline to that obtained by helioseismology, is estimated to be 5 x 1O sq cm/s The transport of helium is studied in this case and is found to yield a sound-speed increase similar to that required by helioseismology.

  5. Oscillations and instabilities of fast and differentially rotating relativistic stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, Christian; Gaertig, Erich; Kokkotas, Kostas D.

    2010-04-15

    We study nonaxisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic j-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the Chandrasekhar-Friedman-Schutz (CFS) instability, while the critical value of T/|W| at the mass-shedding limit is raised even more. For stiffer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFSmore » instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a large degree of differential rotation the absolute value of the critical T/|W| is below the corresponding value for rigid rotation. We conclude that the onset of the CFS instability is eased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness. Moreover, we were able to extract the eigenfrequencies and the eigenfunctions of r-modes for differentially rotating stars and our simulations show a good qualitative agreement with previous Newtonian results.« less

  6. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  7. On the numeric integration of dynamic attitude equations

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Yan, Y.; Grossman, Robert

    1992-01-01

    We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.

  8. Differential rotation in Jupiter: A comparison of methods

    NASA Astrophysics Data System (ADS)

    Wisdom, J.; Hubbard, W. B.

    2016-03-01

    Whether Jupiter rotates as a solid body or has some element of differential rotation along concentric cylinders is unknown. But Jupiter's zonal wind is not north/south symmetric so at most some average of the north/south zonal winds could be an expression of cylinders. Here we explore the signature in the gravitational moments of such a smooth differential rotation. We carry out this investigation with two general methods for solving for the interior structure of a differentially rotating planet: the CMS method of Hubbard (Hubbard, W.B. [2013]. Astrophys. J. 768, 1-8) and the CLC method of Wisdom (Wisdom, J. [1996]. Non-Perturbative Hydrostatic Equilibrium. http://web.mit.edu/wisdom/www/interior.pdf). The two methods are in remarkable agreement. We find that for smooth differential rotation the moments do not level off as they do for strong differential rotation.

  9. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  10. Differential rotation in main-sequence solar-like stars: Qualitative inference from asteroseismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, Mikkel N.; Christensen-Dalsgaard, Jørgen; Miesch, Mark S., E-mail: mikkelnl@phys.au.dk

    2014-08-01

    Understanding differential rotation of Sun-like stars is of great importance for insight into the angular momentum transport in these stars. One means of gaining such information is that of asteroseismology. By a forward modeling approach we analyze in a qualitative manner the impact of different differential rotation profiles on the splittings of p-mode oscillation frequencies. The optimum modes for inference on differential rotation are identified along with the best value of the stellar inclination angle. We find that in general it is not likely that asteroseismology can be used to make an unambiguous distinction between a rotation profile such asmore » a conical Sun-like profile and a cylindrical profile. In addition, it seems unlikely that asteroseismology of Sun-like stars will result in inferences on the radial profile of the differential rotation, such as can be done for red giants. At best, one could possibly obtain the sign of the radial differential rotation gradient. Measurements of the extent of the latitudinal differential from frequency splitting are, however, more promising. One very interesting aspect that could likely be tested from frequency splittings is whether the differential rotation is solar-like or anti-solar-like in nature, in the sense that a solar-like profile has an equator rotating faster than the poles.« less

  11. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  12. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  13. Magnetic Fields in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Briggs, G.; Ferrario, L.; Tout, C. A.; Wickramasinghe, D. T.

    2018-01-01

    Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by an α—Ω dynamo driven by differential rotation when two stars, the more massive one with a degenerate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesise a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.

  14. Attività fotometrica di Plutone nel 2005

    NASA Astrophysics Data System (ADS)

    Bianciardi, Giorgio

    2006-06-01

    This report describes unfiltered CCD differential photometry of Pluto performed between 1 August and 10 September 2005. Results show that in the present year Pluto is maintaining a high photometric activity, higher than expected (maximum brightness variations of 0.29±0.02 magnitudes) in relation to the rotational period. Pluto's appearance is now drastically changing owing to viewing geometry and the next collapse of its atmosphere onto the surface. Amateurs too should dedicate particular attention to the photometric evolution of the planet.

  15. Order out of Randomness: Self-Organization Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.

    2018-03-01

    Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

  16. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  17. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  18. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  19. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.; Hawley, John F.

    1991-01-01

    A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

  20. Crack Detection in Concrete Tunnels Using a Gabor Filter Invariant to Rotation.

    PubMed

    Medina, Roberto; Llamas, José; Gómez-García-Bermejo, Jaime; Zalama, Eduardo; Segarra, Miguel José

    2017-07-20

    In this article, a system for the detection of cracks in concrete tunnel surfaces, based on image sensors, is presented. Both data acquisition and processing are covered. Linear cameras and proper lighting are used for data acquisition. The required resolution of the camera sensors and the number of cameras is discussed in terms of the crack size and the tunnel type. Data processing is done by applying a new method called Gabor filter invariant to rotation, allowing the detection of cracks in any direction. The parameter values of this filter are set by using a modified genetic algorithm based on the Differential Evolution optimization method. The detection of the pixels belonging to cracks is obtained to a balanced accuracy of 95.27%, thus improving the results of previous approaches.

  1. Talks also presented at the Symposium

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.

    2017-11-01

    Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.

  2. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  3. Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. I. Data-Model Comparison and Evolution of Galaxy Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.

  4. Differential interferometry for measurement of density fluctuations and fluctuation-induced transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2010-10-15

    Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less

  5. The Role of Small-Scale Processes in Solar Active Region Decay

    NASA Astrophysics Data System (ADS)

    Meyer, Karen; Mackay, Duncan

    2017-08-01

    Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.

  6. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  7. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  8. Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul

    2015-06-01

    Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  9. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  10. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  11. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  12. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  13. Effect of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Hansen, Ulrich; Maas, Christian

    2017-04-01

    About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015. C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.

  14. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    NASA Astrophysics Data System (ADS)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  15. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).

    PubMed

    McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J

    2017-07-12

    Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.

  16. The evolution of rotating very massive stars with LMC composition

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2015-01-01

    Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org

  17. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  18. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  19. Rotating protoneutron stars: Spin evolution, maximum mass, and I-Love-Q relations

    NASA Astrophysics Data System (ADS)

    Martinon, Grégoire; Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria

    2014-09-01

    Shortly after its birth in a gravitational collapse, a protoneutron star enters in a phase of quasistationary evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission. In a few tens of seconds, the gradients smooth out while the star contracts and cools down, until it becomes a neutron star. In this paper we study this phase of the protoneutron star life including rotation, and employing finite-temperature equations of state. We model the evolution of the rotation rate, and determine the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is born from a protoneutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations are violated in the first second of life, but they are satisfied as soon as the entropy gradients smooth out.

  20. YORP and collisional shaping of the sub-populations, rotation rate and size-frequency distributions in the main-belt

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Marzari, F.; Scheeres, D.; Jacobson, S.; Davis, D.

    In the last several years a comprehensive asteroid-population-evolution model was developed incorporating both the YORP effect and collisional evolution \\citep{rossi_2009}, \\citep{marz_2011}, \\citep{jac_mnras}. From the results of this model we were able to match the observed main belt rotation rate distribution and to give a first plausible explanation of the observed excess of slow rotators, through a random walk-like evolution of the spin, induced by repeated collisions with small projectiles. Moreover, adding to the model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; \\citealt{sch_2007}) and binary-asteroid evolution \\citep{jac_sch}, we first showed that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution. We also concluded that this hypothesis is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. An overview of the results obtained, the modelling uncertainties and the ongoing work will be given.

  1. Effect of heat flux on differential rotation in turbulent convection.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2006-04-01

    We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations, and the turbulent heat flux. We used a spectral tau approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of approximately 10(L rho/l0)2, where l0 is the maximum scale of turbulent motions and L rho is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars, and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.

  2. VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)

    NASA Astrophysics Data System (ADS)

    Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2014-11-01

    A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).

  3. Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Jo, Jung Hyun; Kim, Myung-Jin; Roh, Dong-Goo; Park, Sun-Youp; Lee, Hee-Jae; Park, Maru; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Park, Young-Sik; Cho, Sungki; Moon, Hong-Kyu; Choi, Eun-Jung; Jang, Hyun-Jung; Park, Jang-Hyun

    2016-06-01

    Inactive space objects are usually rotating and tumbling as a result of internal or external forces. KOREASAT 1 has been inactive since 2005, and its drift trajectory has been monitored with the optical wide-field patrol network (OWL-Net). However, a quantitative analysis of KOREASAT 1 in regard to the attitude evolution has never been performed. Here, two optical tracking systems were used to acquire raw measurements to analyze the rotation period of two inactive satellites. During the optical campaign in 2013, KOREASAT 1 was observed by a 0.6 m class optical telescope operated by the Korea Astronomy and Space Science Institute (KASI). The rotation period of KOREASAT 1 was analyzed with the light curves from the photometry results. The rotation periods of the low Earth orbit (LEO) satellite ASTRO-H after break-up were detected by OWL-Net on April 7, 2016. We analyzed the magnitude variation of each satellite by differential photometry and made comparisons with the star catalog. The illumination effect caused by the phase angle between the Sun and the target satellite was corrected with the system tool kit (STK) and two line element (TLE) technique. Finally, we determined the rotation period of two inactive satellites on LEO and geostationary Earth orbit (GEO) with light curves from the photometry. The main rotation periods were determined to be 5.2 sec for ASTRO-H and 74 sec for KOREASAT 1.

  4. Magnetic Reconnection and the Kelvin-Helmholtz Instability

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Chacon, L.; Brackbill, J. U.; Lapenta, G.

    2002-11-01

    Results are presented from a continuing study of magnetic reconnection caused by the evolution of a Kelvin-Helmholtz instability. To date we have studied 3-D compressible, subsonic and and sub-Alfvenic flow, with differential rotation (a gradient in vorticity parallel to the initial magnetic field) [1,2], as well as 2-D incompressible super-Alfvenic flow [3]. In both cases localized transient reconnection is observed on the Kelvin-Helmholtz time scale, and results indicate that the observed reconnection rate is insensitive to resistivity. In the present study we extend both the 2-D and the 3-D results found in [1,2,3]. In the extension of the 2-D work we focus on the fundamental differences in the nonlinear evolution of a low S simulation (S = 200) and a higher S simulation (S = 10,000). In the 3-D work we study the effects of a density discontinuity (present in [1] and not in [2]), along with study the effects of initial curved field lines in the absence of differential rotation. This basic plasma physics problem has possible application to dayside magnetosphere reconnection as a theoretical model for flux transfer events [1]. The general problem also has possible application to solar physics as it could provide a trigger mechanism for some class of coronal mass ejections. Both applications will be briefly discussed. [1] J.U. Brackbill and D.A. Knoll, Phys. Rev. Lett., vol. 86 (2001). [2] D.A. Knoll and J.U. Brackbill, Physics of Plasmas, to appear (2002) [3] D.A. Knoll and L. Chacon, Phys. Rev. Lett., vol. 88 (2002).

  5. EVOLUTION OF NEAR-SURFACE FLOWS INFERRED FROM HIGH-RESOLUTION RING-DIAGRAM ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogart, Richard S.; Baldner, Charles S.; Basu, Sarbani

    2015-07-10

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ∼15° (180 Mm) or more in order to provide reasonable mode sets for inversions. Helioseismic and Magnetic Imager (HMI) data analysis also provides a set of ring fit parameters on a scale three timesmore » smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from a local helioseismic analysis of regions over different parts of the observable disk, and not all of them are well understood. In this study we characterize those systematic effects with higher spatial resolution so that they may be accounted for more effectively in mapping the temporal and spatial evolution of the flows. Leaving open the question of the mean structure of the global meridional circulation and the differential rotation, we describe the near-surface flow anomalies in time and latitude corresponding to the torsional oscillation pattern in differential rotation and analogous patterns in the meridional cell structure as observed by the Solar Dynamics Observatory/HMI.« less

  6. Differential rotation of plasma in the GOL-3 multiple-mirror trap during injection of a relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, I. A., E-mail: I.A.Ivanov@inp.nsk.su; Burdakov, A. V.; Burmasov, V. S.

    2017-02-15

    Results of spectral and magnetic diagnostics of plasma differential rotation in the GOL-3 multiplemirror trap are presented. It is shown that the maximum frequency of plasma rotation about the longitudinal axis reaches 0.5 MHz during the injection of a relativistic electron beam into the plasma. The data of two diagnostics agree if there is a region with a higher rotation frequency near the boundary of the electron beam. Plasma differential rotation can be an additional factor stabilizing interchange modes in the GOL-3 facility.

  7. Modelling evolution of asteroid's rotation due to the YORP effect

    NASA Astrophysics Data System (ADS)

    Golubov, Oleksiy; Lipatova, Veronika; Scheeres, Daniel J.

    2016-05-01

    The Yarkovsky--O'Keefe--Radzievskii--Paddack (or YORP) effect is influence of light pressure on rotation of asteroids. It is the most important factor for evolution of rotation state of small asteroids, which can drastically alter their rotation rate and obliquity over cosmologic timescales.In the poster we present our program, which calculates evolution of ratation state of small asteroids subject to the YORP effect. The program accounts for both axial and obliquity components of YORP, takes into account the thermal inertia of the asteroid's soil, and the tangential YORP. The axial component of YORP is computed using the model by Steinberg and Sari (AJ, 141, 55). The thermal inertia is accounted for in the framework of Golubov et al. 2016 (MNRAS, stw540). Computation of the tangential YORP is based on a siple analytical model, whose applicability is verified via comparison to exact numeric simulations.We apply the program to different shape models of asteroids, and study coupled evolution of their rotation rate and obliquity.

  8. On the Maximum Mass of Differentially Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Shapiro, Stuart L.; Shibata, Masaru

    2000-01-01

    We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such ``hypermassive'' models in full general relativity and show that there do exist configurations that are dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and a delayed gravitational wave burst.

  9. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    PubMed

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  10. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  11. Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation

    NASA Astrophysics Data System (ADS)

    Folonier, Hugo A.; Ferraz-Mello, Sylvio

    2017-12-01

    Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which corresponds to a shell's viscosity η _s≳ 10^{18} Pa s, depending on the ocean's thickness and viscosity values. In the case in which a subsurface ocean does not exist, the maximum shell relaxation factor is one order of magnitude smaller and the corresponding minimum shell's viscosity is one order higher.

  12. Both size-frequency distribution and sub-populations of the main-belt asteroid population are consistent with YORP-induced rotational fission

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.

    2014-07-01

    From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution (Weidenschilling 2010, Morbidelli 2009). The binary-asteroid evolution model is highly constrained by the modeling done in Jacobson & Scheeres, and therefore the asteroid-population evolution model has only two significant free parameters: the ratio of low-to-high-mass-ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. Using this model, we successfully reproduce the observed small-asteroid sub-populations, which orthogonally constrain the two free parameters. We find the outcome of rotational fission most likely produces an initial mass-ratio fraction that is four to eight times as likely to produce high-mass-ratio systems as low-mass-ratio systems, which is consistent with rotational fission creating binary systems in a flat distribution with respect to mass ratio. We also find that the mean of the log-normal BYORP coefficient distribution B ≈ 10^{-2}.

  13. Evolution of starspots in the long-period RS CVN binary V1817 Cygni = HR 7428

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.; Gessner, Susan E.; Lines, Helen C.; Lines, Richard D.

    1990-01-01

    Photometry between 1982 and 1989, published and unpublished, is analyzed. The ellipticity effect produces variability with a full amplitude of 0.033 m in V. A recent time of light minimum (JD 2445988.0 + or - 0.3 d) combined with an old spectroscopic time of conjunction from the 1920's yields a much improved orbital period (108.854 + or - 0.003). Removal of the ellipticity effect reveals starspot variability. Four different spots were observed at various times, two of them present simultaneously in the light curve during 1985. Mean spot lifetimes were around 2 years and the largest amplitude attributed to starspots was 0.04 m in V during 1986. Derived rotation periods for two spots were 5.3 + or - 1.2 percent slower than synchronous and 3.0 + or - 0.4 percent faster. The differential rotation coefficient for the K2 giant is k = 0.25 + or - 0.04, compared to k = 0.186 for the sun. V1817 Cygni has the longest orbital period of any binary known to execute synchronous rotation.

  14. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.

    PubMed

    Tao, Xu; Liu, Junpeng; Chen, Lei; Zhou, You; Tang, Kanglai

    2015-01-01

    The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries. © 2015 S. Karger AG, Basel.

  15. - and Frequency-Domain Signatures of Velocity Changing Collisions in Sub-Doppler Saturation Spectra and Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor

    2017-06-01

    We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  16. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  17. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  18. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  19. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  20. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  1. Magnetic Flux Transport at the Solar Surface

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.

    2014-12-01

    After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.

  2. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  3. REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars

    NASA Astrophysics Data System (ADS)

    Kitchatinov, Leonid L.

    2005-05-01

    Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

  4. Two-dimensional models of fast rotating early-type stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2015-08-01

    Rotation has now become an unavoidable parameter of stellar models, but for most massive or intermediate-mass stars rotation is fast, at least of a significant fraction of the critical angular velocity. Current spherically symmetric models try to cope with this feature of the stars using various approximations, like for instance the so-called shellular rotation usually accompanied with a diffusion that is meant to represent the mixing induced by rotationally generated flows. Such approximations may be justified in the limit of slow rotation where anisotropies and associated flows are weak. However, when rotation is fast, say larger than 50% of the critical velocities the use of a spherically symmetric 1D-model is doubtful. This is not only because of the centrifugal flattening of the star, but also because of the flows that are induced by the baroclinic torque that naturally appears in the radiative envelope of an early-type (rotating) star. These flows face the cylindrical symmetry of the Coriolis force and the spheroidal symmetry of the effective gravity.In this talk I shall present the latest results of the ESTER project that has taken up the challenge of making two-dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I will focus on main sequence massive and intermediate-mass stars. I'll show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangential cylinder of the core. I'll also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I shall finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I'll also discuss how 2D models can help to recover the fundamental parameters of a star.

  5. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  6. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  7. Rotation of low-mass stars - A new probe of stellar evolution

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Kawaler, Steven D.; Demarque, P.

    1990-01-01

    Models of stars of various masses and rotational parameters were developed and compared with observations of stars in open clusters of various ages in order to analyze the evolution of rotating stars from the early premain sequence to an age of 1.7 x 10 to the 9th yrs. It is shown that, for stars older than 10 to the 8th yrs and less massive than 1.1 solar mass, the surface rotation rates depend most strongly on the properties of the angular momentum loss. The trends of the currently available observations suggest that the rotation periods are a good indicator of the field-star ages.

  8. The Evolution of the Indian Ocean Triple Junction and the Finite Rotation Problem.

    DTIC Science & Technology

    1980-09-01

    AD-AG&9 103 ~S HOLE OCEANOGRAPHIC INSTITUTION MASS F/6 6/7 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINIT-ETC(U1 SEP 80 C R TAPSCOTT...1111flfl 1.4 111116 MICROCOPY RESOLUTION TEST CHART WHOI-80-37 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINITE ROTATION PROBLEM by...purpose of the United States Government. This thesis should be cited as: Christopher R. Tapscott, 1979. The Evolution of the Indian Ocean Triple Junction

  9. On the effects of planetary rotation on the differentiation of a terrestrial magma ocean in spherical geometry

    NASA Astrophysics Data System (ADS)

    Maas, C.; Hansen, U.

    2016-12-01

    During a later stage of the accretion about 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes of the mantle and could for example influence the presence and distribution of chemical heterogeneities in the Earth mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008].Our previous work in Cartesian geometry studied crystal settling in the polar and equatorial regions separately from each other and revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we recently developed a spherical shell model that allows for new insights into the crystal settling in-between the pole and the equator as well as the migration of crystals between these regions. Further the spherical model allows us to include the centrifugal force on the crystals, which significantly affects the lateral and radial distribution of crystals. All in all the first numerical experiments in spherical geometry agree with the results of Maas and Hansen [2015] and show that the crystal distribution crucially depends on latitude, rotational strength and crystal density. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008.C. Maas and U. Hansen. Effects of earth's rotation on the early dierentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120(11):7508-7525, 2015.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth and Planetary Science Letters, 125(1):255-266, 1994.

  10. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  11. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    NASA Astrophysics Data System (ADS)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model, consisting of an independently-rotating radiative interior and convective envelope. Using such a prior we find that the rotation rates of the radiative interior and convective envelope likely do not differ by more than 50%. This further supports the idea that Sun-like stars likely show a rotation pattern similar to that of the Sun. Results from the analysis presented herein provide physical limits on the internal differential rotation of Sun-like stars, and show that this method may be easily applied to a wider variety of stars.

  12. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Mathis, Stéphane

    2016-11-01

    Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.

  13. Secular changes of LOD associated with a growth of the inner core

    NASA Astrophysics Data System (ADS)

    Denis, C.; Rybicki, K. R.; Varga, P.

    2006-05-01

    From recent estimates of the age of the inner core based on the theory of thermal evolution of the core, we estimate that nowadays the growth of the inner core may perhaps contribute to the observed overall secular increase of LOD caused mainly by tidal friction (i.e., 1.72 ms per century) by a relative decrease of 2 to 7 μs per century. Another, albeit much less plausible, hypothesis is that crystallization of the inner core does not produce any change of LOD, but makes the inner core rotate differentially with respect to the outer core and mantle.

  14. On mechanisms separating stars into normal and chemically peculiar

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-10-01

    The paper argues in favor of the assumption that magnetic and non-magnetic protostars, from which CP stars were formed, are the objects that had rotation velocities of the parent cloud V smaller than a critical value V c . At V greater than the critical value, differential rotation emerges in the collapsing protostellar cloud, which twists magnetic lines of force into an' invisible' toroidal shape and disturbs the stability of the atmosphere. In magnetic protostars, the loss of angular momentum is due to magnetic braking, while in metallic protostars, the loss of rotation momentum occurs due to tidal interactions with a close component. HgMn stars are most likely not affected by some braking mechanism, but originated from the slowest protostellar rotators. The boundary of V c where the differential rotation occurs is not sharp. The slower the protostar rotates, the greater the probability of suppressing the differential rotation and the more likely the possibility of CP star birth.

  15. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  16. Maximally Entangled States of a Two-Qubit System

    NASA Astrophysics Data System (ADS)

    Singh, Manu P.; Rajput, B. S.

    2013-12-01

    Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.

  17. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.

    2012-02-01

    In the context of high energy density laboratory astrophysics, we aim to produce and study a rotating plasma relevant to accretion discs physics. We devised an experimental setup based on a modified cylindrical wire array and we studied it numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. The simulations show that a rotating plasma cylinder is formed, with typical rotation velocity ~35 km/s and Mach number ~5. In addition, the plasma ring is differentially rotating and strongly radiatively cooled. The introduction of external magnetic fields is discussed.

  18. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  19. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  20. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    NASA Astrophysics Data System (ADS)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96

  1. Evolution of Starspots on LO Pegasi

    NASA Astrophysics Data System (ADS)

    Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle

    2018-01-01

    LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.

  2. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.

  3. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  4. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  5. Differential rotation in solar-like stars from global simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.

    2013-12-20

    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less

  6. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  7. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  8. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    NASA Astrophysics Data System (ADS)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  9. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  10. A suppression of differential rotation in Jupiter’s deep interior

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Miguel, Y.; Militzer, B.; Hubbard, W. B.; Kaspi, Y.; Galanti, E.; Cao, H.; Helled, R.; Wahl, S. M.; Iess, L.; Folkner, W. M.; Stevenson, D. J.; Lunine, J. I.; Reese, D. R.; Biekman, A.; Parisi, M.; Durante, D.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    Jupiter’s atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant’s interior has been unknown, limiting our ability to probe the structure and composition of the planet. The discovery by the Juno spacecraft that Jupiter’s gravity field is north–south asymmetric and the determination of its non-zero odd gravitational harmonics J3, J5, J7 and J9 demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops. Here we report an analysis of Jupiter’s even gravitational harmonics J4, J6, J8 and J10 as observed by Juno and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation. Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.

  11. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  12. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-07-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  13. Optimal Synthesis of the Joint Unitary Evolutions

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo; Hu, Hui; Zhang, Dun

    2018-03-01

    Joint unitary operations play a central role in quantum communication and computation. We give a quantum circuit for implementing a type of unconstructed useful joint unitary evolutions in terms of controlled-NOT (CNOT) gates and single-qubit rotations. Our synthesis is optimal and possible in experiment. Two CNOT gates and seven R x , R y or R z rotations are required for our synthesis, and the arbitrary parameter contained in the evolutions can be controlled by local Hamiltonian or external fields.

  14. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  15. Asteroid rotation. I - Tabulation and analysis of rates, pole positions and shapes. II - A theory for the collisional evolution of rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Burns, J. A.

    1979-01-01

    Rotation properties and shape data for 182 asteroids are compiled and analyzed, and a collisional model for the evolution of the mean rotation rate of asteroids is proposed. Tabulations of asteroid rotation rates, taxonomic types, pole positions, sizes and shapes and plots of rotation frequency and light curve amplitude against size indicate that asteroid rotational frequency increases with decreasing size for all asteroids except those of the C or S classes. Light curve data also indicate that small asteroids are more irregular in shape than large asteroids. The dispersion in rotation rates observed is well represented by a three dimensional Maxwellian distribution, suggestive of collisional encounters between asteroids. In the proposed model, the rotation rate is found to tend toward an equilibrium value, at which spin-up due to infrequent, large collisions is balanced by a drag due to the larger number of small collisions. The lower mean rotation rate of C-type asteroids is attributed to a lower means density of that class, and the increase in rotation rate with decreasing size is interpreted as indicative of a substantial population of strong asteroids.

  16. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the twomore » white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.« less

  17. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  18. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  19. Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration

    NASA Astrophysics Data System (ADS)

    Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.

    2018-06-01

    Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.

  20. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  1. Flip-flops of FK Comae Berenices

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Pelt, J.; Mantere, M. J.; Jetsu, L.; Korhonen, H.; Granzer, T.; Kajatkari, P.; Lehtinen, J.; Strassmeier, K. G.

    2013-05-01

    Context.FK Comae Berenices is a rapidly rotating magnetically active star, the light curve of which is modulated by cool spots on its surface. It was the first star where the "flip-flop" phenomenon was discovered. Since then, flip-flops in the spot activity have been reported in many other stars. Follow-up studies with increasing length have shown, however, that the phenomenon is more complex than was thought right after its discovery. Aims: Therefore, it is of interest to perform a more thorough study of the evolution of the spot activity in FK Com. In this study, we analyse 15 years of photometric observations with two different time series analysis methods, with a special emphasis on detecting flip-flop type events from the data. Methods: We apply the continuous period search and carrier fit methods on long-term standard Johnson-Cousins V-observations from the years 1995-2010. The observations were carried out with two automated photometric telescopes, Phoenix-10 and Amadeus T7 located in Arizona. Results: We identify complex phase behaviour in 6 of the 15 analysed data segments. We identify five flip-flop events and two cases of phase jumps, where the phase shift is Δφ < 0.4. In addition we see two mergers of spot regions and two cases where the apparent phase shifts are caused by spot regions drifting with respect to each other. Furthermore we detect variations in the rotation period corresponding to a differential rotation coefficient of |k| > 0.031. Conclusions: The flip-flop cannot be interpreted as a single phenomenon, where the main activity jumps from one active longitude to another. In some of our cases the phase shifts can be explained by differential rotation: two spot regions move with different angular velocity and even pass each other. Comparison between the methods show that the carrier fit utility is better in retrieving slow evolution especially from a low amplitude light curve, while the continuous period search is more sensitive in case of rapid changes. Based on data obtained with the Amadeus T7 Automatic Photoelectric Telescope (APT) at Fairborn Observatory, jointly operated by the University of Vienna and AIP, the Phoenix-10 APT at Mt. Hopkins, Arizona, and the Nordic Optical Telescope, Observatorio Roque de los Muchachos, La Palma, Canary Islands.The photometric observations are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A40

  2. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  3. Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817

    NASA Astrophysics Data System (ADS)

    Marsden, Stephen

    2018-04-01

    The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.

  4. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  5. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  6. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  7. Differential Rotation within the Earth's Outer Core

    NASA Technical Reports Server (NTRS)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  8. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  9. Photometric Variability of the mCP Star CS Vir: Evolution of the Rotation Period

    NASA Astrophysics Data System (ADS)

    Ozuyar, D.; Sener, H. T.; Stevens, I. R.

    2018-01-01

    The aim of this study is to accurately calculate the rotational period of CS Vir by using STEREO observations and investigate a possible period variation of the star with the help of all accessible data. The STEREO data that cover 5-yr time interval between 2007 and 2011 are analysed by means of the Lomb-Scargle and Phase Dispersion Minimization methods. In order to obtain a reliable rotation period and its error value, computational algorithms such as the Levenberg-Marquardt and Monte Carlo simulation algorithms are applied to the data sets. Thus, the rotation period of CS Vir is improved to be 9.29572(12) d by using the 5-yr of combined data set. Also, the light elements are calculated as HJD max = 2454715.975(11) + 9d . 29572(12) × E + 9d . 78(1.13) × 10 - 8 × E 2 by means of the extremum times derived from the STEREO light curves and archives. Moreover, with this study, a period variation is revealed for the first time, and it is found that the period has lengthened by 0.66(8) s y-1, equivalent to 66 s per century. Additionally, a time-scale for a possible spin-down is calculated around τSD 106 yr. The differential rotation and magnetic braking are thought to be responsible of the mentioned rotational deceleration. It is deduced that the spin-down time-scale of the star is nearly three orders of magnitude shorter than its main-sequence lifetime (τMS 109 yr). It is, in return, suggested that the process of increase in the period might be reversible.

  10. Simultaneous Modeling of the Thermophysical and Dynamical Evolution of Saturn's Icy Satellites

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Lunine, J. I.

    2007-10-01

    This poster describes the methodology we use in modeling the geophysical and dynamical evolution of the icy satellites of Saturn. For each of the model's modules we identify the relevant physical, chemical, mineralogical, and material science principals that are used. Then we present the logic of the modeling approach and its implementation. The main modules handle thermal, geological, and dynamical processes. Key parameters such as temperature, thermal conductivity, rigidity, viscosity, Young's modulus, dynamic Love number k2, and frequency-dependent dissipation factor Q(ω) are transmitted between the modules in the course of calculating an evolutionary sequence. Important initial conditions include volatile and nonvolatile compositions, formation time, rotation period and shape, orbital eccentricity and semimajor axis, and temperature and porosity profiles. The thermal module treats the thermal effects of accretion, melting of ice, differentiation and tidal dissipation. Heat transfer is by conduction only because in the cases thus far studied the criterion for convection is not met. The geological module handles the evolution of porosity, shape, and lithospheric strength. The dynamical module calculates despinning and orbital evolution. Chief outputs include the orbital evolution, the interior temperatures as a function of time and depth, and other parameters of interest such as k2, and Q(ω) as a function of time. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  11. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. Conclusions: We conclude that the high magnetic activity level and fast rotation of CoRoT 102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li i λ6707.8 Å absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRot 102899501 could have been present on the Sun at the time of planet formation. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.Based on observations made with the Anglo-Australian Telescope; the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA; the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the NOT "Fast-Track" Service Programme, OPTICON, and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Danielle M.; Margot, Jean-Luc; Ragozzine, Darin

    Hi’iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified the rotation period of Hi’iaka to be ∼9.8 hr (double peaked). This is ∼120 times faster than its orbital period, creating new questions about the formation of this system and possible tidal evolution. The rapid rotation suggests that Hi’iaka could have a significant obliquity and spin precession that could be visible in light curves within a few years. We then turn to an investigation of what we learn about themore » (currently unclear) formation of the Haumea system and family based on this unexpectedly rapid rotation rate. We explore the importance of the initial semimajor axis and rotation period in tidal evolution theory and find that they strongly influence the time required to despin to synchronous rotation, relevant to understanding a wide variety of satellite and binary systems. We find that despinning tides do not necessarily lead to synchronous spin periods for Hi’iaka, even if it formed near the Roche limit. Therefore, the short rotation period of Hi’iaka does not rule out significant tidal evolution. Hi’iaka’s spin period is also consistent with formation near its current location and spin-up due to Haumea-centric impactors.« less

  13. An Argument for Weakly Magnetized, Slowly Rotating Progenitors of Long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique

    2014-01-01

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B <~ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

  14. Muscle Weakness in the Empty and Full Can Tests Cannot Differentiate Rotator Cuff Tear from Cervical Spondylotic Amyotrophy: Pain Provocation is a Useful Finding.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Sakamoto, Yoshihiro; Tanaka, Yasuhito

    2017-01-01

    Rotator cuff tears and cervical spondylotic amyotrophy (CSA) are often confused as the main symptom in those with difficulty in shoulder elevation. Empty and full can tests are frequently used for the clinical diagnosis of rotator cuff tears. The aim of the present study was to investigate whether the empty and full can test results can help differentiate rotator cuff tears from CSA. Twenty-seven consecutive patients with rotator cuff tears and 25 with CSA were enrolled. We prospectively performed empty and full can tests in patients with rotator cuff tears and CSA. The following signs were considered positive: (a) muscle weakness during the empty can test, (b) muscle weakness during the full can test, (c) pain provocation during the empty can test, and (d) pain provocation during the full can test. We calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of rotator cuff tears for each positive finding. The sensitivity and specificity of each index were as follows (sensitivity, specificity, PPV, NPV): (a) 77.8%, 0%, 45.7%, 0%; (b) 66.7%, 4.0%, 42.9%, 10.0%; (c) 88.9%, 96.0%, 96.0%, 88.9%; and (d) 74.1%, 96.0%, 95.2%, 77.4%. There were significant differences for each index. Muscle weakness during the empty and full can tests was not useful in differentiating rotator cuff tears from CSA because of low specificity and PPV. However, pain provocation was useful in differentiating these two conditions because of high specificity and PPV.

  15. Stellar Evolution with Rotation: Mixing Processes in AGB Stars

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Blöcker, T.

    We included diffusive angular momentum transport and rotationally induced mixing processes in our stellar evolution code and studied the influence of rotation on the evolution of intermediate mass stars (M*=2dots6 Msolar) towards and along the asymptotic giant branch (AGB). The calculations start in the fully convective pre-main sequence phase and the initial angular momentu m was adjusted such that on the zero-age main sequence vrot=200 km/ s is achieved. The diffusion coefficients for the five rotational instabilities considered (dynamical shear, secular shear, Eddington-Sweet (ES) circulation, Solberg-Høiland-instability and Goldreich-Schubert-Fricke (GSF) instability) were adopted from Heger et al. (2000, ApJ 528, 368). Mixing efficiency and sensitivity of these processes against molecular weight gradients have been determined by calibration of the main sequence width. In this study we focus on the abundance evolution of carbon. On the one hand, the surface abundance ratios of 12C/13C a nd 12C/16O at the base of the AGB were found to be ≈ 7dots 10 and ≈ 0.1, resp., being a factor of two lower than in non-rotating models. This results from the slow but continuously operating rotationally induced mixing due to the ES-circulation and the GSF-instability during the long main sequence phase. On the other hand, 13C serves as neutron source for interior s-process nucleosynthesis in AGB stars vi a 13C(α,n)16O. Herwig et al. (1997, A&A 324, L81) found that a 13C pocket is forme d in the intershell region of 3 Msolar AGB star if diffusive overshoot is considered. Our calculations show, that mixing processes due to rotation open an alternative channel for the formation of a 13C pocket as found by Langer et al. (1999, A&A 346, L37). Again, ES-circulation and GSF-instability are the predominant rotational mixing processes.

  16. On the theory of group generation of stars

    NASA Technical Reports Server (NTRS)

    Zhilyayev, B. Y.; Porfiryev, V. V.; Shulman, L. M.

    1973-01-01

    The hypothesis proposed is that topology of a rotating gaseous cloud can be variable in the contraction process. Due to rotation an originally spherical cloud is transformed into a toroidal body. The contraction of a thin torus is considered with different suppositions on cooling the gas. In the determined time the torus will become gravitationally unstable. The excitation of Jeans' waves is shown to result in the disintegration of the torus into fragments. The number of the fragments and their mass distributions are calculated. The proposed hypothesis on toroidal stages in stellar evolution can remove some difficulties in the theory of structure and evolution of stars, such as absence of limitary stars, distribution of rotation velocities of early-type stars, origin of poloidal magnetic fields and decline rotators with the magnetic axis orthogonal to the axis of rotation.

  17. Two Populations of Sunspots: Differential Rotation

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Pevtsov, A. A.; Osipova, A. A.

    2018-03-01

    To investigate the differential rotation of sunspot groups using the Greenwich data, we propose an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different latitude intervals. The general statistical velocity distributions for all such intervals are shown to be described by two rather than one normal distribution, so that two fundamental rotation modes exist simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2 in Faye's law is 2.87-2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results obtained not only suggest a real physical difference between the two populations of sunspots but also give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially distributed dynamo.

  18. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  19. Evolution of graphene islands growing on Cu foils

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph; Nie, Shu; Bartelt, Norman; McCarty, Kevin; Dubon, Oscar

    2011-03-01

    Using low-energy electron microscopy we investigate, in real time, the growth of graphene monolayers on Cu foils. Graphene islands evolve from an initially compact form into an increasingly ramified, four-lobed shape, reflecting the symmetry of the (100)-textured Cu surface. Diffraction analysis reveals that each lobe is an individual graphene domain, differentiated by a rotation about the film normal, making the islands polycrystalline. An inspection of the morphological evolution of the graphene lobes shows the growth fronts posses an angularly dependent velocity, which is consistent with a growth mode dominated by edge kinetics. The fast growth direction of each lobe tends to align with the 001 in-plane directions of the Cu surface but not with a high symmetry direction of the graphene lattice. Finally, the implications of this unexpected growth mechanism on the formation of high-quality graphene films on Cu foils are evaluated. Supported by BES/USDOE under contracts #DE-AC04-94AL85000 and #DE-AC02-05CH11231.

  20. The rotational velocity of low-mass stars in the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Queloz, D.; Allain, S.; Mermilliod, J.-C.; Bouvier, J.; Mayor, M.

    1998-07-01

    We present new {vsin i} measurements for 235 low-mass stars in the Pleiades. The differential rotational broadening has been resolved for all the stars in our sample. These results, combined with previously published measurements, provide a complete and unbiased rotation data set for stars in the mass range from 0.6 to 1.2{Msun}. Applying a numerical inversion technique on the {vsin i} distributions, we derive the distributions of equatorial velocities for low-mass Pleiades members. We find that half of the Pleiades dwarfs with a mass between 0.6 to 1 {Msun} have rotation rates lower than 10{ km s(-1) }. Comparison of the rotational distributions of low-mass members between IC 2602/2391 (~ 35 Myr) and the Pleiades (~ 100 Myr) suggests that G dwarfs behave like solid-bodies and follow Skumanich's law during this time span. However, comparison between Pleiades and older clusters -M34 (~ 200 Myr) and Hyades (~ 600 Myr)- indicates that the braking of slow rotators on the early main sequence is weaker than predicted by an asymptotical Skumanich's law. This strongly supports the view that angular momentum tapped in the radiative core of slow rotators on the zero age main sequence (ZAMS) resurfaces into the convective envelope between Pleiades and Hyades age. For the G-dwarfs, we derive a characteristic coupling time scale between the core and the envelope of about 100-200 Myr, which accounts for the observed evolution of surface rotation from the ZAMS to the Hyades. The relationship between rotation and coronal activity in the Pleiades is in agreement with previous observations in other clusters and field stars. We show that the Rossby diagram provides an excellent description of the X-ray activity for all stars in the mass domain studied. The Pleiades data for slow and moderate rotators fills the gap between the X-ray-rotation correlation found for slow rotators and the X-ray ``saturation plateau'' observed for young fast rotators. The transition between increasing X-ray flux with rotation and X-ray saturation is observed at log (P/tau )=0.8+/-0.1. These results strengthen the hypothesis that the ``saturation'' of the angular momentum loss process depends on the stellar mass. Based on observations collected at the Observatoire de Haute-Provence with ELODIE at the 193cm telescope and with CORAVEL at the 1m-swiss telescope

  1. SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuo; Liu, Chang; Deng, Na

    2014-02-20

    The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease,more » and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.« less

  2. Null result for violation of the equivalence principle with free-fall rotating gyroscopes

    NASA Astrophysics Data System (ADS)

    Luo, J.; Nie, Y. X.; Zhang, Y. Z.; Zhou, Z. B.

    2002-02-01

    The differential acceleration between a rotating mechanical gyroscope and a nonrotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2×10-6. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or antigravity of the rotating gyroscopes as reported by Hayasaka et al.

  3. Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set

    NASA Astrophysics Data System (ADS)

    Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.

    2017-10-01

    Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the DS method and ω(b) = (14.50 ± 0.01)-(2.87 ± 0.12)sin2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964-2016 in the present paper. Rotation profiles, using different data sets, presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Conclusions: The KSO data set used in this paper is in good agreement with the Debrecen Photoheliographic Data and Greenwich Photoheliographic Results and is suitable for the investigation of the long-term variabilities in the solar rotation profile. Also, the quality of the KSO sunspot drawings has gradually increased during the last 50 yr.

  4. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  5. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-03-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  6. Crystal settling and crystal growth caused by Ostwald Ripening in a terrestrial magma ocean under rotation

    NASA Astrophysics Data System (ADS)

    Maas, C.; Moeller, A.; Hansen, U.

    2013-12-01

    About 4.5 billion years ago the earth was covered by a heavily convecting and rotating global magma ocean which was caused by an impact of a mars-sized impactor in a later stage of the earth's accretion. After the separation of metal and silicate (see A. Möller, U. Hansen (2013)) and the formation of the earth's core it began to crystallize. Small silicate crystals emerge and grow by Ostwald Ripening when the fluid is supersaturated. This process results in shrinking of small crystals and growing of large crystals on behalf of the smaller ones. This leads to an altering of the crystal settling time. One question which is still under great debate is whether fractional or equilibrium crystallization occurred in the magma ocean. Fractional crystallization means that different mineral fractions settle one after the other which would lead to a strongly differentiated mantle after solidification of the magma ocean. In contrast to that equilibrium crystallization would result in a well mixed mantle. Whether fractional or equilibrium crystallization occurred is for example important for the starting model of plate tectonics or the understanding of the mantle development until today. To study the change of crystal radius in a convecting and rotating magma ocean we employed a 3D numerical model. Due to the low viscosity and strong rotation the influence of rotation on the early magma Ocean cannot be neglected. In the model the crystals are able to influence each other and the fluid flow. They are able to grow, shrink, vanish and form and gravitational, Coriolis and drag forces due to the fluid act on them. In our present work we study the crystal settling depending on different rotation rates and rotation axes with two configurations. For the polar setting the rotation axis is parallel, at the equator it is perpendicular to gravity. Low rotation at the pole leads to a large fraction of suspended crystals. With increasing rotation the crystals settle and form a thick layer at the bottom of the magma ocean. At the equator we find three regimes (see A. Möller, U. Hansen (2013)) depending on the rotation strength. At low rotation a high fraction of silicate crystals settle at the bottom. At higher rotation the crystals form a thick layer in the bottom 1/3 of box. At high rotation all crystals are suspended and we observe a ribbon structure in the middle of the box. With a second model we investigate growing and shrinking of crystals by Ostwald Ripening and include formation and melting. In general we observe the same behaviour and regimes as described above, however due to Ostwald Ripening the evolution of crystal radius with time depends on the strength of rotation and on the orientation of the rotation axis. Very first results show that at the pole the growth of the silicate crystals is limited. The resulting small radius leads to a slow crystal settling. At the equator the crystals are able to grow larger than at the pole and therefore settle faster. This could lead to an asymmetrical crystallization of the magma ocean. In an extreme case due to the different settling times this could lead to a well mixed mantle at the pole whereas at the equator the mantle could be strongly differentiated after the solidification of the magma ocean.

  7. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  8. Numerical models of diapiric structures: comparison of the 2D finite deformation field between Rayleigh-Taylor like and down-built like diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Schmeling, Harro; Koyi, Hemin

    2013-04-01

    Magmatic and salt diapirs are common structures in different tectonic regimes. Salt diapirs can act as possible hydrocarbon traps and, moreover, they could be used as repositories for nuclear waste disposal. Understanding the evolution and the dynamics of diapirs as well as their driving mechanisms has fundamental and applied significance. In general, salt diapirs seem to be driven by differential loading of sediments creating an uneven load that drives the salt from high to low pressure areas, e.g. a down-built diapir. Magmatic diapirs, instead, seem to be driven by buoyancy where lighter material rises vertically through a heavier overburden, i.e. a classical Rayleigh-Taylor instability [RTI]. These different driving mechanisms and dynamics strongly govern the internal deformation of the diapirs. In this study, we use a two-dimensional finite difference code (FDCON) in combination with a marker and cell method to calculate the finite deformation within diapiric structures. Thereby, we distinguish between the two different driving mechanisms, i.e. the differential loading and the buoyancy. We calculate the different finite deformation patterns during the evolution of RTI's and down-built diapirs for different viscosity ratios m = -?buoyant- ?overburden. The deformation pattern in the buoyant layer shows similarities for both diapiric structures, like high shear deformation at the bottom, a high finite deformation within the middle of the stem, and an increasing maximum finite deformation for a decreasing m. However, the strain partitioning between the overburden and the source layer is different within down-built diapirs compared to the RTI's, even for down-built diapirs with m = 1. Thus a higher amount of the total strain induced by down-building is concentrated within the buoyant layer. Moreover, in the case of viscosity ratios of m = 0.1 or 1 the sinking overburden units create an internal rotation within the diapiric bulb. This rotation depends indirectly on the sedimentation rate as it determines the width of the sediment basin; the higher the sedimentation rate, the wider the basins and the weaker the internal rotation. In addition, the viscous drag between the sinking overburden and the rising diapir creates a stronger and wider band of finite deformation along the edges of the down-built diapir in comparison to the RTI.

  9. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  10. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  11. M Dwarf Rotation from the K2 Young Clusters to the Field. I. A Mass-Rotation Correlation at 10 Myr

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Stauffer, John; Rebull, Luisa; Cody, Ann Marie; Pinsonneault, Marc

    2017-12-01

    Recent observations of the low-mass (0.1-0.6 {M}⊙ ) rotation distributions of the Pleiades and Praesepe clusters have revealed a ubiquitous correlation between mass and rotation, such that late M dwarfs rotate an order-of-magnitude faster than early M dwarfs. In this paper, we demonstrate that this mass-rotation correlation is present in the 10 Myr Upper Scorpius association, as revealed by new K2 rotation measurements. Using rotational evolution models, we show that the low-mass rotation distribution of the 125 Myr Pleiades cluster can only be produced if it hosted an equally strong mass-rotation correlation at 10 Myr. This suggests that physical processes important in the early pre-main sequence (PMS; star formation, accretion, disk-locking) are primarily responsible for the M dwarf rotation morphology, and not quirks of later angular momentum (AM) evolution. Such early mass trends must be taken into account when constructing initial conditions for future studies of stellar rotation. Finally, we show that the average M star loses ˜25%-40% of its AM between 10 and 125 Myr, a figure accurately and generically predicted by modern solar-calibrated wind models. Their success rules out a lossless PMS and validates the extrapolation of magnetic wind laws designed for solar-type stars to the low-mass regime at early times.

  12. THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY

    PubMed Central

    Greiner, Thomas M.; Ball, Kevin A.

    2015-01-01

    This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343

  13. Axisymmetric modes of rotating relativistic stars in the Cowling approximation

    NASA Astrophysics Data System (ADS)

    Font, José A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos

    2001-08-01

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.

  14. The effects of differential flow between rational surfaces on toroidal resistive MHD modes

    NASA Astrophysics Data System (ADS)

    Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John

    2016-10-01

    Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.

  15. Differential effects of RNAi treatments on field populations of the western corn rootworm.

    PubMed

    Chu, Chia-Ching; Sun, Weilin; Spencer, Joseph L; Pittendrigh, Barry R; Seufferheld, Manfredo J

    2014-03-01

    RNA interference (RNAi) mediated crop protection against insect pests is a technology that is greatly anticipated by the academic and industrial pest control communities. Prior to commercialization, factors influencing the potential for evolution of insect resistance to RNAi should be evaluated. While mutations in genes encoding the RNAi machinery or the sequences targeted for interference may serve as a prominent mechanism of resistance evolution, differential effects of RNAi on target pests may also facilitate such evolution. However, to date, little is known about how variation of field insect populations could influence the effectiveness of RNAi treatments. To approach this question, we evaluated the effects of RNAi treatments on adults of three western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations exhibiting different levels of gut cysteine protease activity, tolerance of soybean herbivory, and immune gene expression; two populations were collected from crop rotation-resistant (RR) problem areas and one from a location where RR was not observed (wild type; WT). Our results demonstrated that RNAi targeting DvRS5 (a highly expressed cysteine protease gene) reduced gut cysteine protease activity in all three WCR populations. However, the proportion of the cysteine protease activity that was inhibited varied across populations. When WCR adults were treated with double-stranded RNA of an immune gene att1, different changes in survival among WT and RR populations on soybean diets occurred. Notably, for both genes, the sequences targeted for RNAi were the same across all populations examined. These findings indicate that the effectiveness of RNAi treatments could vary among field populations depending on their physiological and genetic backgrounds and that the consistency of an RNAi trait's effectiveness on phenotypically different populations should be considered or tested prior to wide deployment. Also, genes that are potentially subjected to differential selection in the field should be avoided for RNAi-based pest control. Published by Elsevier Inc.

  16. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of themore » centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.« less

  17. Nonmodal phenomena in differentially rotating dusty plasmas

    NASA Astrophysics Data System (ADS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  18. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  19. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  20. Research highlights: June 1990 - May 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Linear instability calculations at MSFC have suggested that the Geophysical Fluid Flow Cell (GFFC) should exhibit classic baroclinic instability at accessible parameter settings. Interest was in the mechanisms of transition to temporal chaos and the evolution of spatio-temporal chaos. In order to understand more about such transitions, high resolution numerical experiments for the physically simplest model of two layer baroclinic instability were conducted. This model has the advantage that the numerical code is exponentially convergent and can be efficiently run for very long times, enabling the study of chaotic attractors without the often devastating effects of low-order trunction found in many previous studies. Numerical algorithms for implementing an empirical orthogonal function (EOF) analysis of the high resolution numerical results were completed. Under conditions of rapid rotation and relatively low differential heating, convection in a spherical shell takes place as columnar banana cells wrapped around the annular gap, but with axes oriented along the axis of rotation; these were clearly evident in the GFFC experiments. The results of recent numerical simulations of columnar convection and future research plans are presented.

  1. STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Travis S.; Egeland, Ricky; Van Saders, Jennifer

    2016-07-20

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish themore » new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.« less

  2. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  3. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  4. Unstable current systems and plasma instabilities in astrophysics; Proceedings of the 107th Symposium, University of Maryland, College Park, August 8-11, 1983

    NASA Technical Reports Server (NTRS)

    Kundu, M. R. (Editor); Holman, G. D. (Editor)

    1985-01-01

    Among the topics discussed are: magnetic field reconnection in cosmic plasmas; energy dissipation mechanisms in the solar corona; and the acceleration of runaway electrons and Joule heating in solar flares. Consideration is also given to: the nonlinear evolution of the resistive tearing mode; anomalous transport in current sheets; equilibrium and instability in extragalactic jets; and magnetic field reconnection in differentially rotating accretion disks. Among additional topics discussed are: the creation of high energy electron tails by lower hybrid waves and its connection with type-II and type-III bursts; beam current systems in solar flares; and the spatio-temporal features of microwave emissions of active regions and flares.

  5. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  6. g factors of coexisting isomeric states in {sup 188}Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu-Bujor, M.; Iordachescu, A.; Marginean, N.

    2010-02-15

    The g factors of the 12{sup +}, 11{sup -}, and 8{sup -} isomeric states in {sup 188}Pb were measured using the time-differential perturbed angular distribution method as g(12{sup +})=-0.179(6), g(11{sup -})=+1.03(3), and g(8{sup -})=-0.037(7). The g factor of the 12{sup +} state follows the observed slight down-sloping evolution of the g factors of the i{sub 13/2}{sup 2} neutron spherical states with decreasing N. The g factors of the 11{sup -} and 8{sup -} isomers proposed as oblate and prolate deformed states, respectively, were interpreted within the rotational model, using calculated and empirical g factor values for the involved single-particle orbitals.

  7. Filament cooling and condensation in a sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Van Hoven, Gerard

    1990-01-01

    Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.

  8. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  9. Collisional evolution of rotating, non-identical particles. [in Saturn rings

    NASA Technical Reports Server (NTRS)

    Salo, H.

    1987-01-01

    Hameen-Anttila's (1984) theory of self-gravitating collisional particle disks is extended to include the effects of particle spin. Equations are derived for the coupled evolution of random velocities and spins, showing that friction and surface irregularity both reduce the local velocity dispersion and transfer significant amounts of random kinetic energy to rotational energy. Results for the equilibrium ratio of rotational energy to random kinetic energy are exact not only for identical nongravitating mass points, but also if finite size, self-gravitating forces, or size distribution are included. The model is applied to the dynamics of Saturn's rings, showing that the inclusion of rotation reduces the geometrical thickness of the layer of cm-sized particles to, at most, about one-half, with large particles being less affected.

  10. Progress in geophysical aspects of the rotation of the earth

    NASA Technical Reports Server (NTRS)

    Lambeck, K.

    1978-01-01

    The geophysical causes and consequences of the Earth's rotation are reviewed. Specific topics covered include: (1) the motion of the rotation axis in space, precession and nutation; (2) the motion of the rotation axis relative to the Earth, polar motion; and (3) the rate of rotation about this axis, or changes in the length of day. Secular decrease in obliquity and evolution of the Earth-Moon system are also discussed.

  11. Pressure deformation of tires using differential stiffness for triangular solid-of-revolution elements

    NASA Technical Reports Server (NTRS)

    Chen, C. H. S.

    1975-01-01

    The derivation is presented of the differential stiffness for triangular solid of revolution elements. The derivation takes into account the element rigid body rotation only, the rotation being about the circumferential axis. Internal pressurization of a pneumatic tire is used to illustrate the application of this feature.

  12. Simulations of Magnetic Flux Emergence in Cool, Low-Mass Stars: Toward Linking Dynamo Action with Starspots

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann; Browning, Matthew; Nelson, Nicholas

    2018-01-01

    Starspots are windows into a star’s internal dynamo mechanism. However, the manner by which the dynamo-generated magnetic field traverses the stellar interior to emerge at the surface is not especially well understood. Establishing the details of magnetic flux emergence plays a key role in deciphering stellar dynamos and observed starspot properties. In the solar context, insight into this process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized thin flux tubes (TFTs). Here, we present three sets of TFT simulations in rotating spherical shells of convection: one representative of the Sun, the second of a solar-like rapid rotator, and the third of a fully convective M dwarf. Our solar simulations reproduce sunspot observables such as low-latitude emergence, tilting action toward the equator following the Joy’s Law trend, and a phenomenon akin to active longitudes. Further, we compare the evolution of rising flux tubes in our (computationally inexpensive) TFT simulations to buoyant magnetic structures that arise naturally in a unique global simulation of a rapidly rotating Sun. We comment on the role of rapid rotation, the Coriolis force, and external torques imparted by the surrounding convection in establishing the trajectories of the flux tubes across the convection zone. In our fully convective M dwarf simulations, the expected starspot latitudes deviate from the solar trend, favoring significantly poleward latitudes unless the differential rotation is sufficiently prograde or the magnetic field is strongly super-equipartition. Together our work provides a link between dynamo-generated magnetic fields, turbulent convection, and observations of starspots along the lower main sequence.

  13. An argument for weakly magnetized, slowly rotating progenitors of long gamma-ray bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno Méndez, Enrique, E-mail: enriquemm@astro.unam.mx

    2014-01-20

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BHmore » formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 10{sup 2} G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.« less

  14. DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.

    2015-09-01

    Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak,more » are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.« less

  15. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  16. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  17. Assessment of Dominant/Codominant Height Growth for Second Rotation Slash Pine Plantations in South Georgia and North Florida

    Treesearch

    Charles E. Rose; Barry D. Shiver

    2002-01-01

    A slash pine (Pinus elliottii Engelm.) successive rotation plantation study was established in 1978-79 for the north Florida and south Georgia fiatwoods. The second rotation duplicated the first rotation seed source, site preparation, planting method, and density. The comparison between the two rotations is based on the mean height differential...

  18. The structure and evolution of coronal holes

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Krieger, A. S.; Vaiana, G. S.

    1975-01-01

    Soft X-ray observations of coronal holes are analyzed to determine the structure, temporal evolution, and rotational properties of those features as well as possible mechanisms which may account for their almost rigid rotational characteristics. It is shown that coronal holes are open features with a divergent magnetic-field configuration resulting from a particular large-scale magnetic-field topology. They are apparently formed when the successive emergence and dispersion of active-region fields produce a swath of unipolar field founded by fields of opposite polarity, and they die when large-scale field patterns emerge which significantly distort the original field configuration. Two types of holes are described (compact and elongated), and three possible rotation mechanisms are considered: a rigidly rotating subphotospheric phenomenon, a linking of high and low latitudes by closed field lines, and an interaction between moving coronal material and open field lines.

  19. Rotation State Evolution of Retired Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Benson, C.; Scheeres, D. J.; Ryan, W. H.; Ryan, E. V.; Moskovitz, N.

    Non-periodic light curve rotation state analysis is conducted for the retired geosynchronous satellite GOES 8. This particular satellite has been observed periodically at the Maui Research and Technology Center as well as Magdalena Ridge and Lowell Observatories since 2013. To extract tumbling periods from the light curves, twodimensional Fourier series fits were used. Torque-free dynamics and the satellite’s known mass properties were then leveraged to constrain the candidate periods. Finally, simulated light curves were generated using a representative shape model for further validation. Analysis of the light curves suggests that GOES 8 transitioned from uniform rotation in 2014 to continually evolving tumbling motion by 2016. These findings are consistent with previous dynamical simulations and support the hypothesis that the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect drives rotation state evolution of retired geosynchronous satellites.

  20. Rotation histories of the natural satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1977-01-01

    Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.

  1. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  2. Possible relation between pulsar rotation and evolution of magnetic inclination

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  3. Dynamical evolution of differentiated asteroid families

    NASA Astrophysics Data System (ADS)

    Martins-Filho, W. S.; Carvano, J.; Mothe-Diniz, T.; Roig, F.

    2014-10-01

    The project aims to study the dynamical evolution of a family of asteroids formed from a fully differentiated parent body, considering family members with different physical properties consistent with what is expected from the break up of a body formed by a metallic nucleus surrounded by a rocky mantle. Initially, we study the effects of variations in density, bond albedo, and thermal inertia in the semi-major axis drift caused by the Yarkovsky effect. The Yarkovsky effect is a non-conservative force caused by the thermal re-radiation of the solar radiation by an irregular body. In Solar System bodies, it is known to cause changes in the orbital motions (Peterson, 1976), eventually bringing asteroids into transport routes to near-Earth space, such as some mean motion resonances. We expressed the equations of variation of the semi-major axis directly in terms of physical properties (such as the mean motion, frequency of rotation, conductivity, thermal parameter, specific heat, obliquity and bond albedo). This development was based on the original formalism for the Yarkovsky effect (i.e., Bottke et al., 2006 and references therein). The derivation of above equations allowed us to closely study the variation of the semi-major axis individually for each physical parameter, clearly showing that the changes in semi-major axis for silicate bodies is twice or three times greater than for metal bodies. The next step was to calculate the orbital elements of a synthetic family after the break-up. That was accomplished assuming that the catastrophic disruption energy is given by the formalism described by Stewart and Leinhardt (2009) and assuming an isotropic distribution of velocities for the fragments of the nucleus and the mantle. Finally, the orbital evolution of the fragments is implemented using a simpletic integrator, and the result compared with the distribution of real asteroid families.

  4. Evolutionary models of rotating dense stellar systems: challenges in software and hardware

    NASA Astrophysics Data System (ADS)

    Fiestas, Jose

    2016-02-01

    We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.

  5. A Model of Magnetic Braking of Solar Rotation that Satisfies Observational Constraints

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.

    2010-08-01

    The model of magnetic braking of solar rotation considered by Charbonneau & MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  6. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  7. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  8. Thermo-Rotational Instability in Plasma Disks Around Compact Objects*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2008-04-01

    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and the vertical gradients of the plasma density and temperature [1]. When the electron mean free path is shorter than the disk height and the (vertical) thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz/(dlnn/dz)=2/3. Here T is the plasma temperature and n the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3) such as those produced by an internal (e.g. viscous) heating process. In the end, ballooning modes excited for various values of ηT can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings[2].*Sponsored in part by the U.S. Department of Energy[1]B. Coppi, M.I.T. (LNS) Report HEP, 07/02, Cambridge, MA (2007), Invited Paper at the International Symposium on ``Momentum Transport in Jets, Disks and Laboratory Plasmas'', Alba, Piedmont, September 2007, to be published in Europhysical Letters (EPL, IOP)[2]B. Coppi andF. Rousseau, Ap. J., 641, 458, (2006)

  9. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.

  10. Triple system HD 201433 with a SPB star component seen by BRITE - Constellation: Pulsation, differential rotation, and angular momentum transfer

    NASA Astrophysics Data System (ADS)

    Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.

    2017-07-01

    Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the statistically significant decrease of the orbital period of about 0.9 s during the last 96 yr. Conclusions: Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the orbit. They have, however, not yet aligned all spins of the system and have just begun to synchronise rotation. Based on data collected by the BRITE - Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN), the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and the Solar Mass Ejection Imager, which is a joint project of the University of California San Diego, Boston College, the University of Birmingham (UK), and the Air Force Research Laboratory.

  11. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A < 100, is not necessary. We also reproduce the evolution of the heavy to light s-elements abundance ratio ([hs/ls]) - recently observed in unevolved thin disc stars - as a result of the contribution of rotating massive stars at sub-solar metallicities. We find that those stars produce primary F and dominate its solar abundance and we confirm their role in the observed primary behaviour of N. In contrast, we show that their action is insufficient to explain the small observed values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less

  13. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  14. Multi-site Observations of Pulsation in the Accreting White Dwarf SDSS J161033.64-010223.3 (V386 Ser)

    NASA Astrophysics Data System (ADS)

    Mukadam, Anjum S.; Townsley, D. M.; Gänsicke, B. T.; Szkody, P.; Marsh, T. R.; Robinson, E. L.; Bildsten, L.; Aungwerojwit, A.; Schreiber, M. R.; Southworth, J.; Schwope, A.; For, B.-Q.; Tovmassian, G.; Zharikov, S. V.; Hidas, M. G.; Baliber, N.; Brown, T.; Woudt, P. A.; Warner, B.; O'Donoghue, D.; Buckley, D. A. H.; Sefako, R.; Sion, E. M.

    2010-05-01

    Non-radial pulsations in the primary white dwarfs of cataclysmic variables can now potentially allow us to explore the stellar interior of these accretors using stellar seismology. In this context, we conducted a multi-site campaign on the accreting pulsator SDSS J161033.64-010223.3 (V386 Ser) using seven observatories located around the world in 2007 May over a duration of 11 days. We report the best-fit periodicities here, which were also previously observed in 2004, suggesting their underlying stability. Although we did not uncover a sufficient number of independent pulsation modes for a unique seismological fit, our campaign revealed that the dominant pulsation mode at 609 s is an evenly spaced triplet. The even nature of the triplet is suggestive of rotational splitting, implying an enigmatic rotation period of about 4.8 days. There are two viable alternatives assuming the triplet is real: either the period of 4.8 days is representative of the rotation period of the entire star with implications for the angular momentum evolution of these systems, or it is perhaps an indication of differential rotation with a fast rotating exterior and slow rotation deeper in the star. Investigating the possibility that a changing period could mimic a triplet suggests that this scenario is improbable, but not impossible. Using time-series spectra acquired in 2009 May, we determine the orbital period of SDSS J161033.64-010223.3 to be 83.8 ± 2.9 minutes. Three of the observed photometric frequencies from our 2007 May campaign appear to be linear combinations of the 609 s pulsation mode with the first harmonic of the orbital period at 41.5 minutes. This is the first discovery of a linear combination between non-radial pulsation and orbital motion for a variable white dwarf.

  15. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: a randomized, prospective clinical trial.

    PubMed

    Verhaegen, Filip; Brys, Peter; Debeer, Philippe

    2016-02-01

    Arthroscopic needling of a rotator cuff calcification is a highly reliable operation in terms of pain relief and return of function. However, during the needling process, a cuff defect is created. Little is known about the evolution of this defect. We conducted a prospective, randomized controlled clinical trial to investigate the evolution of the aforementioned defect and the role of platelet-rich plasma (PRP) augmentation in this healing process. Patients were randomized to either group 1 (PRP, n = 20) or group 2 (no PRP [control group], n = 20). Patients in group 1 received a perioperative PRP infiltration at the rotator cuff defect, whereas the control group did not. Patients were assessed clinically preoperatively and postoperatively at 6 weeks, 3 and 6 months, and 1 year. The Constant score, Simple Shoulder Test, and QuickDASH (short version of Disabilities of the Arm, Shoulder and Hand questionnaire) were used as outcome measures. The evolution of the cuff defect was evaluated on sonography at 3 and 6 months and with magnetic resonance imaging after 1 year. All patients improved significantly after surgery (P < .05). There was no difference in clinical outcome or rotator cuff healing between groups. We observed a high rate of persistent rotator cuff defects after 1 year in both groups. The presence of residual cuff defects did not influence the clinical outcome. Arthroscopic needling is an operation with a predictive, good clinical outcome. We found a high rate of persistent rotator cuff defects after 1 year. This study could not identify any beneficial effect of the addition of PRP on rotator cuff healing. Level II; Randomized Controlled Trial; Treatment Study. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  17. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  18. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B. Huston

    1983-01-01

    Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  19. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B.H.

    1982-07-21

    Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  20. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    PubMed Central

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2012-01-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and 40Ar/39Ar age data. A first phase of basin formation occurred in the late Oligocene. A second phase of basin formation took place between 18 and 13 Ma, concurrent with profound extension in the neighboring Pannonian Basin. Our paleomagnetic results further indicate that the Dinarides have not experienced any significant tectonic rotation since the late Oligocene. This implies that the Dinarides were decoupled from the adjacent Adria and the Tisza–Dacia Mega-Units that both underwent major rotation during the Miocene. The Dinaride orogen must consequently have accommodated significant shortening. This is corroborated by our AMS data that indicate post-Middle Miocene shortening in the frontal zone, wrenching in the central part of the orogen, and compression in the hinterland. A review of paleomagnetic data from the Adria plate, which plays a major role in the evolution of the Dinarides as well as the Alps, constrains rotation since the Early Cretaceous to 48 ± 10° counterclockwise and indicates 20° of this rotation took place since the Miocene. It also shows that Adria behaved as an independent plate from the Late Jurassic to the Eocene. From the Eocene onwards, coupling between Adria and Africa was stronger than between Adria and Europe. Adria continued to behave as an independent plate. The amount of rotation within the Adria-Dinarides collision zone increases with age and proximity of the sampled sediments to undeformed Adria. These results significantly improve our insight in the post-orogenic evolution of the Dinarides and resolve an apparent controversy between structural geological and paleomagnetic rotation estimates for the Dinarides as well as Adria. PMID:27065500

  1. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  2. Non-gravitational force modeling of Comet 81P/Wild 2. II. Rotational evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pedro J.; Davidsson, Björn J. R.

    2007-11-01

    In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, ΔP=P˙, will decrease so that P¨=-5 to -1minorbit, which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.

  3. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  4. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  5. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly longer period of time than high mass ratio systems. We also find that the mean of the log-normal BYORP coefficient distribution μB ≳10-2 , which is consistent with estimates from shape modeling (McMahon and Scheeres, 2012a).

  6. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive Stars: Rotation and Nitrogen Enrichment as the Key to Understanding Massive Star Evolution'', I.Hunter, I.Brott, D.J. Lennon, N. Langer, C. Trundle, A. de Koter, C.J. Evans and R.S.I. Ryans The Astrophysical Journal, 2008, 676, L29-L32 Ch. 4: ``The VLT-FLAMES Survey of Massive Stars: Constraints on Stellar Evolution from the Chemical Compositions of Rapidly Rotating Galactic and Magellanic Cloud B-type Stars '', I. Hunter, I. Brott, N. Langer, D.J. Lennon, P.L. Dufton, I.D. Howarth R.S.I. Ryan, C. Trundle, C. Evans, A. de Koter and S.J. Smartt Published in Astronomy & Astropysics, 2009, 496, 841- 853 Ch. 5: ``Rotating Massive Main-Sequence Stars II: Simulating a Population of LMC early B-type Stars as a Test of Rotational Mixing '', I. Brott, C. J. Evans, I. Hunter, A. de Koter, N. Langer, P. L. Dufton, M. Cantiello, C. Trundle, D. J. Lennon, S.E. de Mink, S.-C. Yoon, P. Anders submitted to Astronomy & Astrophysics Ch 6: ``The Nature of B Supergiants: Clues From a Steep Drop in Rotation Rates at 22 000 K - The possibility of Bi-stability braking'', Jorick S. Vink, I. Brott, G. Graefener, N. Langer, A. de Koter, D.J. Lennon Astronomy & Astrophysics, 2010, 512, L7

  7. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  8. The Differential Impact of Clerk Interest and Participation in a Child and Adolescent Psychiatry Clerkship Rotation upon Psychiatry and Pediatrics Residency Matches

    ERIC Educational Resources Information Center

    Hanson, Mark D.; Szatmari, Peter; Eva, Kevin W.

    2011-01-01

    Objective: The authors evaluated the differential impact of clerk interest and participation in a Child and Adolescent Psychiatry (CAP) clerkship rotation upon psychiatry and pediatrics residency matches. Method: Authors studied clerks from the McMaster University M.D. program graduating years of 2005-2007. Participants were categorized as 1)…

  9. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  10. Evolution of Edge Pedestal Profiles Between ELMs

    NASA Astrophysics Data System (ADS)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  11. Wavelet analysis of stellar differential rotation. III. The Sun in white light

    NASA Astrophysics Data System (ADS)

    Hempelmann, A.

    2003-02-01

    Future space projects like KEPLER will deliver a vast quantity of high precision light curves of stars. This paper describes a test concerning the observability of rotation and even differential rotation of slowly rotating stars from such data. Two published light curves of solar total irradiance measures are investigated: the Nimbus-7 Earth Radiation Budget (ERB) observations between 1978 and 1993 and the Active Cavity Radiometer Irradiance Monitor I (ACRIM I) measurements between 1980 and 1989. Light curve analysis show that oscillations on time-scales comparable to solar rotation but of a complex pattern are visible. Neither Fourier analysis nor time-frequency Wavelet analysis yield the true rotation period during the more active phases of the solar cycle. The true rotation period dominates only for a short time during solar minimum. In the light of this study even space-born broad band photometry may turn out an inappropriate instrument to study stellar butterfly diagrams of stars rotating as slow as the Sun. However, it was shown in Papers I and II of this series that chromospheric tracers like Lyman alpha , Mg II h+k and CaII H+K are appropriate instruments to perform this task.

  12. Single rotating stars and the formation of bipolar planetary nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Langer, N.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less

  13. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  14. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  15. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  16. Limits on magnetic field amplification from the r -mode instability

    NASA Astrophysics Data System (ADS)

    Friedman, John L.; Lindblom, Lee; Rezzolla, Luciano; Chugunov, Andrey I.

    2017-12-01

    At second order in perturbation theory, the unstable r -mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational-radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work where large mode amplitudes were considered [L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J. 531, L139 (2000)., 10.1086/312539], suggests that the amplification may damp out the instability. A background magnetic field, however, turns the saturated time-independent perturbations corresponding to adding differential rotation into perturbations whose characteristic frequencies are of order the Alfvén frequency. As found in previous studies, we argue that magnetic-field growth is sharply limited by the saturation amplitude of an unstable mode. In contrast to previous work, however, we show that if the amplitude is small, i.e., ≲10-4 , then the limit on the magnetic-field growth is stringent enough to prevent the loss of energy to the magnetic field from damping or significantly altering an unstable r -mode in nascent neutron stars with normal interiors and in cold stars whose interiors are type II superconductors. We show this result first for a toy model, and we then obtain an analogous upper limit on magnetic-field growth using a more realistic model of a rotating neutron star. Our analysis depends on the assumption that there are no marginally unstable perturbations, and this may not hold when differential rotation leads to a magnetorotational instability.

  17. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  18. The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Gilhool, Steven H.; Blake, Cullen H.; Terrien, Ryan C.; Bender, Chad; Mahadevan, Suvrath; Deshpande, Rohit

    2018-01-01

    We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v\\sin i while simultaneously estimating {log}g, [{{M}}/{{H}}], and {T}{eff}. We conservatively estimate that our detection limit is 8 km s‑1. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v\\sin i and rotation period are physically inconsistent, requiring \\sin i> 1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ∼2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.

  19. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    PubMed

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  1. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denissenkov, Pavel A., E-mail: pavel.denisenkov@gmail.co

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic withmore » the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.« less

  2. Newton Algorithms for Analytic Rotation: An Implicit Function Approach

    ERIC Educational Resources Information Center

    Boik, Robert J.

    2008-01-01

    In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…

  3. Perception of Invariance Over Perspective Transformations in Five Month Old Infants.

    ERIC Educational Resources Information Center

    Gibson, Eleanor; And Others

    This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…

  4. Near-infrared time-series photometry in the field of Cygnus OB2 association. I. Rotational scenario for candidate members

    NASA Astrophysics Data System (ADS)

    Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.

    2017-07-01

    Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M⊙

  5. Dynamical Model for Spindown of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.

  6. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-05-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  7. Genesis of magnetic fields in isolated white dwarfs

    NASA Astrophysics Data System (ADS)

    Briggs, Gordon P.; Ferrario, Lilia; Tout, Christopher A.; Wickramasinghe, Dayal T.

    2018-07-01

    A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high-field magnetic white dwarfs (HFMWDs), the site of the differential rotation has been variously thought to be the common envelope, the hot outer regions of a merged degenerate core or an accretion disc are formed by a tidally disrupted companion that is subsequently accreted by a degenerate core. We have shown previously that the observed incidence of magnetism and the mass distribution in HFMWDs are consistent with the hypothesis that they are the result of merging binaries during common envelope evolution. Here, we calculate the magnetic field strengths generated by common envelope interactions for synthetic populations using a simple prescription for the generation of fields and find that the observed magnetic field distribution is also consistent with the stellar merging hypothesis. We use the Kolmogorov-Smirnov test to study the correlation between the calculated and the observed field strengths and find that it is consistent for low envelope ejection efficiency. We also suggest that the field generation by the plunging of a giant gaseous planet on to a white dwarf may explain why magnetism among cool white dwarfs (including DZ white dwarfs) is higher than among hot white dwarfs. In this picture, a super-Jupiter residing in the outer regions of the white dwarf's planetary system is perturbed into a highly eccentric orbit by a close stellar encounter and is later accreted by the white dwarf.

  8. Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    PubMed Central

    Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.

    2012-01-01

    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858

  9. Recurrent star-spot activity and differential rotation in KIC 11560447

    NASA Astrophysics Data System (ADS)

    Özavcı, I.; Şenavcı, H. V.; Işık, E.; Hussain, G. A. J.; O'Neal, D.; Yılmaz, M.; Selam, S. O.

    2018-03-01

    We present a detailed analysis of surface inhomogeneities on the K1-type subgiant component of the rapidly rotating eclipsing binary KIC 11560447, using high-precision Kepler light curves spanning nearly 4 yr, which corresponds to about 2800 orbital revolutions. We determine the system parameters precisely, using high-resolution spectra from the 2.1-m Otto Struve Telescope at the McDonald Observatory. We apply the maximum entropy method to reconstruct the relative longitudinal spot occupancy. Our numerical tests show that the procedure can recover large-scale random distributions of individually unresolved spots, and it can track the phase migration of up to three major spot clusters. By determining the drift rates of various spotted regions in orbital longitude, we suggest a way to constrain surface differential rotation and we show that the results are consistent with periodograms. The K1IV star exhibits two mildly preferred longitudes of emergence, indications of solar-like differential rotation, and a 0.5-1.3-yr recurrence period in star-spot emergence, accompanied by a secular increase in the axisymmetric component of spot occupancy.

  10. [MRI of the rotator cuff: evaluation of a new symptomatologic classification].

    PubMed

    Tavernier, T; Walch, G; Noël, E; Lapra, C; Bochu, M

    1995-05-01

    The different classifications use for the rotator cuff pathology seem to be incomplete. We propose a new classification with many advantages: 1) Differentiate the tendinopathy between less serious (grade 2A) and serious (grade 2B). 2) Recognize the intra-tendinous cleavage of the infra-spinatus associated with complete tear of the supra-spinatus. 3) Differentiate partial and complete tears of the supra-spinatus. We established this classification after a retrospective study of 42 patients operated on for a rotator cuff pathology. Every case had had a preoperative MRI. This classification is simple, reliable, especially for the associated intra tendinous cleavage.

  11. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    PubMed

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  12. The rotation-activity relation in M dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry L.; Calkins, Michael L.; Mink, Jessica D.

    2017-01-01

    Main sequence stars with masses below approximately 0.35 solar masses are fully-convective, and are expected to have a different type of magnetic dynamo than solar-type stars. Observationally, the dynamo mechanism can be probed through the relationship between rotation and magnetic activity, and the evolution of these properties. Though M dwarfs are the most common type of star in the galaxy, a lack of observational constraints at ages beyond 1 Gyr has hampered studies of the rotation-activity relation. To address this, we have made new measurements of rotation and magnetic activity in nearby, field-age M dwarfs. Combining our 386 rotation period measurements and 247 new optical spectra with data from the literature, we are able to probe the rotation-activity in M dwarfs with masses from 0.1 to 0.6 solar masses. We observe a threshold in the mass--period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. We confirm that the activity of rapidly rotating M dwarfs maintains a saturated value. We have measured rotation periods as long as 140 days, allowing us to probe the unsaturated regime in detail. Our data show a clear power-law decay in relative H-alpha luminosity as a function Rossby number. We discuss implications for the magnetic dynamo mechanism.We acknowledge funding from the National Science Foundation, the David and Lucile Packard Foundation Fellowship for Science and Engineering, and the John Templeton Foundation. E.R.N. acknowledges support from the NSF through a Graduate Research Fellowship and an Astronomy and Astrophysics Postdoctoral Fellowship.

  13. Comparison of trunk kinematics in trunk training exercises and throwing.

    PubMed

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  14. USE OF A NOVEL BOARD GAME IN A CLINICAL ROTATION FOR LEARNING THORACIC DIFFERENTIAL DIAGNOSES IN VETERINARY MEDICAL IMAGING.

    PubMed

    Ober, Christopher P

    2017-03-01

    When confronted with various findings on thoracic radiographs, fourth-year veterinary students often have difficulty generating appropriate lists of differential diagnoses. The purpose of this one-group, pretest, posttest experimental study was to determine if a game could be used as an adjunct teaching method to improve students' understanding of connections between imaging findings and differential diagnoses. A novel board game focusing on differential diagnoses in thoracic radiography was developed. One hundred fourth-year veterinary students took a brief pretest, played the board game, and took a brief posttest as a part of their respective clinical radiology rotations. Pretest results were compared to posttest results using a paired t-test to determine if playing the game impacted student understanding. Students' mean scores on the posttest were significantly higher than mean pretest scores (P < 0.0001). Thus, results indicate that playing the board game resulted in improved short-term understanding of thoracic differential diagnoses by fourth-year students, and use of the board game on a clinical rotation seems to be a beneficial part of the learning process. © 2016 American College of Veterinary Radiology.

  15. Evolution of the magnetic field structure of the Crab pulsar.

    PubMed

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  16. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    NASA Technical Reports Server (NTRS)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  17. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cargile, P. A.; Pepper, J.; Siverd, R.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age ofmore » 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.« less

  18. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  19. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  20. The solar gravitational figure: J2 and J4

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Hawkins, G. W.

    1980-01-01

    The theory of the solar gravitational figure is derived including the effects of differential rotation. It is shown that J sub 4 is smaller than J sub 2 by a factor of about 10 rather than being of order J sub 2 squared as would be expected for rigid rotation. The dependence of both J sub 2 and J sub 4 on envelope mass is given. High order p-mode oscillation frequencies provide a constraint on solar structure which limits the range in envelope mass to the range 0.01 M sub E/solar mass 0.04. For an assumed rotation law in which the surface pattern of differential rotation extends uniformly throughout the convective envelope, this structural constraint limits the ranges of J sub 2 and J sub 4 in units of 10 to the -8th power to 10 J sub 2 15 and 0.6 -J sub 4 1.5. Deviations from these ranges would imply that the rotation law is not constant with depth and would provide a measure of this rotation law.

  1. Study of the solar coronal hole rotation

    NASA Astrophysics Data System (ADS)

    Oghrapishvili, N. B.; Bagashvili, S. R.; Maghradze, D. A.; Gachechiladze, T. Z.; Japaridze, D. R.; Shergelashvili, B. M.; Mdzinarishvili, T. G.; Chargeishvili, B. B.

    2018-06-01

    Rotation of coronal holes is studied using data from SDO/AIA for 2014 and 2015. A new approach to the treatment of data is applied. Instead of calculated average angular velocities of each coronal hole centroid and then grouping them in latitudinal bins for calculating average rotation rates of corresponding latitudes, we compiled instant rotation rates of centroids and their corresponding heliographic coordinates in one matrix for further processing. Even unfiltered data showed clear differential nature of rotation of coronal holes. We studied possible reasons for distortion of data by the limb effects to eliminate some discrepancies at high latitudes caused by the high order of scattering of data in that region. A study of the longitudinal distribution of angular velocities revealed the optimal longitudinal interval for the best result. We examined different methods of data filtering and realized that filtration using targeting on the local medians of data with a constant threshold is a more acceptable approach that is not biased towards a predefined notion of an expected result. The results showed a differential pattern of rotation of coronal holes.

  2. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  3. COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.

    2015-04-10

    We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less

  4. A model for origin of self-rotation in a protoplanetary cloud under action of exterior periodic force

    NASA Astrophysics Data System (ADS)

    Tkachova, P. P.; Krot, A. M.

    2009-04-01

    This work investigates condition for origin of increasing rotational disturbance in a gas-liquid protoplanetary cloud under action of a periodic force. The model (based on Reynolds equations [1]) describing self-organization of rotational disturbance of viscous gas-liquid substance into a protoplanetary cloud is proposed. The Reynolds equations as well as continuity equation in cylindrical frame of reference (r, e, z) as basis relations for this analytical model are used. The mean velocity is supposed to be equal to zero from the beginning action of an exterior periodic force. The Reynolds' tensor of turbulent strain of velocity disturbances in a becoming fluid flow is sought for (besides, z-component of velocity disturbance is supposed to be equal to zero). In assumption that z-components of turbulent strains are equal to zero, the (r, e)-turbulent strain components are found. After all considerations the Reynolds equations and continuity one (in the cylindrical coordinate system) are reduced to the system of two differential equations in partial derivatives relatively to (r, e)-cylindrical components of turbulent strain of velocity disturbance. A common solution of these two equations permits us to reduce this task to solution of one differential equation relatively to (r, e)-turbulent strain. This homogeneous differential equation is solved with usage of the variables separation method. As a result, a superposition of two cosine's and sine's waves gives us (r, e)-turbulent strain wave with an elliptic (or circular) polarization. Moreover, this paper shows that amplitude of cosine-wave as well as sine-wave is an increasing function as r**(n**2-2). This paper finds that oscillations are intensified with growing a frequency of becoming oscillations. The computational experiments based on STAR-CD package [2] confirm the main analytical statements of the proposed model for becoming self-rotation in a gas-liquid protoplanetary cloud. This work develops also the nonlinear analysis of an attractor describing hydrodynamic state of rotating flows based on the matrix decomposition [3]. This analysis permits to estimate the values of characteristic parameters (including control one) of the attractor and predict its evolution in time analogously to the stated in [4]. References: [1] Loytsyansky, L.G. Mechanics of Fluid and Gas, Nauka: Moscow, 1973 (in Russian). [2] Methodology for STAR-CD: Version 3.24. Computational Dynamics Limited, 2004. [3] Krot, A.M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system, Nonlinear Phenomena in Complex Systems, vol.4, no. 2, pp.106-115, 2001. [4] Krot, A.M. and Tkachova, P.P. Investigation of geometrical shapes of hydrodynamic structures for identification of dynamical states of convective liquid, in: Lecture Notes in Computer Sciences, Berlin, Germany: Springer, Part 1, vol. 2667, pp. 398-406, 2003.

  5. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai

    2016-04-01

    Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.

  6. Slowly Spinning Southern M Dwarfs

    NASA Astrophysics Data System (ADS)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  7. Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications

    NASA Astrophysics Data System (ADS)

    García, Helbert; Jiménez, Giovanny

    2016-08-01

    We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.

  8. Rotating flow over a stretching sheet in nanofluid using Buongiorno model and thermophysical properties of nanoliquids

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.

    2017-08-01

    The boundary layer flow and heat transfer in rotating nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is studied. Four types of nanoparticles, namely silver (Ag), copper (Cu), alumina (Al2O3) and titania (TiO2) are used in our analysis with water as the base fluid (Prandtl number, Pr = 6.2). The nonlinear partial differential equations are transformed into ordinary differential equations by using the similarity transformation. The numerical solutions of these equation is obtained using shooting method in Maple software. The numerical results is concentrated on the effects of nanoparticle volume fraction φ, Brownian motion Nb, thermophoresis Nt, rotation Ω and suction S parameters on the skin friction coefficient and heat transfer rate. Dual solutions are observed in a certain range of the rotating parameter.

  9. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, H. M.; Reed, M. D.; Telting, J. H.

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets ofmore » ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.« less

  10. Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Mengel, M.; Carter, B. D.; Marsden, S.; Collier Cameron, A.; Wichmann, R.

    2000-08-01

    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50+/-10d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 1020g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars.

  11. The Evolution of Massive Close Binaries: Anomalous Relationship between Nitrogen Abundances and Rotational Velocities

    NASA Astrophysics Data System (ADS)

    Song, Hanfeng; Wang, Jiangtao; Song, Fen; Zhang, Ruiyu; Li, Zhi; Peng, Weiguo; Zhan, Qiong; Jing, Jianghong

    2018-05-01

    The combined effects of rotation and mass accretion on the evolution of binary systems are investigated in this work. Rotational binaries provide us with a promising channel that could explain the abnormal phenomenon of the nitrogen abundances in Groups 1 and 2 of the Galactic Hunter diagram. Group 1 contains fast-rotating but nitrogen-unenriched stars, whereas Group 2 includes apparently slowly rotating but nitrogen-enhanced stars. The donor star suffers from heavy mass loss that progressively exposes deep layers of nitrogen and corresponding angular momentum loss that can efficiently spin the star down. Rapid-rotation stars without nitrogen enrichment may be related to mass gainers that had accreted little matter from a close companion and then been spun up to rapid rotation. Nitrogen enrichment of mass gainers can be greatly suppressed by low accreting efficiency, which is induced by critical rotation, thermohaline mixing, and the gradient of mean molecular weight. Nitrogen enrichment due to mass accretion appears to be more efficient than that due to rotational mixing, because there exist thermohaline instabilities during Roche lobe overflow. The mixing in the enlarged convective core reduces carbon and nitrogen abundances but increases oxygen abundances in mass gainers. This process significantly triggers CNO cycling but does not support CN cycling. The orbital separation can be widened because of the nonconservative mass transfer, and this process gives rise to weak tidal torques. Therefore, invoking binaries has the potential to simultaneously explain the observed stars in Groups 1 and 2 of the Galactic Hunter diagram.

  12. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1, PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  13. Modeling the Solar Convective Dynamo and Emerging Flux

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  14. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.

    PubMed

    Holtzer, Gretchen L; Velegol, Darrell

    2005-10-25

    Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.

  15. Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1996-01-01

    The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the convective transport properties. In contrast to this large-scale anisotropy, small-scale vortex tubes at greater depths are randomly orientated by the rotational mixing of momentum, leading to an increased degree of isotropy on the medium to small scales of motion there. Rotation also influences the thermodynamic mixing properties of the convection. In particular, interaction of the larger coherent vortices causes a loss of correlation between the vertical velocity and the temperature leaving a mean stratification which is not isentropic.

  16. WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Kevin R.; Agüeros, Marcel A.; Liu, Jiyu

    2016-05-10

    Stellar rotation periods ( P {sub rot}) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P {sub rot} measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M {sub ⊙}) members of this key laboratory for stellar evolution theory. To fill this gap, we report P {sub rot} for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M {sub ⊙}), measured from photometric monitoring ofmore » the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P {sub rot} with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P {sub rot} and position relative to the main sequence in the cluster's color–magnitude diagram. We find that rapid rotators have redder ( V − K ) colors than slower rotators at the same V , indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.« less

  17. K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S. T.; Agüeros, M. A.; Covey, K. R.

    2016-05-01

    As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2 , is the first opportunity to measure rotation periods ( P {sub rot}) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P {sub rot} values for 48. Thirty-seven of thesemore » are new measurements, including the first P {sub rot} measurements for fully convective Hyads. For 9 of the 11 stars with P {sub rot} in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M {sub ⊙} are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M {sub ⊙} remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M {sub ⊙} when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M {sub ⊙}. The dearth of single rapid rotators more massive than ≈0.3 M {sub ⊙} indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity.« less

  18. The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Pezzulli, Gabriele; Fraternali, Filippo; Binney, James

    2017-05-01

    Massive and diffuse haloes of hot gas (coronae) are important intermediaries between cosmology and galaxy evolution, storing mass and angular momentum acquired from the cosmic web until eventual accretion on to star-forming discs. We introduce a method to reconstruct the rotation of a galactic corona, based on its angular momentum distribution (AMD). This allows us to investigate in what conditions the angular momentum acquired from tidal torques can be transferred to star-forming discs and explain observed galaxy-scale processes, such as inside-out growth and the build-up of abundance gradients. We find that a simple model of an isothermal corona with a temperature slightly smaller than virial and a cosmologically motivated AMD is in good agreement with galaxy evolution requirements, supporting hot-mode accretion as a viable driver for the evolution of spiral galaxies in a cosmological context. We predict moderately sub-centrifugal rotation close to the disc and slow rotation close to the virial radius. Motivated by the observation that the Milky Way has a relatively hot corona (T ≃ 2 × 106 K), we also explore models with a temperature larger than virial. To be able to drive inside-out growth, these models must be significantly affected by feedback, either mechanical (ejection of low angular momentum material) or thermal (heating of the central regions). However, the agreement with galaxy evolution constraints becomes, in these cases, only marginal, suggesting that our first and simpler model may apply to a larger fraction of galaxy evolution history.

  19. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  20. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  1. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  2. Shaping asteroid models using genetic evolution (SAGE)

    NASA Astrophysics Data System (ADS)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  3. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  4. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2002-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the HRD; extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the SMC, a low-metallicity galaxy (Z= 0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE + STIS + optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C = 0.085 solar C and N = 0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe.

  5. Kinematical evolution of tidally limited star clusters: rotational properties

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2017-07-01

    We present the results of a set of N-body simulations following the long-term evolution of the rotational properties of star cluster models evolving in the external tidal field of their host galaxy, after an initial phase of violent relaxation. The effects of two-body relaxation and escape of stars lead to a redistribution of the ordered kinetic energy from the inner to the outer regions, ultimately determining a progressive general loss of angular momentum; these effects are reflected in the overall decline of the rotation curve as the cluster evolves and loses stars. We show that all of our models share the same dependence of the remaining fraction of the initial rotation on the fraction of the initial mass lost. As the cluster evolves and loses part of its initial angular momentum, it becomes increasingly dominated by random motions, but even after several tens of relaxation times, and losing a significant fraction of its initial mass, a cluster can still be characterized by a non-negligible ratio of the rotational velocity to the velocity dispersion. This result is in qualitative agreement with the recently observed kinematical complexity that characterizes several Galactic globular clusters.

  6. Limits on radial differential rotation in Sun-like stars from parametric fits to oscillation power spectra

    NASA Astrophysics Data System (ADS)

    Nielsen, M. B.; Schunker, H.; Gizon, L.; Schou, J.; Ball, W. H.

    2017-06-01

    Context. Rotational shear in Sun-like stars is thought to be an important ingredient in models of stellar dynamos. Thanks to helioseismology, rotation in the Sun is characterized well, but the interior rotation profiles of other Sun-like stars are not so well constrained. Until recently, measurements of rotation in Sun-like stars have focused on the mean rotation, but little progress has been made on measuring or even placing limits on differential rotation. Aims: Using asteroseismic measurements of rotation we aim to constrain the radial shear in five Sun-like stars observed by the NASA Kepler mission: KIC 004914923, KIC 005184732, KIC 006116048, KIC 006933899, and KIC 010963065. Methods: We used stellar structure models for these five stars from previous works. These models provide the mass density, mode eigenfunctions, and the convection zone depth, which we used to compute the sensitivity kernels for the rotational frequency splitting of the modes. We used these kernels as weights in a parametric model of the stellar rotation profile of each star, where we allowed different rotation rates for the radiative interior and the convective envelope. This parametric model was incorporated into a fit to the oscillation power spectrum of each of the five Kepler stars. This fit included a prior on the rotation of the envelope, estimated from the rotation of surface magnetic activity measured from the photometric variability. Results: The asteroseismic measurements without the application of priors are unable to place meaningful limits on the radial shear. Using a prior on the envelope rotation enables us to constrain the interior rotation rate and thus the radial shear. In the five cases that we studied, the interior rotation rate does not differ from the envelope by more than approximately ± 30%. Uncertainties in the rotational splittings are too large to unambiguously determine the sign of the radial shear.

  7. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study

    NASA Astrophysics Data System (ADS)

    Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru

    2018-06-01

    We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.

  8. New constraints on the star formation history of the star cluster NGC 1856

    NASA Astrophysics Data System (ADS)

    Correnti, Matteo; Goudfrooij, Paul; Puzia, Thomas H.; de Mink, Selma E.

    2015-07-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (age ˜ 300 Myr) star cluster NGC 1856 in the Large Magellanic Cloud. We compare the observed colour-magnitude diagram (CMD), after having applied a correction for differential reddening, with Monte Carlo simulations of simple stellar populations (SSPs) of various ages. We find that the main-sequence turn-off (MSTO) region is wider than that derived from the simulation of a single SSP. Using constraints based on the distribution of stars in the MSTO region and the Red Clump, we find that the CMD is best reproduced using a combination of two different SSPs with ages separated by 80 Myr (0.30 and 0.38 Gyr, respectively). However, we cannot formally exclude that the width of the MSTO could be due to a range of stellar rotation velocities if the efficiency of rotational mixing is higher than typically assumed. Using a King-model fit to the surface number density profile in conjunction with dynamical evolution models, we determine the evolution of cluster mass and escape velocity from an age of 10 Myr to the present age, taking into account the possible effects of primordial mass segregation. We find that the cluster has an escape velocity Vesc ≃ 17 km s-1 at an age of 10 Myr, and it remains high enough during a period of ≃100 Myr to retain material ejected by slow winds of first-generation stars. Our results are consistent with the presence of an age spread in NGC 1856, in contradiction to the results of Bastian & Silva-Villa.

  9. Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.

    2017-12-01

    The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.

  10. Tectonic evolution of the Salton Sea inferred from seismic reflection data

    USGS Publications Warehouse

    Brothers, D.S.; Driscoll, N.W.; Kent, G.M.; Harding, A.J.; Babcock, J.M.; Baskin, R.L.

    2009-01-01

    Oblique extension across strike-slip faults causes subsidence and leads to the formation of pull-apart basins such as the Salton Sea in southern California. The formation of these basins has generally been studied using laboratory experiments or numerical models. Here we combine seismic reflection data and geological observations from the Salton Sea to understand the evolution of this nascent pull-apart basin. Our data reveal the presence of a northeast-trending hinge zone that separates the sea into northern and southern sub-basins. Differential subsidence (10 mm yr 1) in the southern sub-basin suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline, which may control the spatial distribution of young volcanism. Rotated and truncated strata north of the hinge zone suggest that the onset of extension associated with this pull-apart basin began after 0.5 million years ago. We suggest that slip is partitioned spatially and temporally into vertical and horizontal domains in the Salton Sea. In contrast to previous models based on historical seismicity patterns, the rapid subsidence and fault architecture that we document in the southern part of the sea are consistent with experimental models for pull-apart basins. ?? 2009 Macmillan Publishers Limited.

  11. Production of sunspots and their effects on the corona and solar wind: Insights from a new 3D flux-transport dynamo model

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.

    2018-01-01

    We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which sunspots are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.

  12. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  13. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  14. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    PubMed Central

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-01-01

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately. PMID:24936949

  15. SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk

    2016-12-20

    We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.

  16. Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  17. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structuremore » (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.« less

  18. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  19. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  20. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  1. Biceps-Related Physical Findings Are Useful to Prevent Misdiagnosis of Cervical Spondylotic Amyotrophy as a Rotator Cuff Tear.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Yamamoto, Yusuke; Sakamoto, Yoshihiro; Koizumi, Munehisa; Tanaka, Yasuhito

    2018-02-01

    Case-control study. The aim of the present study was to identify physical findings useful for differentiating between cervical spondylotic amyotrophy (CSA) and rotator cuff tears to prevent the misdiagnosis of CSA as a rotator cuff tear. CSA and rotator cuff tears are often confused among patients presenting with difficulty in shoulder elevation. Twenty-five patients with CSA and 27 with rotator cuff tears were enrolled. We included five physical findings specific to CSA that were observed in both CSA and rotator cuff tear patients. The findings were as follows: (1) weakness of the deltoid muscle, (2) weakness of the biceps muscle, (3) atrophy of the deltoid muscle, (4) atrophy of the biceps muscle, and (5) swallow-tail sign (assessment of the posterior fibers of the deltoid). Among 25 CSA patients, 10 (40.0%) were misdiagnosed with a rotator cuff tear on initial diagnosis. The sensitivity and specificity of each physical finding were as follows: (1) deltoid weakness (sensitivity, 92.0%; specificity, 55.6%), (2) biceps weakness (sensitivity, 80.0%; specificity, 100%), (3) deltoid atrophy (sensitivity, 96.0%; specificity, 77.8%), (4) biceps atrophy (sensitivity, 88.8%; specificity, 92.6%), and (5) swallow-tail sign (sensitivity, 56.0%; specificity, 74.1%). There were statistically significant differences in each physical finding. CSA is likely to be misdiagnosed as a rotator cuff tear; however, weakness and atrophy of the biceps are useful findings for differentiating between CSA and rotator cuff tears to prevent misdiagnosis.

  2. Thermal Evolution of Earht's Core during Accretion: a Preliminary Solid Inner Core at the End of Accrfetion.

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2015-12-01

    Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.

  3. Rapid, dynamic segregation of core forming melts: Results from in-situ High Pressure- High Temperature X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Yu, T.; Wang, Y.

    2011-12-01

    The timing and mechanisms of core formation in the Earth, as well as in Earth-forming planetesimals is a problem of significant importance in our understanding of the early evolution of terrestrial planets . W-Hf isotopic signatures in meteorites indicate that core formation in small pre-differentiated planetesimals was relatively rapid, and occurred over the span of a few million years. This time scale is difficult to achieve by percolative flow of the metallic phase through a silicate matrix in textural equilibrium. It has been suggested that during this active time in the early solar system, dynamic processes such as impacts may have caused significant deformation in the differentiating planetesimals, which could lead to much higher permeability of the core forming melts. Here, we have measured the change in permeability of core forming melts in a silicate matrix due to deformation. Mixtures of San Carlos olivine and FeS close to the equilibrium percolation threshold (~5 vol%FeS) were pre-synthesized to achieve an equilibrium microstructure, and then loaded into the rotational Drickamer apparatus at GSE-CARS, sector 13-BMD, at the Advanced Photon Source (Argonne National Laboratory). The samples were subsequently pressed to ~2GPa, and heated to 1100°C. Alternating cycles of rotation to collect X-ray tomography images, and twisting to deform the sample were conducted until the sample had been twisted by 1080°. Qualitative and quantitative analyses were performed on the resulting 3-dimensional x-ray tomographic images to evaluate the effect of shear deformation on permeability and migration velocity. Lattice-Boltzmann simulations were conducted, and show a marked increase in the permeability with increasing deformation, which would allow for much more rapid core formation in planetesimals.

  4. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  5. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  6. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  7. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  8. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  9. Constraints on the spin evolution of young planetary-mass companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Benneke, Björn; Knutson, Heather A.; Batygin, Konstantin; Bowler, Brendan P.

    2018-02-01

    Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 MJup) companions around young stars1. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star-formation process3. In this study, we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a picture of the spin distribution of these objects. We compare this distribution to complementary rotation-rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during the late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.

  10. Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones

    NASA Astrophysics Data System (ADS)

    Dann, Jesse

    2001-08-01

    Komatiites of the 3.5-Ga Komati Formation are ultramafic lavas (>23% MgO) erupted in a submarine, lava plain environment. Newly discovered vesicular komatiites have vesicular upper crusts disrupted by synvolcanic structures that are similar to inflation-related structures of modern lava flows. Detailed outcrop maps reveal flows with upper vesicular zones, 2-15 m thick, which were (1) rotated by differential inflation, (2) intruded by dikes from the interior of the flow, (3) extended, forming a flooded graben, and/or (4) entirely engulfed. The largest inflated structure is a tumulus with 20 m of surface relief, which was covered by a compound flow unit of spinifex flow lobes. The lava that inflated and rotated the upper vesicular crust did not vesiculate, but crystallized as a thick spinifex zone with fist-size skeletal olivine. Instead of representing rapidly cooled lava, the spinifex zone cooled slowly beneath an insulating upper crust during inflation. Overpressure of the inflating lava may have inhibited vesiculation. This work describes the oldest vesicular komatiites known, illustrates the first field evidence for inflated structures in komatiite flows, proposes a new factor in the development of spinifex zones, and concludes that the inflation model is useful for understanding the evolution of komatiite submarine flow fields.

  11. Influence of toroidal magnetic field in multiaccreting tori

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Montani, G.

    2018-06-01

    We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.

  12. In situ synchrotron study of electromigration induced grain rotations in Sn solder joints

    DOE PAGES

    Shen, Hao; Zhu, Wenxin; Li, Yao; ...

    2016-04-18

    In this paper we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in themore » grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.« less

  13. The Fate of Exoplanets and the Red Giant Rapid Rotator Connection

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry

    2011-03-01

    We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.

  14. STELLAR BORON ABUNDANCES NEAR THE MAIN-SEQUENCE TURNOFF OF THE OPEN CLUSTER NGC 3293 AND IMPLICATIONS FOR THE EFFICIENCY OF ROTATIONALLY DRIVEN MIXING IN STELLAR ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert

    2016-06-10

    Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less

  15. Vibrational and rotational sequences in 101Mo and 103,4Ru studied via multinucleon transfer reactions

    DOE PAGES

    Regan, P. H.; Wheldon, C.; Yamamoto, A. D.; ...

    2005-04-01

    The near-yrast states of 42 101Mo 59 and 44 103,4Ru 59,60 have been studied following their population via heavy-ion multinucleon transfer reactions between a 136 Xe beam and a thin, self-supporting 100Mo target. The ground state sequence in 104Ru can be understood as demonstrating a simple evolution from a quasi-vibrational structure at lower spins to statically deformed, quasi-rotational excitation involving the population of a pair of low-Ω h 11/2 neutron orbitals. The effect of the decoupled h 11/2 orbital on this vibration-to-rotational evolution is demonstrated by an extension of the "E-GOS" prescription to include odd-A nuclei. The experimental results aremore » also compared with self-consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h 11/2 orbital in these nuclei.« less

  16. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  17. Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Asadollah

    2010-06-01

    The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.

  18. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  19. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  20. The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory

    NASA Astrophysics Data System (ADS)

    de Paula, V.; Curto, J. J.; Casas, R.

    2016-10-01

    The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.

  1. Explosive magnetorotational instability in Keplerian disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtemler, Yu., E-mail: shtemler@bgu.ac.il; Liverts, E., E-mail: eliverts@bgu.ac.il; Mond, M., E-mail: mond@bgu.ac.il

    Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén–Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the threemore » amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.« less

  2. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  3. Imaging Active Giants and Comparisons to Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael

    2018-04-01

    In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.

  4. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  5. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  6. VizieR Online Data Catalog: Low-mass helium white dwarfs evolutionary models (Istrate+, 2016)

    NASA Astrophysics Data System (ADS)

    Istrate, A.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-07-01

    Evolutionary models of low-mass helium white dwarfs including element diffusion and rotational mixing. The WDs are produced considering binary evolution through the LMXB channel, with final WDs masses between ~0.16-~0.44. The models are computed using MESA, for different metallicities: Z=0.02, 0.01, 0.001 and 0.0002. For each metallicity, the models are divided in three categories: (1) basic (no diffusion nor rotation are considered) (2) diffusion (element diffusion is considered) (3) rotation+diffusion (both element diffusion and rotational mixing are considered) (4 data files).

  7. Hexagonally ordered nanodots: Result of substrate rotation during oblique incidence low energy IBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debasree, E-mail: debasree.chowdhury@saha.ac.in; Ghose, Debabrata, E-mail: debasree.chowdhury@saha.ac.in

    The anisotropic regular patterns are often results during oblique incidence ion beam sputtering (IBS). Simultaneous substrate rotation (SR) during IBS can suppress surface roughening and removes anisotropic nature of surface pattern. Here, the evolution of Si surface morphology as result of with and without SR is studied during oblique incidence low energy Ar{sup +} sputtering. Resultant topography shows smooth surface to hexagonally ordered nanodots at different rotating conditions. Interestingly, surface roughness exhibits non-monotonic dependence on rotation frequency. The underlying mechanism for dot formation can be described within the framework of isotropic DKS equation.

  8. Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear

    NASA Astrophysics Data System (ADS)

    Signorelli, Javier; Tommasi, Andréa

    2015-11-01

    Homogenization models are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data.

  9. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  10. Long-term magnetic field monitoring of the Sun-like star ξ Bootis A

    NASA Astrophysics Data System (ADS)

    Morgenthaler, A.; Petit, P.; Saar, S.; Solanki, S. K.; Morin, J.; Marsden, S. C.; Aurière, M.; Dintrans, B.; Fares, R.; Gastine, T.; Lanoux, J.; Lignières, F.; Paletou, F.; Ramírez Vélez, J. C.; Théado, S.; Van Grootel, V.

    2012-04-01

    Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods: We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Hα lines. Results: During the highest observed activity states, in 2007 and 2011, the large-scale field of ξ Bootis A is almost completely axisymmetric and is dominated by its toroidal component. The toroidal component persists with a constant polarity, containing a significant fraction of the magnetic energy of the large-scale surface field through all observing epochs. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. The mean unsigned large-scale magnetic flux derived from the magnetic maps varies by a factor of about 2 between the lowest and highest observed magnetic states. The chromospheric flux is less affected and varies by a factor of 1.2. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Hα emission and the width of magnetically sensitive lines. The rotational dependence of polarimetric magnetic measurements displays a weak correlation with other activity proxies, presumably due to the different spatial scales and centre-to-limb darkening associated with polarimetric signatures, as compared to non-polarized activity indicators. Better agreement is observed on the longer term. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad d-1. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 3-6 are available in electronic form at http://www.aanda.org

  11. Crustal dynamics project data analysis, 1991: VLBI geodetic results, 1979 - 1990

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D. S.

    1992-01-01

    The Goddard VLBI group reports the results of analyzing 1412 Mark II data sets acquired from fixed and mobile observing sites through the end of 1990 and available to the Crustal Dynamics Project. Three large solutions were used to obtain Earth rotation parameters, nutation offsets, global source positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both geocentric Cartesian coordinates and topocentric coordinates. Baseline evolution is plotted for 175 baselines. Rates are computed for earth rotation and nutation parameters. Included are 104 sources, 88 fixed stations and mobile sites, and 688 baselines.

  12. Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronchi, G.; Severo, J. H. F.; Salzedas, F.

    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreasesmore » quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.« less

  13. Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910

    NASA Astrophysics Data System (ADS)

    Antonopoulou, D.; Espinoza, C. M.; Kuiper, L.; Andersson, N.

    2018-01-01

    The young, fast-spinning X-ray pulsar J0537-6910 displays an extreme glitch activity, with large spin-ups interrupting its decelerating rotation every ∼100 d. We present nearly 13 yr of timing data from this pulsar, obtained with the Rossi X-ray Timing Explorer. We discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected in the complete data span. Our results corroborate the previously reported strong correlation between glitch spin-up size and the time to the next glitch, a relation that has not been observed so far in any other pulsar. The spin evolution is dominated by the glitches, which occur at a rate of ∼3.5 per year, and the post-glitch recoveries, which prevail the entire interglitch intervals. This distinctive behaviour provides invaluable insights into the physics of glitches. The observations can be explained with a multicomponent model that accounts for the dynamics of the neutron superfluid present in the crust and core of neutron stars. We place limits on the moment of inertia of the component responsible for the spin-up and, ignoring differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid decrease between glitches, the spin-down rate increased over the 13 yr, and we find the long-term braking index nl = -1.22(4), the only negative braking index seen in a young pulsar. We briefly discuss the plausible interpretations of this result, which is in stark contrast to the predictions of standard models of pulsar spin-down.

  14. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.

    PubMed

    Ye, Jia; Gao, Yong

    2012-01-01

    Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P < .05) were observed on Vickers microhardness for samples with 60% and 90% fatigue life compared with as-received and 30% fatigue life. Coincidentally, substantial growth of martensite grains and martensite twins was observed in microstructure under transmission electron microscopy after 60% fatigue life. The results of the present study suggested that endodontic instruments manufactured with M-Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  16. Collapse of differentially rotating neutron stars and cosmic censorship

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-07-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  17. Improved rotation-activity-age relations in Sun-like stars

    NASA Astrophysics Data System (ADS)

    Meléndez, Jorge; dos Santos, Leonardo A.; Freitas, Fabrício C.

    2017-10-01

    The evolution of rotational velocity and magnetic activity with age follows approximately a t -1/2 relation, the famous Skumanich law. Using a large sample of about 80 solar twins with precise ages, we show departures from this law. We found a steep drop in rotational velocity and activity in the first 2-3 Gyr and afterwards there seems to be a shallow decrease. Our inferred rotational periods suggest that the Sun will continue to slow down, validating thus the use of gyrochronology beyond solar age. The Sun displays normal rotational velocity and activity when compared to solar twins of solar age. We also show that stars with exceedingly high stellar activity for their age are spectroscopic binaries that also exhibit enhanced rotational velocities and chemical signatures of mass transfer.

  18. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  19. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  20. Differential effects of voluntary wheel running and toy rotation on the mRNA expression of neurotrophic factors and FKBP5 in a post-traumatic stress disorder rat model with the shuttle-box task.

    PubMed

    Tanichi, Masaaki; Toda, Hiroyuki; Shimizu, Kunio; Koga, Minori; Saito, Taku; Enomoto, Shingo; Boku, Shuken; Asai, Fumiho; Mitsui, Yumi; Nagamine, Masanori; Fujita, Masanori; Yoshino, Aihide

    2018-06-18

    Life-threatening experiences can result in the development of post-traumatic stress disorder. We have developed an animal model for post-traumatic stress disorder (PTSD) using a shuttle box in rats. In this paradigm, the rats were exposed to inescapable foot-shock stress (IS) in a shuttle box, and then an avoidance/escape task was performed in the same box 2 weeks after IS. A previous study using this paradigm revealed that environmental enrichment (EE) ameliorated avoidance/numbing-like behaviors, but not hyperarousal-like behaviors, and EE also elevated hippocampal brain-derived neurotrophic factor (BDNF) expression. However, the differential effects of EE components, i.e., running wheel (RW) or toy rotation, on PTSD-like behaviors has remained unclear. In this experiment, we demonstrated that RW, toy rotation, and EE (containing RW and toy rotation) ameliorated avoidance/numbing-like behaviors, induced learning of avoidance responses, and improved depressive-like behaviors in traumatized rats. The RW increased the hippocampal mRNA expression of neurotrophic factors, especially BDNF and glial-cell derived neurotrophic factor. Toy rotation influenced FK506 binding protein 5 mRNA expression, which is believed to be a regulator of the hypothalamic-pituitary-adrenal (HPA)-axis system, in the hippocampus and amygdala. This is the first report to elucidate the differential mechanistic effects of RW and toy rotation. The former appears to exert its effects via neurotrophic factors, while the latter exerts its effects via the HPA axis. Further studies will lead to a better understanding of the influence of environmental factors on PTSD. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  2. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  3. Variations in the Solar Coronal Rotation with Altitude - Revisited

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Trivedi, Rupal; Sharma, Som Kumar; Vats, Hari Om

    2017-04-01

    Here we report an in-depth reanalysis of an article by Vats et al. ( Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson's factor with trend line was 0.86, whereas present analysis obtained a {˜} 0.97 Pearson's factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).

  4. Evolution of a rotating black hole with a magnetized accretion disk.

    NASA Astrophysics Data System (ADS)

    Lee, H. K.; Kim, H.-K.

    2000-03-01

    The effect of an accretion disk on the Blandford-Znajek process and the evolution of a black hole are discussed using a simplified system for the black hole-accretion disk in which the accretion rate is supposed to be dominated by the strong magnetic field on the disk. The evolution of the mass and the angular momentum of the black hole are formulated and discussed with numerical calculations.

  5. Formation and tidal synchronization of sdB stars in binaries an asteroseismic investigation using Kepler Observations

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert William

    Subdwarf B (sdB) stars are low mass (0.5 M sun) helium burning stars with thin hydrogen envelopes and Teff 22000-40000 K. Many of these stars are found in binary systems. One common proposed formation mechanism is common envelope (CE) ejection, where the companion spirals deep into the star's envelope ejecting the outer layers and forming a close binary system. In this dissertation, we use short cadence (tint=58.86 s) Kepler photometric time-series data to study three close sdB binaries with P ≈ 10 hours and g-mode pulsations. Asteroseismic analysis finds that each system has a constant period spacing of ΔP ≈ 250 s consistent with single sdB stars. This analysis also shows the presence of rotational multiplets which we used to find the rotation period. In all three cases the binary system is far from tidal synchronization with a rotation period an order of magnitude longer than the orbital period. These observations agree with predictions using the Zahn formulation of tidal evolution which predicts a synchronization time longer than the sdB lifetime (108 yr). We use this synchronization time to backtrack the sdB's rotation history and find its initial rotation period as it is first exiting the CE. This is one of the only observationally based constraints that has been placed on CE evolution. Preliminary investigations of single sdB stars show similar rotation periods, indicating that the rotation period may be independent of the formation channel.

  6. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  7. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  8. The generation and propagation of internal gravity waves in a rotating fluid

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.; Chabert Dhieres, G.; Didelle, H.

    1984-01-01

    The present investigation is concerned with an extension of a study conducted bu Maxworthy (1979) on internal wave generation by barotropic tidal flow over bottom topography. A short series of experiments was carried out during a limited time period on a large (14-m diameter) rotating table. It was attempted to obtain, in particular, information regarding the plan form of the waves, the exact character of the flow over the obstacle, and the evolution of the waves. The main basin was a dammed section of a long free surface water tunnel. The obstacle was towed back and forth by a wire harness connected to an electronically controlled hydraulic piston, the stroke and period of which could be independently varied. Attention is given to the evolution of the wave crests, the formation of solitary wave groups the evolution of the three-dimensional wave field wave shapes, the wave amplitudes, and particle motion.

  9. Numerical simulation of stability and stability control of high speed compressible rotating couette flow

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat; Hatay, Ferhat F.

    1993-01-01

    The nonlinear temporal evolution of disturbances in compressible flow between infinitely long, concentric cylinders is investigated through direct numerical simulations of the full, three-dimensional Navier-Stokes and energy equations. Counter-rotating cylinders separated by wide gaps are considered with supersonic velocities of the inner cylinder. Initially, the primary disturbance grows exponentially in accordance with linear stability theory. As the disturbances evolve, higher harmonics and subharmonics are generated in a cascading order eventually reaching a saturation state. Subsequent highly nonlinear stages of the evolution are governed by the interaction of the disturbance modes, particularly the axial subharmonics. Nonlinear evolution of the disturbance field is characterized by the formation of high-shear layers extending from the inner cylinder towards the center of the gap in the form of jets similar to the ejection events in transitional and turbulent wall-bounded shear flows.

  10. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  11. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  12. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  13. Fragmentation during primordial star formation

    NASA Astrophysics Data System (ADS)

    Dutta, Jayanta

    Understanding the physics of the very first stars in the universe, the so-called Population III (or Pop III) stars, is crucial in determining how the universe evolved into what we observe today. In the standard model of Pop III star formation, the baryonic matter, mainly atomic hydrogen, collapses gravitationally into small Dark Matter (DM) minihalos. However, so far there is little understanding on how the thermal, dynamical and chemical evolution of the primordial gas depend on the initial configuration of the minihalos (for example, rotation of the unstable clumps inside minihalos, turbulence, formation of molecular hydrogen and cosmic variance of the minihalos). We use the modified version of the Gadget-2 code, a three-dimensional smoothed particle hydrodynamics (SPH) simulations, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. Unlike some earlier cosmological calculations, the implementation of sink particles allows us to follow the evolution of the accretion disk that builds up in the centre of each minihalo and fragments. We find that the fragmentation behavior depends on the adopted choice of three-body H2 formation rate coefficient. The increasing cooling rate during rapid conversion of the atomic to molecular hydrogen is offset by the heating due to gas contraction. We propose that the H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation. We also find that the cloud's initial degree of rotation has a significant effect on the thermal and dynamical evolution of the collapsing gas. Clouds with higher rotation exhibit spiral-arm-like structures that become gravitationally unstable to fragmentation on several scales. These type of clouds tend to fragment more and have lower accretion rates compared to their slowly rotating counterparts. In addition, we find that the distribution of specific angular momentum (L) of the gas follows a power-law relation with the enclosed gas mass (M), L ∝ M1.125, which is controlled by the gravitational and pressure torque, and does not depend on the cloud's initial degree of rotation and turbulence.

  14. KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-11-01

    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at -115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}⊙ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

  15. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors.

    PubMed

    DiStefano, Tyler; Chen, Holly Yu; Panebianco, Christopher; Kaya, Koray Dogan; Brooks, Matthew J; Gieser, Linn; Morgan, Nicole Y; Pohida, Tom; Swaroop, Anand

    2018-01-09

    Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies. Published by Elsevier Inc.

  16. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  17. General relativistic treatment of the thermal, magnetic and rotational evolution of isolated neutron stars with crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Page, D.; Geppert, U.; Zannias, T.

    2000-08-01

    We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.

  18. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  19. Orbital resonances, unusual configurations and exotic rotation states among planetary satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1986-01-01

    The origin of orbital resonances is shown in the demonstration of the evolution of a pair of planetary satellites through a commensurability of the mean motions by a sequence of diagrams of constant energy curves in a two-dimensional phase space; the closed curve corresponding to the motion in each successive diagram is identified by its adiabatically conserved area. It is found that two-body resonances serve as a basis in the solution of the problem of the origin and evolution of the three-body Laplace resonance among the Galilean satellites of Jupiter. The unusual rotation state of Saturn's satellite Hyperion which is expected to tumble chaotically for an indefinite amount of time is discussed.

  20. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient.

    PubMed

    Kooyers, Nicholas J; James, Brooke; Blackman, Benjamin K

    2017-05-01

    Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co-occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  2. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin

    2017-10-01

    The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.

  3. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower crust relative to the brittle crust above. Our study suggests that kinematics of crustal blocks in the ER is controlled by Africa and Somalia plates interaction at different scale and layers.

  4. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and comprises stars with initial masses between about 100 and 290 M⊙. All VMS in the metallicity range studied here produce either a Type Ib SN or a Type Ic SN but not a Type II SN. We estimate that the progenitor of SN 2007bi, assuming a SMC metallicity, had an initial mass between 160 and 175 M⊙. None of models presented in this grid produces gamma-ray bursts or magnetars. They lose too much angular momentum by mass loss or avoid the formation of a black hole by producing a completely disruptive PCSN.

  5. Application of differential evolution algorithm on self-potential data.

    PubMed

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  6. Application of Differential Evolution Algorithm on Self-Potential Data

    PubMed Central

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods. PMID:23240004

  7. When the Earth's Inner Core Shuffles

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Young, M. K.; Bodin, T.; Ngo, S.; Sambridge, M.

    2011-12-01

    Shuffling is a tribal dance recently adapted by teenagers as a street dance. In one of the most popular moves, the so-called "Running Man", a stomp forward on one foot, shifted without being lifted from the ground, is followed by a change of position backwards on the same foot. Here, we present strong observational evidence from a newly observed collection of earthquake doublets that the Earth's inner core "shuffles" exhibiting both prograde and retrograde rotation in the reference frame of the mantle. This discovery is significant on several levels. First, the observed pattern consists of intermittent intervals of quasi-locked and differentially rotating inner core with respect to the Earth's mantle. This means that the angular alignment of the inner core and mantle oscillates in time over the past five decades. Jolting temporal changes are revealed, indicating that during the excursions from the quasi-locked state, the Earth's inner core can rotate both faster and slower than the rest of the planet, thus exhibiting both eastward and westward rotation. According to our results, a short time interval (on the order of one to two years) is needed for the inner core to accelerate to a differential rotation rate of several degrees per year, and typically a slightly longer time is needed to decelerate down to a negligibly small differential rotation rate. These time scales are in agreement with experimental spin-up times obtained when the magnetic torque alone is used to accelerate the inner core. Second, when we integrate the rotation rate over different time intervals, it is possible to explain discrepancies between the body wave and normal modes results for the rate of the inner core differential rotation found by previous authors. We show that the integrated shift in angular alignment and average rotation rates (previously determined to be constant) in normal mode studies are much smaller that those for the body waves. The repeating earthquakes from the South Atlantic generate elastic waves that traverse the Earth's mantle and core, and are recorded by the seismographs located in the northern hemisphere. The waveform doublets produced by repeating earthquakes present a reliable probe, which can reveal temporal changes exhibited by the inner core due to the fact that the mantle effects are minimized. We observe new waveform-doublets at the College station, Alaska, and analyse all existing doublets recorded at that station using state of the art mathematical methods. The complex temporal pattern of differences in travel times between the first and the second event of a doublet is impossible to explain with a simple linear-fit approach. An ensemble approach utilizing transdimensional and hierarchical Bayesian analysis proves to be a powerful approach in this case, relaxing the choices on model parameterization and revealing hitherto unseen complex dynamics of the Earth's inner core.

  8. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  9. Erratum: Binary neutron stars with arbitrary spins in numerical relativity [Phys. Rev. D 92, 124012 (2015)

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-08-01

    The code used in [Phys. Rev. D 92, 124012 (2015)] erroneously computed the enthalpy at the center of the neutron stars. Upon correcting this error, density oscillations in evolutions of rotating neutron stars are significantly reduced (from ˜20 % to ˜0.5 % ). Furthermore, it is possible to construct neutron stars with faster rotation rates.

  10. Indentation tectonics in northern Taiwan: insights from field observations and analog models

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques

    2017-04-01

    In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution

  11. On the lifetime of a pancake anticyclone in a rotating stratified flow

    NASA Astrophysics Data System (ADS)

    Facchini, Giulio; Le Bars, Michael

    2016-11-01

    We present an experimental study of the time evolution of an isolated anticyclonic pancake vortex in a laboratory rotating stratified flow. Motivations come from the variety of compact anticyclones observed to form and persist for a strikingly long lifetime in geophysical and astrophysical settings combining rotation and stratification. We generate anticyclones by injecting a small amount of isodense fluid at the center of a rotating tank filled with salty water linearly stratified in density. Our two control parameters are the Coriolis parameter f and the Brunt-Väisälä frequency N. We observe that anticyclones always slowly decay by viscous diffusion, spreading mainly in the horizontal direction irrespective of the initial aspect ratio. This behavior is correctly explained by a linear analytical model in the limit of small Rossby and Ekman numbers, where density and velocity equations reduce to a single equation for the pressure. Direct numerical simulations further confirm the theoretical predictions. Notably, they show that the azimuthal shear stress generates secondary circulations, which advect the density anomaly: this mechanism is responsible for the slow time evolution, rather than the classical viscous dissipation of the azimuthal kinetic energy.

  12. Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage.

    PubMed

    Charpinet, S; Fontaine, G; Brassard, P

    2009-09-24

    White-dwarf stars represent the final products of the evolution of some 95% of all stars. If stars were to keep their angular momentum throughout their evolution, their white-dwarf descendants, owing to their compact nature, should all rotate relatively rapidly, with typical periods of the order of a few seconds. Observations of their photospheres show, in contrast, that they rotate much more slowly, with periods ranging from hours to tens of years. It is not known, however, whether a white dwarf could 'hide' some of its original angular momentum below the superficial layers, perhaps spinning much more rapidly inside than at its surface. Here we report a determination of the internal rotation profile of a white dwarf using a method based on asteroseismology. We show that the pulsating white dwarf PG 1159-035 rotates as a solid body (encompassing more than 97.5% of its mass) with the relatively long period of 33.61 +/- 0.59 h. This implies that it has lost essentially all of its angular momentum, thus favouring theories which suggest important angular momentum transfer and loss in evolutionary phases before the white-dwarf stage.

  13. Dynamical evolution of small bodies in the Solar System

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2012-05-01

    This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded widely separated asynchronous binaries or tightly bound synchronous binaries, which occupy a revealing equilibrium. The first results of observations are reported that confirm the theoretically predicted equilibrium. In the final study, the binary asteroid evolutionary model is embedded in a model of the entire Main Belt asteroid population. The asteroid population evolution model includes the effects of collisions as well as the YORP-induced rotational fission. The model output is favorably compared to a number of observables. This allows inferences to be made regarding the free parameters of the model including the most likely typical binary lifetimes. These studies can be combined to create an overall picture of asteroid evolution. From only the power of sunlight, an asteroid can transform into a myriad number of different states according to a few fundamental forces.

  14. Rotator cuff injuries.

    PubMed

    Crusher, R H

    2000-07-01

    Different types of rotator cuff injuries frequently present to Accident and Emergency departments and minor injury units but can be difficult to differentiate clinically. This brief case study describes the examination and diagnosis of related shoulder injuries, specifically rotator cuff tears/disruption and calcifying supraspinatus tendinitis. The relevant anatomy and current therapies for these injuries is also discussed to enable the emergency nurse practitioner to have a greater understanding of the theory surrounding their diagnosis and treatments.

  15. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  16. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    NASA Astrophysics Data System (ADS)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  17. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  18. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    NASA Astrophysics Data System (ADS)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  19. Pollen development in Annona cherimola Mill. (Annonaceae). Implications for the evolution of aggregated pollen

    PubMed Central

    Lora, Jorge; Testillano, Pilar S; Risueño, Maria C; Hormaza, Jose I; Herrero, Maria

    2009-01-01

    Background In most flowering plants, pollen is dispersed as monads. However, aggregated pollen shedding in groups of four or more pollen grains has arisen independently several times during angiosperm evolution. The reasons behind this phenomenon are largely unknown. In this study, we followed pollen development in Annona cherimola, a basal angiosperm species that releases pollen in groups of four, to investigate how pollen ontogeny may explain the rise and establishment of this character. We followed pollen development using immunolocalization and cytochemical characterization of changes occurring from anther differentiation to pollen dehiscence. Results Our results show that, following tetrad formation, a delay in the dissolution of the pollen mother cell wall and tapetal chamber is a key event that holds the four microspores together in a confined tapetal chamber, allowing them to rotate and then bind through the aperture sites through small pectin bridges, followed by joint sporopollenin deposition. Conclusion Pollen grouping could be the result of relatively minor ontogenetic changes beneficial for pollen transfer or/and protection from desiccation. Comparison of these events with those recorded in the recent pollen developmental mutants in Arabidopsis indicates that several failures during tetrad dissolution may convert to a common recurring phenotype that has evolved independently several times, whenever this grouping conferred advantages for pollen transfer. PMID:19874617

  20. Lunar and Planetary Science XXXVI, Part 17

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The following topics were discussed: A Model for the Formation of Paterae on Io; LIBS-based Detection of As, Br, C, Cl, P, and S in the VUV Spectral Region in a Mars Atmosphere; Mass Independent Sulfur in Achondrites: Possible Evidence of Photochemistry in the Solar Nebula; Grain Size-dependent Viscosity and Oceans in Icy Satellites; Claritas Paleolake Studied from the MEX HRSC Data; Mars Express HRSC Colors of White Rock, Arabia, Mars; Lava and Flows of the Arcadia Region of Mars; Isotopic Composition of Lunar Soils and the Early Differentiation of the Moon; Trace Element Analysis of Lunar Soils by ICP-MS; Highly Siderophile Elements and Osmium Isotope Systematics in Ureilites: Are the Carbonaceous Veins Primary Components?; Evaporative Evolution of Martian Brines Based on Halogens in Nakhlites and MER Samples; Io from High-Resolution Galileo PPR Data Taken Simultaneously with SSI or NIMS Observations; Loki, Io: Groundbased Observations and a Model for Periodic Overturn; Deconstructing a Few Myths in the Interpretation of Satellite-Altitude Crustal Magnetic Field: Examples from Mars Global Surveyor; Semi-Autonomous Rover Operations: A Mars Technology Program Demonstration; Rotational Studies of Asteroids with Small Telescopes; Mineralogy and Temperature-induced Spectral Investigations of A-type Asteroids 246 Asporina and 446 Aeternitas; and Thermal History Calculations Versus Full Convection Models: Application to the Thermal Evolution of Mercury. Recent Solar-Proton Fluxes

  1. Pollen development in Annona cherimola Mill. (Annonaceae). Implications for the evolution of aggregated pollen.

    PubMed

    Lora, Jorge; Testillano, Pilar S; Risueño, Maria C; Hormaza, Jose I; Herrero, Maria

    2009-10-29

    In most flowering plants, pollen is dispersed as monads. However, aggregated pollen shedding in groups of four or more pollen grains has arisen independently several times during angiosperm evolution. The reasons behind this phenomenon are largely unknown. In this study, we followed pollen development in Annona cherimola, a basal angiosperm species that releases pollen in groups of four, to investigate how pollen ontogeny may explain the rise and establishment of this character. We followed pollen development using immunolocalization and cytochemical characterization of changes occurring from anther differentiation to pollen dehiscence. Our results show that, following tetrad formation, a delay in the dissolution of the pollen mother cell wall and tapetal chamber is a key event that holds the four microspores together in a confined tapetal chamber, allowing them to rotate and then bind through the aperture sites through small pectin bridges, followed by joint sporopollenin deposition. Pollen grouping could be the result of relatively minor ontogenetic changes beneficial for pollen transfer or/and protection from desiccation. Comparison of these events with those recorded in the recent pollen developmental mutants in Arabidopsis indicates that several failures during tetrad dissolution may convert to a common recurring phenotype that has evolved independently several times, whenever this grouping conferred advantages for pollen transfer.

  2. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  3. Wrinkling pattern evolution of cylindrical biological tissues with differential growth.

    PubMed

    Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao

    2015-01-01

    Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.

  4. Automatic Clustering Using FSDE-Forced Strategy Differential Evolution

    NASA Astrophysics Data System (ADS)

    Yasid, A.

    2018-01-01

    Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.

  5. Physics of rotation: problems and challenges

    NASA Astrophysics Data System (ADS)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  6. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    NASA Astrophysics Data System (ADS)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  7. Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines

    NASA Astrophysics Data System (ADS)

    Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K.-P.

    2017-11-01

    Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index. Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly. Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation.

  8. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  9. Differential rotation of chromosphere and photosphere in the rising phase of N22 cycle of the Sun: torsional oscillations

    NASA Astrophysics Data System (ADS)

    Kasinskii, V.; Kasinskaia, L. I.

    2005-06-01

    The angular velocities of chromosphere and photosphere are calculated for 1987-1990 on the basis of heliographic coordinates of the chromospheric flares and sunspots (Solar Geophysical Data). The time resolution accepted is 0.25 year. The mean equatorial rotations of chromosphere and photosphere practically coincide. However, the differential coefficients in the chromosphere and photosphere, b, have strongly different behaviour. The value bch - bph change regularly from ``+'' sign to ``-'' sign over two-year interval. Thus, the idea of a torsion like oscillations of ``chromosphere-photosphere'' is supported.

  10. Evolution of tuf genes: ancient duplication, differential loss and gene conversion.

    PubMed

    Lathe, W C; Bork, P

    2001-08-03

    The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.

  11. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  12. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  13. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2003-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass loss; lowering the effective gravity; altering the evolutionary track on the Hertzsprung-Russel Diagram (HRD); extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the Small Magellanic Cloud (SMC), a low-metallicity galaxy (Z=0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE+STIS+optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C=0.085 solar C and N=0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe. This study was supported in part by grants from NASA's ADP, HST GO-7437, and FUSE B134.

  14. Evolutionary Pathways for Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth Andrew

    2015-08-01

    The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.

  15. An ensemble of paired spin(-1/2) nuclei in a rotating solid: Polarization evolution and NMR spectrum in a wobbling frame.

    PubMed

    Kundla, Enn

    2007-04-01

    The evolution of the magnetic polarization of an ensemble of paired spin(-1/2) nuclei in an MAS NMR (nuclear magnetic resonance) experiment and the induced spectrum are described theoretically by means of a Liouville-von Neumann equation representation in a wobbling rotating frame in combination with the averaged Hamiltonian theory. In this method, the effect of a high-intensity external static magnetic field and the effects of the leftover interaction components of the Hamiltonian that commute with the approximate Hamiltonian are taken into account simultaneously and equivalently. This method reproduces details that really exist in the recorded spectra, caused by secular terms in the Hamiltonian, which might otherwise be smoothed out owing to the approximate treatment of the effects of the secular terms. Complete analytical expressions, which describe the whole NMR spectrum including the rotational sideband sets, and which consider all the relevant intermolecular interactions, are obtained.

  16. Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)

    2001-01-01

    The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

  17. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  18. SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less

  19. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  20. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  1. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  2. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    NASA Astrophysics Data System (ADS)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example documents a competition between shear zone widening and narrowing mechanisms, i.e. distributed and localized deformation, depending on the specific mineral phase and deformation mechanism active in each moment of the shear zone evolution. In addition, our mechanical data point to dynamic evolution of the studied brittle-ductile transition characterized by major weakening to strengths ˜10 MPa. Such non-steady-state evolution may be common in crustal shear zones especially when phase transformations are involved. References: Diamond, L. W., and A. Tarantola (2015), Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: Reconstruction of differential stress magnitudes and pre-deformation fluid properties, Earth Planet. Sci. Lett., 417, 107-119. Mares, V. M., and A. K. Kronenberg (1993), Experimental deformation of muscovite, J. Struct. Geol., 15(9), 1061-1075. Paterson, M. S., and F. C. Luan (1990), Quartzite rheology under geological conditions, Geol. Soc. London, Spec. Publ., 54(1), 299-307. Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 1-5.

  3. Binary neutron stars with arbitrary spins in numerical relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2015-12-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  4. Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano

    2013-09-01

    The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.

  5. Rotating Hele-Shaw cell with a time-dependent angular velocity

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  6. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patoul, Judith de; Foullon, Claire; Riley, Pete, E-mail: j.depatoul@exeter.ac.uk, E-mail: c.foullon@exeter.ac.uk, E-mail: rileype@saic.com

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models aremore » more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.« less

  7. 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, J.; Foullon, C.; Riley, P.

    2015-12-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling, and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. We derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method. First we compare the density distributions obtained from tomography with magnetohydrodynamic (MHD) solutions. The tomography provides more accurate distributions of electron densities in the polar regions, and we find that the observed density varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We conclude that tomography offers reliable density distribution in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how it is magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in-situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus. This research combined with the MHD coronal modeling efforts has the potential to increase the reliability for future space weather forecasting.

  8. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less

  9. Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys

    NASA Astrophysics Data System (ADS)

    Lurie, John C.

    At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).

  10. Cellular self-organization by autocatalytic alignment feedback

    PubMed Central

    Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin

    2011-01-01

    Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956

  11. Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.

    2016-12-01

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  12. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less

  14. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon

    We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumentalmore » broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.« less

  16. Accretion of clumpy cold gas onto massive black hole binaries: the challenging formation of extended circumbinary structures

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto

    2018-05-01

    Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.

  17. Molecular dynamics simulations of quinoline in the liquid phase.

    PubMed

    Soetens, Jean-Christophe; Ahmad, Norariza; Adnan, Rohana; Millot, Claude

    2012-05-17

    Molecular dynamics simulations of liquid quinoline have been performed at experimental densities corresponding to the temperature range 276-320 K. The intermolecular potential is a simple effective two-body potential between rigid molecules having 17 atomic Lennard-Jones and electrostatic Coulomb interaction sites. The vaporization enthalpy is overestimated by 8-9% with respect to the experimental value. The translational diffusion coefficient exhibits a small non-Arrhenius behavior with a change in temperatures near 290 and 303 K. The rotational diffusion tensor is rotated around the z axis perpendicular to the molecular plane by an angle of 4-6° with respect to the frame of reference defined by the principal axes of inertia. The rotational diffusion tensor presents a significant anisotropy with D(rot,y)/D(rot,x) ≃ 0.6-0.5 and D(rot,z)/D(rot,x) ≃ 1.6-1.3 between 276 and 320 K when the x axis is defined as the long molecular axis and the y axis is situated nearly along the central C-C bond. The rotational diffusion coefficients, the reorientational correlation times of the C-H vectors, and the T1(13)C NMR relaxation times present a non-Arrhenius break around 288-290 K in agreement with several experimental results. In addition, a non-Arrhenius break can also be observed at 303 K for these properties. It has been found that the structure evolves smoothly in the studied temperature range. Center of mass-center of mass and atom-atom radial distribution functions show a monotonous evolution with temperature. Various types of first-neighbor dimers have been defined, and their population analysis has revealed a continuous monotonous evolution with temperature. Thus, the non-Arrhenius behavior observed for translational and rotational diffusion is correlated with the monotonous evolution of the population of first-neighbor dimers at a microscopic level and not with a sharp structural transition.

  18. Determining the Evolution and Propagation of CME Flux Ropes from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Palmerio, E.; Kilpua, E.; Mierla, M.; Rodriguez, L.; Isavnin, A.; Zhukov, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the main drivers of space weather phenomena at the Earth. They form in the solar atmosphere as helical magnetic field structures known as flux ropes. The key parameter that defines the ability of a CME to drive geomagnetic storms is the North-South magnetic field component. One of the most significant problems in current long-term space weather forecasts is that there is no practical method to measure the magnetic structure of CMEs routinely in the corona. The magnetic structure of erupting flux ropes can however be inferred based on the properties of the CME's source region characteristics, e.g.filament details, coronal EUV arcades, X-ray/EUV sigmoids, taking into account nearby coronal and photospheric features. These proxies are useful for reconstructing the "instrinsic flux rope type" at the time of the eruption. However, the knowledge of the flux rope's magnetic structure at the Sun does not always imply a successful prediction of the magnetic structure at the Earth. This is because CMEs can change their orientation due to deflections, rotations, and deformations. We present here examples of CMEs for which we have determined their magnetic structure when launched from the Sun by using a synthesis of indirect proxies based on multiwavelength remote-sensing observations. When compared to their in situ counterparts, these CMEs present a different magnetic configuration, implying a high amount of rotation of their central axis during their propagation. We study the early evolution of these CMEs both on the solar disk and in coronagraph images though different techniques, e.g. forward modelling and tie-pointing technique. When possible, we study the CME structure in situ at other planets. We aim at determining where the rotation occurs and the rate of rotation during the CME evolution from the Sun to Earth, and possibly estimating the causes of such a high amount of rotation.

  19. New closed analytical solutions for geometrically thick fluid tori around black holes. Numerical evolution and the onset of the magneto-rotational instability

    NASA Astrophysics Data System (ADS)

    Witzany, V.; Jefremov, P.

    2018-06-01

    Context. When a black hole is accreting well below the Eddington rate, a geometrically thick, radiatively inefficient state of the accretion disk is established. There is a limited number of closed-form physical solutions for geometrically thick (nonselfgravitating) toroidal equilibria of perfect fluids orbiting a spinning black hole, and these are predominantly used as initial conditions for simulations of accretion in the aforementioned mode. However, different initial configurations might lead to different results and thus observational predictions drawn from such simulations. Aims: We aim to expand the known equilibria by a number of closed multiparametric solutions with various possibilities of rotation curves and geometric shapes. Then, we ask whether choosing these as initial conditions influences the onset of accretion and the asymptotic state of the disk. Methods: We have investigated a set of examples from the derived solutions in detail; we analytically estimate the growth of the magneto-rotational instability (MRI) from their rotation curves and evolve the analytically obtained tori using the 2D magneto-hydrodynamical code HARM. Properties of the evolutions are then studied through the mass, energy, and angular-momentum accretion rates. Results: The rotation curve has a decisive role in the numerical onset of accretion in accordance with our analytical MRI estimates: in the first few orbital periods, the average accretion rate is linearly proportional to the initial MRI rate in the toroids. The final state obtained from any initial condition within the studied class after an evolution of ten or more orbital periods is mostly qualitatively identical and the quantitative properties vary within a single order of magnitude. The average values of the energy of the accreted fluid have an irregular dependency on initial data, and in some cases fluid with energies many times its rest mass is systematically accreted.

  20. A POPULATION MEMETICS APPROACH TO CULTURAL EVOLUTION IN CHAFFINCH SONG: DIFFERENTIATION AMONG POPULATIONS.

    PubMed

    Lynch, Alejandro; Baker, Allan J

    1994-04-01

    We investigated cultural evolution in populations of common chaffinches (Fringilla coelebs) in the Atlantic islands (Azores, Madeira, and Canaries) and neighboring continental regions (Morocco and Iberia) by employing a population-memetic approach. To quantify differentiation, we used the concept of a song meme, defined as a single syllable or a series of linked syllables capable of being transmitted. The levels of cultural differentiation are higher among the Canaries populations than among the Azorean ones, even though the islands are on average closer to each other geographically. This is likely the result of reduced levels of migration, lower population sizes, and bottlenecks (possibly during the colonization of these populations) in the Canaries; all these factors produce a smaller effective population size and therefore accentuate the effects of differentiation by random drift. Significant levels of among-population differentiation in the Azores, in spite of substantial levels of migration, attest to the differentiating effects of high mutation rates of memes, which allow the accumulation of new mutants in different populations before migration can disperse them throughout the entire region. © 1994 The Society for the Study of Evolution.

  1. Restrained Differential Growth: The Initiating Event of Adolescent Idiopathic Scoliosis?

    PubMed

    Crijns, Tom Joris; Stadhouder, Agnita; Smit, Theodoor Henri

    2017-06-15

    An experimental model study and a short review of literature. The purpose of this study was to explore a new hypothesis suggesting that the curvatures seen in adolescent idiopathic scoliosis (AIS) originate from restrained differential growth between the vertebral column and the surrounding musculo-ligamentary structures. Despite decades of research, there is no generally accepted theory on the physical origin of the severe spinal deformations seen in AIS. The prevailing theories tend to focus on left-right asymmetry, rotational instability, or the sagittal spinal profile in idiopathic scoliosis. We test our hypothesis with a physical model of the spine that simulates growth, counteracted by ligaments and muscles, modeled by tethers and springs. Growth of the spine is further restrained by an anterior band representing the thorax, the linea alba, and abdominal musculature. We also explore literature in search of molecular mechanisms that may induce differential growth. Differential growth in the restrained spine model first induces hypokyphosis and mild lateral bending of the thoracic spine, but then suddenly escalates into a scoliotic deformity, consistent with clinical observations of AIS. The band simulating the ventral structures of the body had a pivotal effect on sagittal curvature and the initiation of lateral bending and rotation. In literature, several molecular mechanisms were found that may explain the occurrence of differential growth between the spine and the musculo-ligamentary structures. While AIS is a three-dimensional deformation of the spine, it appears that restrained differential growth in the sagittal plane can result in lateral bending and rotation without a pre-existing left-right asymmetry. This supports the concept that AIS may result from a growth imbalance rather than a local anatomical defect. N/A.

  2. Investigation of compressible vortex flow characteristics

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1977-01-01

    The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.

  3. Pair-instability supernovae of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Population III (Pop III) star formation suggested that these stars could be born with a mass scale about 100 M⊙ and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall 56Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into the in-falling gas and generate the Richtmyer-Meshkov instability.

  4. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  5. Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins

    PubMed Central

    Thompson, Nathan E.; Demes, Brigitte; O'Neill, Matthew C.; Holowka, Nicholas B.; Larson, Susan G.

    2015-01-01

    Human walking entails coordinated out-of-phase axial rotations of the thorax and pelvis. A long-held assumption is that this ability relies on adaptations for trunk flexibility present in humans, but not in chimpanzees, other great apes, or australopithecines. Here we use three-dimensional kinematic analyses to show that, contrary to current thinking, chimpanzees walking bipedally rotate their lumbar and thoracic regions in a manner similar to humans. This occurs despite differences in the magnitude of trunk motion, and despite morphological differences in truncal ‘rigidity' between species. These results suggest that, like humans and chimpanzees, early hominins walked with upper body rotations that countered pelvic rotation. We demonstrate that even if early hominins walked with pelvic rotations 50% larger than humans, they may have accrued the energetic and mechanical benefits of out-of-phase thoracic rotations. This would have allowed early hominins to reduce work and locomotor cost, improving walking efficiency early in hominin evolution. PMID:26441046

  6. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-03-01

    We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Simon; Winn, Joshua N.; Hirano, Teruyuki

    We measure a tilt of 86 Degree-Sign {+-} 6 Degree-Sign between the sky projections of the rotation axis of the WASP-7 star and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planet's trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however,more » with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise ({sup s}tellar jitter{sup )} with an amplitude of Almost-Equal-To 30 m s{sup -1} over a timescale of days.« less

  8. Regularizing the r-mode Problem for Nonbarotropic Relativistic Stars

    NASA Technical Reports Server (NTRS)

    Lockitch, Keith H.; Andersson, Nils; Watts, Anna L.

    2004-01-01

    We present results for r-modes of relativistic nonbarotropic stars. We show that the main differential equation, which is formally singular at lowest order in the slow-rotation expansion, can be regularized if one considers the initial value problem rather than the normal mode problem. However, a more physically motivated way to regularize the problem is to include higher order terms. This allows us to develop a practical approach for solving the problem and we provide results that support earlier conclusions obtained for uniform density stars. In particular, we show that there will exist a single r-mode for each permissible combination of 1 and m. We discuss these results and provide some caveats regarding their usefulness for estimates of gravitational-radiation reaction timescales. The close connection between the seemingly singular relativistic r-mode problem and issues arising because of the presence of co-rotation points in differentially rotating stars is also clarified.

  9. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  10. Modeling evolution of the mind and cultures: emotional Sapir-Whorf hypothesis

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2009-05-01

    Evolution of cultures is ultimately determined by mechanisms of the human mind. The paper discusses the mechanisms of evolution of language from primordial undifferentiated animal cries to contemporary conceptual contents. In parallel with differentiation of conceptual contents, the conceptual contents were differentiated from emotional contents of languages. The paper suggests the neural brain mechanisms involved in these processes. Experimental evidence and theoretical arguments are discussed, including mathematical approaches to cognition and language: modeling fields theory, the knowledge instinct, and the dual model connecting language and cognition. Mathematical results are related to cognitive science, linguistics, and psychology. The paper gives an initial mathematical formulation and mean-field equations for the hierarchical dynamics of both the human mind and culture. In the mind heterarchy operation of the knowledge instinct manifests through mechanisms of differentiation and synthesis. The emotional contents of language are related to language grammar. The conclusion is an emotional version of Sapir-Whorf hypothesis. Cultural advantages of "conceptual" pragmatic cultures, in which emotionality of language is diminished and differentiation overtakes synthesis resulting in fast evolution at the price of self doubts and internal crises are compared to those of traditional cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation. Multi-language, multi-ethnic society might combine the benefits of stability and fast differentiation. Unsolved problems and future theoretical and experimental directions are discussed.

  11. Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qinghu; Department of Physics, Zhejiang University, Hangzhou 310027; Yang Yuan

    2010-11-15

    Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning playsmore » an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.« less

  12. CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

    NASA Astrophysics Data System (ADS)

    Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo

    2012-02-01

    CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

  13. The representation of object viewpoint in human visual cortex.

    PubMed

    Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit

    2009-04-01

    Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.

  14. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  15. Geothermal energy conversion system

    NASA Astrophysics Data System (ADS)

    Goldstein, David

    1991-04-01

    A generator having a tubular gear made of shape memory alloy in sheet-form floatingly supported for rotation about an axis fixedly spaced from the rotational axis of a roller gear presented. The tubular gear is sequentially deformed by exposure to a geothermal heat source and meshing engagement with the roller gear. Such sequential deformation of the tubular gear is controlled by a temperature differential to induce and sustain rotation of the gears in response to which the heat energy is converted into electrical energy.

  16. Disentangling rotational velocity distribution of stars

    NASA Astrophysics Data System (ADS)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  17. Variational differential equations for engineering type trajectories close to a planet with an atmosphere

    NASA Technical Reports Server (NTRS)

    Dickmanns, E. D.

    1972-01-01

    The differential equations for the adjoint variables are derived and coded in FORTRAN. The program is written in a form to either take into account or neglect thrust, aerodynamic forces, planet rotation and oblateness, and altitude dependent winds.

  18. On families of differential equations on two-torus with all phase-lock areas

    NASA Astrophysics Data System (ADS)

    Glutsyuk, Alexey; Rybnikov, Leonid

    2017-01-01

    We consider two-parametric families of non-autonomous ordinary differential equations on the two-torus with coordinates (x, t) of the type \\overset{\\centerdot}{{x}} =v(x)+A+Bf(t) . We study its rotation number as a function of the parameters (A, B). The phase-lock areas are those level sets of the rotation number function ρ =ρ (A,B) that have non-empty interiors. Buchstaber, Karpov and Tertychnyi studied the case when v(x)=\\sin x in their joint paper. They observed the quantization effect: for every smooth periodic function f(t) the family of equations may have phase-lock areas only for integer rotation numbers. Another proof of this quantization statement was later obtained in a joint paper by Ilyashenko, Filimonov and Ryzhov. This implies a similar quantization effect for every v(x)=a\\sin (mx)+b\\cos (mx)+c and rotation numbers that are multiples of \\frac{1}{m} . We show that for every other analytic vector field v(x) (i.e. having at least two Fourier harmonics with non-zero non-opposite degrees and nonzero coefficients) there exists an analytic periodic function f(t) such that the corresponding family of equations has phase-lock areas for all the rational values of the rotation number.

  19. Quantum rotation gates with controlled nonadiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Abdelrahman A. H.; Benmachiche, Abderrahim; Subhi Mahmoud, Gharib; Messikh, Azeddine

    2018-04-01

    Quantum gates can be implemented adiabatically and nonadiabatically. Many schemes used at least two sequentially implemented gates to obtain an arbitrary one-qubit gate. Recently, it has been shown that nonadiabatic gates can be realized by single-shot implementation. It has also been shown that quantum gates can be implemented with controlled adiabatic evolutions. In this paper, we combine the advantage of single-shot implementation with controlled adiabatic evolutions to obtain controlled nonadiabatic evolutions. We also investigate the robustness to different types of errors. We find that the fidelity is close to unity for realistic decoherence rates.

  20. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.

  1. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution

    PubMed Central

    Patterson, Larissa B.; Bain, Emily J.; Parichy, David M.

    2014-01-01

    Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation. PMID:25374113

  2. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  3. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  4. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.

    PubMed

    Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.

  5. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  6. Twirling and Whirling: Viscous Dynamics of Rotating Elastica

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.; Wolgemuth, Charles W.; Goldstein, Raymond E.

    1999-11-01

    Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. The competition between twist diffusion and writhing instabilities is described by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist-bend coupling and reveal two dynamical regimes separated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The consequences of these phenomena for self-propulsion are investigated, and experimental tests proposed.

  7. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  8. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, C. C.

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  9. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.

  10. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  11. Active Transtensional Tectonics Due to Differentially Rotating Upper Crustal Blocks East of the Eastern Himalayan syntaxis, Yunnan Province, China.

    NASA Astrophysics Data System (ADS)

    Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.

    2004-12-01

    Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.

  12. Mesh-free based variational level set evolution for breast region segmentation and abnormality detection using mammograms.

    PubMed

    Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George

    2018-01-01

    Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Junfeng, E-mail: chenjunfeng@fzu.edu.cn; Zou, Linchi, E-mail: zoulinchi1201@163.com; Li, Qiang

    The microstructure evolution of the 7050 Al alloy treated by age-forming was studied using a designed device which can simulate the age-forming process. The grain shape, grain boundary misorientation and grain orientation evolution of 7050 Al alloy during age-forming have been quantitatively characterized by electron backscattering diffraction technique. The results show that age-forming produced abundant low-angle boundaries and elongated grains, which attributed to stress induced dislocation movement and grain boundary migration during the age-forming process. On the other side, the stress along rolling direction caused some unstable orientation grains to rotate towards the Brass and S orientations during the age-formingmore » process. Hence, the intensity of the rolling texture orientation in age-formed samples is enhanced. But this effect decays gradually with increasing aging time, since stress decreases and precipitation hardening occurs during the age-forming process. - Highlights: • Quantitative analysis of grain evolution of 7050 Al alloys during age-forming • Stress induces some grain rotation of 7050 Al alloys during age-forming. • Creep leads to elongate grain of 7050 Al alloys during age-forming. • Obtains a trend on texture evolution during age-forming applied stress.« less

  14. Modeling resistive wall modes and disruptive instabilities with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, Nm; Jardin, Sc; Pfefferle, D.

    2016-10-01

    Disruptive instabilities pose a significant challenge to the tokamak approach to magnetic fusion energy, and must be reliably avoided in a successful reactor. These instabilities generally involve rapid, global changes to the magnetic field, and electromagnetic interaction with surrounding conducting structures. Here we apply the extended-MHD code M3D-C1 to calculate the stability and evolution of disruptive modes, including their interaction with external conducting structures. The M3D-C1 model includes the effects of resistivity, equilibrium rotation, and resistive walls of arbitrary thickness, each of which may play important roles in the stability and evolution of disruptive modes. The strong stabilizing effect of rotation on resistive wall modes is explored and compared with analytic theory. The nonlinear evolution of vertical displacement events is also considered, including the evolution of non-axisymmetric instabilities that may arise during the current-quench phase of the disruption. It is found that the non-axisymmetric stability of the plasma during a VDE depends strongly on the thermal history of the plasma. This work is supported by US DOE Grant DE-AC02-09CH11466 and the SciDAC Center for Extended MHD Modeling.

  15. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Morgan, Huw; Leonard, Drew

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less

  16. A general MHD formulation for plasmas with flow and resistive walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guazzotto, L.; Freidberg, J. P.; Betti, R.

    2006-11-30

    Toroidal rotation, either induced by means of neutral beams (e.g. in NSTX and DIII-D) or appearing spontaneously (e.g. in Alcator C-Mod, JET and Tore Supra) is routinely observed in modem tokamak experiments. Poloidal rotation is also commonly observed, in particular in the edge region of the plasma. Plasma rotation has a major effect on plasma stability. Flow and flow shear stabilize external modes such as the resistive wall mode (as observed e.g. in DIII-D), suppress turbulence when the flow shear is large enough, and also have a significant influence on the stability and nonlinear evolution of the internal kink andmore » ballooning modes. Flow shear can in particular have both a stabilizing (by breaking up unstable structures) and destabilizing (through the Kelvin-Helmoltz mechanism) effect. A self-consistent analysis of the effect of rotation requires the use of numerical tools. In this work, we present a general eigenvalue formulation based on a variational principle stability analysis, including arbitrary (both toroidal and poloidal) plasma rotation and a thin resistive wall of arbitrary shape and resistivity. It is shown that the problem can always be reduced to a classic eigenvalue formulation of the kind i{omega}A double underbar {center_dot} {zeta}-vector = B double underbar {center_dot} {zeta}-vector, where {zeta}-vector is the unknown eigenvector related to the plasma displacement, and {omega} the (complex) evolution frequency of the perturbation. The formulation is well suited for a finite element analysis.« less

  17. Orbital evolution of small binary asteroids

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Nesvorný, David

    2010-06-01

    About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (Ćuk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary's orbit, depending on the satellite's shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary's orbital as well the secondary's rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary's eccentricity (through the coupling between the orbit and the secondary's spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a "flipped" secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary's librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary's librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.

  18. Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.

    2014-10-01

    A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.

  19. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  20. Tetrahedron Formation Control

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.

    2003-01-01

    Spacecraft flying in tetrahedron formations are excellent instrument platforms for electromagnetic and plasma studies. A minimum of four spacecraft - to establish a volume - is required to study some of the key regions of a planetary magnetic field. The usefulness of the measurements recorded is strongly affected by the tetrahedron orbital evolution. This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include targeting to a fixed tetrahedron orientation, rotating and translating the tetrahedron and/or varying the initial and final times. The number of impulsive maneuvers citn also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the Magnetospheric Multiscale Mission (MMS) to compute preliminary formation control fuel requirements.

  1. Helioseismic Observations of Two Solar Cycles and Constraints on Dynamo Theory

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2018-01-01

    Helioseismology data from the SOHO and SDO, obtained in 1996-2017 for almost two solar cycles, provide a unique opportunity to investigate variations of the solar interior structure and dynamics, and link these variations to the current dynamo models and simulations. The solar oscillation frequencies and frequency splitting of medium-degree p- and f-modes, as well as helioseismic inversions have been used to analyze variations of the differential rotation (“torsional oscillations”) and the global asphericity. By comparing the helioseismology results with the synoptic surface magnetic fields we identify characteristic changes associated the initiation and evolution of the solar cycles, 23 and 24. The observational results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the dynamics of the tachocline and near-surface shear layer, and also may explain the fundamental difference between the two solar cycles and detect the onset of the next cycle.

  2. Helioseismology Observations of Solar Cycles and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Guerrero, G.; Pipin, V.

    2017-12-01

    Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.

  3. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  4. Stationary Temperature Distribution in a Rotating Ring-Shaped Target

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. Yu.; Gulbekyan, G. G.; Kazacha, V. I.

    2018-05-01

    For a rotating ring-shaped target irradiated by a heavy-ion beam, a differential equation for computing the stationary distribution of the temperature averaged over the cross section is derived. The ion-beam diameter is assumed to be equal to the ring width. Solving this equation allows one to obtain the stationary temperature distribution along the ring-shaped target depending on the ion-beam, target, and cooling-gas parameters. Predictions are obtained for the rotating target to be installed at the DC-280 cyclotron. For an existing rotating target irradiated by an ion beam, our predictions are compared with the measured temperature distribution.

  5. Analysis of an ultrasonically rotating droplet by moving particle semi-implicit and distributed point source method in a rotational coordinate

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2017-07-01

    Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.

  6. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  7. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  8. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  9. A Differential Evolution Algorithm Based on Nikaido-Isoda Function for Solving Nash Equilibrium in Nonlinear Continuous Games

    PubMed Central

    He, Feng; Zhang, Wei; Zhang, Guoqiang

    2016-01-01

    A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229

  10. Microscopic derivation of IBM and structural evolution in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Kosuke

    A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structuralmore » evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.« less

  11. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.

  12. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  13. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu

    2016-12-10

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport.more » For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.« less

  15. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other suggested mechanisms for driving differential rotation. Gary A. Glatzmaier, Martha Evonuk and Tamara M. Rogers (2009), Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51.

  16. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less

  17. Inelastic Collisions of N2, H2, and H2+He Mixtures in Supersonic Jets by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernández, J. M.; Fonfría, J. P.; Ramos, A.; Tejeda, G.; Montero, S.; Thibault, F.

    2008-12-01

    We present a detailed study of inelastic collisions at low temperature in several supersonic jets of N2, H2, and H2+He mixtures using different nozzles and stagnation conditions. Absolute number density and rotational population data of unprecedented accuracy are measured along the jet axis by Raman spectroscopy with high spatial resolution (<5 μm) and high-sensitivity (<1 photon/sec). The experimental data are interpreted by means of a master equation describing the time evolution of the rotational populations in terms of the state-to-state rate coefficients derived from high-level quantum calculations. This combination of experimental and calculated data leads to a detailed understanding of the underlying physics, consistent with the assumed isentropic behaviour. The breakdown of rotational-translational thermal equilibrium, and its space-time evolution along the jet axis are accounted for by the microscopic (state-to-state rate coefficients) and macroscopic (flow velocity, number density, temperatures) physical quantities. A highly consistent picture, free from any additional parameters, bridges this way the microsopic and macroscopic approaches to fluid dynamics along the jet axis.

  18. Missing mass or missing light?

    NASA Astrophysics Data System (ADS)

    Davies, J. I.

    1990-07-01

    Disney et al. (1989) have argued that the observational data are consistent with disk galaxies being optically thick, particularly in their inner regions. Here, these results are used to reinterpret the radial surface-brightness distributions of spiral galaxies. It is found that the fitting of a profile with an absorbed disk plus bulge leads to both disk and bulge masses (mass in luminous material) that are larger than previously assumed. In addition, it is shown how the rotation velocity, as determined from optical data in the central regions, may systematically underestimate the true rotational velocity in an optically thick disk. If the bulges of late-type galaxies are as large as is hypothesized, then this has important implications in models of galaxy evolution and galaxy dynamics. The model greatly reduces or even eliminates the need for dark matter within the optical radius; it removes a major argument against S0 evolution from later-type galaxies; it accounts for the similarity of rotation curve forms among galaxies of different morphological types; and it leads to a further reappraisal of the observed constancy of the extrapolated central surface brightness of galactic disks.

  19. On the r-mode spectrum of relativistic stars: the inclusion of the radiation reaction

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2002-03-01

    We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n, and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n, we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n, the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.

  20. Properties of the Closest Young Binaries. I. DF Tau’s Unequal Circumstellar Disk Evolution

    NASA Astrophysics Data System (ADS)

    Allen, T. S.; Prato, L.; Wright-Garba, N.; Schaefer, G.; Biddle, L. I.; Skiff, B.; Avilez, I.; Muzzio, R.; Simon, M.

    2017-08-01

    We present high-resolution, spatially resolved, near-infrared spectroscopy and imaging of the two components of DF Tau, a young, low-mass, visual binary in the Taurus star-forming region. With these data, we provide a more precise orbital solution for the system, determine component spectral types, radial velocity, veiling and v\\sin I values, and construct individual spectral energy distributions. We estimate the masses of both stars to be ˜ 0.6 {M}⊙ . We find markedly different circumstellar properties for DF Tau A and B: evidence for a disk, such as near-infrared excess and accretion signatures, is clearly present for the primary, while it is absent for the secondary. Additionally, the v\\sin I and rotation period measurements show that the secondary is rotating significantly more rapidly than the primary. We interpret these results in the framework of disk-locking and argue that DF Tau A is an example of disk-modulated rotation in a young system. The DF Tau system raises fundamental questions about our assumptions of universal disk formation and evolution.

  1. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  2. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J.H.; Kim, M.S.

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less

  3. EFFECT OF ENVIRONMENT ON GALAXIES' MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellari, Michele

    2013-11-20

    The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental densities. The samples are both identically and nearly mass-selected (stellar mass M {sub *} ≳ 6 × 10{sup 9} M {sub ☉}) and volume-limited. The first consists of nearby field galaxies from the ATLAS{sup 3D} parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of the densest environments for which good, resolvedmore » spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (1) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (2) the slow-rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two processes appears around the stellar mass M {sub crit} ≈ 2 × 10{sup 11} M {sub ☉}. We interpret this as evidence for bulge growth (outside-in evolution) and bulge-related environmental quenching dominating at low masses, with little influence from merging. In contrast, significant dry mergers (inside-out evolution) and halo-related quenching drives the mass and size growth at the high-mass end. The existence of these two processes naturally explains the diverse size evolution of galaxies of different masses and the separability of mass and environmental quenching.« less

  4. A critical reassessment of the fundamental properties of GJ 504: chemical composition and age

    NASA Astrophysics Data System (ADS)

    D'Orazi, V.; Desidera, S.; Gratton, R. G.; Lanza, A. F.; Messina, S.; Andrievsky, S. M.; Korotin, S.; Benatti, S.; Bonnefoy, M.; Covino, E.; Janson, M.

    2017-02-01

    Context. The recent development of brand new observational techniques and theoretical models have greatly advanced the exoplanet research field. Despite significant achievements, which have allowed the detection of thousands extrasolar systems, a comprehensive understanding of planetary formation and evolution mechanisms is still desired. One relevant limitation is given by the accuracy in the measurements of planet-host star ages. The star GJ 504 has been found to host a substellar companion whose nature is strongly debated. There has been a recent difference of opinion in the literature owing to the uncertainty on the age of the system: a young age of 160 Myr would imply a giant planet as a companion, but a recent revision pointing to a solar age ( 4 Gyr) instead suggests a brown dwarf. Aims: With the aim of shedding light on this debated topic, we have carried out a high-resolution spectroscopic study of GJ 504 to derive stellar parameters, metallicity, and abundances of both light and heavy elements, providing a full chemical characterisation. The main objective is to infer clues on the evolutionary stage (hence the age) of this system. Methods: We performed a strictly differential (line-by-line) analysis of GJ 504 with respect to two reference stars, that is the planet-host dwarf ι Hor and the subgiant HIP 84827. The former is crucial in this context because its stellar parameters (hence the evolutionary stage) is well constrained from asteroseismic observations. Regardless of the zero point offsets, our differential approach allows us to put tight constraints on the age of GJ 504 with respect to ι Hor, thereby minimising the internal uncertainties. Results: We found that the surface gravity of GJ 504 is 0.2 ± 0.07 dex lower than that of the main-sequence star ι Hor, suggesting a past turn-off evolution for our target. The isochrone comparison provides us with an age range between 1.8 and 3.5 Gyr, with a most probable age of ≈2.5 Gyr. Thus, our findings support an old age for the system; further evidence comes from the barium abundance, which is compatible with a solar pattern and not enhanced as observed in young stars. Conclusions: We envisaged a possible engulfment scenario to reconcile all the age indicators (spectroscopy, isochrones, rotation, and activity); this engulfment could have occurred very recently and could be responsible for the enhanced levels of rotation and chromospheric activity, as previously suggested. We tested this hypothesis, exploiting a tidal evolution code and finding that the engulfment of a hot Jupiter, with mass not larger than ≈3 Mj and initially located at ≈0.03 AU, seems to be a very likely scenario. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.A-9006(A) and 083.A-9003(A).

  5. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  6. The Burden of Craft in Arthroscopic Rotator Cuff Repair: Where Have We Been and Where We Are Going.

    PubMed

    Burkhart, Stephen S

    2015-08-01

    The rather turbulent history of arthroscopic rotator cuff repair went through stages of innovation, conflict, disruption, assimilation, and transformation that might be anticipated when a new and advanced technology (arthroscopic cuff repair) displaces an entrenched but outdated discipline (open cuff repair). The transition from open to arthroscopic rotator cuff repair has been a major paradigm shift that has greatly benefited patients. However, this technical evolution/revolution has also imposed a higher "burden of craft" on the practitioners of arthroscopic rotator cuff repair. Technological advancements in surgery demand that surgeons accept this burden of craft and master the advanced technology for the benefit of their patients. This article outlines the author's involvement in the development of arthroscopic rotator cuff repair, and it also explores the surgeon's obligation to accept the burden of craft that is imposed by this discipline.

  7. Rotation of a synchronous viscoelastic shell

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît

    2018-03-01

    Several natural satellites of the giant planets have shown evidence of a global internal ocean, coated by a thin, icy crust. This crust is probably viscoelastic, which would alter its rotational response. This response would translate into several rotational quantities, i.e. the obliquity, and the librations at different frequencies, for which the crustal elasticity reacts differently. This study aims at modelling the global response of the viscoelastic crust. For that, I derive the time-dependence of the tensor of inertia, which I combine with the time evolution of the rotational quantities, thanks to an iterative algorithm. This algorithm combines numerical simulations of the rotation with a digital filtering of the resulting tensor of inertia. The algorithm works very well in the elastic case, provided the problem is not resonant. However, considering tidal dissipation adds different phase lags to the oscillating contributions, which challenge the convergence of the algorithm.

  8. Influence of rotation on the near-wake development behind an impulsively started circular cylinder

    NASA Astrophysics Data System (ADS)

    Coutanceau, M.; Menard, C.

    1985-09-01

    A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.

  9. Evolution and Nucleosynthesis of Massive Stars

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Maeder, André; Choplin, Arthur; Takahashi, Koh; Ekström, Sylvia; Hirschi, Raphael; Chiappini, Cristina; Eggenberger, Patrick

    Massive stars are rapid nuclear reactors that play a key role in injecting new synthesized elements in the interstellar medium. Depending on the strengths of the stellar winds on the efficiency of mixing processes, the masses and the chemical compositions of their ejecta can be dramatically different. In a first part, we describe two types of rotating models differing by the physics involved and discussing various consequences. In a second part, we focus on the impacts of rotation in massive stars at very low metallicity. Various nucleosynthetic signatures pointing towards the need for some extra-mixing in the first generation of stars are presented. This extra-mixing has great chance to be driven by rotation for the following reasons: 1) when the metallicity decreases, the formation of fast rotators seem to be favored; 2) rotational mixing is more efficient at low metallicities; 3) primary nitrogen is produced only at low metallicities a fact that can be well explained by more efficient rotational mixing at low metallicities.

  10. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  11. Rotation in young massive star clusters

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2017-05-01

    Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.

  12. Ordered structures in rotating ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Barberán, N.; Lewenstein, M.; Osterloh, K.; Dagnino, D.

    2006-06-01

    Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω .

  13. Revisit of Rotational Dynamics of Asteroid 4179 Toutatis from Chang'e-2's flyby

    NASA Astrophysics Data System (ADS)

    Zhao, Yuhui; Hu, Shoucun; Ji, Jianghui

    2015-08-01

    In this work we investigate the rotational dynamics of Toutatis based on the derived results from Chang'e-2's close flyby to the asteroid (Huang et al. 2013). Toutatis' non-principal axis rotation (NPA) was revealed by radar observations captured from its Earth approaches in the past two decades. Matrix of inertia calculated from radar derived shape model are inconsistent with observations, which may indicate an uneven density distribution of the asteroid. We perform numerical simulations of rotational evolution of Toutatis and figure out the relative rotational parameters of Euler angles, rotational velocities and matrix of inertia. According to the major morphological feature of the ginger-shaped asteroid, we suggest a density ratio of the two lobes. On the basis of these results, we will evaluate the magnitude of the bias of mass center and figure center, which may have slight effects in the momentum variation calculation. These results are in good agreements with the previous radar observation derived results (Takahashi et al. 2013).

  14. A computational procedure for large rotational motions in multibody dynamics

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    A computational procedure suitable for the solution of equations of motion for multibody systems is presented. The present procedure adopts a differential partitioning of the translational motions and the rotational motions. The translational equations of motion are then treated by either a conventional explicit or an implicit direct integration method. A principle feature of this procedure is a nonlinearly implicit algorithm for updating rotations via the Euler four-parameter representation. This procedure is applied to the rolling of a sphere through a specific trajectory, which shows that it yields robust solutions.

  15. [Calcifying tendinitis of the rotator cuff with focal umeral osteolysis. Imaging features].

    PubMed

    Mascarenhas, V V; Morais, F; Marques, H; Guerra, A; Carpinteiro, E; Gaspar, A

    2015-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. The authors report two cases of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed.

  16. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3

    DOE PAGES

    Gao, Ran; Dong, Yongqi; Xu, Han; ...

    2016-05-24

    We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less

  17. Remote Evaluation of Rotational Velocity Using a Quadrant Photo-Detector and a DSC Algorithm

    PubMed Central

    Zeng, Xiangkai; Zhu, Zhixiong; Chen, Yang

    2016-01-01

    This paper presents an approach to remotely evaluate the rotational velocity of a measured object by using a quadrant photo-detector and a differential subtraction correlation (DSC) algorithm. The rotational velocity of a rotating object is determined by two temporal-delay numbers at the minima of two DSCs that are derived from the four output signals of the quadrant photo-detector, and the sign of the calculated rotational velocity directly represents the rotational direction. The DSC algorithm does not require any multiplication operations. Experimental calculations were performed to confirm the proposed evaluation method. The calculated rotational velocity, including its amplitude and direction, showed good agreement with the given one, which had an amplitude error of ~0.3%, and had over 1100 times the efficiency of the traditional cross-correlation method in the case of data number N > 4800. The confirmations have shown that the remote evaluation of rotational velocity can be done without any circular division disk, and that it has much fewer error sources, making it simple, accurate and effective for remotely evaluating rotational velocity. PMID:27120607

  18. Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Keller, P.; Lowrie, W.; Gehring, A. U.

    1994-12-01

    The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.

  19. Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1978-01-01

    The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.

  20. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    PubMed

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.

Top