Sample records for evolution equations based

  1. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  2. On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations

    DOE PAGES

    Christov, Ivan C.

    2015-08-20

    We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.

  3. Critical spaces for quasilinear parabolic evolution equations and applications

    NASA Astrophysics Data System (ADS)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  4. Soliton evolution and radiation loss for the sine-Gordon equation.

    PubMed

    Smyth, N F; Worthy, A L

    1999-08-01

    An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized sine-Gordon equation and loss terms are added to the variational equations derived from the averaged Lagrangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions of the resulting approximate equations, which include loss, are found to be in good agreement with full numerical solutions of the sine-Gordon equation.

  5. Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idilbi, Ahmad; Ji Xiangdong; Yuan Feng

    The hadron-energy evolution (Collins and Soper) equation for all the leading-twist transverse-momentum and spin dependent parton distributions is derived in the impact parameter space. Based on this equation, we present a resummation formulas for the spin dependent structure functions of the semi-inclusive deep-inelastic scattering.

  6. Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains

    NASA Astrophysics Data System (ADS)

    Angstmann, C. N.; Henry, B. I.; McGann, A. V.

    2017-10-01

    The ubiquity of subdiffusive transport in physical and biological systems has led to intensive efforts to provide robust theoretical models for this phenomena. These models often involve fractional derivatives. The important physical extension of this work to processes occurring in growing materials has proven highly nontrivial. Here we derive evolution equations for modeling subdiffusive transport in a growing medium. The derivation is based on a continuous-time random walk. The concise formulation of these evolution equations requires the introduction of a new, comoving, fractional derivative. The implementation of the evolution equation is illustrated with a simple model of subdiffusing proteins in a growing membrane.

  7. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  8. The method of projected characteristics for the evolution of magnetic arches

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.

    1987-01-01

    A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.

  9. Direct Numerical Simulation of Fingering Instabilities in Coating Flows

    NASA Astrophysics Data System (ADS)

    Eres, Murat H.; Schwartz, Leonard W.

    1998-11-01

    We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.

  10. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

    NASA Astrophysics Data System (ADS)

    Azadbakht, F. Teimoury; Boroun, G. R.

    2018-02-01

    We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

  11. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  12. Assessment of the microstructure evolution of an austempered ductile iron during austempering process through strain hardening analysis

    NASA Astrophysics Data System (ADS)

    Donnini, Riccardo; Fabrizi, Alberto; Bonollo, Franco; Zanardi, Franco; Angella, Giuliano

    2017-09-01

    The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.

  13. Void Formation during Diffusion - Two-Dimensional Approach

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2016-06-01

    The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.

  14. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.

  15. Hybrid discrete-time neural networks.

    PubMed

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  16. Optimized growth and reorientation of anisotropic material based on evolution equations

    NASA Astrophysics Data System (ADS)

    Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus

    2018-07-01

    Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.

  17. Stochastic Evolution Equations Driven by Fractional Noises

    DTIC Science & Technology

    2016-11-28

    rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian

  18. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  19. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  20. The spectrum of density perturbations in an expanding universe

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  1. Semiconductor spintronics: The full matrix approach

    NASA Astrophysics Data System (ADS)

    Rossani, A.

    2015-12-01

    A new model, based on an asymptotic procedure for solving the spinor kinetic equations of electrons and phonons is proposed, which gives naturally the displaced Fermi-Dirac distribution function at the leading order. The balance equations for the electron number, energy density and momentum, plus the Poisson’s equation, constitute now a system of six equations. Moreover, two equations for the evolution of the spin densities are added, which account for a general dispersion relation.

  2. Helicity evolution at small-x

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2016-01-13

    We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of α s ln 2(1/x) in the polarization-dependent evolution along with the powers of α s ln(1/x) in the unpolarized evolution which includes saturation efects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c & N f limits. As a cross-check,more » in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for g 1 structure function derived previously by Bartels, Ermolaev and Ryskin.« less

  3. Reorientational versus Kerr dark and gray solitary waves using modulation theory.

    PubMed

    Assanto, Gaetano; Marchant, T R; Minzoni, Antonmaria A; Smyth, Noel F

    2011-12-01

    We develop a modulation theory model based on a Lagrangian formulation to investigate the evolution of dark and gray optical spatial solitary waves for both the defocusing nonlinear Schrödinger (NLS) equation and the nematicon equations describing nonlinear beams, nematicons, in self-defocusing nematic liquid crystals. Since it has an exact soliton solution, the defocusing NLS equation is used as a test bed for the modulation theory applied to the nematicon equations, which have no exact solitary wave solution. We find that the evolution of dark and gray NLS solitons, as well as nematicons, is entirely driven by the emission of diffractive radiation, in contrast to the evolution of bright NLS solitons and bright nematicons. Moreover, the steady nematicon profile is nonmonotonic due to the long-range nonlocality associated with the perturbation of the optic axis. Excellent agreement is obtained with numerical solutions of both the defocusing NLS and nematicon equations. The comparisons for the nematicon solutions raise a number of subtle issues relating to the definition and measurement of the width of a dark or gray nematicon.

  4. On the instability of wave-fields with JONSWAP spectra to inhomogeneous disturbances, and the consequent long-time evolution

    NASA Astrophysics Data System (ADS)

    Ribal, A.; Stiassnie, M.; Babanin, A.; Young, I.

    2012-04-01

    The instability of two-dimensional wave-fields and its subsequent evolution in time are studied by means of the Alber equation for narrow-banded random surface-waves in deep water subject to inhomogeneous disturbances. A linear partial differential equation (PDE) is obtained after applying an inhomogeneous disturbance to the Alber's equation and based on the solution of this PDE, the instability of the ocean wave surface is studied for a JONSWAP spectrum, which is a realistic ocean spectrum with variable directional spreading and steepness. The steepness of the JONSWAP spectrum depends on γ and α which are the peak-enhancement factor and energy scale of the spectrum respectively and it is found that instability depends on the directional spreading, α and γ. Specifically, if the instability stops due to the directional spreading, increase of the steepness by increasing α or γ can reactivate it. This result is in qualitative agreement with the recent large-scale experiment and new theoretical results. In the instability area of α-γ plane, a long-time evolution has been simulated by integrating Alber's equation numerically and recurrent evolution is obtained which is the stochastic counterpart of the Fermi-Pasta-Ulam recurrence obtained for the cubic Schrödinger equation.

  5. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  6. FFT-based computation of the bioheat transfer equation for the HCC ultrasound surgery therapy modeling.

    PubMed

    Dillenseger, Jean-Louis; Esneault, Simon; Garnier, Carole

    2008-01-01

    This paper describes a modeling method of the tissue temperature evolution over time in hyperthermia. More precisely, this approach is used to simulate the hepatocellular carcinoma curative treatment by a percutaneous high intensity ultrasound surgery. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be algebraically solved after a Fourier transformation over the space coordinates. The implementation and boundary conditions of this method will be shown and compared with the finite difference method.

  7. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  8. APFEL: A PDF evolution library with QED corrections

    NASA Astrophysics Data System (ADS)

    Bertone, Valerio; Carrazza, Stefano; Rojo, Juan

    2014-06-01

    Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the variable-flavor-number scheme and with either pole or MS bar heavy quark masses. APFEL consistently accounts for the QED corrections to the evolution of quark and gluon PDFs and for the contribution from the photon PDF in the proton. The coupled QCD ⊗ QED equations are solved in x-space by means of higher order interpolation, followed by Runge-Kutta solution of the resulting discretized evolution equations. APFEL is based on an innovative and flexible methodology for the sequential solution of the QCD and QED evolution equations and their combination. In addition to PDF evolution, APFEL provides a module that computes Deep-Inelastic Scattering structure functions in the FONLL general-mass variable-flavor-number scheme up to O(αs2) . All the functionalities of APFEL can be accessed via a Graphical User Interface, supplemented with a variety of plotting tools for PDFs, parton luminosities and structure functions. Written in FORTRAN 77, APFEL can also be used via the C/C++ and Python interfaces, and is publicly available from the HepForge repository.

  9. Two-dimensional evolution equation of finite-amplitude internal gravity waves in a uniformly stratified fluid

    PubMed

    Kataoka; Tsutahara; Akuzawa

    2000-02-14

    We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.

  10. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  11. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  12. Lie symmetries for systems of evolution equations

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  13. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  14. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  15. Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation

    NASA Astrophysics Data System (ADS)

    McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.

    2017-03-01

    We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.

  16. The Kadomtsev{endash}Petviashvili equation as a source of integrable model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1996-12-01

    A new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained, by an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, from the Kadomtsev{endash}Petviashvili equation. The integrability property is explicitly demonstrated, by exhibiting the corresponding Lax pair, that is obtained by applying the reduction technique to the Lax pair of the Kadomtsev{endash}Petviashvili equation. This model equation is likely to be of applicative relevance, because it may be considered a consistent approximation of a large class of nonlinear evolution PDEs. {copyright} {ital 1996 American Institute of Physics.}

  17. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  18. Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

    NASA Astrophysics Data System (ADS)

    Pogan, Alin; Zumbrun, Kevin

    2018-06-01

    We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

  19. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  20. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming

    2017-10-01

    Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.

  1. Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution

    NASA Astrophysics Data System (ADS)

    Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao

    2008-09-01

    Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.

  2. New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients

    NASA Astrophysics Data System (ADS)

    Jaradat, H. M.; Syam, Muhammed; Jaradat, M. M. M.; Mustafa, Zead; Moman, S.

    2018-03-01

    In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem, rational exponential function method, tanh method, homotopy perturbation method, exp-function method, and coth method, are made. From these comparisons, we conclude that the proposed method is efficient and our solutions are correct. It is worth mention that the proposed solution can solve many physical problems.

  3. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over amore » trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.« less

  4. Simulation of hot spots formation and evolution in HMX

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Yang, Tonghui

    2017-06-01

    In order to study the formation and evolution of hot spots under shock loading, HMX explosives were selected as the object of study for the two-dimensional finite difference numerical simulation. A fifth order finite difference weighted essentially non-oscillatory (WENO) scheme and a third order TVD Runge-Kutta method are utilized for the spatial discretization and the time advance, respectively. The governing equations are based on the fluid elasto-plastic control equations. The Mie-Gruneisen equation of state and the ideal gas equation of state are selected to use in the state equation of the solid explosives and gas material. In order to simplify the calculation of the model, the reaction can be considered to complete in one step. The calculated area is [ 3.0 ×10-5 m ] × [ 3.0 ×10-5 m ] . The radius is 0.6 ×10-5 m, and the internal gas is not involved in the reaction. The calculation area is divided into 300×300 grids and 10 grids are selected from the bottom of each column to give the particle velocity u as the initial condition. In the selected grid, different initial velocity 100m/s and 200m/s are loaded respectively to study the influence of hot spot formation and evolution in different impact intensity.

  5. Interspecific hybridization in Pinus: a summary review

    Treesearch

    W.B. Critchfield

    1975-01-01

    The pines and other groups of temperate forest trees often fail to conform to widely accepted principles of plant evolution that are based primarily on observations of herbaceous plants. For example, interpreters of plant evolution tend to equate the fertility or sterility of inter specific hybrids with the magnitude of the genetically controlled reproductive barriers...

  6. 3D numerical simulation of transient processes in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  7. The Davey-Stewartson Equation on the Half-Plane

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.

    2009-08-01

    The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

  8. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit: General formalism and perturbations analysis

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-07-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a λ |φ |4 potential. We study the evolution of the spatially homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding Universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrödinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c →+∞. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while perturbations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model is substantially faster than in the cold dark matter model. When the wavelength of the perturbations approaches the cosmological horizon (Hubble length), a relativistic treatment is mandatory. In that case, we find that relativistic effects attenuate or even prevent the growth of perturbations. This paper exposes the general formalism and provides illustrations in simple cases. Other applications of our formalism will be considered in companion papers.

  9. Mapping quantum-classical Liouville equation: projectors and trajectories.

    PubMed

    Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond

    2012-02-28

    The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.

  10. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  11. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  12. Selection by consequences, behavioral evolution, and the price equation.

    PubMed

    Baum, William M

    2017-05-01

    Price's equation describes evolution across time in simple mathematical terms. Although it is not a theory, but a derived identity, it is useful as an analytical tool. It affords lucid descriptions of genetic evolution, cultural evolution, and behavioral evolution (often called "selection by consequences") at different levels (e.g., individual vs. group) and at different time scales (local and extended). The importance of the Price equation for behavior analysis lies in its ability to precisely restate selection by consequences, thereby restating, or even replacing, the law of effect. Beyond this, the equation may be useful whenever one regards ontogenetic behavioral change as evolutionary change, because it describes evolutionary change in abstract, general terms. As an analytical tool, the behavioral Price equation is an excellent aid in understanding how behavior changes within organisms' lifetimes. For example, it illuminates evolution of response rate, analyses of choice in concurrent schedules, negative contingencies, and dilemmas of self-control. © 2017 Society for the Experimental Analysis of Behavior.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less

  14. Nonexistence of global solutions of abstract wave equations with high energies.

    PubMed

    Esquivel-Avila, Jorge A

    2017-01-01

    We consider an undamped second order in time evolution equation. For any positive value of the initial energy, we give sufficient conditions to conclude nonexistence of global solutions. The analysis is based on a differential inequality. The success of our result is based in a detailed analysis which is different from the ones commonly used to prove blow-up. Several examples are given improving known results in the literature.

  15. Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions

    NASA Astrophysics Data System (ADS)

    Jahanipur, Ruhollah

    In this paper, we study a class of semilinear functional evolution equations in which the nonlinearity is demicontinuous and satisfies a semimonotone condition. We prove the existence, uniqueness and exponentially asymptotic stability of the mild solutions. Our approach is to apply a convenient version of Burkholder inequality for convolution integrals and an iteration method based on the existence and measurability results for the functional integral equations in Hilbert spaces. An Itô-type inequality is the main tool to study the uniqueness, p-th moment and almost sure sample path asymptotic stability of the mild solutions. We also give some examples to illustrate the applications of the theorems and meanwhile we compare the results obtained in this paper with some others appeared in the literature.

  16. Recursion equations in predicting band width under gradient elution.

    PubMed

    Liang, Heng; Liu, Ying

    2004-06-18

    The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.

  17. A Pressure-Dependent Damage Model for Energetic Materials

    DTIC Science & Technology

    2013-04-01

    appropriate damage nucleation and evolution laws, and the equation of state ) with its reactive response. 15. SUBJECT TERMS pressure-dependent...evolution laws, and the equation of state ) with its reactive response. INTRODUCTION Explosions and deflagrations are classifications of sub-detonative...energetic material’s mechanical response (through the yield criterion, damage evolution and equation of state ) with its reactive response. DAMAGE-FREE

  18. A note on the evolution equations from the area fraction and the thickness of a floating ice cover

    NASA Astrophysics Data System (ADS)

    Schulkes, R. M. S. M.

    1995-03-01

    In this paper, two sets of evolution equations for the area fraction and the ice thickness are investigated. First of all, a simplified alternative derivation of the evolution equations as presented by Gray and Morland (1994) is given. In addition, it is shown that with proper identification of ridging functions, there is a close connection between the derived equations and the thickness distribution model introduced by Thorndike et al. (1975).

  19. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  20. Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Kresse, Georg

    2017-02-01

    Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.

  1. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  2. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  3. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  4. Relativistic numerical cosmology with silent universes

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  5. Fracture simulation of elastomer blended polypropylene based on elastoviscoplastic constitutive equation with craze and tensile softening law

    NASA Astrophysics Data System (ADS)

    Mae, H.

    2006-08-01

    The strong strain-rate dependence, neck propagation and craze evolution characterize the large plastic deformation and fracture behavior of polymer. In the latest study, Kobayashi, Tomii and Shizawa suggested the elastoviscoplastic constitutive equation based on craze evolution and annihilation and then applied it to the plane strain issue of polymer. In the previous study, the author applied their suggested elastoviscoplastic constitutive equation with craze effect to the three dimensional shell and then showed that the load displacement history was in good agreement with the experimental result including only microscopic crack such as crazes. For the future industrial applications, the macroscopic crack has to be taken into account. Thus, the main objective of this study is to propose the tensile softening equation and then add it to the elastoviscoplastic constitutive equation with craze effect so that the load displacement history can be roughly simulated during the macroscopic crack propagation. The tested material in this study is the elastomer blended polypropylene used in the interior and exterior of automobiles. First, the material properties are obtained based on the tensile test results at wide range of strain rates: 10 - 4-102 (1/sec). Next, the compact tension test is conducted and then the tensile softening parameters are fixed. Then, the dart impact test is carried out in order to obtain the load displacement history and also observe the macroscopic crack propagation at high strain rate. Finally, the fracture behavior is simulated and then compared with the experimental results. It is shown that the predictions of the constitutive equation with the proposed tensile softening equation are in good agreement with the experimental results for the future industrial applications.

  6. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    PubMed Central

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  7. Utility rate equations of group population dynamics in biological and social systems.

    PubMed

    Yukalov, Vyacheslav I; Yukalova, Elizaveta P; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.

  8. An Analytical Model of Periodic Waves in Shallow Water--Summary.

    DTIC Science & Technology

    1984-01-01

    Petviashvili equation , and is based on a Riemann theta function of genus 2. These bi-periodic waves are direct generalizations of the well-known (simply... Petviashvili (KP; 1970) equation , (ut 6uux + U ) 3uyy -0, (1) is a scaled, dimensionless equation that describes the evolution of long water waves of...Fluid Mech., vol. 92, pp 691-715 Dubrovin, B. A., 1981, Russ. Math. Surveys, vol. 36, pp 11-92 Kadomtsev , B. B. & V. I. Petviashvili , 1970,) Soy. Phys

  9. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  10. Helicity evolution at small x : Flavor singlet and nonsinglet observables

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-01-30

    We extend our earlier results for the quark helicity evolution at small x to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g 1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject, performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-N c limit. Here, all evolution equations resum double-logarithmic powers of α sln 2(1/x) in the polarization-dependent evolution along with the single-logarithmic powers of αmore » sln(1/x) in the unpolarized evolution which includes saturation effects.« less

  11. Helicity evolution at small x : Flavor singlet and nonsinglet observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    We extend our earlier results for the quark helicity evolution at small x to derive the small-x asymptotics of the flavor singlet and flavor nonsinglet quark helicity TMDs and PDFs and of the g 1 structure function. In the flavor singlet case we rederive the evolution equations obtained in our previous paper on the subject, performing additional cross-checks of our results. In the flavor nonsinglet case we construct new small-x evolution equations by employing the large-N c limit. Here, all evolution equations resum double-logarithmic powers of α sln 2(1/x) in the polarization-dependent evolution along with the single-logarithmic powers of αmore » sln(1/x) in the unpolarized evolution which includes saturation effects.« less

  12. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  13. Gyrofluid turbulence models with kinetic effects

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Hammett, G. W.

    1993-03-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u∥, T∥, and T⊥ along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived that may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which is equivalent to a multipole approximation to the plasma dispersion function, extended to include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear terms are found that model the perpendicular phase mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing'' terms introduce a hyperviscositylike damping ∝k⊥2‖Φkk×k'‖, which should provide a physics-based damping mechanism at high k⊥ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three-dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.

  14. Cauchy-Jost function and hierarchy of integrable equations

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2015-11-01

    We describe the properties of the Cauchy-Jost (also known as Cauchy-Baker-Akhiezer) function of the Kadomtsev-Petviashvili-II equation. Using the bar partial -method, we show that for this function, all equations of the Kadomtsev-Petviashvili-II hierarchy are given in a compact and explicit form, including equations for the Cauchy-Jost function itself, time evolutions of the Jost solutions, and evolutions of the potential of the heat equation.

  15. Snow Micro-Structure Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micah Johnson, Andrew Slaughter

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations:more » the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less

  16. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  17. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  18. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    NASA Astrophysics Data System (ADS)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  19. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  20. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  1. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  2. New nonlinear evolution equations from surface theory

    NASA Astrophysics Data System (ADS)

    Gürses, Metin; Nutku, Yavuz

    1981-07-01

    We point out that the connection between surfaces in three-dimensional flat space and the inverse scattering problem provides a systematic way for constructing new nonlinear evolution equations. In particular we study the imbedding for Guichard surfaces which gives rise to the Calapso-Guichard equations generalizing the sine-Gordon (SG) equation. Further, we investigate the geometry of surfaces and their imbedding which results in the Korteweg-deVries (KdV) equation. Then by constructing a family of applicable surfaces we obtain a generalization of the KdV equation to a compressible fluid.

  3. A Generalized Evolution Criterion in Nonequilibrium Convective Systems

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masakazu; Nisizima, Kunisuke

    1989-04-01

    A general evolution criterion, applicable to transport processes such as the conduction of heat and mass diffusion, is obtained as a direct version of the Le Chatelier-Braun principle for stationary states. The present theory is not based on any radical departure from the conventional one. The generalized theory is made determinate by proposing the balance equations for extensive thermodynamic variables which will reflect the character of convective systems under the assumption of local equilibrium. As a consequence of the introduction of source terms in the balance equations, there appear additional terms in the expression of the local entropy production, which are bilinear in terms of the intensive variables and the sources. In the present paper, we show that we can construct a dissipation function for such general cases, in which the premises of the Glansdorff-Prigogine theory are accumulated. The new dissipation function permits us to formulate a generalized evolution criterion for convective systems.

  4. A mass-conserving mixed Fourier-Galerkin B-Spline-collocation method for Direct Numerical Simulation of the variable-density Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert

    2017-11-01

    We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.

  5. Hyperboloidal evolution of test fields in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Zenginoǧlu, Anıl; Kidder, Lawrence E.

    2010-06-01

    We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.

  6. Study of travelling wave solutions for some special-type nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu

    2018-07-01

    The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.

  7. Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization

    NASA Astrophysics Data System (ADS)

    Langenfeld, K.; Junker, P.; Mosler, J.

    2018-05-01

    This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291-310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.

  8. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  9. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblond, Herve; Kremer, David; Mihalache, Dumitru

    2010-03-15

    By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.

  10. A two-phase micromorphic model for compressible granular materials

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Li, Weiming; Powers, Joseph

    2009-11-01

    We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.

  11. Diffusion equations and the time evolution of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  12. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    NASA Astrophysics Data System (ADS)

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  13. Cosmological applications of singular hypersurfaces in general relativity

    NASA Astrophysics Data System (ADS)

    Laguna-Castillo, Pablo

    Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.

  14. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model

    PubMed Central

    Su, M. G.; Min, Q.; Cao, S. Q.; Sun, D. X.; Hayden, P.; O’Sullivan, G.; Dong, C. Z.

    2017-01-01

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging. PMID:28332621

  15. Inhomogeneous cosmology and backreaction: Current status and future prospects

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof; Korzyński, Mikołaj

    Astronomical observations reveal hierarchical structures in the universe, from galaxies, groups of galaxies, clusters and superclusters, to filaments and voids. On the largest scales, it seems that some kind of statistical homogeneity can be observed. As a result, modern cosmological models are based on spatially homogeneous and isotropic solutions of the Einstein equations, and the evolution of the universe is approximated by the Friedmann equations. In parallel to standard homogeneous cosmology, the field of inhomogeneous cosmology and backreaction is being developed. This field investigates whether small scale inhomogeneities via nonlinear effects can backreact and alter the properties of the universe on its largest scales, leading to a non-Friedmannian evolution. This paper presents the current status of inhomogeneous cosmology and backreaction. It also discusses future prospects of the field of inhomogeneous cosmology, which is based on a survey of 50 academics working in the field of inhomogeneous cosmology.

  16. Bohmian Photonics for Independent Control of the Phase and Amplitude of Waves

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-05-01

    The de Broglie-Bohm theory is one of the nonstandard interpretations of quantum phenomena that focuses on reintroducing definite positions of particles, in contrast to the indeterminism of the Copenhagen interpretation. In spite of intense debate on its measurement and nonlocality, the de Broglie-Bohm theory based on the reformulation of the Schrödinger equation allows for the description of quantum phenomena as deterministic trajectories embodied in the modified Hamilton-Jacobi mechanics. Here, we apply the Bohmian reformulation to Maxwell's equations to achieve the independent manipulation of optical phase evolution and energy confinement. After establishing the deterministic design method based on the Bohmian approach, we investigate the condition of optical materials enabling scattering-free light with bounded or random phase evolutions. We also demonstrate a unique form of optical confinement and annihilation that preserves the phase information of incident light. Our separate tailoring of wave information extends the notion and range of artificial materials.

  17. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, E.; Niemi, H.; Rischke, D. H.

    2016-12-01

    In Molnár et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.

  18. Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime; Natali, Fábio M. Amorin

    2009-04-01

    In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.

  19. A Langevin approach to multi-scale modeling

    DOE PAGES

    Hirvijoki, Eero

    2018-04-13

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less

  20. A Langevin approach to multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Hirvijoki, Eero

    2018-04-01

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this letter, we propose a multi-scale method which allows us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. This allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.

  1. A Langevin approach to multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvijoki, Eero

    In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less

  2. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  3. Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.

    2010-02-01

    We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10.5.5, 2.4 GHz Intel Core 2 Duo, gcc 4.2.4, single thread).

  4. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  5. Magnetic Flux Transport at the Solar Surface

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hathaway, D. H.; Cameron, R. H.; Solanki, S. K.; Gizon, L.; Upton, L.

    2014-12-01

    After emerging to the solar surface, the Sun's magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.

  6. NLO evolution of 3-quark Wilson loop operator

    DOE PAGES

    Balitsky, I.; Grabovsky, A. V.

    2015-01-07

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less

  7. On the Solutions of a 2+1-Dimensional Model for Epitaxial Growth with Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Lu, Xin Yang

    2018-04-01

    In this paper, we study the evolution equation derived by Xu and Xiang (SIAM J Appl Math 69(5):1393-1414, 2009) to describe heteroepitaxial growth in 2+1 dimensions with elastic forces on vicinal surfaces is in the radial case and uniform mobility. This equation is strongly nonlinear and contains two elliptic integrals and defined via Cauchy principal value. We will first derive a formally equivalent parabolic evolution equation (i.e., full equivalence when sufficient regularity is assumed), and the main aim is to prove existence, uniqueness and regularity of strong solutions. We will extensively use techniques from the theory of evolution equations governed by maximal monotone operators in Banach spaces.

  8. Evolution with Stochastic Fitness and Stochastic Migration

    PubMed Central

    Rice, Sean H.; Papadopoulos, Anthony

    2009-01-01

    Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580

  9. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    PubMed

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  10. Quantitative conditions for time evolution in terms of the von Neumann equation

    NASA Astrophysics Data System (ADS)

    Wang, WenHua; Cao, HuaiXin; Chen, ZhengLi; Wang, Lie

    2018-07-01

    The adiabatic theorem describes the time evolution of the pure state and gives an adiabatic approximate solution to the Schödinger equation by choosing a single eigenstate of the Hamiltonian as the initial state. In quantum systems, states are divided into pure states (unite vectors) and mixed states (density matrices, i.e., positive operators with trace one). Accordingly, mixed states have their own corresponding time evolution, which is described by the von Neumann equation. In this paper, we discuss the quantitative conditions for the time evolution of mixed states in terms of the von Neumann equation. First, we introduce the definitions for uniformly slowly evolving and δ-uniformly slowly evolving with respect to mixed states, then we present a necessary and sufficient condition for the Hamiltonian of the system to be uniformly slowly evolving and we obtain some upper bounds for the adiabatic approximate error. Lastly, we illustrate our results in an example.

  11. Helicity Evolution at Small x

    NASA Astrophysics Data System (ADS)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  12. Modeling collective behavior of dislocations in crystalline materials

    NASA Astrophysics Data System (ADS)

    Varadhan, Satya N.

    Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.

  13. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations.

    PubMed

    Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio

    2014-10-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.

  14. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  15. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  16. Nonequilibrium thermodynamics of the shear-transformation-zone model

    NASA Astrophysics Data System (ADS)

    Luo, Alan M.; Ã-ttinger, Hans Christian

    2014-02-01

    The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.

  17. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  18. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  19. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  20. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  1. Topics Associated with Nonlinear Evolution Equations and Inverse Scattering in Multidimensions,

    DTIC Science & Technology

    1987-03-01

    significant that these concepts can be generalized to 2 spatial plus one time dimension. Here the prototype equation is the Kadomtsev - Petviashvili (K-P...O-193 32 ? T TOPICS ASSOCIATED WITH NONLINEAR E VOLUTION EQUATIONS / AND INVERSE SCATTER! .(U) CLARKSON UNIV POTSDAM NY INST...8217 - Evolution Equations and L Inverse Scattering in Multi- dimensions by _i A ,’I Mark J. Ablowi ClrsnUiest PosaNwYr/37 LaRMFOMON* .F-5 Anwo~~~d kr /ua

  2. Basic results on the equations of magnetohydrodynamics of partially ionized inviscid plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, Manuel

    2009-10-15

    The equations of evolution of partially ionized plasmas have been far more studied in one of their many simplifications than in its original form. They present a relation between the velocity of each species, plus the magnetic and electric fields, which yield as an analog of Ohm's law a certain elliptic equation. Therefore, the equations represent a functional evolution system, not a classical one. Nonetheless, a priori estimates and theorems of existence may be obtained in appropriate Sobolev spaces.

  3. Microscopic and macroscopic models for the onset and progression of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Bertsch, Michiel; Franchi, Bruno; Carla Tesi, Maria; Tosin, Andrea

    2017-10-01

    In the first part of this paper we review a mathematical model for the onset and progression of Alzheimer’s disease (AD) that was developed in subsequent steps over several years. The model is meant to describe the evolution of AD in vivo. In Achdou et al (2013 J. Math. Biol. 67 1369-92) we treated the problem at a microscopic scale, where the typical length scale is a multiple of the size of the soma of a single neuron. Subsequently, in Bertsch et al (2017 Math. Med. Biol. 34 193-214) we concentrated on the macroscopic scale, where brain neurons are regarded as a continuous medium, structured by their degree of malfunctioning. In the second part of the paper we consider the relation between the microscopic and the macroscopic models. In particular we show under which assumptions the kinetic transport equation, which in the macroscopic model governs the evolution of the probability measure for the degree of malfunctioning of neurons, can be derived from a particle-based setting. The models are based on aggregation and diffusion equations for β-Amyloid (Aβ from now on), a protein fragment that healthy brains regularly produce and eliminate. In case of dementia Aβ monomers are no longer properly washed out and begin to coalesce forming eventually plaques. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: (i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; (ii) neuron-to-neuron prion-like transmission. In the microscopic model we consider mechanism (i), modelling it by a system of Smoluchowski equations for the amyloid concentration (describing the agglomeration phenomenon), with the addition of a diffusion term as well as of a source term on the neuronal membrane. At the macroscopic level instead we model processes (i) and (ii) by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution function of the degree of malfunctioning of the neurons. The transport equation contains an integral term describing the random onset of the disease as a jump process localized in particularly sensitive areas of the brain.

  4. On the solution of evolution equations based on multigrid and explicit iterative methods

    NASA Astrophysics Data System (ADS)

    Zhukov, V. T.; Novikova, N. D.; Feodoritova, O. B.

    2015-08-01

    Two schemes for solving initial-boundary value problems for three-dimensional parabolic equations are studied. One is implicit and is solved using the multigrid method, while the other is explicit iterative and is based on optimal properties of the Chebyshev polynomials. In the explicit iterative scheme, the number of iteration steps and the iteration parameters are chosen as based on the approximation and stability conditions, rather than on the optimization of iteration convergence to the solution of the implicit scheme. The features of the multigrid scheme include the implementation of the intergrid transfer operators for the case of discontinuous coefficients in the equation and the adaptation of the smoothing procedure to the spectrum of the difference operators. The results produced by these schemes as applied to model problems with anisotropic discontinuous coefficients are compared.

  5. Extension of the Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Somsikov, Vyacheslav

    2017-03-01

    Extension of the Schrodinger equation is submitted by removing its limitations appearing due to the limitations of the formalism of Hamilton, based on which this equation was obtained. For this purpose the problems of quantum mechanics arising from the limitations of classical mechanics are discussed. These limitations, in particular, preclude the use of the Schrodinger equation to describe the time symmetry violation. The extension of the Schrodinger equation is realized based on the principle of duality symmetry. According to this principle the dynamics of the systems is determined by the symmetry of the system and by the symmetry of the space. The extension of the Schrodinger equation was obtained from the dual expression of energy, represented in operator form. For this purpose the independent micro - and macro-variables that determine respectively the dynamics of quantum particle system relative to its center of mass and the movement of the center of mass in space are used. The solution of the extended Schrodinger equation for the system near equilibrium is submitted. The main advantage of the extended Schrodinger equation is that it is applicable to describe the interaction and evolution of quantum systems in inhomogeneous field of external forces.

  6. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    PubMed

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  7. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  8. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  9. NLO evolution of color dipole

    DOE PAGES

    Balitsky, Ian; Chirilli, Giovanni A.

    2008-09-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leading order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities.

  10. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  11. Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J.; Sanchis-Alepuz, Helios; Institut fuer Physik, Karl-Franzens-Universitaet Graz

    2011-05-15

    We study the Hamiltonian formulation of f(R) theories of gravity both in metric and in Palatini formalism using their classical equivalence with Brans-Dicke theories with a nontrivial potential. The Palatini case, which corresponds to the {omega}=-3/2 Brans-Dicke theory, requires special attention because of new constraints associated with the scalar field, which is nondynamical. We derive, compare, and discuss the constraints and evolution equations for the {omega}=-3/2 and {omega}{ne}-3/2 cases. Based on the properties of the constraint and evolution equations, we find that, contrary to certain claims in the literature, the Cauchy problem for the {omega}=-3/2 case is well formulated andmore » there is no reason to believe that it is not well posed in general.« less

  12. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.

  13. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  14. Small-x asymptotics of the quark helicity distribution: Analytic results

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-06-15

    In this Letter, we analytically solve the evolution equations for the small-x asymptotic behavior of the (flavor singlet) quark helicity distribution in the large- N c limit. Here, these evolution equations form a set of coupled integro-differential equations, which previously could only be solved numerically. This approximate numerical solution, however, revealed simplifying properties of the small-x asymptotics, which we exploit here to obtain an analytic solution.

  15. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  16. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  17. Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert

    2016-10-01

    The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.

  18. Resumming double logarithms in the QCD evolution of color dipoles

    DOE PAGES

    Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...

    2015-05-01

    The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an evolution equation which is non-local in rapidity. This equation can be equivalently rewritten inmore » local form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in both stabilizing and slowing down the evolution.« less

  19. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete

    PubMed Central

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-01-01

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402

  20. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.

    PubMed

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-04-08

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.

  1. Size distribution spectrum of noninertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi

    2018-05-01

    Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence is studied. Smoluchowski's coagulation equation describes the evolution of the size distribution of particles in this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically steady state agrees accurately with the theoretical prediction.

  2. Interface equation and viscosity contrast in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casademunt, J.; Jasnow, D.; Hernandez-Machado, A.

    1992-05-20

    In this paper, the authors derive an integro-differential equation for the evolution of the interface separating two immiscible viscous fluids in a Hele-Shaw cell with a channel geometry, for arbitrary viscosity contrast. The authors' equation differs from a previous one obtained by a vortex-sheet formulation of the problem, in that the normal component of the interface velocity is formally decoupled from the gauge-dependent tangential part. The result is thus a closed integral equation for the normal velocity. The authors briefly comment on the advantages of such a formulation and implement an alternative computational algorithm based on it. Preliminary numerical resultsmore » confirm a highly inefficient finger competition in the zero viscosity contrast limit.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less

  4. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  5. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    NASA Astrophysics Data System (ADS)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  6. Chaotic Motion of Relativistic Electrons Driven by Whistler Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.

    2007-01-01

    Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.

  7. Nonlinear evolution of coarse-grained quantum systems with generalized purity constraints

    NASA Astrophysics Data System (ADS)

    Burić, Nikola

    2010-12-01

    Constrained quantum dynamics is used to propose a nonlinear dynamical equation for pure states of a generalized coarse-grained system. The relevant constraint is given either by the generalized purity or by the generalized invariant fluctuation, and the coarse-grained pure states correspond to the generalized coherent, i.e. generalized nonentangled states. Open system model of the coarse-graining is discussed. It is shown that in this model and in the weak coupling limit the constrained dynamical equations coincide with an equation for pointer states, based on Hilbert-Schmidt distance, that was previously suggested in the context of the decoherence theory.

  8. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.

  9. Modelling language evolution: Examples and predictions

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Shuai, Lan; Zhang, Menghan

    2014-06-01

    We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.

  10. Evolution of statistical averages: An interdisciplinary proposal using the Chapman-Enskog method

    NASA Astrophysics Data System (ADS)

    Mariscal-Sanchez, A.; Sandoval-Villalbazo, A.

    2017-08-01

    This work examines the idea of applying the Chapman-Enskog (CE) method for approximating the solution of the Boltzmann equation beyond the realm of physics, using an information theory approach. Equations describing the evolution of averages and their fluctuations in a generalized phase space are established up to first-order in the Knudsen parameter which is defined as the ratio of the time between interactions (mean free time) and a characteristic macroscopic time. Although the general equations here obtained may be applied in a wide range of disciplines, in this paper, only a particular case related to the evolution of averages in speculative markets is examined.

  11. Dynamical systems theory for nonlinear evolution equations.

    PubMed

    Choudhuri, Amitava; Talukdar, B; Das, Umapada

    2010-09-01

    We observe that the fully nonlinear evolution equations of Rosenau and Hymann, often abbreviated as K(n,m) equations, can be reduced to Hamiltonian form only on a zero-energy hypersurface belonging to some potential function associated with the equations. We treat the resulting Hamiltonian equations by the dynamical systems theory and present a phase-space analysis of their stable points. The results of our study demonstrate that the equations can, in general, support both compacton and soliton solutions. For the K(2,2) and K(3,3) cases one type of solutions can be obtained from the other by continuously varying a parameter of the equations. This is not true for the K(3,2) equation for which the parameter can take only negative values. The K(2,3) equation does not have any stable point and, in the language of mechanics, represents a particle moving with constant acceleration.

  12. Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Jianping; Han, Dun

    2017-01-01

    In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.

  13. Whitham modulation theory for (2  +  1)-dimensional equations of Kadomtsev–Petviashvili type

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor

    2018-05-01

    Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.

  14. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.

    1994-01-01

    In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.

  15. Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay

    2016-03-01

    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.

  16. Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility

    NASA Astrophysics Data System (ADS)

    Los, Victor F.

    2017-08-01

    A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.

  17. The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    NASA Technical Reports Server (NTRS)

    Hewitt, R. E.; Hall, P.

    1996-01-01

    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.

  18. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.; Trifonov, A. Yu.

    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

  19. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  20. Phenomenological approach to mechanical damage growth analysis.

    PubMed

    Pugno, Nicola; Bosia, Federico; Gliozzi, Antonio S; Delsanto, Pier Paolo; Carpinteri, Alberto

    2008-10-01

    The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are briefly discussed and suggested.

  1. Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca

    2017-11-01

    We study a model system where the triadic interactions in Navier-Stokes equations are enhanced or suppressed in a controlled manner without affecting neither the total number of degrees of freedom nor the ideal invariants and without breaking any of the symmetries of original equations. Our numerical simulations are based on the helical decomposition of velocity Fourier modes. We introduced a parameter (0 <= λ <= 1) that controls the relative weight among homochiral and heterochiral triads in the nonlinear evolution. We show that by using this weighting protocol the turbulent evolution displays a sharp transition, for a critical value of the control parameter, from forward to backward energy transfer but still keeping the dynamics fully three dimensional, isotropic, and parity invariant. AtMath Collaboration of University of Helsinki and ERC Grant No. 339032 `NewTurb'.

  2. Modeling the expected lifetime and evolution of a deme's principal genetic sequence.

    NASA Astrophysics Data System (ADS)

    Clark, Brian

    2014-03-01

    The principal genetic sequence (PGS) is the most common genetic sequence in a deme. The PGS changes over time because new genetic sequences are created by inversions, compete with the current PGS, and a small fraction become PGSs. A set of coupled difference equations provides a description of the evolution of the PGS distribution function in an ensemble of demes. Solving the set of equations produces the survival probability of a new genetic sequence and the expected lifetime of an existing PGS as a function of inversion size and rate, recombination rate, and deme size. Additionally, the PGS distribution function is used to explain the transition pathway from old to new PGSs. We compare these results to a cellular automaton based representation of a deme and the drosophila species, D. melanogaster and D. yakuba.

  3. Weakly Nonlinear Model with Exact Coefficients for the Fluttering and Spiraling Motion of Buoyancy-Driven Bodies

    NASA Astrophysics Data System (ADS)

    Tchoufag, Joël; Fabre, David; Magnaudet, Jacques

    2015-09-01

    Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  4. A weakly nonlinear model with exact coefficients for the fluttering and spiraling motions of buoyancy-driven bodies

    NASA Astrophysics Data System (ADS)

    Magnaudet, Jacques; Tchoufag, Joel; Fabre, David

    2015-11-01

    Gravity/buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Using a weakly nonlinear expansion of the full set of governing equations, we derive a new generic reduced-order model of this class of phenomena based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (eg. fluttering or spiraling) and characteristics (eg. frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  5. Nonlinear evolution of Benjamin-Feir wave group based on third order solution of Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Zahnur; Halfiani, Vera; Salmawaty; Tulus; Ramli, Marwan

    2018-01-01

    This study concerns on the evolution of trichromatic wave group. It has been known that the trichromatic wave group undergoes an instability during its propagation, which results wave deformation and amplification on the waves amplitude. The previous results on the KdV wave group showed that the nonlinear effect will deform the wave and lead to large wave whose amplitude is higher than the initial input. In this study we consider the Benjamin-Bona-Mahony equation and the theory of third order side band approximation to investigate the peaking and splitting phenomena of the wave groups which is initially in trichromatic signal. The wave amplitude amplification and the maximum position will be observed through a quantity called Maximal Temporal Amplitude (MTA) which measures the maximum amplitude of the waves over time.

  6. Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.; Cardiff, P.

    2017-11-01

    Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.

  7. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less

  8. Nonlinear Ocean Waves

    DTIC Science & Technology

    1994-01-06

    for all of this work is the fact that the Kadomtsev - Petviashvili equation , a1(atu + ui)xU + a.3u) + ay2u = 0, (KP) describes approximately the evolution...the contents of these two papers. (a) Numerically induced chaos The cubic-nonlinear Schrtdinger equation in one dimension, iatA +,2V + 21i,1 =0, (NLS...arises in several physical contexts, including the evolution of nearly monochromatic, one-dimensional waves in deep water. The equation is known to be

  9. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  10. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  11. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  12. On the solutions of fractional order of evolution equations

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-01-01

    In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.

  13. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    DOE PAGES

    Motl, Patrick M.; Frank, Juhan; Staff, Jan; ...

    2017-03-29

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume "grid" code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code aremore » chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. Here, we also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less

  14. A quadrature based method of moments for nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin L.; Vedula, Prakash

    2011-09-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.

  15. The evolution of the small x gluon TMD

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    2016-06-01

    We study the evolution of the small x gluon transverse momentum dependent (TMD) distribution in the dilute limit. The calculation has been carried out in the Ji-Ma-Yuan scheme using a simple quark target model. As expected, we find that the resulting small x gluon TMD simultaneously satisfies both the Collins-Soper (CS) evolution equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. We thus confirmed the earlier finding that the high energy factorization (HEF) and the TMD factorization should be jointly employed to resum the different type large logarithms in a process where three relevant scales are well separated.

  16. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  17. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  18. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  19. The study of the plasmon modes of square atomic clusters based on the eigen-oscillation equation of charge under the free-electron gas model

    NASA Astrophysics Data System (ADS)

    Xue, Hong-Jie; Wu, Reng-Lai; Hu, Cheng-Xi; Zhang, Ming

    2018-04-01

    In atomic clusters, plasmon modes are generally gained by the resonant responses for external fields. However, these resonant methods still carry some defects: some plasmon modes may not have been found as that may not have been excited by the external fields. Recently, by employing the extended Hubbard model to describe electron systems of atomic clusters, we have presented the eigen-oscillation equation of charge to study plasmon modes. In this work, based on the free-electron gas model, we further explore the eigen-equation method. Under different external electric fields, some of the plasmon mode spectrums with obvious differences are found, which display the defects of the resonant methods. All the plasmon modes obtained by the resonant methods are predicted by the eigen-equation method. This effectively shows that the eigen-equation method is feasible and reliable in the process of finding plasmon. In addition, various kinds of plasmons are displayed by charge distributions, and the evolution features of plasmon with system parameters are gained by the energy absorption spectrum.

  20. Evolution of the equations of dynamics of the Universe: From Friedmann to the present day

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2017-05-01

    Celebrating the centenary of general relativity theory, we must recall that Friedmann's discovery of the equations of evolution of the Universe became the strongest prediction of this theory. These equations currently remain the foundation of modern cosmology. Nevertheless, data from new observations stimulate a search for modified theories of gravitation. We discuss cosmological aspects of theories with two dynamical metrics and theories of massive gravity, one of which was developed by Logunov and his coworkers.

  1. Evolution Equations of C(3)I: Cannonical Forms and Their Properties.

    DTIC Science & Technology

    1983-10-01

    paper are all generalized Lotka - Volterra equations for two-species systems. In spite of these restric- tions, their interpretation in the C31 context...most general properties of that model exposed the fact that, unlike the earlier counter-C3 model, a four-species model is environmentally unstable...Coupled two-species evolution equations are of the general form a -F (X, Y. U) + V Y - -F (X, Y, + V(y y Fx and Fy are attrition functions. They depend

  2. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  3. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2016-10-01

    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  4. The evolution of methods for noise prediction of high speed rotors and propellers in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1986-01-01

    Linear wave equation models which have been used over the years at NASA Langley for describing noise emissions from high speed rotating blades are summarized. The noise sources are assumed to lie on a moving surface, and analysis of the situation has been based on the Ffowcs Williams-Hawkings (FW-H) equation. Although the equation accounts for two surface and one volume source, the NASA analyses have considered only the surface terms. Several variations on the FW-H model are delineated for various types of applications, noting the computational benefits of removing the frequency dependence of the calculations. Formulations are also provided for compact and noncompact sources, and features of Long's subsonic integral equation and Farassat's high speed integral equation are discussed. The selection of subsonic or high speed models is dependent on the Mach number of the blade surface where the source is located.

  5. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  6. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  7. Resumming double non-global logarithms in the evolution of a jet

    NASA Astrophysics Data System (ADS)

    Hatta, Y.; Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.

    2018-02-01

    We consider the Banfi-Marchesini-Smye (BMS) equation which resums `non-global' energy logarithms in the QCD evolution of the energy lost by a pair of jets via soft radiation at large angles. We identify a new physical regime where, besides the energy logarithms, one has to also resum (anti)collinear logarithms. Such a regime occurs when the jets are highly collimated (boosted) and the relative angles between successive soft gluon emissions are strongly increasing. These anti-collinear emissions can violate the correct time-ordering for time-like cascades and result in large radiative corrections enhanced by double collinear logs, making the BMS evolution unstable beyond leading order. We isolate the first such a correction in a recent calculation of the BMS equation to next-to-leading order by Caron-Huot. To overcome this difficulty, we construct a `collinearly-improved' version of the leading-order BMS equation which resums the double collinear logarithms to all orders. Our construction is inspired by a recent treatment of the Balitsky-Kovchegov (BK) equation for the high-energy evolution of a space-like wavefunction, where similar time-ordering issues occur. We show that the conformal mapping relating the leading-order BMS and BK equations correctly predicts the physical time-ordering, but it fails to predict the detailed structure of the collinear improvement.

  8. Simple Derivation of the Lindblad Equation

    ERIC Educational Resources Information Center

    Pearle, Philip

    2012-01-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…

  9. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  10. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  11. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  12. Macroscopic descriptions of rarefied gases from the elimination of fast variables

    NASA Astrophysics Data System (ADS)

    Dellar, Paul J.

    2007-10-01

    The Boltzmann equation describing a dilute monatomic gas is equivalent to an infinite hierarchy of evolution equations for successive moments of the distribution function. The five moments giving the macroscopic mass, momentum, and energy densities are unaffected by collisions between atoms, while all other moments naturally evolve on a fast collisional time scale. We show that the macroscopic equations of Chen, Rao, and Spiegel [Phys. Lett. A 271, 87 (2000)], like the familiar Navier-Stokes-Fourier equations, emerge from using a systematic procedure to eliminate the higher moments, leaving closed evolution equations for the five moments unaffected by collisions. The two equation sets differ through their treatment of contributions from the temperature to the momentum and energy fluxes. Using moment equations offers a definitive treatment of the Prandtl number problem using model collision operators, greatly reduces the labor of deriving equations for different collision operators, and clarifies the role of solvability conditions applied to the distribution function. The original Chen-Rao-Spiegel approach offers greatly improved agreement with experiments for the phase speed of ultrasound, but when corrected to match the Navier-Stokes-Fourier equations at low frequencies, it then underestimates the phase speed at high frequencies. Our introduction of a translational temperature, as in the kinetic theory of polyatomic gases, motivates a distinction in the energy flux between advection of internal energy and the work done by the pressure. Exploiting this distinction yields macroscopic equations that offer further improvement in agreement with experimental data, and arise more naturally as an approximation to the infinite hierarchy of evolution equations for moments.

  13. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations.

    PubMed

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J

    2014-08-07

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  14. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2012-09-01

    It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are "locked" inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  15. FAST TRACK COMMUNICATION: Semiclassical Klein Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential

    NASA Astrophysics Data System (ADS)

    Coffey, W. T.; Kalmykov, Yu P.; Titov, S. V.; Mulligan, B. P.

    2007-01-01

    The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(planck4) and in the classical limit, planck → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived.

  16. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  17. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  18. On the theory of Brownian motion with the Alder-Wainwright effect

    NASA Astrophysics Data System (ADS)

    Okabe, Yasunori

    1986-12-01

    The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, we obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. We are interested in whether or not it can be measured experimentally.

  19. The bankfull hydraulic geometry of evolving meander bends

    NASA Astrophysics Data System (ADS)

    Monegaglia, F.; Tubino, M.; Zolezzi, G.

    2017-12-01

    Changes in the bankfull hydraulic geometry of meandering rivers associated with meander growth from incipient meandering to cutoffs have seldom been analysed in detail. Such information is also needed by meander morphodynamic models, most of which simulate the evolution of bankfull channel geometry by simply accounting for channel slope reduction inversely proportional to elongation, while changes in bankfull channel width are often neglected or, when they are considered, they are not consistent with the few available observations. To address these gaps we first perform an extensive, systematic, bend-scale evolutionary analysis of bankfull channel widths in several large meandering rivers in the Amazon basin, over a three decades time period, from remotely sensed field data. The analysis consistently show a slight decreasing trend of the bankfull channel width during the planform evolution towards cutoff. Furthermore, we develop a physically based model for the evolution of bankfull channel geometry during the planform development of meandering rivers. The model is based on the conservation of sediment discharge. An integrated one-dimensional Exner equation that accounts for meander elongation, sediment supply conservation and sediment income from the channel banks, allows us to predict the evolution of the channel slope. The evolution of the channel width is modeled through a threshold equation. The model correctly predicts the slight variability of channel width during meander development and a gentler reduction of the channel slope, which is mitigated by the conservation of sediment supply. The bankfull geometry of highly dynamic meandering rivers is predicted to be elongation-dominated, while the one related to slowly evolving meandering rivers is sediment supply-dominated. Finally, we discuss the implications of the proposed modeling framework in terms of planform structure, meander shape and morphodynamic influence.

  20. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  1. Solutions of evolution equations associated to infinite-dimensional Laplacian

    NASA Astrophysics Data System (ADS)

    Ouerdiane, Habib

    2016-05-01

    We study an evolution equation associated with the integer power of the Gross Laplacian ΔGp and a potential function V on an infinite-dimensional space. The initial condition is a generalized function. The main technique we use is the representation of the Gross Laplacian as a convolution operator. This representation enables us to apply the convolution calculus on a suitable distribution space to obtain the explicit solution of the perturbed evolution equation. Our results generalize those previously obtained by Hochberg [K. J. Hochberg, Ann. Probab. 6 (1978) 433.] in the one-dimensional case with V=0, as well as by Barhoumi-Kuo-Ouerdiane for the case p=1 (See Ref. [A. Barhoumi, H. H. Kuo and H. Ouerdiane, Soochow J. Math. 32 (2006) 113.]).

  2. Gaseous Viscous Peeling of Linearly Elastic Substrates

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2017-11-01

    We study pressure-driven propagation of gas into a micron-scale gap between two linearly elastic substrates. Applying the lubrication approximation, the governing nonlinear evolution equation describes the interaction between elasticity and viscosity, as well as weak rarefaction and low-Mach-number compressibility, characteristic to gaseous microflows. Several physical limits allow simplification of the evolution equation and enable solution by self-similarity. During the peeling process the flow-field transitions between the different limits and the respective approximate solutions. The sequence of limits occurring during the propagation dynamics can be related to the thickness of the prewetting layer of the configuration at rest, yielding an approximate description of the entire peeling dynamics. The results are validated by numerical solutions of the evolution equation. Israel Science Foundation 818/13.

  3. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  4. A visual model for object detection based on active contours and level-set method.

    PubMed

    Satoh, Shunji

    2006-09-01

    A visual model for object detection is proposed. In order to make the detection ability comparable with existing technical methods for object detection, an evolution equation of neurons in the model is derived from the computational principle of active contours. The hierarchical structure of the model emerges naturally from the evolution equation. One drawback involved with initial values of active contours is alleviated by introducing and formulating convexity, which is a visual property. Numerical experiments show that the proposed model detects objects with complex topologies and that it is tolerant of noise. A visual attention model is introduced into the proposed model. Other simulations show that the visual properties of the model are consistent with the results of psychological experiments that disclose the relation between figure-ground reversal and visual attention. We also demonstrate that the model tends to perceive smaller regions as figures, which is a characteristic observed in human visual perception.

  5. Modeling eutrophic lakes: From mass balance laws to ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; Ferrara, Luciano; Romano, Antonio

    Starting from integral balance laws, a model based on nonlinear ordinary differential equations (ODEs) describing the evolution of Phosphorus cycle in a lake is proposed. After showing that the usual homogeneous model is not compatible with the mixture theory, we prove that an ODEs model still holds but for the mean values of the state variables provided that the nonhomogeneous involved fields satisfy suitable conditions. In this model the trophic state of a lake is described by the mean densities of Phosphorus in water and sediments, and phytoplankton biomass. All the quantities appearing in the model can be experimentally evaluated. To propose restoration programs, the evolution of these state variables toward stable steady state conditions is analyzed. Moreover, the local stability analysis is performed with respect to all the model parameters. Some numerical simulations and a real application to lake Varese conclude the paper.

  6. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    NASA Astrophysics Data System (ADS)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  7. Calculation of thermal expansion coefficient of glasses based on topological constraint theory

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi

    2016-10-01

    In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.

  8. On the breakup of viscous liquid threads

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1995-01-01

    A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.

  9. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  10. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  11. Self-Supervised Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and metal aspects of a monad is implemented by feedback from mental to motor dynamics, as represented by the aforementioned fictitious forces. This feedback is what makes the evolution of probability densities nonlinear. The deviation from linear evolution can be characterized, in a sense, as an expression of free will. It has been demonstrated that probability densities can approach prescribed attractors while exhibiting such patterns as shock waves, solitons, and chaos in probability space. The concept of self-supervised dynamical systems has been considered for application to diverse phenomena, including information-based neural networks, cooperation, competition, deception, games, and control of chaos. In addition, a formal similarity between the mathematical structures of self-supervised dynamical systems and of quantum-mechanical systems has been investigated.

  12. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  13. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  14. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  15. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    NASA Astrophysics Data System (ADS)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  16. Spreading of blood drops over dry porous substrate: complete wetting case.

    PubMed

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  18. A physically based connection between fractional calculus and fractal geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butera, Salvatore, E-mail: sg.butera@gmail.com; Di Paola, Mario, E-mail: mario.dipaola@unipa.it

    2014-11-15

    We show a relation between fractional calculus and fractals, based only on physical and geometrical considerations. The link has been found in the physical origins of the power-laws, ruling the evolution of many natural phenomena, whose long memory and hereditary properties are mathematically modelled by differential operators of non integer order. Dealing with the relevant example of a viscous fluid seeping through a fractal shaped porous medium, we show that, once a physical phenomenon or process takes place on an underlying fractal geometry, then a power-law naturally comes up in ruling its evolution, whose order is related to the anomalousmore » dimension of such geometry, as well as to the model used to describe the physics involved. By linearizing the non linear dependence of the response of the system at hand to a proper forcing action then, exploiting the Boltzmann superposition principle, a fractional differential equation is found, describing the dynamics of the system itself. The order of such equation is again related to the anomalous dimension of the underlying geometry.« less

  19. Lagrangian Perturbation Approach to the Formation of Large-scale Structure

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    The present lecture notes address three columns on which the Lagrangian perturbation approach to cosmological dynamics is based: 1. the formulation of a Lagrangian theory of self-gravitating flows in which the dynamics is described in terms of a single field variable; 2. the procedure, how to obtain the dynamics of Eulerian fields from the Lagrangian picture, and 3. a precise definition of a Newtonian cosmology framework in which Lagrangian perturbation solutions can be studied. While the first is a discussion of the basic equations obtained by transforming the Eulerian evolution and field equations to the Lagrangian picture, the second exemplifies how the Lagrangian theory determines the evolution of Eulerian fields including kinematical variables like expansion, vorticity, as well as the shear and tidal tensors. The third column is based on a specification of initial and boundary conditions, and in particular on the identification of the average flow of an inhomogeneous cosmology with a `Hubble-flow'. Here, we also look at the limits of the Lagrangian perturbation approach as inferred from comparisons with N-body simulations and illustrate some striking properties of the solutions.

  20. Verification and Improvement of Flamelet Approach for Non-Premixed Flames

    NASA Technical Reports Server (NTRS)

    Zaitsev, S.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Lubimov, D.; Tshepin, S.; Volkov, D.

    1997-01-01

    Studies in the mathematical modeling of the high-speed turbulent combustion has received renewal attention in the recent years. The review of fundamentals, approaches and extensive bibliography was presented by Bray, Libbi and Williams. In order to obtain accurate predictions for turbulent combustible flows, the effects of turbulent fluctuations on the chemical source terms should be taken into account. The averaging of chemical source terms requires to utilize probability density function (PDF) model. There are two main approaches which are dominant in high-speed combustion modeling now. In the first approach, PDF form is assumed based on intuitia of modelliers (see, for example, Spiegler et.al.; Girimaji; Baurle et.al.). The second way is much more elaborate and it is based on the solution of evolution equation for PDF. This approach was proposed by S.Pope for incompressible flames. Recently, it was modified for modeling of compressible flames in studies of Farschi; Hsu; Hsu, Raji, Norris; Eifer, Kollman. But its realization in CFD is extremely expensive in computations due to large multidimensionality of PDF evolution equation (Baurle, Hsu, Hassan).

  1. A viable dark fluid model

    NASA Astrophysics Data System (ADS)

    Elkhateeb, Esraa

    2018-01-01

    We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and Štefančić (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.

  2. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  3. Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.

    2018-01-01

    This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.

  4. A new method for solving the quantum hydrodynamic equations of motion: application to two-dimensional reactive scattering.

    PubMed

    Pauler, Denise K; Kendrick, Brian K

    2004-01-08

    The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics

  5. Multidimensional Solitons in Complex Media with Variable Dispersion: Structure and Evolution

    DTIC Science & Technology

    2003-07-20

    the results of numerical experiments on Kadomtsev - Petviashvili (KP) equation study of structure and evolution of the nonlinear waves Sx described by...the KP equation with 13 = 3 (t,r) are con- at + auaxu + 03’u =K fAjudx, (1) sidered distracting from a concrete type of media. The -o• numerical...0i)(cot 0- mIM). It is well known that cluding the solutions of the mixed "soliton - non-soliton" the ID solutions of the KdV equation with 3 = const

  6. A Harnack's inequality for mixed type evolution equations

    NASA Astrophysics Data System (ADS)

    Paronetto, Fabio

    2016-03-01

    We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is μ (x)∂u/∂t - Δu = 0 where μ can be positive, null and negative, so in particular elliptic-parabolic and forward-backward parabolic equations are included. For functions belonging to this class we prove local boundedness and show a Harnack inequality which, as by-products, gives Hölder-continuity, in particular in the interface I where μ changes sign, and a maximum principle.

  7. NLO Hierarchy of Wilson Lines Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitsky, Ian

    2015-03-01

    The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.

  8. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motl, Patrick M.; Frank, Juhan; Clayton, Geoffrey C.

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to matchmore » as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less

  9. About Tidal Evolution of Quasi-Periodic Orbits of Satellites

    NASA Astrophysics Data System (ADS)

    Ershkov, Sergey V.

    2017-06-01

    Tidal interactions between Planet and its satellites are known to be the main phenomena, which are determining the orbital evolution of the satellites. The modern ansatz in the theory of tidal dissipation in Saturn was developed previously by the international team of scientists from various countries in the field of celestial mechanics. Our applying to the theory of tidal dissipation concerns the investigating of the system of ODE-equations (ordinary differential equations) that govern the orbital evolution of the satellites; such an extremely non-linear system of 2 ordinary differential equations describes the mutual internal dynamics for the eccentricity of the orbit along with involving the semi-major axis of the proper satellite into such a monstrous equations. In our derivation, we have presented the elegant analytical solutions to the system above; so, the motivation of our ansatz is to transform the previously presented system of equations to the convenient form, in which the minimum of numerical calculations are required to obtain the final solutions. Preferably, it should be the analytical solutions; we have presented the solution as a set of quasi- periodic cycles via re-inversing of the proper ultra- elliptical integral. It means a quasi-periodic character of the evolution of the eccentricity, of the semi-major axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation in the Planet.

  10. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  11. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  12. Analytical and numerical solution for wave reflection from a porous wave absorber

    NASA Astrophysics Data System (ADS)

    Magdalena, Ikha; Roque, Marian P.

    2018-03-01

    In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.

  13. Kinetic Equations for Describing the Liquid-Glass Transition in Polymers

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Tropin, T. V.; Schmelzer, J. V. P.

    2018-01-01

    We present a theoretical approach based on nonequilibrium thermodynamics and used to describe the kinetics of the transition from the liquid to the glassy state (glass transition). In the framework of this approach, we construct kinetic equations describing the time and temperature evolution of the structural parameter. We discuss modifications of the equations required for taking the nonexponential, nonlinear character of the relaxation in the vitrification region into account. To describe the formation of polymer glasses, we present modified expressions for the system relaxation time. We compare the obtained results with experimental data, measurements of the polystyrene glass transition for different cooling rates using the method of differential scanning calorimetry. We discuss prospects for developing a method for describing the polymer glass transition.

  14. First-passage times for pattern formation in nonlocal partial differential equations

    NASA Astrophysics Data System (ADS)

    Cáceres, Manuel O.; Fuentes, Miguel A.

    2015-10-01

    We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.

  15. First-passage times for pattern formation in nonlocal partial differential equations.

    PubMed

    Cáceres, Manuel O; Fuentes, Miguel A

    2015-10-01

    We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.

  16. Energetic Consistency and Coupling of the Mean and Covariance Dynamics

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.

    2008-01-01

    The dynamical state of the ocean and atmosphere is taken to be a large dimensional random vector in a range of large-scale computational applications, including data assimilation, ensemble prediction, sensitivity analysis, and predictability studies. In each of these applications, numerical evolution of the covariance matrix of the random state plays a central role, because this matrix is used to quantify uncertainty in the state of the dynamical system. Since atmospheric and ocean dynamics are nonlinear, there is no closed evolution equation for the covariance matrix, nor for the mean state. Therefore approximate evolution equations must be used. This article studies theoretical properties of the evolution equations for the mean state and covariance matrix that arise in the second-moment closure approximation (third- and higher-order moment discard). This approximation was introduced by EPSTEIN [1969] in an early effort to introduce a stochastic element into deterministic weather forecasting, and was studied further by FLEMING [1971a,b], EPSTEIN and PITCHER [1972], and PITCHER [1977], also in the context of atmospheric predictability. It has since fallen into disuse, with a simpler one being used in current large-scale applications. The theoretical results of this article make a case that this approximation should be reconsidered for use in large-scale applications, however, because the second moment closure equations possess a property of energetic consistency that the approximate equations now in common use do not possess. A number of properties of solutions of the second-moment closure equations that result from this energetic consistency will be established.

  17. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim

    2017-12-01

    The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.

  18. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  19. Numerical modelling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.

    2000-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.

  20. A high-order gas-kinetic Navier-Stokes flow solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c

    2010-09-20

    The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less

  1. NLO evolution of color dipoles in N=4 SYM

    DOE PAGES

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  2. The limitation and applicability of Musher-Sturman equation to two dimensional lower hybrid wave collapse

    NASA Technical Reports Server (NTRS)

    Tam, Sunny W. Y.; Chang, Tom

    1995-01-01

    The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.

  3. Instability of 2D Flows to Hydrostatic 3D Perturbations.

    NASA Astrophysics Data System (ADS)

    Straub, David N.

    2003-01-01

    Considered here is the evolution of three-dimensional perturbations to the hydrostatic equations linearized about a two-dimensional base state U. Motivated by an argument by T. Warn, this study begins with the nonrotating, unstratified case, and draws analogies between the perturbation equations and equations describing evolution of material line elements and scalar gradients embedded in the same 2D flow. When U is chaotic, both scalar gradients and line elements are characterized by rapid growth, and this leads one to suspect that the perturbations behave similarly. A generalized Okubo-Weiss parameter is proposed, and it is argued that this gives a reasonable litmus test for identifying regions where growth is most probable. Rotation modifies the generalized Okubo-Weiss parameter and tends to curb growth of the perturbation fields, as expected. It is also pointed out that, in realistic geophysical settings, the stability parameter can be suggestive of growth locally, even when a globally defined Rossby number is small.Also considered is the effect of a constant stratification. The perturbation equations can then be separated into vertical modes that have simple sinusoidal structures. The equations describing the evolution of a given mode take a form analogous to the shallow water equations, linearized about U. Numerical simulations of these, assuming a simple but chaotic prescription of U, are carried out. For sufficiently strong stratification, a balance dynamics similar to that suggested by Riley, Metcalfe, and Weissman is recovered. For a given value of the buoyancy frequency N, however, this balance breaks down at high vertical wavenumbers. For high vertical wavenumbers, the modified Okubo-Weiss parameter once again appears to give a potentially useful indication of when growth should be expected. When the Rossby number is small, this criterion predicts stability, and growth occurs only when stratification effects are comparable to or larger than rotational effects. More specifically, growth is seen when the relevant Rossby radius is comparable to or larger than the characteristic length scale of U. It is also found in this limit that approximate geostrophic adjustment occurs prior to growth.

  4. Comparing an analytical spacetime metric for a merging binary to a fully nonlinear numerical evolution using curvature scalars

    NASA Astrophysics Data System (ADS)

    Sadiq, Jam; Zlochower, Yosef; Nakano, Hiroyuki

    2018-04-01

    We introduce a new geometrically invariant prescription for comparing two different spacetimes based on geodesic deviation. We use this method to compare a family of recently introduced analytical spacetime representing inspiraling black-hole binaries to fully nonlinear numerical solutions to the Einstein equations. Our method can be used to improve analytical spacetime models by providing a local measure of the effects that violations of the Einstein equations will have on timelike geodesics, and indirectly, gas dynamics. We also discuss the advantages and limitations of this method.

  5. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Tikan, Alexey; Billet, Cyril; El, Gennady; Tovbis, Alexander; Bertola, Marco; Sylvestre, Thibaut; Gustave, Francois; Randoux, Stephane; Genty, Goëry; Suret, Pierre; Dudley, John M.

    2017-07-01

    We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

  6. Symmetry analysis of a model for the exercise of a barrier option

    NASA Astrophysics Data System (ADS)

    O'Hara, J. G.; Sophocleous, C.; Leach, P. G. L.

    2013-09-01

    A barrier option takes into account the possibility of an unacceptable change in the price of the underlying stock. Such a change could carry considerable financial loss. We examine one model based upon the Black-Scholes-Merton Equation and determine the functional forms of the barrier function and rebate function which are consistent with a solution of the underlying evolution partial differential equation using the Lie Theory of Extended Groups. The solution is consistent with the possibility of no rebate and the barrier function is very similar to one adopted on an heuristic basis.

  7. Dynamics of tethered satellites in the vicinity of the Lagrangian point L2 of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Baião, M. F.; Stuchi, T. J.

    2017-08-01

    This paper analyzes the dynamical evolution of satellites formed by two masses connected by a cable— tethered satellites. We derive the Lagrangian equations of motion in the neighborhood of the collinear equilibrium points, especially for the L2 , of the restricted problem of three bodies. The rigid body configuration is expanded in Legendre polynomials up to fourth degree. We present some numerical simulations of the influence of the parameters such as cable length, mass ratio and initial conditions in the behavior of the tethered satellites. The equation for the collinear equilibrium point is derived and numerically solved. The evolution of the equilibria with the variation of the cable length as a parameter is studied. We also present a discussion of the linear stability around these equilibria. Based on this analysis calculate some unstable Lyapunov orbits associated to these equilibrium points. We found periodic orbits in which the tether travels parallel to itself without involving the angular motion. The numerical applications are focused on the Earth-Moon system. However, the general character of the equations allows applications to the L1 equilibrium and obviously to systems other than the Earth-Moon.

  8. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  9. On the existence of a scaling relation in the evolution of cellular systems

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.

    1994-05-01

    A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.

  10. On an application of Tikhonov's fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation

    NASA Astrophysics Data System (ADS)

    Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen

    2016-06-01

    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.

  11. Transverse single spin asymmetry in e +p↑→e +J /ψ +X and Q2 evolution of Sivers function-II

    NASA Astrophysics Data System (ADS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav S.

    2015-01-01

    We present estimates of single spin asymmetry in the electroproduction of J /ψ taking into account the transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J /ψ . We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find that the variation among the different estimates obtained using TMD evolution is much smaller than between these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.

  12. Coalescing neutron stars - gravitational waves from polytropic models.

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Rampp, M.; Janka, H.-T.

    1997-05-01

    The dynamics, time evolution of the mass distribution, and gravitational wave signature of coalescing neutron stars described by polytropes are compared with three simulations published previously: (a) "Run 2" of Zhuge et al. (1994PhRvD..50.6247Z), (b) "Model III" of Shibata et al. (1992, Prog, Theor. Phys. 88, 1079), and (c) "Model A64" of Ruffert et al. (1996A&A...311..532R). We aim at studying the differences due to the use of different numerical methods, different implementations of the gravitational wave backreaction, and different equations of state. We integrate the three-dimensional Newtonian equations of hydrodynamics by the Riemann-solver based "Piecewise Parabolic Method" on an equidistant Cartesian grid. Comparison (a) confronts the results of our grid-based PPM scheme with those from an SPH code. We find that due to the lower numerical viscosity of the PPM code, the post-merging oscillations and pulsations can be followed for a longer time and lead to larger secondary and tertiary maxima of the gravitational wave luminosity and to a stronger peak of the gravitational wave spectrum at a frequency of about f=~1.8KHz when compared to the results of Zhuge et al. (1994PhRvD..50.6247Z). In case (b) two grid based codes with the same backreaction formalism but differing hydrodynamic integrators and slightly different initial conditions are compared. Instead of rotationally deformed initial neutron stars we use spherically shaped stars. Satisfactory agreement of the amplitude of the gravitational wave luminosity is established, although due to the different initial conditions a small time delay develops in the onset of the dynamical instability setting in when the two stars come very close. In (c) we find that using a polytropic equation of state instead of the high-density equation of state of Lattimer & Swesty (1991, Nucl. Phys. A535, 331) employed by Ruffert et al. (1996A&A...311..532R) does not change the overall dynamical evolution of the merger and yields agreement of the gravitational wave signature to within 20% accuracy. Whereas the polytropic law describes the dynamical behaviour of the bulk of the matter at and above nuclear density sufficiently well, we, however, find clear differences of the structure and evolution of the outer layers of the neutron stars where the stiffness of the equation of state is largely overestimated. This has important implications for questions like mass loss and disk formation during the merging of binary neutron stars.

  13. On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Biferale, Luca; Titi, Edriss S.

    2013-06-01

    We study the global regularity, for all time and all initial data in H 1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L 2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H 1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H 1/2 and the time average of the square of the H 3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat. Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.

  14. Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Sarkar, Bijan

    2018-05-01

    Configurational arrangement of network architecture and interaction character of individuals are two most influential factors on the mechanisms underlying the evolutionary outcome of cooperation, which is explained by the well-established framework of evolutionary game theory. In the current study, not only qualitatively but also quantitatively, we measure Moran-evolution of cooperation to support an analytical agreement based on the consequences of the replicator equation in a finite population. The validity of the measurement has been double-checked in the well-mixed network by the Langevin stochastic differential equation and the Gillespie-algorithmic version of Moran-evolution, while in a structured network, the measurement of accuracy is verified by the standard numerical simulation. Considering the Birth-Death and Death-Birth updating rules through diffusion of individuals, the investigation is carried out in the wide range of game environments those relate to the various social dilemmas where we are able to draw a new rigorous mathematical track to tackle the heterogeneity of complex networks. The set of modified criteria reveals the exact fact about the emergence and maintenance of cooperation in the structured population. We find that in general, nature promotes the environment of coexistent traits.

  15. Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Link, Valentin; Strunz, Walter T.

    2017-11-01

    We present a stochastic projection formalism for the description of quantum dynamics in bosonic or spin environments. The Schrödinger equation in the coherent state representation with respect to the environmental degrees of freedom can be reformulated by employing the Feshbach partitioning technique for open quantum systems based on the introduction of suitable non-Hermitian projection operators. In this picture the reduced state of the system can be obtained as a stochastic average over pure state trajectories, for any temperature of the bath. The corresponding non-Markovian stochastic Schrödinger equations include a memory integral over the past states. In the case of harmonic environments and linear coupling the approach gives a new form of the established non-Markovian quantum state diffusion stochastic Schrödinger equation without functional derivatives. Utilizing spin coherent states, the evolution equation for spin environments resembles the bosonic case with, however, a non-Gaussian average for the reduced density operator.

  16. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  17. Exact PDF equations and closure approximations for advective-reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-06-01

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recentlymore » proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.« less

  18. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    PubMed

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  19. von Kármán–Howarth and Corrsin equations closure based on Lagrangian description of the fluid motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divitiis, Nicola de, E-mail: n.dedivitiis@gmail.com

    A new approach to obtain the closure formulas for the von Kármán–Howarth and Corrsin equations is presented, which is based on the Lagrangian representation of the fluid motion, and on the Liouville theorem associated to the kinematics of a pair of fluid particles. This kinematics is characterized by the finite scale separation vector which is assumed to be statistically independent from the velocity field. Such assumption is justified by the hypothesis of fully developed turbulence and by the property that this vector varies much more rapidly than the velocity field. This formulation leads to the closure formulas of von Kármán–Howarthmore » and Corrsin equations in terms of longitudinal velocity and temperature correlations following a demonstration completely different with respect to the previous works. Some of the properties and the limitations of the closed equations are discussed. In particular, we show that the times of evolution of the developed kinetic energy and temperature spectra are finite quantities which depend on the initial conditions.« less

  20. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    NASA Astrophysics Data System (ADS)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  1. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  2. Asymptotic Bounds for Solutions to a System of Damped Integrodifferential Equations of Electromagnetic Theory.

    DTIC Science & Technology

    1979-05-28

    of integrodiffereiTaT~- equations governs the evolution of the components of the electric displacement field in a simple class of rigid holohedral...vacuum so that j — C and J~ — c E , H = B. In0 [3] and [4] this author has treated the evolution equations associated with the Maxwell—Hopkinsofl...F .~~~~~~‘ r - — ~~~~~ ’~~~ “~ I I be viewed as a linearized version of a more general theory introduced by Volterra in 1912 [5] to treat the case

  3. A Factorization Approach to the Linear Regulator Quadratic Cost Problem

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.

  4. A rain splash transport equation assimilating field and laboratory measurements

    USGS Publications Warehouse

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  5. Single evolution equation in a light-matter pairing system

    NASA Astrophysics Data System (ADS)

    Bugaychuk, S.; Tobisch, E.

    2018-03-01

    The coupled system including wave mixing and nonlinear dynamics of a nonlocal optical medium is usually studied (1) numerically, with the medium being regarded as a black box, or (2) experimentally, making use of some empirical assumptions. In this paper we deduce for the first time a single evolution equation describing the dynamics of the pairing system as a holistic complex. For a non-degenerate set of parameters, we obtain the nonlinear Schrödinger equation with coefficients being written out explicitly. Analytical solutions of this equation can be experimentally realized in any photorefractive medium, e.g. in photorefractive, liquid or photonic crystals. For instance, a soliton-like solution can be used in dynamical holography for designing an artificial grating with maximal amplification of an image.

  6. Physical scales in the Wigner-Boltzmann equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedjalkov, M., E-mail: mixi@iue.tuwien.ac.at; Selberherr, S.; Ferry, D.K.

    2013-01-15

    The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. Itmore » is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.« less

  7. Nada: A new code for studying self-gravitating tori around black holes

    NASA Astrophysics Data System (ADS)

    Montero, Pedro J.; Font, José A.; Shibata, Masaru

    2008-09-01

    We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.

  8. Instability of isolated planar shock waves

    DTIC Science & Technology

    2007-06-07

    Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in

  9. Evolution equations for connected and disconnected sea parton distributions

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    2017-08-01

    It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.

  10. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  11. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  12. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    NASA Astrophysics Data System (ADS)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  13. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-09-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabularmore » form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.« less

  14. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if the expected scenario is different from the originally planned one. This approach postulates that even a primitive living species possesses additional, non-Newtonian properties that are not included in the laws of Newtonian or statistical mechanics. These properties follow from a privileged ability of living systems to possess a self-image (a concept introduced in psychology) and to interact with it. The proposed mathematical system is based on the coupling of the classical dynamical system representing the motor dynamics with the corresponding Liouville equation describing the evolution of initial uncertainties in terms of the probability density and representing the mental dynamics. The coupling is implemented by the information-based supervising forces that can be associated with self-awareness. These forces fundamentally change the pattern of the probability evolution, and therefore, lead to a major departure of the behavior of living systems from the patterns of both Newtonian and statistical mechanics. This innovation is meant to capture the signature of life based only on observable behavior, not on any biochemistry. This will not prevent the use of this model for developing artificial living systems, as well as for studying some general properties of behavior of natural, living systems.

  15. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  16. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  17. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  18. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  19. Generalized Landau Equation for a System with a Self-Consistent Mean Field - Derivation from an N-Particle Liouville Equation

    NASA Astrophysics Data System (ADS)

    Kandrup, H.

    1981-02-01

    Assume that the evolution of a system is determined by an N-particle Liouville equation. Suppose, moreover, that the particles which compose the system interact via a long range force like gravity so that the system will be spatially inhomogeneous. In this case, the mean force acting upon a test particle does not vanish, so that one wishes to isolate a self-consistent mean field and distinguish its "systematic" effects from the effects of "fluctuations." This is done here. The time-dependent projection operator formalism of Willis and Picard is used to obtain an exact equation for the time evolution of an appropriately defined one-particle probability density. If one implements the assumption that the "fluctuation" time scale is much shorter than both the relaxation and dynamical time scales, this exact equation can be approximated as a closed Markovian equation. In the limiting case of spatial homogeneity, one recovers precisely the standard Landau equation, which is customarily derived by a stochastic binary-encounter argument. This equation is contrasted with the standard heuristic equation for a mean field theory, as formulated for a Newtonian r-1 gravitational potential in stellar dynamics.

  20. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    NASA Astrophysics Data System (ADS)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  1. Nonlinear density wave investigation for an extended car-following model considering driver’s memory and jerk

    NASA Astrophysics Data System (ADS)

    Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia

    2018-01-01

    Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.

  2. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  3. A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.

    1994-01-01

    Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.

  4. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.

  5. Effects of grain size evolution on mantle dynamics

    NASA Astrophysics Data System (ADS)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin, N. J. and Evans, B. (2007). Geology, 35(4):343. Hirth, G. and Kohlstedt, D. (2003). Geophysical Monograph Series, page 83105. Hüttig, C., Tosi, N., and Moore, W. B. (2013). Physics of the Earth and Planetary Interiors, 220:11-18. Karato, S.-i. and Wu, P. (1993). Science, 260(5109):771778. Rozel, A., Ricard, Y., and Bercovici, D. (2010). Geophysical Journal International, 184(2):719728.

  6. On Religion and Language Evolutions Seen Through Mathematical and Agent Based Models

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    Religions and languages are social variables, like age, sex, wealth or political opinions, to be studied like any other organizational parameter. In fact, religiosity is one of the most important sociological aspects of populations. Languages are also obvious characteristics of the human species. Religions, languages appear though also disappear. All religions and languages evolve and survive when they adapt to the society developments. On the other hand, the number of adherents of a given religion, or the number of persons speaking a language is not fixed in time, - nor space. Several questions can be raised. E.g. from a oscopic point of view : How many religions/languages exist at a given time? What is their distribution? What is their life time? How do they evolve? From a "microscopic" view point: can one invent agent based models to describe oscopic aspects? Do simple evolution equations exist? How complicated must be a model? These aspects are considered in the present note. Basic evolution equations are outlined and critically, though briefly, discussed. Similarities and differences between religions and languages are summarized. Cases can be illustrated with historical facts and data. It is stressed that characteristic time scales are different. It is emphasized that "external fields" are historically very relevant in the case of religions, rending the study more " interesting" within a mechanistic approach based on parity and symmetry of clusters concepts. Yet the modern description of human societies through networks in reported simulations is still lacking some mandatory ingredients, i.e. the non scalar nature of the nodes, and the non binary aspects of nodes and links, though for the latter this is already often taken into account, including directions. From an analytical point of view one can consider a population independently of the others. It is intuitively accepted, but also found from the statistical analysis of the frequency distribution that an attachment process is the primary cause of the distribution evolution in the number of adepts: usually the initial religion/language is that of the mother. However later on, changes can occur either due to "heterogeneous agent interaction" processes or due to "external field" constraints, - or both. In so doing one has to consider competition-like processes, in a general environment with different rates of reproduction. More general equations are thus proposed for future work.

  7. Phase field approaches of bone remodeling based on TIP

    NASA Astrophysics Data System (ADS)

    Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel

    2016-01-01

    The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of the diffuse interface separating new bone from marrow.

  8. On the classification of scalar evolution equations with non-constant separant

    NASA Astrophysics Data System (ADS)

    Hümeyra Bilge, Ayşe; Mizrahi, Eti

    2017-01-01

    The ‘separant’ of the evolution equation u t   =  F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order dependencies, we show that equations with non-trivial {ρ(3)} and b  =  3 are symmetries of the ‘essentially non-linear third order equation’ for trivial {ρ(3)} , the equations with b  =  5 are symmetries of a non-quasilinear fifth order equation obtained in previous work, while for b  =  3, 4 they are symmetries of quasilinear fifth order equations.

  9. Solution of the Fokker-Planck equation in a wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Melius, Matthew S.; Tutkun, Murat; Cal, Raúl Bayoán

    2014-07-01

    Hot-wire velocity signals from a model wind turbine array boundary layer flow wind tunnel experiment are analyzed. In confirming Markovian properties, a description of the evolution of the probability density function of velocity increments via the Fokker-Planck equation is attained. Solution of the Fokker-Planck equation is possible due to the direct computation of the drift and diffusion coefficients from the experimental measurement data which were acquired within the turbine canopy. A good agreement is observed in the probability density functions between the experimental data and numerical solutions resulting from the Fokker-Planck equation, especially in the far-wake region. The results serve as a tool for improved estimation of wind velocity within the array and provide evidence that the evolution of such a complex and turbulent flow is also governed by a Fokker-Planck equation at certain scales.

  10. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  11. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  12. Estimation of the tritium retention in ITER tungsten divertor target using macroscopic rate equations simulations

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Bernard, E.; Markelj, S.; Mougenot, J.; Becquart, C. S.; Bisson, R.; Grisolia, C.

    2017-12-01

    Based on macroscopic rate equation simulations of tritium migration in an actively cooled tungsten (W) plasma facing component (PFC) using the code MHIMS (migration of hydrogen isotopes in metals), an estimation has been made of the tritium retention in ITER W divertor target during a non-uniform exponential distribution of particle fluxes. Two grades of materials are considered to be exposed to tritium ions: an undamaged W and a damaged W exposed to fast fusion neutrons. Due to strong temperature gradient in the PFC, Soret effect’s impacts on tritium retention is also evaluated for both cases. Thanks to the simulation, the evolutions of the tritium retention and the tritium migration depth are obtained as a function of the implanted flux and the number of cycles. From these evolutions, extrapolation laws are built to estimate the number of cycles needed for tritium to permeate from the implantation zone to the cooled surface and to quantify the corresponding retention of tritium throughout the W PFC.

  13. The role of the global phase in the spatio-temporal evolution of strong-coupling Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Amiranoff, F.; Riconda, C.; Chiaramello, M.; Lancia, L.; Marquès, J. R.; Weber, S.

    2018-01-01

    The role of the global phase in the spatio-temporal evolution of the 3-wave coupled equations for backscattering is analyzed in the strong-coupling regime of Brillouin scattering. This is of particular interest for controlled backscattering in the case of plasma-based amplification to produce short and intense laser pulses. It is shown that the analysis of the envelope equations of the three waves involved, pump, seed, and ion wave, in terms of phase and amplitude fully describes the coupling dynamics. In particular, it helps understanding the role of the chirp of the laser beams and of the plasma density profile. The results can be used to optimize or quench the coupling mechanism. It is found that the directionality of the energy transfer is imposed by the phase relation at the leading edge of the pulse. This actually ensures continued energy transfer even if the intensity of the seed pulse is already higher than the pump pulse intensity.

  14. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  15. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Cruz, Norman

    2018-01-01

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.

  16. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  17. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.

  18. A continuous stochastic model for non-equilibrium dense gases

    NASA Astrophysics Data System (ADS)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are compared with respect to benchmark simulations, where good agreement is found for the flow field along with the transport properties.

  19. Physical scales in the Wigner–Boltzmann equation

    PubMed Central

    Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.

    2013-01-01

    The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194

  20. Modeling the growth and branching of plants: A simple rod-based model

    NASA Astrophysics Data System (ADS)

    Faruk Senan, Nur Adila; O'Reilly, Oliver M.; Tresierras, Timothy N.

    A rod-based model for plant growth and branching is developed in this paper. Specifically, Euler's theory of the elastica is modified to accommodate growth and remodeling. In addition, branching is characterized using a configuration force and evolution equations are postulated for the flexural stiffness and intrinsic curvature. The theory is illustrated with examples of multiple static equilibria of a branched plant and the remodeling and tip growth of a plant stem under gravitational loading.

  1. The breakdown of the weakly-nonlinear regime for kinetic instabilities

    NASA Astrophysics Data System (ADS)

    Sanz-Orozco, David; Berk, Herbert; Wang, Ge

    2017-10-01

    The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.

  2. Numerical modeling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.

    2002-11-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.

  3. Similarity solutions of some two-space-dimensional nonlinear wave evolution equations

    NASA Technical Reports Server (NTRS)

    Redekopp, L. G.

    1980-01-01

    Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.

  4. Evolution of spherical cavitation bubbles: Parametric and closed-form solutions

    NASA Astrophysics Data System (ADS)

    Mancas, Stefan C.; Rosu, Haret C.

    2016-02-01

    We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.

  5. The Optimal Capital Stock and Consumption Evolution for Non Zero Consumers Growth Rate in the Framework of Ramsey Model on Finite Horizon

    NASA Astrophysics Data System (ADS)

    Bonchiş, N.; Balint, Şt.

    2010-09-01

    In this paper the Ramsey optimal growth of the capital stock and consumption on finite horizon is analyzed when the growth rate of consumers is strictly positive. The main purpose is to establish the dependence of the optimal capital stock and consumption evolution on the growth rate of consumers. The analysis reveals: for any initial value k0≥0 there exists a unique optimal evolution path of length N+1 for the capital stock; if k0 is strictly positive then all the elements of the optimal capital stock evolution path are strictly positives except the last one which is zero; the optimal capital stock evolution of length N+1 starting from k0≥0 satisfies the Euler equation; the value function VN is strictly increasing, strictly concave and continuous on R+. The family of functions {VN-T}T = 0…N-1 satisfies the Bellman equation and it is the unique solution of this equation which is both continuous and satisfies the transversality condition. The Mangasarian Lemma is also satisfied. For N tending to infinity the optimal evolution path of length N of the capital stock tends to those on the infinite time horizon. For any k0>0 the value function in k0 decreases when the consumers growth rate increases.

  6. Tidal formation of Hot Jupiters in binary star systems

    NASA Astrophysics Data System (ADS)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  7. Information transport in classical statistical systems

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  8. Mean Field Games for Stochastic Growth with Relative Utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca; Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation errormore » estimate.« less

  9. Lindblad and Bloch equations for conversion of a neutron into an antineutron

    NASA Astrophysics Data System (ADS)

    Kerbikov, B. O.

    2018-07-01

    We propose a new approach based on the Lindblad and Bloch equations for the density matrix to the problem of a neutron into an antineutron conversion. We consider three strategies to search for conversion: experiments with trapped neutrons, oscillations in nuclei, and quasi-free propagation. We draw a distinction between n n bar oscillations in which the probability that a neutron transforms into an antineutron depends on time according to the sine-square law and the non-oscillatory overdamped n n bar conversion. We show that in all three cases decoherence due to the interaction with the environment leads to non-oscillatory evolution.

  10. Comment on high resolution simulations of cosmic strings. 1: Network evoloution

    NASA Technical Reports Server (NTRS)

    Turok, Neil; Albrecht, Andreas

    1990-01-01

    Comments are made on recent claims (Albrecht and Turok, 1989) regarding simulations of cosmic string evolution. Specially, it was claimed that results were dominated by a numerical artifact which rounds out kinks on a scale of the order of the correlation length on the network. This claim was based on an approximate analysis of an interpolation equation which is solved herein. The typical rounding scale is actually less than one fifth of the correlation length, and comparable with other numerical cutoffs. Results confirm previous estimates of numerical uncertainties, and show that the approximations poorly represent the real solutions to the interpolation equation.

  11. Remote monitoring of environmental particulate pollution - A problem in inversion of first-kind integral equations

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1975-01-01

    The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.

  12. Analytical Characterization on Pulse Propagation in a Semiconductor Optical Amplifier Based on Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofei

    2018-06-01

    Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is compared with numerical simulations with a good agreement. The theoretical results will benefit the future analysis of other problems related to the pulse propagation in the SOA.

  13. Single-bubble sonoluminescence in sulfuric acid and water: bubble dynamics, stability, and continuous spectra.

    PubMed

    Puente, Gabriela F; García-Martínez, Pablo; Bonetto, Fabián J

    2007-01-01

    We present theoretical calculations of an argon bubble in a liquid solution of 85%wt sulfuric acid and 15%wt water in single-bubble sonoluminescence. We used a model without free parameters to be adjusted. We predict from first principles the region in parameter space for stable bubble evolution, the temporal evolution of the bubble radius, the maximum temperature, pressures, and the light spectra due to thermal emissions. We also used a partial differential equation based model (hydrocode) to compute the temperature and pressure evolutions at the center of the bubble during maximum compression. We found the behavior of this liquid mixture to be very different from water in several aspects. Most of the models in sonoluminescence were compared with water experimental results.

  14. Evolution and mass extinctions as lognormal stochastic processes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-10-01

    In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra-terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known `Molecular Clock of Evolution', namely the `constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.

  15. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  16. Testing the Drake Equation in the Solar System

    NASA Astrophysics Data System (ADS)

    Chela-Flores, Julian

    Whereas Titan is an appropriate target for studying chemical evolution, the planet Mars and the Galilean satellites are favourable sites for the search of extraterrestrial life. The main encouragement for the search for life in the solar system is the possible evidence of liquid water in the early history of Mars and, at present, in the galilean satellites. Hydrothermal vents on the Earth's sea floor have been found to sustain life forms. Possible analogous geologic activity on Europa, caused by tidal heating and decay of radioactive elements, makes this satellite the best target for identifying a separate evolutionary line. We explore Europa's likely degree of biological evolution by discussing experimental tests that have been suggested. The theoretical bases for the distribution of life in the universe are still missing, in spite of considerable technological progress in radioastronomy. We intend to demonstrate that the search for life on the Galilean satellites can provide a first step towards the still missing theoretical insight: If f_i is the parameter in the Drake Equation denoting the fraction of life-bearing planets or satellites where biological evolution produces an intelligent species, then we suggest the equation: f_i = k_1 f_e f_m, where k_1 is a constant of proportionality, f_e and f_m denote the fractions of planets or satellites where eukaryogenesis, or multicellularity, respectively, may occur. Our conjecture motivates the search in our solar system, particularly in Europa, for a hint that the key factor f_e is a non-vanishing parameter in at least one extraterrestrial environment.

  17. Transverse energy and forward jet production in the low x regime at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Nieberball, F.; Niebuhr, C.; Niedzballa, Ch; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zur Nedden, M.; H1 Collaboration

    1995-02-01

    The production of transverse energy in deep inelastic scattering is measured as a function of the kinematic variables x and Q2 using the H1 detector at the ep collider HERA. The results are compared to the different predictions based upon two alternative QCD evolution equations, namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations. In a pseudorapidity interval which is central in the hadronic centre of mass system between the current and the proton remnant fragmentation region the produced transverse energy increases with decreasing x for constant Q2. Such a behaviour can be explained with a QCD calculation based upon the BFKL ansatz. The rate of forward jets, proposed as a signature for BFKL dynamics, has been measured.

  18. SETI as a part of Big History

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-08-01

    Big History is an emerging academic discipline which examines history scientifically from the Big Bang to the present. It uses a multidisciplinary approach based on combining numerous disciplines from science and the humanities, and explores human existence in the context of this bigger picture. It is taught at some universities. In a series of recent papers ([11] through [15] and [17] through [18]) and in a book [16], we developed a new mathematical model embracing Darwinian Evolution (RNA to Humans, see, in particular, [17] and Human History (Aztecs to USA, see [16]) and then we extrapolated even that into the future up to ten million years (see 18), the minimum time requested for a civilization to expand to the whole Milky Way (Fermi paradox). In this paper, we further extend that model in the past so as to let it start at the Big Bang (13.8 billion years ago) thus merging Big History, Evolution on Earth and SETI (the modern Search for ExtraTerrestrial Intelligence) into a single body of knowledge of a statistical type. Our idea is that the Geometric Brownian Motion (GBM), so far used as the key stochastic process of financial mathematics (Black-Sholes models and related 1997 Nobel Prize in Economics!) may be successfully applied to the whole of Big History. In particular, in this paper we derive

  19. CRPropa 3.1—a low energy extension based on stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Merten, Lukas; Becker Tjus, Julia; Fichtner, Horst; Eichmann, Björn; Sigl, Günter

    2017-06-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ∥ and perpendicular κ⊥ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  20. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less

  1. Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Geppert, Ulrich R. M. E.

    The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron

  2. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    PubMed

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.

  4. Numerical computations of the dynamics of fluidic membranes and vesicles

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-11-01

    Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this complex free boundary problem and present the first three-dimensional numerical computations based on the full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode (called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models, like budding behavior or starfish forms, behave in a shear flow.

  5. Thermal noise in a boost-invariant matter expansion in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Pal, Subrata

    2018-05-01

    We formulate a general theory of thermal fluctuations within causal second-order viscous hydrodynamic evolution of matter formed in relativistic heavy-ion collisions. The fluctuation is treated perturbatively on top of a boost-invariant longitudinal expansion. Numerical simulation of thermal noise is performed for a lattice quantum chromodynamics equation of state and for various second-order dissipative evolution equations. Phenomenological effects of thermal fluctuations on the two-particle rapidity correlations are studied.

  6. Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, M

    2004-04-22

    I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.

  7. Towards standard testbeds for numerical relativity

    NASA Astrophysics Data System (ADS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzmán, F. Siddhartha; Hawke, Ian; Hawley, Scott H.; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilágyi, Béla; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  8. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  9. Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming

    NASA Astrophysics Data System (ADS)

    Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng

    2017-10-01

    With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.

  10. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  11. A New Equation for Predicting Evolution of Oral Pain in Orthodontic Treatment: A Longitudinal, Prospective Cohort Study.

    PubMed

    Larrea, Monica; Salvador, Rosario; Cibrian, Rosa; Gandia, Jose Luis; Paredes-Gallardo, Vanessa

    2017-01-01

    To develop an equation capable of relating the evolution of oral pain to the time elapsed, measured from the moment of dental archwire fitting and identifying when pain begins, peaks, and ends; and secondly, to compare pain during orthodontic treatment in relation to archwire material (steel or nickel-titanium [Ni-Ti]) and position (maxillary or mandibular) and patient age (child, teenager, or adult) and gender (male or female). A longitudinal prospective cohort study was conducted of 112 patients who filled in a scale to evaluate pain, noting the times when the pain occurred. The total sample consisted of 60 males and 52 females with a mean (± standard deviation [SD]) age of 19.8 ± 6.2 years. The sample was divided into five groups depending on archwire material and position, and patient age and gender. A univariate four-way ANOVA model was performed to compare mean pain levels between groups. Bonferroni test was used for multiple comparisons. A univariate nonlinear regression model was carried out for pain level, 95% confidence intervals (95% CI) were calculated, and the statistic R² was used. An equation was developed based on pain levels in relation to time elapsed, measured from the moment when the archwire had been fitted in the mouth. The equation had three coefficients related to mean pain values: overall pain, peak pain, and how pain decreased. It fitted all study groups with a correlation coefficient > 0.9. The model showed that pain levels were influenced by archwire material and patient gender and age, but not archwire position. The equation reproduced the data registered and can be applied to studies of pain derived from archwires, and this methodology could be used for other external agents fitted in the mouth. Patients receiving dental treatment involving external agents can be made aware of the pain they can expect to experience. This will enable them to distinguish expected pain from other pain, which will help them identify other pathologies requiring medical attention and to approach treatment with better motivation since the pattern of pain evolution is known in advance.

  12. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied tomore » the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.« less

  13. Stochastic Representation of Chaos Using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.

  14. Lattice Wigner equation.

    PubMed

    Solórzano, S; Mendoza, M; Succi, S; Herrmann, H J

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  15. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  16. Lattice Wigner equation

    NASA Astrophysics Data System (ADS)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  17. Expectation-Based Control of Noise and Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michael

    2006-01-01

    A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.

  18. Primordial perturbations in multi-scalar inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  19. On the account of gravitational perturbations in computer simulation technology of meteoroid complex formation and evolution

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.; Chepurova, V. M.

    2009-10-01

    So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.

  20. Solutions of the KPI equation with smooth initial data

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.

    1994-06-01

    The solution $u(t,x,y)$ of the Kadomtsev--Petviashvili I (KPI) equation with given initial data $u(0,x,y)$ belonging to the Schwartz space is considered. No additional special constraints, usually considered in literature, as $\\int\\!dx\\,u(0,x,y)=0$ are required to be satisfied by the initial data. The problem is completely solved in the framework of the spectral transform theory and it is shown that $u(t,x,y)$ satisfies a special evolution version of the KPI equation and that, in general, $\\partial_t u(t,x,y)$ has different left and right limits at the initial time $t=0$. The conditions of the type $\\int\\!dx\\,u(t,x,y)=0$, $\\int\\!dx\\,xu_y(t,x,y)=0$ and so on (first, second, etc. `constraints') are dynamically generated by the evolution equation for $t\

  1. Initial value formulation of dynamical Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Delsate, Térence; Hilditch, David; Witek, Helvi

    2015-01-01

    We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.

  2. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    Hamiltonian Formulation of the Kadomtsev - Petviashvili and Benjamin-Ono Equations , A.S. Fokas and P.M. Santini, J. Math. Phys. 29 (3) 604-617 (1988...Prototypes are the so-called Kadomtsev -Petviashvilli and Davey-Stewartson equations . These equations arise in a variety of physical instances such as water...plasma physics. Moreover the study of solutions to some of the underlying nonlinear evolution equations has led naturally to the investigation and new

  3. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  4. Analogy between the Navier-Stokes equations and Maxwell's equations: Application to turbulence

    NASA Astrophysics Data System (ADS)

    Marmanis, Haralambos

    1998-06-01

    A new theory of turbulence is initiated, based on the analogy between electromagnetism and turbulent hydrodynamics, for the purpose of describing the dynamical behavior of averaged flow quantities in incompressible fluid flows of high Reynolds numbers. The starting point is the recognition that the vorticity (w=∇×u) and the Lamb vector (l=w×u) should be taken as the kernel of a dynamical theory of turbulence. The governing equations for these fields can be obtained by the Navier-Stokes equations, which underlie the whole evolution. Then whatever parts are not explicitly expressed as a function of w or l only are gathered and treated as source terms. This is done by introducing the concepts of turbulent charge and turbulent current. Thus we are led to a closed set of linear equations for the averaged field quantities. The premise is that the earlier introduced sources will be apt for modeling, in the sense that their distribution will depend only on the geometry and the total energetics of the flow. The dynamics described in the preceding manner is what we call the metafluid dynamics.

  5. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  6. Rosenzweig instability in a thin layer of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  7. Instability of Poiseuille flow at extreme Mach numbers: linear analysis and simulations.

    PubMed

    Xie, Zhimin; Girimaji, Sharath S

    2014-04-01

    We develop the perturbation equations to describe instability evolution in Poiseuille flow at the limit of very high Mach numbers. At this limit the equation governing the flow is the pressure-released Navier-Stokes equation. The ensuing semianalytical solution is compared against simulations performed using the gas-kinetic method (GKM), resulting in excellent agreement. A similar comparison between analytical and computational results of small perturbation growth is performed at the incompressible (zero Mach number) limit, again leading to excellent agreement. The study accomplishes two important goals: it (i) contrasts the small perturbation evolution in Poiseuille flows at extreme Mach numbers and (ii) provides important verification of the GKM simulation scheme.

  8. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  9. Quasi-Static Evolution, Catastrophe, and "Failed" Eruption of Solar Flux Ropes

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-04-01

    This paper presents the first unified theoretical model of solar flux rope dynamics—a single set of flux-rope equations in ideal MHD—to describe as one integrated process the quasi-static evolution, catastrophic transition to eruption, cessation ("failure") of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial and minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure pc(Z) and an overlying magnetic field Bc(Z). The flux rope may be initially force-free, but the evolution is not required to be force-free. As the poloidal flux is slowly increased, the flux rope rises through a sequence of quasi-static equilibria. As the apex of the flux rope expands past a critical height Zcrt, it erupts on a dynamical (Alfvénic) timescale. Mathematically, the onset of eruption is shown to be explosive, not exponential. The acceleration is rapidly quenched due to the geometrical effects of the stationary footpoints, and a new equilibrium is established at height Z1 > Zcrt. The calculated velocity profile resembles the observed velocity profiles in "failed" eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications—near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio R/a (e.g., the torus instability equation)—are valid. Work supported by the Naval Research Laboratory Base Research Program

  10. The Approach to Equilibrium: Detailed Balance and the Master Equation

    ERIC Educational Resources Information Center

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  11. On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Gillissen, J. J. J.; Boersma, B. J.; Mortensen, P. H.; Andersson, H. I.

    2007-03-01

    Fiber-induced drag reduction can be studied in great detail by means of direct numerical simulation [J. S. Paschkewitz et al., J. Fluid Mech. 518, 281 (2004)]. To account for the effect of the fibers, the Navier-Stokes equations are supplemented by the fiber stress tensor, which depends on the distribution function of fiber orientation angles. We have computed this function in turbulent channel flow, by solving the Fokker-Planck equation numerically. The results are used to validate an approximate method for calculating fiber stress, in which the second moment of the orientation distribution is solved. Since the moment evolution equations contain higher-order moments, a closure relation is required to obtain as many equations as unknowns. We investigate the performance of the eigenvalue-based optimal fitted closure scheme [J. S. Cintra and C. L. Tucker, J. Rheol. 39, 1095 (1995)]. The closure-predicted stress and flow statistics in two-way coupled simulations are within 10% of the "exact" Fokker-Planck solution.

  12. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    PubMed

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  13. Evolutionary prisoner's dilemma games coevolving on adaptive networks.

    PubMed

    Lee, Hsuan-Wei; Malik, Nishant; Mucha, Peter J

    2018-02-01

    We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.

  14. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    NASA Astrophysics Data System (ADS)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  15. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  16. Switching probability of all-perpendicular spin valve nanopillars

    NASA Astrophysics Data System (ADS)

    Tzoufras, M.

    2018-05-01

    In all-perpendicular spin valve nanopillars the probability density of the free-layer magnetization is independent of the azimuthal angle and its evolution equation simplifies considerably compared to the general, nonaxisymmetric geometry. Expansion of the time-dependent probability density to Legendre polynomials enables analytical integration of the evolution equation and yields a compact expression for the practically relevant switching probability. This approach is valid when the free layer behaves as a single-domain magnetic particle and it can be readily applied to fitting experimental data.

  17. Perturbative dynamics of thin-shell wormholes beyond general relativity: An alternative approach

    NASA Astrophysics Data System (ADS)

    Rubín de Celis, Emilio; Tomasini, Cecilia; Simeone, Claudio

    Recent studies relating the approximations for the equations-of-state for thin shells and their consequent perturbative evolution are extended to thin-shell wormholes in theories beyond general relativity and more than four spacetime dimensions. The assumption of equations-of-state of the same form for static and slowly evolving shells appears as a strong restriction excluding the possibility of oscillatory evolutions. Then the new results considerably differ from previous ones obtained within the usual linearized approach.

  18. An Equation-Free Reduced-Order Modeling Approach to Tropical Pacific Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Ruiwen; Zhu, Jiang; Luo, Zhendong; Navon, I. M.

    2009-03-01

    The “equation-free” (EF) method is often used in complex, multi-scale problems. In such cases it is necessary to know the closed form of the required evolution equations about oscopic variables within some applied fields. Conceptually such equations exist, however, they are not available in closed form. The EF method can bypass this difficulty. This method can obtain oscopic information by implementing models at a microscopic level. Given an initial oscopic variable, through lifting we can obtain the associated microscopic variable, which may be evolved using Direct Numerical Simulations (DNS) and by restriction, we can obtain the necessary oscopic information and the projective integration to obtain the desired quantities. In this paper we apply the EF POD-assisted method to the reduced modeling of a large-scale upper ocean circulation in the tropical Pacific domain. The computation cost is reduced dramatically. Compared with the POD method, the method provided more accurate results and it did not require the availability of any explicit equations or the right-hand side (RHS) of the evolution equation.

  19. Parametric resonant triad interactions in a free shear layer

    NASA Technical Reports Server (NTRS)

    Mallier, R.; Maslowe, S. A.

    1993-01-01

    We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.

  20. Chaotic evolution of arms races

    NASA Astrophysics Data System (ADS)

    Tomochi, Masaki; Kono, Mitsuo

    1998-12-01

    A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.

  1. Exact analytic solutions for a global equation of plant cell growth.

    PubMed

    Pietruszka, Mariusz

    2010-05-21

    A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  3. On a model of electromagnetic field propagation in ferroelectric media

    NASA Astrophysics Data System (ADS)

    Picard, Rainer

    2007-04-01

    The Maxwell system in an anisotropic, inhomogeneous medium with non-linear memory effect produced by a Maxwell type system for the polarization is investigated under low regularity assumptions on data and domain. The particular form of memory in the system is motivated by a model for electromagnetic wave propagation in ferromagnetic materials suggested by Greenberg, MacCamy and Coffman [J.M. Greenberg, R.C. MacCamy, C.V. Coffman, On the long-time behavior of ferroelectric systems, Phys. D 134 (1999) 362-383]. To avoid unnecessary regularity requirements the problem is approached as a system of space-time operator equation in the framework of extrapolation spaces (Sobolev lattices), a theoretical framework developed in [R. Picard, Evolution equations as space-time operator equations, Math. Anal. Appl. 173 (2) (1993) 436-458; R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces, Glasnik Mat. 35 (2000) 111-136]. A solution theory for a large class of ferromagnetic materials confined to an arbitrary open set (with suitably generalized boundary conditions) is obtained.

  4. Spherically symmetric Einstein-aether perfect fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Alan A.; Latta, Joey; Leon, Genly

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less

  5. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  6. An advanced analytical solution for pressure build-up during CO2 injection into infinite saline aquifers: The role of compressibility

    NASA Astrophysics Data System (ADS)

    Wu, Haiqing; Bai, Bing; Li, Xiaochun

    2018-02-01

    Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.

  7. Dynamical systems for modeling the evolution of the magnetic field of stars and Earth

    NASA Astrophysics Data System (ADS)

    Popova, H.

    2016-02-01

    The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.

  8. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.

    PubMed

    Spingarn, C; Wagner, D; Rémond, Y; George, D

    2017-01-01

    In this work, we present an evolutive trabecular model for bone remodeling based on a boundary detection algorithm accounting for both biology and applied mechanical forces, known to be an important factor in bone evolution. A finite element (FE) numerical model using the Abaqus/Standard® software was used with a UMAT subroutine to solve the governing coupled mechanical-biological non-linear differential equations of the bone evolution model. The simulations present cell activation on a simplified trabeculae configuration organization with trabecular thickness of 200µm. For this activation process, the results confirm that the trabeculae are mainly oriented in the active direction of the principal mechanical stresses and according to the principal applied mechanical load directions. The trabeculae surface activation is clearly identified and can provide understanding of the different bone cell activations in more complex geometries and load conditions.

  9. Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Jaramillo-Villegas, Jose A.; Xuan, Yi; Leaird, Daniel E.; Qi, Minghao; Weiner, Andrew M.

    2016-10-01

    We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings. The evolution of the power spectrum is not symmetric with respect to the spectrum center. Numerical simulations based on the generalized Lugiato-Lefever equation are in good agreement with the experimental results and unveil the role of stimulated Raman scattering in the symmetry breaking of the power spectrum evolution. Our results show that optical microresonators can be exploited as a powerful platform for the exploration of soliton dynamics.

  10. Pair correlation function and nonlinear kinetic equation for a spatially uniform polarizable nonideal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyi, V.V.; Kukharenko, Y.A.; Wallenborn, J.

    Taking into account the first non-Markovian correction to the Balescu-Lenard equation, we have derived an expression for the pair correlation function and a nonlinear kinetic equation valid for a nonideal polarized classical plasma. This last equation allows for the description of the correlational energy evolution and shows the global conservation of energy with dynamical polarization. {copyright} {ital 1996 The American Physical Society.}

  11. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less

  12. Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation.

    PubMed

    Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K

    2017-02-01

    We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.

  13. Outer boundary as arrested history in general relativity

    NASA Astrophysics Data System (ADS)

    Lau, Stephen R.

    2002-06-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.

  14. Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,

    DTIC Science & Technology

    1986-08-01

    KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and

  15. Group-kinetic theory of turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  16. A numerical scheme for the identification of hybrid systems describing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.

  17. Spacelike matching to null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenginoglu, Anil; Tiglio, Manuel

    2009-07-15

    We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less

  18. Optimization method for an evolutional type inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.

  19. Gravity discharge vessel revisited: An explicit Lambert W function solution

    NASA Astrophysics Data System (ADS)

    Digilov, Rafael M.

    2017-07-01

    Based on the generalized Poiseuille equation modified by a kinetic energy correction, an explicit solution for the time evolution of a liquid column draining under gravity through an exit capillary tube is derived in terms of the Lambert W function. In contrast to the conventional exponential behavior, as implied by the Poiseuille law, a new analytical solution gives a full account for the volumetric flow rate of a fluid through a capillary of any length and improves the precision of viscosity determination. The theoretical consideration may be of interest to students as an example of how implicit equations in the field of physics can be solved analytically using the Lambert function.

  20. Perturbations of the Kerr spacetime in horizon-penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Campanelli, Manuela; Khanna, Gaurav; Laguna, Pablo; Pullin, Jorge; Ryan, Michael P.

    2001-04-01

    We derive the Teukolsky equation for perturbations of a Kerr spacetime when the spacetime metric is written in either ingoing or outgoing Kerr-Schild form. We also write explicit formulae for setting up the initial data for the Teukolsky equation in the time domain in terms of a 3-metric and an extrinsic curvature. The motivation of this work is to have in place a formalism to study the evolution in the `close limit' of two recently proposed solutions to the initial-value problem in general relativity that are based on Kerr-Schild slicings. A perturbative formalism in horizon-penetrating coordinates is also very desirable in connection with numerical relativity simulations using black hole `excision'.

  1. Fluid-Structure Interaction in Continuum Models of Bacterial Biofilms

    NASA Astrophysics Data System (ADS)

    Hicks, Jared A.

    Bacterial biofilms are aggregates of cells that adhere to nearly any solid-fluid interface. While many have harmful effects, such as industrial damage and nosocomial infections, certain biofilm species are now generating renewable energy as the fundamental components of Microbial Fuel Cells (MFCs). In an MFC, bacteria consume organic waste and, as they respire, produce free electrons. To do so efficiently, the bacteria must operate at peak metabolic activity, and so require an ample supply of nutrients. But existing MFC systems face several nutrient delivery problems, including clogging and downstream depletion. Ameliorating these problems will require a better understanding of the interplay between structural development and the surrounding fluid flow. In addition to delivering nutrients that affect biofilm growth, the fluid also exerts stresses that cause erosion, detachment, and deformation. These structural changes, in turn, affect the flow and alter the nutrient distribution. To account for this feedback effect, I have developed a continuum model that couples the growth and deformation processes. My model augments an existing growth model with evolution equations derived from Morphoelasticity Theory, by showing that the growth tensor can be directly related to the biofilm velocity potential. This result helps overcome one of the major practical limitations of Morphoelasticity--there is no physical framework for specifying the growth tensor. Through further analysis of the growth tensor, I define the related adjugate and anisotropic growth tensors, which can be more meaningful measures of growth for some models. Under the assumption of small strain, I show that there exists a small correction to the biofilm growth velocity (the accommodation velocity) that represents the effect of the elastic response on the evolution of the biofilm shape. I derive a solvability condition for the accommodation velocity, and show that it leads to a novel evolution equation for stress and strain in the biofilm, which couples the growth and deformation processes. Furthermore, I show that the introduction of a vorticity allows the accommodation velocity to be described by a system of Poisson equations, and that this vorticity arises naturally from Morphoelasticity theory and is related to the velocity solvability condition. I apply the modeling approach to a one-dimensional biofilm, and show that (a) the coupled growth process affects the evolution of the biofilm shape as expected, and (b) a non-coupled approach to biofilm strain introduces an error that grows over time. Numerical analysis of the one-dimensional strain evolution equation leads to several insights that inform the development of numerical methods for the two-dimensional case, including a split-step approach that reduces the fifth-order PDE to an advection equation for strain and a biharmonic equation for stress. Finally, I discuss some useful numerical methods for the simulation of elastic biofilm growth, particularly the discretization of the strain evolution equation(s). My overall approach is to track the evolving biofilm surface using a combination of the level-set method coupled with the eXtended Finite Element Method (XFEM). The major result is a novel mixed-XFEM discretization of the clamped-plate biharmonic equation, which I show to be first-order accurate for the trace of the solution on the interface.

  2. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  3. Modelling of hyperconcentrated flood and channel evolution in a braided reach using a dynamically coupled one-dimensional approach

    NASA Astrophysics Data System (ADS)

    Xia, Junqiang; Zhang, Xiaolei; Wang, Zenghui; Li, Jie; Zhou, Meirong

    2018-06-01

    Hyperconcentrated sediment-laden floods often occur in a braided reach of the Lower Yellow River, usually leading to significant channel evolution. A one-dimensional (1D) morphodynamic model using a dynamically coupled solution approach is developed to simulate hyperconcentrated flood and channel evolution in the braided reach with an extremely irregular cross-sectional geometry. In the model, the improved equations for hydrodynamics account for the effects of sediment concentration and bed evolution, which are coupled with the equations of non-equilibrium sediment transport and bed evolution. The model was validated using measurements from the 1977 and 2004 hyperconcentrated floods. Furthermore, the effects were investigated of different cross-sectional spacings and allocation modes of channel deformation area on the model results. It was found that a suitable cross-sectional distance of less than 3 km should be adopted when simulating hyperconcentrated floods, and the results using the uniform allocation mode can agree better with measurements than other two allocation modes.

  4. Development of efficient time-evolution method based on three-term recurrence relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akama, Tomoko, E-mail: a.tomo---s-b-l-r@suou.waseda.jp; Kobayashi, Osamu; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp

    The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function.more » Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost.« less

  5. One-dimensional thermal evolution calculation based on a mixing length theory: Application to Saturnian icy satellites

    NASA Astrophysics Data System (ADS)

    Kamata, S.

    2017-12-01

    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.

  6. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    NASA Astrophysics Data System (ADS)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuchu, E-mail: chenchuchu@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Zhang, Liying, E-mail: lyzhang@lsec.cc.ac.cn

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the correspondingmore » discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.« less

  8. The evolution of energetic particles and the emitted radiation in solar flares. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Edward Tsang

    1989-01-01

    The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order the particle lifetimes, the evolution of the particle distribution is determined by the use of the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equations are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are then used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short implusive solar flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. The relative timing of microwaves and X-rays during individual flares is investigated. A number of possible sources for excessive microwave flux are discussed including a flattening in the electron spectrum above hard X-ray energies, thermal synchrotron emission, and trapping of electron by converging magnetic fields. Over shorter timescales, the Fokker-Planck equation is solved numerically to calculate the temporal evolution of microwaves and X-rays from nonthermal thick target models. It is shown that magnetic trapping will not account for the observed correlation of microwaves of approximately 0.15 seconds behind X-rays in flares with rapid time variation, and thus higher energy electrons must be accelerated later than lower energy electrons.

  9. General relativistic treatment of the thermal, magnetic and rotational evolution of isolated neutron stars with crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Page, D.; Geppert, U.; Zannias, T.

    2000-08-01

    We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.

  10. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  11. Characteristics of temporal evolution of particle density and electron temperature in helicon discharge

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Cheng, Mousen; Guo, Dawei; Wang, Moge; Li, Xiaokang

    2017-10-01

    On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.

  12. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  13. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  14. Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.

    2012-01-01

    A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.

  15. Constrained evolution in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  16. Synergy and Self-organization in Tribosystem’s evolution. Energy Model of Friction

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.; Assenova, E.

    2018-01-01

    Different approaches are known to treat self-organization in tribosystems, related to the structural adaptation in the formation of dissipative surface structures and of frictional or tribo-films, using of synergistic modifying of layers and coatings, e.g. of the selective material transfer during friction, etc. Regarding tribological processes in contact systems, self-organization is observed as spontaneous creation of higher ordered structures during the contact interaction. The proposed paper considers friction as process of transformation and dissipation of energy and process of elasto-plastic deformation localized in thin surface layers of the interacting bodies. Еnergetic interpretation of friction is proposed. Based on the energy balance equations of friction, the evolution of tribosystems is followed in its adaptive-dissipative character. It reflects the variable friction surfaces compatibility and the nonlinear dynamics of friction evolution. Structural-energy relationships in the contacting surfaces evolution are obtained. Maximum of tribosystem’s efficiency during the evolution is the stage of self-organzation of the friction surface layers, which is a state of abnormal low friction and wear.

  17. Modelling of anisotropic growth in biological tissues. A new approach and computational aspects.

    PubMed

    Menzel, A

    2005-03-01

    In this contribution, we develop a theoretical and computational framework for anisotropic growth phenomena. As a key idea of the proposed phenomenological approach, a fibre or rather structural tensor is introduced, which allows the description of transversely isotropic material behaviour. Based on this additional argument, anisotropic growth is modelled via appropriate evolution equations for the fibre while volumetric remodelling is realised by an evolution of the referential density. Both the strength of the fibre as well as the density follow Wolff-type laws. We however elaborate on two different approaches for the evolution of the fibre direction, namely an alignment with respect to strain or with respect to stress. One of the main benefits of the developed framework is therefore the opportunity to address the evolutions of the fibre strength and the fibre direction separately. It is then straightforward to set up appropriate integration algorithms such that the developed framework fits nicely into common, finite element schemes. Finally, several numerical examples underline the applicability of the proposed formulation.

  18. Atmospheric chemical and thermal structure evolution after one Titanian year

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Bampasidis, G.; Vinatier, S.; Achterberg, R.; Lavvas, P.; Nixon, C.; Jennings, D.; Teanby, N.; Flasar, F. M.; Carlson, R.; Orton, G.; Romani, P.; Guandique, E. A.

    2012-09-01

    We analyze Cassini Composite Infrared Spectrometer (CIRS) data taken during the numerous Titan flybys from 2004-2010 and compare them to the 1980 Voyager 1 flyby values inferred from the re-analysis of the Infrared Radiometer Spectrometer (IRIS) spectra. Seven years after Cassini's Saturn orbit insertion, we look at the evolution of the chemical composition by combining these recordings and the intervening ground- and space- based observations, we have in hand almost a complete picture of the stratospheric evolution within a Titan year. The fulfillment of one Titanian year of observations provides us for the first time with the opportunity to evaluate the relative role of different physical processes in the long-term evolution of this complex environment. By comparing V1 (1980), ISO (1997) and Cassini (2010) we find that a reversal of composition near the equator from autumnal equinox to vernal equinox (1996 min -2009 max, half a year), as well as some differences in polar enhancement at the same era as Voyager.

  19. The weak coupling limit as a quantum functional central limit

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Frigerio, A.; Lu, Y. G.

    1990-08-01

    We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

  20. Impacts and the origin of life

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Fogleman, Guy

    1989-01-01

    Consideration is given to the estimate of Maher and Stevenson (1988) of the time at which life could have developed on earth through chemical evolution within a time interval between impact events, assuming chemical or prebiotic evolution times of 100,000 to 10,000,000 yrs. An error in the equations used to determine the time periods between impact events in estimating this time is noted. A revised equation is presented and used to calculate the point in time at which impact events became infrequent enough for life to form. By using this equation, the finding of Maher and Stevenson that life could have first originated between 4,100 and 4,300 million years ago is changed to 3,700 to 4,000 million years ago.

  1. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.

    PubMed

    Menzel, A; Harrysson, M; Ristinmaa, M

    2008-10-01

    The mechanical behaviour of soft biological tissues is governed by phenomena occurring on different scales of observation. From the computational modelling point of view, a vital aspect consists of the appropriate incorporation of micromechanical effects into macroscopic constitutive equations. In this work, particular emphasis is placed on the simulation of soft fibrous tissues with the orientation of the underlying fibres being determined by distribution functions. A straightforward but convenient Taylor-type homogenisation approach links the micro- or rather meso-level of fibres to the overall macro-level and allows to reflect macroscopically orthotropic response. As a key aspect of this work, evolution equations for the fibre orientations are accounted for so that physiological effects like turnover or rather remodelling are captured. Concerning numerical applications, the derived set of equations can be embedded into a nonlinear finite element context so that first elementary simulations are finally addressed.

  2. Bouncing and emergent cosmologies from Arnowitt–Deser–Misner RG flows

    NASA Astrophysics Data System (ADS)

    Bonanno, Alfio; Gionti, S. J. Gabriele; Platania, Alessia

    2018-03-01

    Asymptotically safe gravity provides a framework for the description of gravity from the trans-Planckian regime to cosmological scales. According to this scenario, the cosmological constant and Newton’s coupling are functions of the energy scale whose evolution is dictated by the renormalization group (RG) equations. The formulation of the RG equations on foliated spacetimes, based on the Arnowitt–Deser–Misner (ADM) formalism, furnishes a natural way to construct the RG energy scale from the spectrum of the Laplacian operator on the spatial slices. Combining this idea with an RG improvement procedure, in this work we study quantum gravitational corrections to the Einstein–Hilbert action on Friedmann–Lemaître–Robertson–Walker backgrounds. The resulting quantum-corrected Friedmann equations can give rise to both bouncing cosmologies and emergent Universe solutions. Our bouncing models do not require the presence of exotic matter and emergent Universe solutions can be constructed for any allowed topology of the spatial slices.

  3. Dynamics and elastic interactions of the discrete multi-dark soliton solutions for the Kaup-Newell lattice equation

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Wen, Xiao-Yong

    2018-03-01

    Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.

  4. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  5. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  6. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  7. The generalized DMPK equation revisited: towards a systematic derivation

    NASA Astrophysics Data System (ADS)

    Douglas, Andrew; Markoš, Peter; Muttalib, K. A.

    2014-03-01

    The generalized Dorokov-Mello-Pereyra-Kumar (DMPK) equation has recently been used to obtain a family of very broad and highly asymmetric conductance distributions for three-dimensional disordered conductors. However, there are two major criticisms of the derivation of the generalized DMPK equation: (1) certain eigenvector correlations were neglected based on qualitative arguments that cannot be valid for all strengths of disorder, and (2) the repulsion between two closely spaced eigenvalues were not rigorously governed by symmetry considerations. In this work we show that it is possible to address both criticisms by including the eigenvalue and eigenvector correlations in a systematic and controlled way. It turns out that the added correlations determine the evolution of the Jacobian, without affecting the evaluation of the conductance distributions. They also guarantee the symmetry requirements. In addition, we obtain an exact relationship between the eigenvectors and the Lyapunov exponents leading to a sum rule for the latter at all disorder strengths.

  8. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  9. Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes

    NASA Astrophysics Data System (ADS)

    Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan

    2018-04-01

    We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.

  10. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  11. On the r-mode spectrum of relativistic stars: the inclusion of the radiation reaction

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2002-03-01

    We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n, and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n, we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n, the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.

  12. Structure and evolution of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Macfarlane, J. J.

    1980-01-01

    Three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium are presented. The models incorporate a new H2O equation of state based on experimental data which is considerably 'softer' than previous H2O equations of state. Corrections for interior temperatures approximately 5000 K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. It is found that the evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock'. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small approximately 1-2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approximately 15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.

  13. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  14. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  15. CRPropa 3.1—a low energy extension based on stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merten, Lukas; Tjus, Julia Becker; Eichmann, Björn

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us tomore » use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ{sub ∥} and perpendicular κ{sub ⊥} diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.« less

  16. Comparisons of different witnesses of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Zuo, Wei; Qian, Xiao-Qing; Liang, Xian-Ting

    2017-01-01

    In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their rates of changes with time are investigated and compared. Four definitions, the trace distance, fidelity, quantum relative entropy, and quantum Fisher information are used for the first kind of witnesses which are based on the completely positive maps (CPM). Three definitions, the quantum entanglement, quantum mutual information, and quantum discord are used for the second kind of witnesses, and they are based on the local completely positive maps (LCPM). An open two-level quantum system model and a numerically quantum dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investigations. It is shown that the evolutions of the witnesses and their rates of the changes calculated with different definitions clearly show the characteristics of the non-Markovianity and they are in agreement with each other.

  17. Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.

    2016-07-01

    We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.

  18. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes.

    PubMed

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree k_{max} of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large k_{max}. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  19. Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornikov, M. S., E-mail: maxdvo@izmiran.ru

    2016-12-15

    The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magneticmore » fields evolution in magnetars.« less

  20. Airfreight forecasting methodology and results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of econometric behavioral equations was developed to explain and forecast the evolution of airfreight traffic demand for the total U.S. domestic airfreight system, the total U.S. international airfreight system, and the total scheduled international cargo traffic carried by the top 44 foreign airlines. The basic explanatory variables used in these macromodels were the real gross national products of the countries involved and a measure of relative transportation costs. The results of the econometric analysis reveal that the models explain more than 99 percent of the historical evolution of freight traffic. The long term traffic forecasts generated with these models are based on scenarios of the likely economic outlook in the United States and 31 major foreign countries.

  1. The early evolution of Jupiter in the absence of solar tidal forces

    NASA Astrophysics Data System (ADS)

    Schofield, N.; Woolfson, M. M.

    1982-03-01

    The early evolution of a Jupiter-like protoplanet is simulated by constructing a physically detailed computer-based model which solves the equations of hydrodynamics and radiative energy transfer for the spherically symmetric case. The model is specifically developed to study the initial and boundary conditions relevant to the capture theory for the origin of the solar system. It is found that the absence of an external medium promotes the rapid expansion of surface material which is enhanced by solar irradiation. Only when the Jeans criterion is less than 0.8 does a spontaneous hydrodynamic collapse of the interior allow a substantial proportion of the protoplanet to condense to planetary densities.

  2. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

    NASA Astrophysics Data System (ADS)

    Braun, J.

    2012-04-01

    Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.

  3. The evolution of dispersal in a Levins' type metapopulation model.

    PubMed

    Jansen, Vincent A A; Vitalis, Renaud

    2007-10-01

    We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model. The fitness function can be written as an inclusive fitness equation (Hamilton's rule). By recasting this equation in a form that emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness and life-history parameters.

  4. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  5. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  6. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    PubMed

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  7. A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation

    PubMed Central

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605

  8. Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography

    NASA Astrophysics Data System (ADS)

    Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek

    2018-01-01

    The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.

  9. An almost symmetric Strang splitting scheme for nonlinear evolution equations☆

    PubMed Central

    Einkemmer, Lukas; Ostermann, Alexander

    2014-01-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017

  10. Geometrothermodynamic model for the evolution of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Christine; Quevedo, Hernando, E-mail: christine.gruber@correo.nucleares.unam.mx, E-mail: quevedo@nucleares.unam.mx

    Using the formalism of geometrothermodynamics to derive a fundamental thermodynamic equation, we construct a cosmological model in the framework of relativistic cosmology. In a first step, we describe a system without thermodynamic interaction, and show it to be equivalent to the standard ΛCDM paradigm. The second step includes thermodynamic interaction and produces a model consistent with the main features of inflation. With the proposed fundamental equation we are thus able to describe all the known epochs in the evolution of our Universe, starting from the inflationary phase.

  11. Symmetric factorization of the conformation tensor in viscoelastic fluid models

    NASA Astrophysics Data System (ADS)

    Thomases, Becca; Balci, Nusret; Renardy, Michael; Doering, Charles

    2010-11-01

    The positive definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity field and the symmetric square root of the conformation tensor, these models' equations of motion formally constitute an evolution in a Hilbert space with a total energy functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical simulations resulting in significant practical advantages in terms of both accuracy and stability.

  12. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  13. Evolution of Degenerate Space-Time from Non-Degenerate Initial Value in Ashtekar's Formalism

    NASA Astrophysics Data System (ADS)

    Ma, Yongge; Liang, Canbin

    1998-09-01

    The possibility of evolving a degenerate space-time from non-degenerate initial value in Ashtekar's formalism is considered in a constructed example. It is found that this possibility could be realized in the time evolution given by Ashtekar's equations, but the topology change of space makes it fail to be a Cauchy evolution.

  14. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law

    NASA Astrophysics Data System (ADS)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-01

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally related to the appearance (and hence, to the definition) of the slow manifolds.

  15. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  16. Dynamics of a differential-difference integrable (2+1)-dimensional system.

    PubMed

    Yu, Guo-Fu; Xu, Zong-Wei

    2015-06-01

    A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics. In this paper, we propose an integrable semidiscrete analog of a coupled (2+1)-dimensional system which is related to the KP equation and the Zakharov equation. N-soliton solutions of the discrete equation are presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution and soliton interactions.

  17. Elliptical optical solitary waves in a finite nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.

    2015-05-01

    The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.

  18. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  19. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  20. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  1. The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts

    NASA Astrophysics Data System (ADS)

    Neill, Duff

    2017-01-01

    We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.

  2. The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions

    NASA Astrophysics Data System (ADS)

    Djoko, Martin; Kofane, T. C.

    2018-06-01

    We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the higher-order (3+1)-dimensional cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CGL] equation. We have used the variational method to find a set of differential equations characterizing the variation of the pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically by the means of the fourth-order Runge-Kutta (RK4) method, which also allows us to investigate the evolution of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the results with those obtained, using the variational approach. A good agreement between analytical and numerical methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named the total energy Q, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets, 3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial input condition (symmetric or elliptic).

  3. On whole Abelian model dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics orientedmore » through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.« less

  4. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  5. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  6. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.

    PubMed

    Sicuro, Gabriele; Rapčan, Peter; Tsallis, Constantino

    2016-12-01

    We extend a recently introduced free-energy formalism for homogeneous Fokker-Planck equations to a wide, and physically appealing, class of inhomogeneous nonlinear Fokker-Planck equations. In our approach, the free-energy functional is expressed in terms of an entropic functional and an auxiliary potential, both derived from the coefficients of the equation. With reference to the introduced entropic functional, we discuss the entropy production in a relaxation process towards equilibrium. The properties of the stationary solutions of the considered Fokker-Planck equations are also discussed.

  7. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  8. The general relativistic thin disc evolution equation

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  9. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  10. A mathematical model for evolution and SETI.

    PubMed

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  11. Modelling Evolution and SETI Mathematically

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-05-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factor increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions constrained between the time axis and the exponential growth curve. Finally, since each lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  12. A Mathematical Model for Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  13. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment

    NASA Astrophysics Data System (ADS)

    Rǎdulescu, I. R.; Cândea, D.; Halanay, A.

    2012-11-01

    A mathematical model for the dynamics of leukemic cells during treatment is introduced. Delay differential equations are used to model cells' evolution and are based on the Mackey-Glass approach, incorporating Goldie-Coldman law. Since resistance is propagated by cells that have the capacity of self-renewal, a population of stem-like cells is studied. Equilibrium points are calculated and their stability properties are investigated.

  14. Solution to a gene divergence problem under arbitrary stable nucleotide transition probabilities

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1976-01-01

    A nucleic acid chain, L nucleotides in length, with the specific base sequence B(1)B(2) ... B(L) is defined by the L-dimensional vector B = (B(1), B(2), ..., B(L)). For twelve given constant non-negative transition probabilities that, in a specified position, the base B is replaced by the base B' in a single step, an exact analytical expression is derived for the probability that the position goes from base B to B' in X steps. Assuming that each base mutates independently of the others, an exact expression is derived for the probability that the initial gene sequence B goes to a sequence B' = (B'(1), B'(2), ..., B'(L)) after X = (X(1), X(2), ..., X(L)) base replacements. The resulting equations allow a more precise accounting for the effects of Darwinian natural selection in molecular evolution than does the idealized (biologically less accurate) assumption that each of the four nucleotides is equally likely to mutate to and be fixed as one of the other three. Illustrative applications of the theory to some problems of biological evolution are given.

  15. Numerical simulation of the vortical flow around a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Li, Gaohua; Wang, Fuxin

    2017-04-01

    In order to study the dynamic behaviors of the flapping wing, the vortical flow around a pitching NACA0012 airfoil is investigated. The unsteady flow field is obtained by a very efficient zonal procedure based on the velocity-vorticity formulation and the Reynolds number based on the chord length of the airfoil is set to 1 million. The zonal procedure divides up the whole computation domain in to three zones: potential flow zone, boundary layer zone and Navier-Stokes zone. Since the vorticity is absent in the potential flow zone, the vorticity transport equation needs only to be solved in the boundary layer zone and Navier-Stokes zone. Moreover, the boundary layer equations are solved in the boundary layer zone. This arrangement drastically reduces the computation time against the traditional numerical method. After the flow field computation, the evolution of the vortices around the airfoil is analyzed in detail.

  16. Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.

    We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either bemore » treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.« less

  17. Physics and technology of the arms race

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garwin, R.L.

    1983-01-01

    Traditional military concepts of superiority and effectiveness (as embodied in Lanchester's law) have little relevance to thermonuclear weapons, with their enormous effectiveness in destruction of society. Few are needed to saturate their deterrent effect, but their military effectiveness is limited. The evolution and future of strategic nuclear forces is discussed, and their declining marginal utility emphasized. Some calculations relevant to the nuclear confrontation are presented (Lanchester's Law; skin effect of VLF and ELF signals to submarines; the rocket equation; simple radar-range equation) and recommendations presented for future strategic forces and arms control initiatives. Recommended programs include a silo-based 12-ton single-warheadmore » missile (SICM), the development of buried-bomb defense of individual Minuteman silos, the completion of the deployment of air-launched cruise missiles on the B-52 fleet, and the development of small (1000-ton) submarines for basing ICBM-range missiles.« less

  18. Data requirements to model creep in 9Cr-1Mo-V steel

    NASA Technical Reports Server (NTRS)

    Swindeman, R. W.

    1988-01-01

    Models for creep behavior are helpful in predicting response of components experiencing stress redistributions due to cyclic loads, and often the analyst would like information that correlates strain rate with history assuming simple hardening rules such as those based on time or strain. On the one hand, much progress has been made in the development of unified constitutive equations that include both hardening and softening through the introduction of state variables whose evolutions are history dependent. Although it is difficult to estimate specific data requirements for general application, there are several simple measurements that can be made in the course of creep testing and results reported in data bases. The issue is whether or not such data could be helpful in developing unified equations, and, if so, how should such data be reported. Data produced on a martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind.

  19. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  20. Signatures of extra dimensions in gravitational waves from black hole quasinormal modes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Chakravarti, Kabir; Bose, Sukanta; SenGupta, Soumitra

    2018-05-01

    In this work, we have derived the evolution equation for gravitational perturbation in four-dimensional spacetime in the presence of a spatial extra dimension. The evolution equation is derived by perturbing the effective gravitational field equations on the four-dimensional spacetime, which inherits nontrivial higher-dimensional effects. Note that this is different from the perturbation of the five-dimensional gravitational field equations that exist in the literature and possess quantitatively new features. The gravitational perturbation has further been decomposed into a purely four-dimensional part and another piece that depends on extra dimensions. The four-dimensional gravitational perturbation now admits massive propagating degrees of freedom, owing to the existence of higher dimensions. We have also studied the influence of these massive propagating modes on the quasinormal mode frequencies, signaling the higher-dimensional nature of the spacetime, and have contrasted these massive modes with the massless modes in general relativity. Surprisingly, it turns out that the massive modes experience damping much smaller than that of the massless modes in general relativity and may even dominate over and above the general relativity contribution if one observes the ringdown phase of a black hole merger event at sufficiently late times. Furthermore, the whole analytical framework has been supplemented by the fully numerical Cauchy evolution problem, as well. In this context, we have shown that, except for minute details, the overall features of the gravitational perturbations are captured both in the Cauchy evolution as well as in the analysis of quasinormal modes. The implications on observations of black holes with LIGO and proposed space missions such as LISA are also discussed.

  1. Soliton switching in a site-dependent ferromagnet

    NASA Astrophysics Data System (ADS)

    Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.

    2017-02-01

    Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.

  2. High-energy evolution to three loops

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Herranen, Matti

    2018-02-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  3. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  4. Surface phenomena and the evolution of radiating fluid spheres in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.; Jimenez, J.; Esculpi, M.

    1989-10-01

    A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.

  5. Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Chad A.; Stanley, Ethan

    2011-10-15

    We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations inmore » the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys. Rev. D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys. Rev. D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.« less

  6. Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies

    DOE PAGES

    Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo; ...

    2017-08-30

    In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less

  7. Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo

    In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less

  8. A simulation method for the stability analysis of landscape scenarios by using a NetLogo application in GIS environment

    NASA Astrophysics Data System (ADS)

    Gobattoni, Federica; Lauro, Giuliana; Leone, Antonio; Monaco, Roberto; Pelorosso, Raffaele

    2010-05-01

    Landscape continually evolves under the influence of a complex and broad range of natural processes, directly or indirectly determined by land use, but also under the impact of anthropic actions of planning and territorial management. While processes such as earthquakes, landslides, and so on, are manifestations of this evolutionary process, human decisions concerning land government (cropping, urbanization etc.) may affect dramatically the landscape evolution in a complex mechanism of cause-and-effect leading to accelerated erosion phenomena, hydro-geological instability and flood events. To better understand landscape evolution and change in time, several numerical and empirical models have been developed and implemented with the aim to explore and explain such complex processes; reproducing landscape evolution through models and schematic representation of reality could be a powerful and reliable tool for natural resources planning and decision making in land management. Even understanding interactions and relations between the involved variables, predicting how the system will react to external inputs such as political, social or economic constraints, could be strongly difficult. Decision support systems could help in choosing among possible alternatives by integrating different sources of information and "What if" scenarios could be developed as possible future states of the world that represent alternative plausible conditions under different assumptions (Mahmoud M. wt al., 2009). Modelling approaches can be successfully applied to describe and assess both the natural spatial environmental variability and the anthropic impacts at different temporal and spatial scales even if they usually takes into account each aspect of the environmental system separately and without looking directly at landscape as a unique system and without understanding its intrinsic evolution mechanisms (H. Siegrist, 2002, S. Demberel, 2003, A. Brenner, 2005). GIS-based models which could be able to predict the response of the landscape working as a unique system, are expected to advance through a development of sustainable planning strategies and to evaluate the equilibrium-non equilibrium status of landscape evolution and the availability of vital resources in space and time. In this context mathematical models adapted in GIS environment may really give an heavy contribution in such a complex problem- solving, providing a real and concrete Decision System Support. An integrated GIS (Geographic Information System)-based approach was developed (G. Lauro, R. Monaco, 2008) combining an ecological graph model for the analysis of the relationship between spatial pattern and ecological flows and a mathematical model, based on a system of two nonlinear differential equations, that studies meta-stability and bifurcation phenomena. These equations are mainly based on a balance law between a logistic growth of bio-energy and its reduction due to limiting factors coming from environmental constraints. The energy exchange among them will be more or less strong depending on the degree of permeability of the barriers which can obstruct the energy passage from each "landscape unit" to the other. Through NetLogo, a cross-platform multi-agent programmable modelling environment, a completely automatic GIS-based mathematical model, based on the ecological graph and on the cited two differential equations, is presented and discussed here. A study case in Central Italy is analysed to better underline the importance of such a user friendly model in GIS environment.

  9. Numerical Results of 3-D Modeling of Moon Accumulation

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr

    2014-05-01

    For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity - pressure variables is constructed on the base of the splitting method. The velocity field and pressure field we obtained using the checkerbroad grid. The occurring and evolution of the initial heterogeneities in the growing planets is caused by heterogeneous distribution of falling accumulated bodies. We are comparing the results which are obtained by different algorithms. The work was supported by grant RFBR N 13-05-00138.

  10. Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method

    NASA Astrophysics Data System (ADS)

    Mottaghizadeh, Marzieh; Eslami, Parvin; Taghavi-Shahri, Fatemeh

    2017-05-01

    We analytically solved the QED⊗QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED (1.2952 < Q2 < 1010) (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) (2 < Q2 < 108) (Ref. 4). We also compared the proton structure function, F2p(x,Q2), with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high x and Q2.

  11. Black hole evolution by spectral methods

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence E.; Scheel, Mark A.; Teukolsky, Saul A.; Carlson, Eric D.; Cook, Gregory B.

    2000-10-01

    Current methods of evolving a spacetime containing one or more black holes are plagued by instabilities that prohibit long-term evolution. Some of these instabilities may be due to the numerical method used, traditionally finite differencing. In this paper, we explore the use of a pseudospectral collocation (PSC) method for the evolution of a spherically symmetric black hole spacetime in one dimension using a hyperbolic formulation of Einstein's equations. We demonstrate that our PSC method is able to evolve a spherically symmetric black hole spacetime forever without enforcing constraints, even if we add dynamics via a Klein-Gordon scalar field. We find that, in contrast with finite-differencing methods, black hole excision is a trivial operation using PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the extension of this method to three spatial dimensions.

  12. Solvable Hydrodynamics of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2017-12-01

    The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudomomentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.

  13. The hair-trigger effect for a class of nonlocal nonlinear equations

    NASA Astrophysics Data System (ADS)

    Finkelshtein, Dmitri; Tkachov, Pasha

    2018-06-01

    We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on which have only two constant stationary solutions, 0 and . The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to ) to θ locally uniformly in . We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.

  14. A Multiscale Model for Virus Capsid Dynamics

    PubMed Central

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. PMID:20224756

  15. Towards a unified theory for morphomechanics

    PubMed Central

    Taber, Larry A.

    2009-01-01

    Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro. PMID:19657011

  16. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  17. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2003-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.

  18. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  19. Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide

    NASA Astrophysics Data System (ADS)

    Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan

    2012-06-01

    Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).

  20. Mode instability in one-dimensional anharmonic lattices: Variational equation approach

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    1999-03-01

    The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.

  1. Molecular description of steady supersonic free jets

    NASA Astrophysics Data System (ADS)

    Montero, S.

    2017-09-01

    A detailed analysis of the non-local thermal equilibrium (n-LTE) problem in the paraxial zone of silence of supersonic free jets is reported. The study is based on a hybrid approach that combines Navier-Stokes equations with a kinetic equation derived from the generalized Boltzmann (Waldmann-Snider) equation. The resulting system is solved for those flow quantities not easily amenable to experimental measure (translational temperature, flow velocity, and entropy) in terms of the quantities that can be measured accurately (distance, number density, population of rotational states, and their gradients). The reported solutions are essentially exact and are formulated in terms of macroscopic quantities, as well as in terms of elementary collision processes. Emphasis is made on the influence of dissipative effects onto the flow (viscous and diabatic) and of the breakdown of thermal equilibrium onto the evolution of entropy and translational temperature. The influence of inelastic collisions onto these effects is analysed in depth. The reported equations are aimed at optimizing the experimental knowledge of the n-LTE problem and its quantitative interpretation in terms of state-to-state rates for inelastic collisions.

  2. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    PubMed

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  3. Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Singh, Manjit; Gupta, R. K.

    2017-11-01

    In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.

  4. Time-delayed reaction-diffusion fronts

    NASA Astrophysics Data System (ADS)

    Isern, Neus; Fort, Joaquim

    2009-11-01

    A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one.

  5. Some More Solutions of Burgers' Equation

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Raj

    2015-01-01

    In this work, similarity solutions of viscous one-dimensional Burgers' equation are attained by using Lie group theory. The symmetry generators are used for constructing Lie symmetries with commuting infinitesimal operators which lead the governing partial differential equation (PDE) to ordinary differential equation (ODE). Most of the constructed solutions are found in terms of Bessel functions which are new as far as authors are aware. Effect of various parameters in the evolutional profile of the solutions are shown graphically and discussed them physically.

  6. A damage analysis for brittle materials using stochastic micro-structural information

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue

    2016-03-01

    In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.

  7. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  8. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  9. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less

  10. Bound states of moving potential wells in discrete wave mechanics

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2017-10-01

    Discrete wave mechanics describes the evolution of classical or matter waves on a lattice, which is governed by a discretized version of the Schrödinger equation. While for a vanishing lattice spacing wave evolution of the continuous Schrödinger equation is retrieved, spatial discretization and lattice effects can deeply modify wave dynamics. Here we discuss implications of breakdown of exact Galilean invariance of the discrete Schrödinger equation on the bound states sustained by a smooth potential well which is uniformly moving on the lattice with a drift velocity v. While in the continuous limit the number of bound states does not depend on the drift velocity v, as one expects from the covariance of ordinary Schrödinger equation for a Galilean boost, lattice effects can lead to a larger number of bound states for the moving potential well as compared to the potential well at rest. Moreover, for a moving potential bound states on a lattice become rather generally quasi-bound (resonance) states.

  11. 4-wave dynamics in kinetic wave turbulence

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto

    2018-01-01

    A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.

  12. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  13. Quasi-static evolution of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Longcope, D. W.; Sudan, R. N.

    1992-01-01

    A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.

  14. Relativistic longitudinal self-compression of ultrashort time-domain hollow Gaussian pulses in plasma

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Fang, Feiyun; Wang, Zhaoying; Lin, Qiang

    2017-10-01

    We report a study on dynamical evolution of the ultrashort time-domain dark hollow Gaussian (TDHG) pulses beyond the slowly varying envelope approximation in homogenous plasma. Using the complex-source-point model, an analytical formula is proposed for describing TDHG pulses based on the oscillating electric dipoles, which is the exact solution of the Maxwell's equations. The numerical simulations show the relativistic longitudinal self-compression (RSC) due to the relativistic mass variation of moving electrons. The influences of plasma oscillation frequency and collision effect on dynamics of the TDHG pulses in plasma have been considered. Furthermore, we analyze the evolution of instantaneous energy density of the TDHG pulses on axis as well as the off axis condition.

  15. Damage and Failure Analysis of AZ31 Alloy Sheet in Warm Stamping Processes

    NASA Astrophysics Data System (ADS)

    Zhao, P. J.; Chen, Z. H.; Dong, C. F.

    2016-07-01

    In this study, a combined experimental-numerical investigation on the failure of AZ31 Mg alloy sheet in the warm stamping process was carried out based on modified GTN damage model which integrated Yld2000 anisotropic yield criterion. The constitutive equations of material were implemented into a VUMAT subroutine for solver ABAQUS/Explicit and applied to the formability analysis of mobile phone shell. The morphology near the crack area was observed using SEM, and the anisotropic damage evolution at various temperatures was simulated. The distributions of plastic strain, damage evolution, thickness, and fracture initiation obtained from FE simulation were analyzed. The corresponding forming limit diagrams were worked out, and the comparison with the experimental data showed a good agreement.

  16. Evolution of shock-induced pressure on a flat-face/flat-base body and afterbody flow separation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Wray, A. A.

    1982-01-01

    The time-dependent, compressible Reynolds-averaged, Navier-Stokes equations are applied to solve an axisymmetric supersonic flow around a flat-face/flat-base body with and without a sting support. Important transient phenomena, not yet well understood, are investigated, and the significance of the present solution to the phenomena is discussed. The phenomena, described in detail, are as follows: the transient formation of the bow and recompression shock waves; the evolution of a pressure buildup due to diffraction of the incident shock wave in the forebody and afterbody regions, including the luminosity accompanying the pressure buildup; the separation of the flow as influenced by pressure buildup; the location of the separation and the reattachment points; and the transient period of the shock-induced base flow. The important influence of the nonsteady (transient) and steady flow on the aerodynamic characteristics, radiative heat transfer, and, thus, on the survivability or safeguard problems for an aircraft fuselage, missile, or planetary entry probe at very high flight speeds is described.

  17. Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2013-10-01

    The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.

  18. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  19. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  20. Stability analysis of shallow wake flows

    NASA Astrophysics Data System (ADS)

    Kolyshkin, A. A.; Ghidaoui, M. S.

    2003-11-01

    Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi[sbreve]ic et al. (1995). Such consistency provides further evidence that experimentally observed structures in shallow wake flows may be described by the nonlinear Ginzburg Landau equation. Previous works have found similar consistency between the Ginzburg Landau model and experimental data for the case of deep (i.e. unbounded) wake flows. However, it must be emphasized that much more information is required to confirm the appropriateness of the Ginzburg Landau equation in describing shallow wake flows.

Top