2004-12-21
This image shows six of the three-dozen "ultraviolet luminous galaxies" spotted in our corner of the universe by NASA's Galaxy Evolution Explorer. These massive galaxies greatly resemble newborn galaxies that were common in the early universe. The discovery came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. The galaxies, located in the center of each panel, were discovered after the Galaxy Evolution Explorer scanned a large portion of the sky with its highly sensitive ultraviolet-light detectors. Because young stars pack most of their light into ultraviolet wavelengths, young galaxies appear to the Galaxy Evolution Explorer like diamonds in a field of stones. Astronomers mined for these rare "gems" before, but missed them because they weren't able to examine a large enough slice of the sky. The Galaxy Evolution Explorer surveyed thousands of nearby galaxies before finding three-dozen newborns. While still relatively close in astronomical terms, these galaxies are far enough away to appear small to the Galaxy Evolution Explorer. Clockwise beginning from the upper left, they are called: GALEX_J232539.24+004507.1, GALEX_J231812.98-004126.1, GALEX_J015028.39+130858.5, GALEX_J021348.52+125951.3, GALEX_J143417.15+020742.5, GALEX_J020354.02-092452.5. http://photojournal.jpl.nasa.gov/catalog/PIA07143
Thermal control design of the Galaxy Evolution Explorer (GALEX)
NASA Technical Reports Server (NTRS)
Tsuyuki, G. T.; Lee, S. C.
2001-01-01
This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.
Thermal design and test verification of GALAXY evolution explorer (GALEX)
NASA Technical Reports Server (NTRS)
Wu, P. S.; Lee, S. -C.
2002-01-01
This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.
2003-04-07
KENNEDY SPACE CENTER, FLA. -- Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. - Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .
2003-04-07
KENNEDY SPACE CENTER, FLA. -- Workers push the Galaxy Evolution Explorer (GALEX) spacecraft toward the Pegasus XL launch vehicle for a second mating. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. - The Pegasus XL launch vehicle is ready for a re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-04-07
KENNEDY SPACE CENTER, FLA. - A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .
2003-04-07
KENNEDY SPACE CENTER, FLA. - Workers prepare the Galaxy Evolution Explorer (GALEX) spacecraft for re-mate with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.
2003-03-24
KENNEDY SPACE CENTER, Fla. - Workers in the Multi-Payload Processing Facility check the Galaxy Evolution Explorer (GALEX) spacecraft as it is removed from the Pegasus XL launch vehicle. Foreign object debris shields will be installed before its launch. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. The GALEX launch date is under review.
2003-03-24
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare to demate the Galaxy Evolution Explorer (GALEX) spacecraft from the Pegasus XL launch vehicle. Foreign object debris shields will be installed before its launch. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. The GALEX launch date is under review.
2003-03-24
KENNEDY SPACE CENTER, Fla. - Workers in the Multi-Payload Processing Facility begin demating the Galaxy Evolution Explorer (GALEX) spacecraft from the Pegasus XL launch vehicle. Foreign object debris shields will be installed before its launch. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. The GALEX launch date is under review.
2003-02-13
KENNEDY SPACE CENTER, FLA. -- The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, the GALEX satellite has been moved to a rotation stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-13
KENNEDY SPACE CENTER, FLA. - The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility look over the GALEX satellite before solar array testing. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. - Workers prepare the GALEX satellite for solar array testing in the Multi-Payload Processing Facility. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-13
KENNEDY SPACE CENTER, FLA. -- The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- The GALEX satellite is rotated to vertical again for solar array testing in the Multi-Payload Processing Facility. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, a worker inspects the GALEX satellite after its rotation on a stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, a worker checks over the GALEX satellite on a rotation stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- The port fairing closes in on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle enters the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-13
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility check the solar array panels on the Galaxy Evolution Explorer (GALEX) satellite after they were deployed. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-19
KENNEDY SPACE CENTER, FLA. - As darkness falls, the Pegasus launch vehicle arrives at the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-06
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-13
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility check the solar array panels on the Galaxy Evolution Explorer (GALEX) satellite after they were deployed. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-13
KENNEDY SPACE CENTER, FLA. - The Galaxy Evolution Explorer (GALEX) satellite is ready for deployment of its solar array panels during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is inside the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility close the fairing around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers watch as the first part of the fairing closes in on the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined. .
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is on a transporter, ready to be moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry the GALEX, an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history, into orbit. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-19
KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is on a transporter, ready to be moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
Searching for flares in GALEX data with gPhoton
NASA Astrophysics Data System (ADS)
Million, Chase; Fleming, Scott W.; Brasseur, Clara; Osten, Rachel A.; Bianchi, Luciana; Shiao, Bernie
2017-06-01
The Galaxy Evolution Explorer (GALEX) spacecraft observed a large fraction of the sky in two ultraviolet bands using micro-channel plate detectors with time resolutions of less than ten milliseconds. The gPhoton database of calibrated GALEX photon events at MAST has recently enabled a thorough search of this legacy data set for astrophysical variability at cadences shorter than the orbital period of the spacecraft. (https://archive.stsci.edu/prepds/gphoton/) We explore techniques for mining photon-level data for variability on timescales of seconds to minutes with an emphasis on dwarf star flares, which can be probed at lower energies and shorter durations with gPhoton than prior surveys. We present the early results of a systematic search for such events.
2003-02-18
KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft sits on the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-18
KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
2003-02-18
KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry ito orbit the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Multi-Payload Processing Facility gestures toward the Galaxy Evolution Explorer (GALEX) being prepared for encapsulation. The first part of the fairing is behind him. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
gPhoton: Time-tagged GALEX photon events analysis tools
NASA Astrophysics Data System (ADS)
Million, Chase C.; Fleming, S. W.; Shiao, B.; Loyd, P.; Seibert, M.; Smith, M.
2016-03-01
Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.
2011-05-25
This montage combines observations from NASA Spitzer Space Telescope and NASA Galaxy Evolution Explorer GALEX spacecraft showing three examples of colliding galaxies from a new photo atlas of galactic train wrecks.
A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX
NASA Astrophysics Data System (ADS)
Wyder, Ted K.; GALEX Science Team
2006-12-01
Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.
GALEX Distributes Local Galactic Treasures at AAS
2006-01-09
From sparkling blue rings to dazzling golden disks and mined from NASA Galaxy Evolution Explorer Survey of Nearby Galaxies data, these cosmic gems were collected with the telescope sensitive ultraviolet instruments.
The Ultraviolet Sky: classification and properties of UV sources from the GALEX surveys
NASA Astrophysics Data System (ADS)
Bianchi, L.; Rodriguez, L.; Herald, J.; Efremova, B.; GALEX Team
2005-12-01
We use UV imaging data from the GALEX (Galaxy Evolution Explorer) surveys, matched to other surveys at longer wavelengths, to classify sources and infer their physical parameters by comparing their measured UV - optical - IR colors to model colors. Our results significantly increase the statistics of some classes of astrophysical objects, such as Milky Way (MW) hot stars and low-redshift QSOs, and provide an unprecedented census of White Dwarfs in the MW. Results from follow-up spectroscopy of UV-selected sources are also presented. (see http://dolomiti.pha.jhu.edu for details ) We gratefully acknowledge NASA's support for construction, operation and data analysis of the GALEX mission, developed in cooperation with the French CNES and Korean Ministry of Science and Technology.
2003-03-13
In the Multi-Payload Processing Facility, the Pegasus XL launch vehicle is in position for mating of the Galaxy Evolution Explorer (GALEX) satellite. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
In the Multi-Payload Processing Facility, the Pegasus XL launch vehicle waits for mating of the Galaxy Evolution Explorer (GALEX) satellite. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-05-28
This compilation shows the constellation Hercules, as imaged on May 21 and 22, 2003, by NASA Galaxy Evolution Explorer. The images were captured by the two channels of the spacecraft camera during the mission first light milestone.
GALEX 1st Light Near Ultraviolet -50
2003-05-28
This image was taken May 21 and 22, 2003, by NASA Galaxy Evolution Explorer. The image was made from data gathered by the two channels of the spacecraft camera during the mission first light milestone.
GALEX 1st Light Near Ultraviolet
2003-05-28
This image was taken on May 21 and 22, 2003, by NASA Galaxy Evolution Explorer. The image was made from data gathered during the missions first light milestone, and shows celestial objects in the constellation Hercules.
Catalogue of UV sources in the Galaxy
NASA Astrophysics Data System (ADS)
Beitia-Antero, L.; Gómez de Castro, A. I.
2017-03-01
The Galaxy Evolution Explorer (GALEX) ultraviolet (UV) database contains the largest photometric catalogue in the ultraviolet range; as a result GALEX photometric bands, Near UV band (NUV) and the Far UV band (FUV), have become standards. Nevertheless, the GALEX catalogue does not include bright UV sources due to the high sensitivity of its detectors, neither sources in the Galactic plane. In order to extend the GALEX database for future UV missions, we have obtained synthetic FUV and NUV photometry using the database of UV spectra generated by the International Ultraviolet Explorer (IUE). This database contains 63,755 spectra in the low dispersion mode (λ / δ λ ˜ 300) obtained during its 18-year lifetime. For stellar sources in the IUE database, we have selected spectra with high Signal-To-NoiseRatio (SNR) and computed FUV and NUV magnitudes using the GALEX transmission curves along with the conversion equations between flux and magnitudes provided by the mission. Besides, we have performed variability tests to determine whether the sources were variable (during the IUE observations). As a result, we have generated two different catalogues: one for non-variable stars and another one for variable sources. The former contains FUV and NUV magnitudes, while the latter gives the basic information and the FUV magnitude for each observation. The consistency of the magnitudes has been tested using White Dwarfs contained in both GALEX and IUE samples. The catalogues are available through the Centre des Donées Stellaires. The sources are distributed throughout the whole sky, with a special coverage of the Galactic plane.
Near-UV Sources in the Hubble Ultra Deep Field: The Catalog
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.
2009-01-01
The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.
Galex Lyman-alpha Emitters: Physical Properties, Luminosity Bimodality, And Morphologies.
NASA Astrophysics Data System (ADS)
Mallery, Ryan P.
2010-01-01
The Galaxy Evolution Explorer spectroscopic survey has uncovered a large statistically significant sample of Lyman-alpha emitters at z sim0.3. ACS imaging of these sources in the COSMOS and AEGIS deep fields reveals that these Lyman-alpha emitters consist of two distinct galaxy morphologies, face on spiral galaxies and compact starburst/merging systems. The morphology bimodality also results in a bimodal distribution of optical luminosity. A comparison between the UV photometry and MIPS 24 micron detections of these sources indicates that they are bluer, and have less dust extinction than similar star forming galaxies that lack Lyman-alpha detection. Our findings show how the global gas and dust distribution of star forming galaxies inhibits Lyman-alpha emission in star forming galaxies. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the CNES of France and the Korean Ministry of Science and Technology.
GALEX 1st Light Far Ultraviolet
2003-05-28
This image was taken May 21 and 22, 2003 by NASA Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission first light milestone. It shows about 400 celestial objects
2010-09-01
compare the late- time (φ > 3 d) UV/optical light curve of SN 2010aq with two nearby Type IIP SNe well studied in the UV and optical with the Swift satellite ...following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time ...simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700± 200R, the size of a red supergiant star. An excess in UV emission
An Ultraviolet Investigation of Activity on Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2013-03-01
Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, Mp , or Mp /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8σ) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3σ when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result. Based on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey
NASA Astrophysics Data System (ADS)
Boudreaux, Thomas M.; Barlow, Brad N.; Fleming, Scott W.; Vasquez Soto, Alan; Million, Chase; Reichart, Dan E.; Haislip, Josh B.; Linder, Tyler R.; Moore, Justin P.
2017-08-01
NASA’s Galaxy Evolution Explorer (GALEX) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX, with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV r class of variable stars.
The GALEX Catalog of UV Sources in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Thilker, David A.; Bianchi, L.; Simons, R.
2014-01-01
The Galaxy Evolution Explorer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831 Å) and far-UV (FUV, 1344-1786 Å) bands at 5″ resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. Therefore, we performed custom PSF-fitting photometry of the GALEX data in the MC survey region (<15° from the LMC, <10° from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced contains many million unique NUV point sources. This poster provides a first look at the GALEX MC survey and highlights some of the science investigations that the catalog and imaging dataset will make possible.
A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes
NASA Astrophysics Data System (ADS)
Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh
2018-01-01
Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.
SOUTHERN COSMOLOGY SURVEY. III. QSOs FROM COMBINED GALEX AND OPTICAL PHOTOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Raul; Verde, Licia; Spergel, David N.
2009-04-15
We present catalogs of QSO candidates selected using photometry from Galaxy Evolution Explorer (GALEX) combined with the Sloan Digital Sky Survey (SDSS) in the Stripe 82 region and Blanco Cosmology Survey (BCS) near declination -55 deg. The SDSS region contains {approx_equal}700 objects with magnitude i < 20 and {approx_equal}3600 objects with i < 21.5 in a {approx_equal}60 deg{sup 2} sky region, while the BCS region contains {approx_equal}280 objects with magnitude i < 20 and {approx}2000 objects with i < 21.5 for a 11 deg{sup 2} sky region that is being observed by three current microwave Sunyaev-Zeldovich surveys. Our QSO catalogmore » is the first one in the BCS region. Deep GALEX exposures ({approx}>2000 s in F {sub UV} and N {sub UV}, except in three fields) provide high signal-to-noise photometry in the GALEX bands (F {sub UV}, N {sub UV} < 24.5 mag). From this data, we select QSO candidates using only GALEX and optical r-band photometry, using the method given by Atlee and Gould. In the Stripe 82 field, 60% (30%) of the GALEX-selected QSOs with optical magnitude i < 20 (i < 21.5) also appear in the Richards et al. QSO catalog constructed using five-band optical SDSS photometry. Comparison with the same catalog by Richards et al. shows that the completeness of the sample is approximately 40% (25%). However, for regions of the sky with very low dust extinction, like the BCS 23-hr field and the Stripe 82 between 0{sup 0} and 10{sup 0} in R.A., our completeness is close to 95%, demonstrating that deep GALEX observations are almost as efficient as multiwavelength observations at finding QSOs. GALEX observations thus provide a viable alternate route to QSO catalogs in sky regions where u-band optical photometry is not available. The full catalog is available at http://www.ice.csic.es/personal/jimenez/PHOTOZ.« less
HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX
NASA Astrophysics Data System (ADS)
Schneider, Adam C.; Shkolnik, Evgenya L.
2018-03-01
Low-mass stars are currently the most promising targets for detecting and characterizing habitable planets in the solar neighborhood. However, the ultraviolet (UV) radiation emitted by such stars can erode and modify planetary atmospheres over time, drastically affecting their habitability. Thus, knowledge of the UV evolution of low-mass stars is critical for interpreting the evolutionary history of any orbiting planets. Shkolnik & Barman used photometry from the Galaxy Evolution Explorer (GALEX) to show how UV emission evolves for early-type M stars (>0.35 M ⊙). In this paper, we extend their work to include both a larger sample of low-mass stars with known ages as well as M stars with lower masses. We find clear evidence that mid- and late-type M stars (0.08–0.35 M ⊙) do not follow the same UV evolutionary trend as early-Ms. Lower-mass M stars retain high levels of UV activity up to field ages, with only a factor of 4 decrease on average in GALEX NUV and FUV flux density between young (<50 Myr) and old (∼5 Gyr) stars, compared to a factor of 11 and 31 for early-Ms in NUV and FUV, respectively. We also find that the FUV/NUV flux density ratio, which can affect the photochemistry of important planetary biosignatures, is mass- and age-dependent for early-Ms, but remains relatively constant for the mid- and late-type Ms in our sample.
The Galaxy Color-Magnitude Diagram in the Local Universe from GALEX and SDSS Data
NASA Astrophysics Data System (ADS)
Wyder, T. K.; GALEX Science Team
2005-12-01
We present the relative density of galaxies in the local universe as a function of their r-band absolute magnitudes and ultraviolet minus r-band colors. The Sloan Digital Sky Survey (SDSS) main galaxy sample selected in the r-band was matched with a sample of galaxies from the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey in both the far-UV (FUV) and near-UV (NUV) bands. Simlar to previous optical studies, the distribution of galaxies in (FUV-r) and (NUV-r) is bimodal with well-defined blue and red sequences. We compare the distribution of galaxies in these colors with both the D4000 index measured from the SDSS spectra as well as the SDSS (u-r) color.
2003-04-24
KENNEDY SPACE CENTER, FLA. - The mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite arrive at Cape Canaveral Air Force Station. The GALEX, to be launched April 28 from an Orbital Sciences L-1011 aircraft, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
Galaxy Mission Completes Four Star-Studded Years in Space
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Galaxy Evolution Explorer is celebrating its fourth year in space with some of M81's 'hottest' stars. In a new ultraviolet image, the magnificent M81 spiral galaxy is shown at the center. The orbiting observatory spies the galaxy's 'sizzling young starlets' as wisps of bluish-white swirling around a central golden glow. The tints of gold at M81's center come from a 'senior citizen' population of smoldering stars. 'This is a spectacular view of M81,' says Dr. John Huchra, of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass. 'When we proposed to observe this galaxy with GALEX we hoped to see globular clusters, open clusters, and young stars...this view is everything that we were hoping for.' The image is one of thousands gathered so far by GALEX, which launched April 28, 2003. This mission uses ultraviolet wavelengths to measure the history of star formation 80 percent of the way back to the Big Bang. The large fluffy bluish-white material to the left of M81 is a neighboring galaxy called Holmberg IX. This galaxy is practically invisible to the naked human eye. However, it is illuminated brilliantly in GALEX's wide ultraviolet eyes. Its ultraviolet colors show that it is actively forming young stars. The bluish-white fuzz in the space surrounding M81 and Holmberg IX is new star formation triggered by gravitational interactions between the two galaxies. Huchra notes that the active star formation in Holmberg IX is a surprise, and says that more research needs to be done in light of the new findings from GALEX. 'Some astronomers suspect that the galaxy Holmberg IX is the result of a galactic interaction between M81 and another neighboring galaxy M82,' says Huchra. 'This particular galaxy is especially important because there are a lot of galaxies like Holmberg IX around our Milky Way galaxy. By understanding how Holmberg IX came to be, we hope to understand how all the little galaxies surrounding the Milky Way developed.' 'Four years after GALEX's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager. M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today. The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez
NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gapsmore » between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.« less
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús
2018-02-01
We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.
GALEX 1st Light Far Ultraviolet
NASA Technical Reports Server (NTRS)
2003-01-01
This image was taken May 21 and 22 by NASA's Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission's 'first light' milestone. It shows about 400 celestial objects, appearing in blue, detected over a 3-minute, 20-second period in the constellation Hercules. The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas. The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years.New GALEX UV Data Products At MAST For Stellar Astrophysics
NASA Astrophysics Data System (ADS)
Shiao, Bernie; Fleming, S. W.; Million, C.; Seibert, M.; Bianchi, L.; Thompson, R.; Tseng, S.; Adler, W. J.; Hubbard, M.; Levay, K.; Madore, B. F.; Martin, C. D.; Nieto-Santisteban, M. A.; Sahai, R.; Schiminovich, D.; White, R. L.; Wyder, T. K.
2014-01-01
The Galaxy Evolution Explorer (GALEX) mission ended in June 2013 after ten years in orbit. Its FUV and NUV microchannel plate detectors were used to conduct a variety of direct imaging and spectroscopic astronomical surveys with various depths and sky coverage, recording individual photon events with a time resolution of five thousandths of a second. Although the mission has ended, MAST is continuing to provide new data products as the mission transitions to a legacy archive. One product is the GCAT (Seibert et al., in prep), a catalog of GALEX sources across the entire GR6 data release that removes duplicate objects found in the GALEX MCAT. The GCAT defines "primary" NUV and FUV fluxes within the AIS and MIS surveys 40 million and 22 million sources, respectively), accounting for tile overlaps, and with visual inspection of every tile to flag artifacts and conduct other quality control checks. Another catalog of unique sources is that of Bianchi et al. (2013). Similar to the GCAT, their catalog produces a list of distinct GALEX sources in both the FUV and NUV from the AIS and MIS surveys, and includes data from GR7 (through the end of 2012). They have also cross-matched their sources with SDSS DR9, GSC-II, PanSTARRS, and 2MASS. We review access options for these catalogs, including updated matches between the GCAT and SDSS / Kepler available at MAST. In addition to these unique GALEX source catalogs, MAST will provide a database and software package that archives each of the ~1.5 trillion photon events detected over the lifetime of the mission. For the first time, users will be able to create calibrated lightcurves, intensity maps, and animated movies from any set of photons selected across any tile, and with specified aperture sizes, coordinates, and time steps. Users can access the data using either a python-based command-line software package, through a web interface at MAST, or (eventually) through CasJobs using direct SQL queries. We present some example GALEX lightcurves and images using this new data product to highlight just some of the possibilities available for users to mine the GALEX photon database, particularly with variable sources.
GALEX studies on UV properties of Nearby Early-type Galaxies
NASA Astrophysics Data System (ADS)
Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team
2005-12-01
We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.
2003-04-24
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers attach the mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite to the Orbital Sciences L-1011 aircraft. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers finish attaching the mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite to the Orbital Sciences L-1011 aircraft. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - The mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite move under the Orbital Sciences L-1011 aircraft at Cape Canaveral Air Force Station. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers prepare to attach the mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite to the Orbital Sciences L-1011 aircraft. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - In the early morning light, the mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite are seen near the Orbital Sciences L-1011 aircraft at Cape Canaveral Air Force Station. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - The mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite are moved into position under the Orbital Sciences L-1011 aircraft at Cape Canaveral Air Force Station. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, workers finish attaching the mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite to the Orbital Sciences L-1011 aircraft. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite are mated to the Orbital Sciences L-1011 aircraft. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-24
KENNEDY SPACE CENTER, FLA. - The mated Pegasus XL and Galaxy Evolution Explorer (GALEX) satellite approach the Orbital Sciences L-1011 aircraft at Cape Canaveral Air Force Station. The GALEX, to be launched April 28 from the L-1011, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
THE PANCHROMATIC STARBURST IRREGULAR DWARF SURVEY (STARBIRDS): OBSERVATIONS AND DATA ARCHIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D., E-mail: kmcquinn@astro.umn.edu
2015-06-22
Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The datamore » sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging.« less
NASA Astrophysics Data System (ADS)
Syphers, David; Anderson, Scott F.; Zheng, Wei; Haggard, Daryl; Meiksin, Avery; Schneider, Donald P.; York, Donald G.
2009-11-01
Absorption along quasar sightlines remains among the most sensitive direct measures of He II reionization in much of the intergalactic medium (IGM). Until recently, fewer than a half-dozen unobscured quasar sightlines suitable for the He II Gunn-Peterson test were known; although these handful demonstrated great promise, the small sample size limited confidence in cosmological inferences. We have recently added nine more such clean He II quasars, exploiting Sloan Digital Sky Survey (SDSS) quasar samples, broadband ultraviolet (UV) imaging from Galaxy Evolution Explorer (GALEX), and high-yield UV spectroscopic confirmations from Hubble Space Telescope (HST). Here we markedly expand this approach by cross-correlating SDSS DR7 and GALEX GR4+5 to catalog 428 SDSS and 165 other quasars with z > 2.78 having likely (~70%) GALEX detections, suggesting they are bright into the far-UV. Reconnaissance HST Cycle 16 Supplemental prism data for 29 of these new quasar-GALEX matches spectroscopically confirm 17 as indeed far-UV bright. At least 10 of these confirmations have clean sightlines all the way down to He II Lyα, substantially expanding the number of known clean He II quasars, and reaffirming the order of magnitude enhanced efficiency of our selection technique. Combined confirmations from this and our past programs yield more than 20 He II quasars, quintupling the sample. These provide substantial progress toward a sample of He II quasar sightlines large enough, and spanning a sufficient redshift range, to enable statistical IGM studies that may avoid individual object peculiarity and sightline variance. Our expanded catalog of hundreds of high-likelihood far-UV-bright QSOs additionally will be useful for understanding the extreme-UV properties of the quasars themselves. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
The effects of the WISE/ GALEX photometry for the SED-fitting with M31 star clusters and candidates
NASA Astrophysics Data System (ADS)
Fan, Zhou; Wang, Song
2017-10-01
Spectral energy distribution (SED) fitting of stellar population synthesis models is an important and popular way to constrain the physical parameters—e.g., the ages, metallicities, masses for stellar population analysis. The previous works suggest that both blue-bands and red-bands photometry works for the SED-fitting. Either blue-domained or red-domained SED-fitting usually lead to the unreliable or biased results. Meanwhile, it seems that extending the wavelength coverage could be helpful. Since the Galaxy Evolution Explorer ( GALEX) and Wide-field Infrared Survey Explorer (WISE) provide the FUV/NUV and mid-infrared W1/W2 band data, we extend the SED-fitting to a wider wavelength coverage. In our work, we analyzed the effect of adding the FUV/NUV and W1/W2 band to the optical and near-infrared UBVRIJHK bands for the fitting with the (Bruzual and Charlot in Mon. Not. R. Astron. Soc. 344, 1000, 2003) (BC03) models and galev models. It is found that the FUV/NUV bands data affect the fitting results of both ages and metallicities much more significantly than that of the WISE W1/W2 band with the BC03 models. While for the galev models, the effect of the WISE W1/W2 band for the metallicity fitting seems comparable to that of GALEX FUV/NUV bands, but for age the effect of the W1/W2 band seems less crucial than that of the FUV/NUV bands. Thus we conclude that the GALEX FUV/NUV bands are more crucial for the SED-fitting of ages and metallicities, than the other bands, and the high-quality UV data (with high photometry precision) are required.
2003-04-28
KENNEDY SPACE CENTER, FLA. - Orbital Sciences' L-1011 aircraft carries the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. The aircraft is scheduled for takeoff in a window beginning at 7:50 a.m. and release of the Pegasus about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-28
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-28
KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-03
KENNEDY SPACE CENTER, FLA. -- A technician (left) works on NASA's Galaxy Evolution Explorer spacecraft after rotation. The GALEX will be mated mating with the Pegasus XL launch vehicle. Set to launch April 2 from Cape Canaveral Air Force Station, the GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. From its orbit high above Earth, the spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors. Looking in the ultraviolet will single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive
NASA Astrophysics Data System (ADS)
Miles, Brittany E.; Shkolnik, Evgenya L.
2017-08-01
The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope. These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer (GALEX) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771-2831 Å) and far-ultraviolet (FUV; 1344-1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.
HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Brittany E.; Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu
The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV;more » 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.« less
ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara
2012-11-01
We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This database is the largest homogeneous catalog of UV colors ever published for stellar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly usedmore » to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance, and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV - V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.« less
2003-04-28
KENNEDY SPACE CENTER, FLA. - In the early morning hours at Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-28
KENNEDY SPACE CENTER, FLA. - Orbital Sciences’ L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
GALEX Distributes Local Galactic Treasures at AAS
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] GALEX Poster From sparkling blue rings to dazzling golden disks, Galaxy Evolution Explorer (Galex) scientists are handing out a collection of their finest galactic treasures at the January 2006 American Astronomical Society meeting in Washington, D.C. Mined from the mission's Survey of Nearby Galaxies data, these cosmic gems were collected with the telescope's sensitive ultraviolet instruments. The gallery of galaxies has been made into a poster for meeting attendees visiting the mission's booth. Organized from far-ultraviolet to near-ultraviolet bright galaxies, this poster encapsulates the heart of the mission to study how galaxies and star formation rates have changed over the past 10 billion years. Events in space take millions or billions of years to unfold, which means that astronomers can't watch individual galaxies and stars age over time. Luckily, because the physics of light travel dictates that the farther away an object is from Earth, the longer it takes for its light to travel to us, the universe can be thought of as a time machine. By building telescopes sensitive enough to capture objects that are 10 billion light-years away, astronomers can essentially see an object the way it looked 10 billion years ago. Galex astronomers are using this phenomenon to their advantage by taking snapshots of different galaxies at various distances in space. By comparing portraits of numerous objects at various times in the universe's history, the team can begin to piece together the life cycle of stars and galaxies. For the poster, Galex scientists organized 196 different nearby galaxies in bins of increasing ultraviolet color. By placing the various snapshots side by side, astronomers can see how galaxies age differently. When viewed in ultraviolet, active star-forming regions in galaxies can be seen as glittering blue structures, while a soft, golden glow indicates the presence of older stars. The 196 galaxies represented in the poster were selected from more than 1,000 galaxies in the 'Ultraviolet Atlas of Nearby Galaxies.' So far, the Galex mission has surveyed more than 100 million galaxies.GALEX 1st Light Near and Far Ultraviolet -100
2003-05-28
NASA's Galaxy Evolution Explorer took this image on May 21 and 22, 2003. The image was made from data gathered by the two channels of the spacecraft camera during the mission's "first light" milestone. It shows about 100 celestial objects in the constellation Hercules. The reddish objects represent those detected by the camera's near ultraviolet channel over a 5-minute period, while bluish objects were detected over a 3-minute period by the camera's far ultraviolet channel. The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas. The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years. http://photojournal.jpl.nasa.gov/catalog/PIA04281
Heritage Adoption Lessons Learned: Cover Deployment and Latch Mechanism
NASA Technical Reports Server (NTRS)
Wincentsen, James
2006-01-01
Within JPL, there is a technology thrust need to develop a larger Cover Deployment and Latch Mechanism (CDLM) for future missions. The approach taken was to adopt and scale the CDLM design as used on the Galaxy Evolution Explorer (GALEX) project. The three separate mechanisms that comprise the CDLM will be discussed in this paper in addition to a focus on heritage adoption lessons learned and specific examples. These lessons learned will be valuable to any project considering the use of heritage designs.
A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.
2017-10-20
We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less
The Panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS): Observations and Data Archive
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D.
2015-06-01
Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The data sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
2003-04-28
KENNEDY SPACE CENTER, FLA. - Orbital Sciences' L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-28
KENNEDY SPACE CENTER, FLA. - Orbital Sciences' L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-04-28
KENNEDY SPACE CENTER, FLA. - Orbital Sciences' L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
The Timescale-dependent Color Variability of Quasars Viewed with /GALEX
NASA Astrophysics Data System (ADS)
Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han
2016-11-01
In a recent work by Sun et al., the color variation of quasars, namely the bluer-when-brighter trend, was found to be timescale dependent using the SDSS g/r band light curves in Stripe 82. Such timescale dependence, I.e., bluer variation at shorter timescales, supports the thermal fluctuation origin of the UV/optical variation in quasars, and can be modeled well with the inhomogeneous accretion disk model. In this paper, we extend the study to much shorter wavelengths in the rest frame (down to extreme UV) using GALaxy Evolution eXplorer (GALEX) photometric data of quasars collected in two ultraviolet bands (near-UV and far-UV). We develop Monte Carlo simulations to correct for possible biases due to the considerably larger photometric uncertainties in the GALEX light curves (particularly in the far-UV, compared with the SDSS g/r bands), which otherwise could produce artificial results. We securely confirm the previously discovered timescale dependence of the color variability with independent data sets and at shorter wavelengths. We further find that the slope of the correlation between the amplitude of the color variation and timescale appears even steeper than predicted by the inhomogeneous disk model, which assumes that disk fluctuations follow a damped random walk (DRW) process. The much flatter structure function observed in the far-UV compared with that at longer wavelengths implies deviation from the DRW process in the inner disk, where rest-frame extreme UV radiation is produced.
Searching for Young M Dwarfs with GALEX
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Liu, Michael C.; Reid, I. Neill; Dupuy, Trent; Weinberger, Alycia J.
2011-01-01
The census of young moving groups in the solar neighborhood is significantly incomplete in the low-mass regime. We have developed a new selection process to find these missing members based on the Galaxy Evolution Explorer (GALEX) All-Sky Imaging Survey (AIS). For stars with spectral types gsimK5 (R - J >~ 1.5) and younger than ≈300 Myr, we show that near-UV (NUV) and far-UV (FUV) emission is greatly enhanced above the quiescent photosphere, analogous to the enhanced X-ray emission of young low-mass stars seen by ROSAT but detectable to much larger distances with GALEX. By combining GALEX data with optical (HST Guide Star Catalog) and near-IR (2MASS) photometry, we identified an initial sample of 34 young M dwarf candidates in a 1000 deg2 region around the ≈10 Myr TW Hydra Association (TWA). Low-resolution spectroscopy of 30 of these found 16 which had Hα in emission, which were then followed up at high resolution to search for spectroscopic evidence of youth and to measure their radial velocities. Four objects have low surface gravities, photometric distances and space motions consistent with TWA, but the non-detection of Li indicates that they may be too old to belong to this moving group. One object (M3.5, 93 ± 19 pc) appears to be the first known accreting low-mass member of the ≈15 Myr Lower Centaurus Crux OB association. Two objects exhibit all the characteristics of the known TWA members, and thus we designate them as TWA 31 (M4.2, 110 ± 11 pc) and TWA 32 (M6.3, 53 ± 5 pc). TWA 31 shows extremely broad (447 km s-1) Hα emission, making it the sixth member of TWA found to have ongoing accretion. TWA 32 is resolved into a 0farcs6 binary in Keck laser guide star adaptive optics imaging. Our search should be sensitive down to spectral types of at least M4-M5 in TWA and thus the small numbers of new member is puzzling. This might indicate TWA has an atypical mass function or that the presence of lithium absorption may be too restrictive a criteria for selecting young low-mass stars. This paper is based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, the Keck II telescope, and the GALEX, 2MASS, and HST/GSC v2.3 photometric catalogs. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
Overview of GX launch services by GALEX
NASA Astrophysics Data System (ADS)
Sato, Koji; Kondou, Yoshirou
2006-07-01
Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.
New binaries among UV-selected, hot subdwarf stars and population properties
NASA Astrophysics Data System (ADS)
Kawka, A.; Vennes, S.; O'Toole, S.; Németh, P.; Burton, D.; Kotze, E.; Buckley, D. A. H.
2015-07-01
We have measured the orbital parameters of seven close binaries, including six new objects, in a radial velocity survey of 38 objects comprising a hot subdwarf star with orbital periods ranging from ˜0.17 to 3 d. One new system, GALEX J2205-3141, shows reflection on an M dwarf companion. Three other objects show significant short-period variations, but their orbital parameters could not be constrained. Two systems comprising a hot subdwarf paired with a bright main-sequence/giant companion display short-period photometric variations possibly due to irradiation or stellar activity and are also short-period candidates. All except two candidates were drawn from a selection of subluminous stars in the Galaxy Evolution Explorer ultraviolet sky survey. Our new identifications also include a low-mass subdwarf B star and likely progenitor of a low-mass white dwarf (GALEX J0805-1058) paired with an unseen, possibly substellar, companion. The mass functions of the newly identified binaries imply minimum secondary masses ranging from 0.03 to 0.39 M⊙. Photometric time series suggest that, apart from GALEX J0805-1058 and J2205-3141, the companions are most likely white dwarfs. We update the binary population statistics: close to 40 per cent of hot subdwarfs have a companion. Also, we found that the secondary mass distribution shows a low-mass peak attributed to late-type dwarfs, and a higher mass peak and tail distribution attributed to white dwarfs and a few spectroscopic composites. Also, we found that the population kinematics imply an old age and include a few likely halo population members.
A Faint Flux-limited Lyα Emitter Sample at z ˜ 0.3
NASA Astrophysics Data System (ADS)
Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.; Cowie, Lennox L.; Rosenwasser, Benjamin
2017-10-01
We present a flux-limited sample of z ˜ 0.3 Lyα emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX z ˜ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Lyα emission line directly from our sample. We examine the evolution of these quantities from z ˜ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Lyα luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Lyα luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the Hα luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Lyα escape fraction. Finally, we show that the observed Lyα luminosity density from AGNs is comparable to the observed Lyα luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Lyα luminosity density persists out to z ˜ 2.2. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waszczak, Adam; Kulkarni, Shrinivas R.; Ofek, Eran O., E-mail: waszczak@caltech.edu
We present ultraviolet (UV) photometry (near-UV (NUV) band, 180–280 nm) of 405 asteroids observed serendipitously by GALEX from 2003 to 2012. All asteroids in this sample were detected by GALEX at least twice. Unambiguous visible-color-based taxonomic labels (C type versus S type) exist for 315 of these asteroids; of these, thermal-infrared-based diameters are available for 245. We derive NUV − V color using two independent models to predict the visual magnitude V at each NUV-detection epoch. Both V models produce NUV − V distributions in which the S types are redder than C types with more than 8σ confidence. Thismore » confirms that the S types’ redder spectral slopes in the visible remain redder than the C types’ into the NUV, this redness being consistent with absorption by silica-containing rocks. The GALEX asteroid data confirm earlier results from the International Ultraviolet Explorer, which two decades ago produced the only other sizeable set of UV asteroid photometry. The GALEX-derived NUV − V data also agree with previously published Hubble Space Telescope (HST) UV observations of asteroids 21 Lutetia and 1 Ceres. Both the HST and GALEX data indicate that NUV band is less useful than u band for distinguishing subgroups within the greater population of visible-color-defined C types (notably, M types and G types)« less
The ultraviolet view of the Magellanic Clouds from GALEX: A first look at the LMC source catalog
NASA Astrophysics Data System (ADS)
Simons, Raymond; Thilker, David; Bianchi, Luciana; Wyder, Ted
2014-03-01
The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831 Å) and far-UV (FUV, 1344-1786 Å) bands at 5″ resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. The density of UV sources is quite high in many areas of the LMC and SMC. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. We performed custom-photometry of the GALEX data in the MC survey region (<15° from the LMC, <10° from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced for the LMC contains nearly six million unique NUV point sources within 15° and is briefly presented herein. This paper provides a first look at the GALEX MC survey and highlights some of the science investigations that the entire catalog and imaging dataset will make possible.
NASA Astrophysics Data System (ADS)
Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.
2018-03-01
Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez de Castro, Ana I.; Lopez-Santiago, Javier; López-Martínez, Fatima
2015-02-01
In this work, we identify 63 bona fide new candidates to T Tauri stars (TTSs) in the Taurus-Auriga region, using its ultraviolet excess as our baseline. The initial data set was defined from the GALEX all sky survey (AIS). The GALEX satellite obtained images in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands where TTSs show a prominent excess compared with main-sequence or giants stars. GALEX AIS surveyed the Taurus-Auriga molecular complex, as well as a fraction of the California Nebula and the Perseus complex; bright sources and dark clouds were avoided. The properties of TTSs in the ultraviolet (GALEX), opticalmore » (UCAC4), and infrared (2MASS) have been defined using the TTSs observed with the International Ultraviolet Explorer reference sample. The candidates were identified by means of a mixed ultraviolet-optical-infrared excess set of colors; we found that the FUV-NUV versus J–K color-color diagram is ideally suited for this purpose. From an initial sample of 163,313 bona fide NUV sources, a final list of 63 new candidates to TTSs in the region was produced. The search procedure has been validated by its ability to detect all known TTSs in the area surveyed: 31 TTSs. Also, we show that the weak-lined TTSs are located in a well-defined stripe in the FUV-NUV versus J–K diagram. Moreover, in this work, we provide a list of TTSs photometric standards for future GALEX-based studies of the young stellar population in star forming regions.« less
Stellar Activity in the Broadband Ultraviolet
NASA Astrophysics Data System (ADS)
Findeisen, K.; Hillenbrand, L.; Soderblom, D.
2011-07-01
The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using stars within 50 pc as a calibration sample representing the field and in selected nearby associations representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R'HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780 Å) excess flux is roughly proportional to R'HK. We also detect a correlation between near-UV (NUV, 1780-2830 Å) flux and activity or age, but the effect is much more subtle, particularly for stars older than ~0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when predicting UV flux, ~0.18 dex when predicting R'HK, and ~0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.
2016-07-11
The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695
Lyman Limit Absorbers in GALEX Spectra
NASA Astrophysics Data System (ADS)
Williger, Gerard M.; Haberzettl, Lutz G.; Ribaudo, Joseph; Kuchner, Marc J.; Burchett, Joseph; Clowes, Roger G.; Lauroesch, James T.; Mills, Brianna; Borden, Jeremy
2018-01-01
We describe the method and early results for crowdsourcing a search for low-redshift partial and complete Lyman Limit Systems (pLLSs and LLSs) in the GALEX spectral archive. LLSs have been found in large numbers at z>3 and traced to lower redshift through a relatively small number of QSO spectra from spaced-based telescopes. From a sample of 44 pLLSs and 11 LLSs at 0.1
NASA Technical Reports Server (NTRS)
Petty, S. M.; Neill, J. D.; Jarrett, T. H.; Blain, A. W.; Farrah, D. G.; Rich, R. M.; Tsai, C.-W.; Benford, D. J.; Bridge, C. R.; Lake, S. E.;
2013-01-01
In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by approx.1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 +/- 0.3 Gyr, and 6.2 +/- 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed approx. 1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the approx. 0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z approx. 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, S. M.; Farrah, D. G.; Neill, J. D.
2013-10-01
In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infraredmore » (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by {approx}1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 {+-} 0.3 Gyr, and 6.2 {+-} 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed {approx}1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the {approx}0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z {approx} 1.« less
2003-03-13
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-13
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer is prepared for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
SEARCHING FOR YOUNG M DWARFS WITH GALEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkolnik, Evgenya L.; Weinberger, Alycia J.; Liu, Michael C.
2011-01-20
The census of young moving groups in the solar neighborhood is significantly incomplete in the low-mass regime. We have developed a new selection process to find these missing members based on the Galaxy Evolution Explorer (GALEX) All-Sky Imaging Survey (AIS). For stars with spectral types {approx}>K5 (R - J {approx}> 1.5) and younger than {approx}300 Myr, we show that near-UV (NUV) and far-UV (FUV) emission is greatly enhanced above the quiescent photosphere, analogous to the enhanced X-ray emission of young low-mass stars seen by ROSAT but detectable to much larger distances with GALEX. By combining GALEX data with optical (HSTmore » Guide Star Catalog) and near-IR (2MASS) photometry, we identified an initial sample of 34 young M dwarf candidates in a 1000 deg{sup 2} region around the {approx}10 Myr TW Hydra Association (TWA). Low-resolution spectroscopy of 30 of these found 16 which had H{alpha} in emission, which were then followed up at high resolution to search for spectroscopic evidence of youth and to measure their radial velocities. Four objects have low surface gravities, photometric distances and space motions consistent with TWA, but the non-detection of Li indicates that they may be too old to belong to this moving group. One object (M3.5, 93 {+-} 19 pc) appears to be the first known accreting low-mass member of the {approx}15 Myr Lower Centaurus Crux OB association. Two objects exhibit all the characteristics of the known TWA members, and thus we designate them as TWA 31 (M4.2, 110 {+-} 11 pc) and TWA 32 (M6.3, 53 {+-} 5 pc). TWA 31 shows extremely broad (447 km s{sup -1}) H{alpha} emission, making it the sixth member of TWA found to have ongoing accretion. TWA 32 is resolved into a 0.''6 binary in Keck laser guide star adaptive optics imaging. Our search should be sensitive down to spectral types of at least M4-M5 in TWA and thus the small numbers of new member is puzzling. This might indicate TWA has an atypical mass function or that the presence of lithium absorption may be too restrictive a criteria for selecting young low-mass stars.« less
Identifying Nearby Galaxy Outliers Using Neutral Hydrogen Scaling Relations
NASA Astrophysics Data System (ADS)
Mohammed, Steven; Schiminovich, D.
2013-01-01
Galaxies appear to be divided into two distinct families: blue, star-forming, gas-rich, spiral galaxies and red, gas-deficient, elliptical galaxies. However, the transition between these two families is not well understood. A galaxy's gas content could be a good indicator of processes that affect this transition. We assembled a catalog of physical properties for 535 nearby massive galaxies (redshifts 0.025 < z < 0.05; stellar masses M* > 108 solar masses) from various existing surveys to examine their neutral hydrogen (HI) gas content. We obtained HI data (e.g., HI masses and HI radii) from several surveys; other properties (e.g., stellar masses, light radii and star formation rates) were derived from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX). Our goal is to identify any outliers from scaling relations derived from galaxies in the GALEX Arecibo SDSS Survey (GASS) in hope that these outliers can provide us with insight into processes relevant to the blue-to-red-galaxy transition. Results indicate that our heterogeneous selection yields a sample that shows similar scaling relations as the GASS galaxies. For example, the atomic HI gas fraction (MHI/M*) decreases strongly as both stellar mass and stellar mass surface density increase. Here, we show recent work that investigates the HI distribution maps of our galaxies to identify environmental effects that might cause outliers to exist.
Young Blue Straggler Stars in the Galactic Field
NASA Astrophysics Data System (ADS)
Ekanayake, Gemunu; Wilhelm, Ronald
2018-06-01
In this study we present an analysis of a sample of field blue straggler (BS) stars that show high ultra violet emission in their spectral energy distributions (SED): indication of a hot white dwarf (WD) companion to BS. Using photometry available in the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX ) surveys we identified 80 stars with UV excess. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed a fitting routine that could fit binary model SEDs to the observed SED. Results from this fit indicate the need for a hot WD companion to provide the excess UV flux. The WD mass distribution peaks at ˜0.4 M⊙, suggesting the primary formation channel of field BSs is case B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of the binary mass transfer efficiency to be β ˜ 0.5.
NASA Astrophysics Data System (ADS)
Bianchi, Luciana
2018-01-01
Rest-frame UV, uniquely sensitive to luminous, short-lived hot massive stars, trace and age-date star formation across galaxies, and is very sensitive to dust, whose properties and presence are closely connected to star formation.With wide f-o-v and deep sensitivity in two broad filters,FUV and NUV,GALEX delivered the first comprehensive UV view of large nearby galaxies, and of the universe to z~2 (e.g.,Bianchi 2014 ApSS 354,103), detected star formation at the lowest rates, in environments where it was not seen before and not expected (e.g. Bianchi 2011 ApSS 335,51; Thilker+2009 Nature 457,990;2007 ApJS 173,538), triggering a new era of investigations with HST and large ground-based telescopes. New instrument technology and modeling capabilities make it now possible and compelling to solve standing issues. The scant UV filters available (esp. FUV) and the wide gap in resolution and f-o-v between GALEX and HST leaves old and new questions open. A chief limitation is degeneracies between physical parameters of stellar populations (age/SFR) and hot stars, and dust (e.g. Bianchi+ 2014 JASR 53,928).We show sample model simulations for filter optimization to provide critical measurements for the science objectives. We also demonstrate how adequate FUV+NUV filters, and resolution, allow us to move from speculative interpretation of UV data to unbiased physical characterization of young stellar populations and dust, using new data from UVIT, which, though smaller than CETUS, has better resolution and filter coverage than GALEX.Also, our understanding of galaxy chemical enrichment is limited by critical gaps in stellar evolution; GALEX surveys enabled the first unbiased census of the Milky Way hot-WD population (Bianchi+2011 MNRAS, 411,2770), which we complement with SDSS, Pan-STARRS, and Gaia data to fill such gaps (Bianchi et al.2018, ApSS). Such objects in CETUS fields (deeper exposures, more filters, and the first UV MOS) will be much better characterized, enabling "Galactic archeology" investigations not possible otherwise.
NASA Astrophysics Data System (ADS)
Tamura, K.; Jansen, R. A.; Windhorst, R. A.
2009-12-01
We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.
NASA Astrophysics Data System (ADS)
Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The
2016-03-01
The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.
Dust-obscured Galaxies in the Local Universe
NASA Astrophysics Data System (ADS)
Hwang, Ho Seong; Geller, Margaret J.
2013-06-01
We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ~ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S 12 μm/S 0.22 μm >= 892 and S 12 μm > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 1010 (L ⊙) <~ L IR <~ 7.0 × 1011 (L ⊙) with a median L IR of 2.1 × 1011 (L ⊙). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S 12 μm/S 0.22 μm but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.
An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos
NASA Astrophysics Data System (ADS)
van Zee, Liese
The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.
COLORS OF ELLIPTICALS FROM GALEX TO SPITZER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schombert, James M., E-mail: jschombe@uoregon.edu
2016-12-01
Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composedmore » of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.« less
Colors of Ellipticals from GALEX to Spitzer
NASA Astrophysics Data System (ADS)
Schombert, James M.
2016-12-01
Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV, ugri, JHK and 3.6 μm. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.
Flaring Red Dwarf Star (Illustration)
2017-06-06
This illustration shows a red dwarf star orbited by a hypothetical exoplanet. Red dwarfs tend to be magnetically active, displaying gigantic arcing prominences and a wealth of dark sunspots. Red dwarfs also erupt with intense flares that could strip a nearby planet's atmosphere over time, or make the surface inhospitable to life as we know it. By mining data from the Galaxy Evolution Explorer (GALEX) spacecraft, a team of astronomers identified dozens of flares at a range of durations and strengths. The team measured events with less total energy than many previously detected flares from red dwarfs. This is important because, although individually less energetic and therefore less hostile to life, smaller flares might be much more frequent and add up over time to produce a cumulative effect on an orbiting planet. https://photojournal.jpl.nasa.gov/catalog/PIA21473
2003-03-03
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility watch as NASA's Galaxy Evolution Explorer spacecraft is rotated in preparation for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. From its orbit high above Earth, the spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors. Looking in the ultraviolet will single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-03
KENNEDY SPACE CENTER, FLA. -- NASA's Galaxy Evolution Explorer spacecraft is successfully rotated to horizontal in preparation for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. From its orbit high above Earth, the spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors. Looking in the ultraviolet will single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2006-01-01
Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.
Flare Frequency Distribution at Low Energies in GALEX UV
NASA Astrophysics Data System (ADS)
Million, Chase; Fleming, Scott W.; Osten, Rachel A.; Brasseur, Clara; Bianchi, Luciana; Shiao, Bernie; Loyd, R. O. Parke; Shkolnik, Evgenya L.
2018-06-01
The gPhoton toolkit and database of GALEX photon events permits measurement of flares with energies as small as ~10^27 ergs in the two GALEX UV bandpasses. Following a previously reported search for flaring on several thousand M dwarfs observed by GALEX, we present initial results on the flare frequency as a function of energy and stellar type at energies < 10^32 ergs.
Portal to the GALEX Data Archive
NASA Astrophysics Data System (ADS)
Smith, M. A.; Conti, A.; Shiao, B.; Volpicelli, C. A.
2004-05-01
In early February MAST began its hosting of the GALEX public "Early Release Observations" images (40,000 objects) and spectra (1000 objects). MAST will host a much larger "first release," the GALEX DR1, in October, 2004. In this poster we describe features of our on-line website at http://galex.stsci.edu for researchers interested in downloading and browsing GALEX UV image and spectral data. The site, is based on MS .NET technology and user queries are entered for classes of objects or sky regions on a "MAST-like" query forms or with detailed queries written in SQL. In the latter case examples are provided to tailor a query to a user's specifications. The site provides novel features, such as tooltips that return keyword definitions, "active images" that return object classification and coordinate information in a 2.5 arcmin radius around the selected object, self-documentation of terms and tables, and of course a tutorial for new navigators. The GALEX database employs a Hierarchial Triangular Mesh system for rapid data discovery, neighbor searches, and cross correlations with other catalogs. Our "GMAX" tool allows a coplotting of object positions for objects observed by GALEX and other US-NVO compliant mission websites such as Sloan, 2MASS, FIRST.... As a member of the new Skynode network, GALEX has reported its web services to the US-NVO registry. This permits users to generate queries from other sites to cross-correlate, compare, and plot GALEX data using US-NVO protocols. Future plans for limited on-line data analysis and footprint services are described.
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.
2014-01-01
The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile downloading), with related tools, from the author web site " http://dolomiti.pha.jhu.edu/uvsky "
Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Zhang, Yanxia; Zhao, Yongheng
2018-03-01
We apply machine learning and Convex-Hull algorithms to separate RR Lyrae stars from other stars like main-sequence stars, white dwarf stars, carbon stars, CVs, and carbon-lines stars, based on the Sloan Digital Sky Survey and Galaxy Evolution Explorer (GALEX). In low-dimensional spaces, the Convex-Hull algorithm is applied to select RR Lyrae stars. Given different input patterns of (u ‑ g, g ‑ r), (g ‑ r, r ‑ i), (r ‑ i, i ‑ z), (u ‑ g, g ‑ r, r ‑ i), (g ‑ r, r ‑ i, i ‑ z), (u ‑ g, g ‑ r, i ‑ z), and (u ‑ g, r ‑ i, i ‑ z), different convex hulls can be built for RR Lyrae stars. Comparing the performance of different input patterns, u ‑ g, g ‑ r, i ‑ z is the best input pattern. For this input pattern, the efficiency (the fraction of true RR Lyrae stars in the predicted RR Lyrae sample) is 4.2% with a completeness (the fraction of recovered RR Lyrae stars in the whole RR Lyrae sample) of 100%, increases to 9.9% with 97% completeness and to 16.1% with 53% completeness by removing some outliers. In high-dimensional spaces, machine learning algorithms are used with input patterns (u ‑ g, g ‑ r, r ‑ i, i ‑ z), (u ‑ g, g ‑ r, r ‑ i, i ‑ z, r), (NUV ‑ u, u ‑ g, g ‑ r, r ‑ i, i ‑ z), and (NUV ‑ u, u ‑ g, g ‑ r, r ‑ i, i ‑ z, r). RR Lyrae stars, which belong to the class of interest in our paper, are rare compared to other stars. For the highly imbalanced data, cost-sensitive Support Vector Machine, cost-sensitive Random Forest, and Fast Boxes is used. The results show that information from GALEX is helpful for identifying RR Lyrae stars, and Fast Boxes is the best performer on the skewed data in our case.
THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo
Making use of H I 21 cm line measurements from the ALFALFA survey ({alpha}.40) and photometry from the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX), we investigate the global scaling relations and fundamental planes linking stars and gas for a sample of 9417 common galaxies: the {alpha}.40-SDSS-GALEX sample. In addition to their H I properties derived from the ALFALFA data set, stellar masses (M{sub *}) and star formation rates (SFRs) are derived from fitting the UV-optical spectral energy distributions. 96% of the {alpha}.40-SDSS-GALEX galaxies belong to the blue cloud, with the average gas fraction f{sub HI} {identical_to}more » M{sub HI}/M{sub *} {approx} 1.5. A transition in star formation (SF) properties is found whereby below M{sub *} {approx} 10{sup 9.5} M{sub Sun }, the slope of the star-forming sequence changes, the dispersion in the specific star formation rate (SSFR) distribution increases, and the star formation efficiency (SFE) mildly increases with M{sub *}. The evolutionary track in the SSFR-M{sub *} diagram, as well as that in the color-magnitude diagram, is linked to the H I content; below this transition mass, the SF is regulated strongly by the H I. Comparison of H I and optically selected samples over the same restricted volume shows that the H I-selected population is less evolved and has overall higher SFR and SSFR at a given stellar mass, but lower SFE and extinction, suggesting either that a bottleneck exists in the H I-to-H{sub 2} conversion or that the process of SF in the very H I-dominated galaxies obeys an unusual, low-efficiency SF law. A trend is found that, for a given stellar mass, high gas fraction galaxies reside preferentially in dark matter halos with high spin parameters. Because it represents a full census of H I-bearing galaxies at z {approx} 0, the scaling relations and fundamental planes derived for the ALFALFA population can be used to assess the H I detection rate by future blind H I surveys and intensity mapping experiments at higher redshift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.
The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find thatmore » our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.« less
Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst
NASA Technical Reports Server (NTRS)
Bullock, Eric; Szkody, Paula; Mukadam, Anjum S.; Borges, Bernardo W.; Fraga, Luciano; Gansicke, Boris T.; Harrison, Thomas E.; Henden, Arne; Holtzman, Jon; Howell, Steve B.;
2011-01-01
The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state.
2003-03-03
KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, NASA's Galaxy Evolution Explorer spacecraft is moved to a rotation stand in preparation for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. From its orbit high above Earth, the spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors. Looking in the ultraviolet will single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
2003-03-03
KENNEDY SPACE CENTER, FLA. -A worker in the Multi-Payload Processing Facility watches closely as NASA's Galaxy Evolution Explorer spacecraft is rotated in preparation for mating with the Pegasus XL launch vehicle. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. From its orbit high above Earth, the spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors. Looking in the ultraviolet will single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.
NASA Astrophysics Data System (ADS)
Obrić, M.; Ivezić, Ž.; Best, P. N.; Lupton, R. H.; Tremonti, C.; Brinchmann, J.; Agüeros, M. A.; Knapp, G. R.; Gunn, J. E.; Rockosi, C. M.; Schlegel, D.; Finkbeiner, D.; Gaćeša, M.; Smolčić, V.; Anderson, S. F.; Voges, W.; Jurić, M.; Siverd, R. J.; Steinhardt, W.; Jagoda, A. S.; Blanton, M. R.; Schneider, D. P.
2006-08-01
We discuss the panchromatic properties of 99088 galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 1 `main' spectroscopic sample (a flux-limited sample for 1360deg2). These galaxies are positionally matched to sources detected by ROSAT, Galaxy Evolution Explorer (GALEX), two-Micron All-Sky Survey (2MASS), Infrared Astronomical Satellite (IRAS), Green Bank GB6 survey (GB6), Faint Images of the Radio Sky at Twenty-centimetres (FIRST), NRAO VLA Sky Survey (NVSS) and Westerbork Northern Sky Survey (WENSS). The matching fraction varies from <1 per cent for ROSAT and GB6 to ~40 per cent for GALEX and 2MASS. In addition to its size, the advantages of this sample are well-controlled selection effects, faint flux limits and the wealth of measured parameters, including accurate X-ray to radio photometry, angular sizes and optical spectra. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colours and emission-line strengths. For example, ~2/3 of SDSS `main' galaxies classified as active galactic nucleus (AGN) using emission-line strengths are detected by 2MASS, while the corresponding fraction for star-forming galaxies (SFs) is only ~1/10. Similarly, over 90 per cent of galaxies detected by IRAS display strong emission lines in their optical spectra, compared to ~50 per cent for the whole SDSS sample. Using GALEX, SDSS and 2MASS data, we construct the ultraviolet-infrared (UV-IR) broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, the SDSS u- and r-band data, supplemented with redshift, can be used to `predict' K-band magnitudes measured by 2MASS with an rms scatter of only 0.2mag. When a dust content estimate determined from SDSS spectra with the aid of models is also utilized, this scatter decreases to 0.1mag and can be fully accounted for by measurement uncertainties. We demonstrate that this interstellar dust content, inferred from optical SDSS spectra by Kauffmann et al., is indeed higher for galaxies detected by IRAS and that it can be used to `predict' measured IRAS 60μm flux density within a factor of 2 using only SDSS data. We also show that the position of a galaxy in the emission-line-based Baldwin-Phillips-Terlevich diagram is correlated with the optical light concentration index and u - r colour determined from the SDSS broad-band imaging data, and discuss changes in the morphology of this diagram induced by requiring detections at other wavelengths. Notably, we find that SDSS `main' galaxies detected by GALEX include a non-negligible fraction (10-30 per cent) of AGNs, and hence do not represent a clean sample of starburst galaxies. We study the IR-radio correlation and find evidence that its slope may be different for AGN and SFs and related to the Hα/Hβ line-strength ratio.
GALEX Wide-field Ultraviolet Imaging of NGC 5128 (Centaurus-A)
NASA Technical Reports Server (NTRS)
Neff, S. G.; Shiminovich, D.; Martin, C. D.
2004-01-01
We present new wide-field ultraviolet (UV) observations of the nearby active galaxy NGC 5128 (Centaurus A). The GALEX images provide 3.5 sec - 5.5 sec resolution over a 1.2 degree field, in two broad bands (1350- 1800A and 1800-3000A, centered at 1550A and 2200A). We detect ultraviolet emission associated with the radio and X-ray jets in both bands, extending out to a distance of approx. 40kpc from the galaxy nucleus. We compare the radio, X-ray, and UV jets, and discuss the feasibility of jet-induced star formation. We show how the UV emission relates to the optical filaments: HI and CO clouds, stellar shells, X-ray arcs, and young star chains previously reported by other authors. In the central region of NGC 5128, we detect UV emission from young super-star-clusters and associated ionized gas located along the near edge and on the upper surface of the dusty warped disk. All of the UV emission in the galaxy appears to result from intense star formation in the disk; none appears to be associated with the old stellar population of the main galaxy body, and no UV emission from the AGN is detected. We estimate the numbers and ages of the massive young stars present, and the associated ionized gas masses. Finally, we compare Cen-A to high redshift radio galaxies which were much more numerous in the earlier universe. The GALEX satellite is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.
The Characterization of Galaxy Structure
NASA Astrophysics Data System (ADS)
Zaritsky, Dennis
There is no all-encompassing intuitive physical understanding of galactic structure. We cannot predict the size, surface brightness, or luminosity of an individual galaxy based on the mass of its halo, or other physical characteristics, from simple first principles or even empirical guidelines. We have come to believe that such an understanding is possible because we have identified a simple scaling relation that applies to all gravitationally bound stellar systems,from giant ellipticals to dwarf spheroidals, from spiral galaxies to globular clusters. The simplicity (and low scatter) of this relationship testifies to an underlying order. In this proposal, we outline what we have learned so far about this scaling relationship, what we need to do to refine it so that it has no free parameters and provides the strongest possible test of galaxy formation and evolution models, and several ways in which we will exploit the relationship to explore other issues. Primarily, the proposed work involves a study of the uniform IR surface photometry of several thousand stellar systems using a single data source (the Spitzer S4G survey) to address shortcomings posed by the current heterogeneous sample and combining these data with the GALEX database to study how excursions from this relationship are related to current or on-going star formation. This relationship, like its antecedents the Fundamental Plane or Tully-Fisher relationship, can also be used to estimate distances and stellar mass-to-light ratios. We will describe the key advantages our relationship has relative to the existing work and how we will exploit those using archival NASA data from the Spitzer, GALEX, and WISE missions.
GALEX Imaging Study of the HI Filaments in M81 Group
NASA Astrophysics Data System (ADS)
Yun, Min
We propose to obtain sensitive, wide-field GALEX NUV and FUV images of the area surrounding the central four main members of the M81 group (M81, M82, NGC~2976, NGC~3077) as an integral part of our multi-wavelength observational program to explore the star formation activity, associated radiation field, and details of galaxy evolution/transformation within the group. We will add two pointings adjacent to the Cy-1 program pointing of the M81-M82 field by Huchra et al. (GI1-071) to the same depth (sufficient to detect star formation activity expected for a mean HI column density of a few times 10^18 per cm^2 with S/N>5) to cover most of the 3 degree diameter region we have imaged in 21cm HI line using the VLA, DRAO, and GBT. By combining with our imaging data from IR (Spitzer Cy-2), optical/IR (SDSS, 2MASS), and CO (FCRAO) surveys, we will conduct an extensive quantitative analysis on the distribution of cold gas and dust and star formation activity traced in UV and IR associated with the extensive array of HI tidal streamers. Because of its proximity, M81 group is one of the few extragalactic systems where such analysis can be made at spatial resolution of 100 pc or better. The high quality HI, CO, and dust maps (plus the dyanmical models for the group interactions) make this group an exceptional laboratory for determining the star formation and tidal dwarf formation process.
Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy
NASA Astrophysics Data System (ADS)
Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit
2017-12-01
Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.
VizieR Online Data Catalog: M33 GALEX catalogue of UV point sources (Mudd+, 2015)
NASA Astrophysics Data System (ADS)
Mudd, D.; Stanek, K. Z.
2015-11-01
This catalogue was made using the Ultraviolet Imaging Telescope (UIT), an instrument aboard the Astro-1 Mission. UIT used photographic plates with the B1 and A1 filters roughly corresponding to the FUV and NUV filters of GALEX, having central wavelengths of ~1500 and 2400Å, respectively. It should be noted, however, that the A1 filter is significantly broader than the NUV filter on GALEX, reaching several hundred angstroms to the red end of its GALEX counterpart. The field of view of UIT is also circular but has a smaller radius of 18 arcmin The FWHM of UIT is comparable to that of GALEX, at 4 and 5.2 arcsec in the NUV and FUV filters, respectively. (3 data files).
Dust-obscured galaxies in the local universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ho Seong; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu
We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1more » × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.« less
GALEX: a UV telescope to map the star formation history of the universe
NASA Astrophysics Data System (ADS)
Milliard, Bruno; Grange, Robert; Martin, Christopher; Schiminovich, David
2017-11-01
The NASA Small Mission EXplorer GALEX (PI: C.Martin, Caltech) is under development at JPL for launch late 2001. It has been designed to map the history of star formation in the Universe over the redshift range 0-2, a major era where galaxies and gas content evolved dramatically. The expected depth and imaging quality matches the Palomar Observatory Surveys, allowing GALEX to provide the astronomical community with a database of FUV photometric and spectroscopic observations of several million galaxies in the nearby and distant Universe. The 1.24 degree FOV, 50 cm aperture compact Ritchey-Chrétien telescope is equipped with two 65 mm photon-counting detectors. It will perform several surveys of different coverage and depths, that will take advantage of a high throughput UV-transmissive Grism newly developed in France to easily switch between imagery and field spectroscopy modes. A thin aspherized fused silica dichroic component provides simultaneous observations in two UV bands (135-185 nm and 185-300 nm) as well as correction for field aberrations. We shall briefly present the mission science goals, and will describe the optical concept, along with the guidelines and compromises used for its optimization in the context of the "Faster, Better, Cheaper" NASA philosophy, and give a brief development status report.
Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients
NASA Astrophysics Data System (ADS)
Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.
2010-01-01
We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.
VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)
NASA Astrophysics Data System (ADS)
Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.
2016-07-01
Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).
Evolution of the NASA/IPAC Extragalactic Database (NED) into a Data Mining Discovery Engine
NASA Astrophysics Data System (ADS)
Mazzarella, Joseph M.; NED Team
2017-06-01
We review recent advances and ongoing work in evolving the NASA/IPAC Extragalactic Database (NED) beyond an object reference database into a data mining discovery engine. Updates to the infrastructure and data integration techniques are enabling more than a 10-fold expansion; NED will soon contain over a billion objects with their fundamental attributes fused across the spectrum via cross-identifications among the largest sky surveys (e.g., GALEX, SDSS, 2MASS, AllWISE, EMU), and over 100,000 smaller but scientifically important catalogs and journal articles. The recent discovery of super-luminous spiral galaxies exemplifies the opportunities for data mining and science discovery directly from NED's rich data synthesis. Enhancements to the user interface, including new APIs, VO protocols, and queries involving derived physical quantities, are opening new pathways for panchromatic studies of large galaxy samples. Examples are shown of graphics characterizing the content of NED, as well as initial steps in exploring the database via interactive statistical visualizations.
FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion
NASA Technical Reports Server (NTRS)
Stevens, Alyx Catherine; Sahai, Raghvendra
2012-01-01
It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.
Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts
NASA Technical Reports Server (NTRS)
Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.
2010-01-01
We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX measurements, which is not attributed to cluster member galaxies. Our galaxy counts are a better match to deeper UV counts measured with HST.
VizieR Online Data Catalog: Star clusters automatically detected in the LMC (Bitsakis+, 2017)
NASA Astrophysics Data System (ADS)
Bitsakis, T.; Bonfini, P.; Gonzalez-Lopezlira, R. A.; Ramirez-Siordia, V. H.; Bruzual, G.; Charlot, S.; Maravelias, G.; Zaritsky, D.
2018-03-01
The archival data used in this work were acquired from several diverse large surveys, which mapped the Magellanic Clouds at various bands. Simons+ (2014AdSpR..53..939S) composed a mosaic using archival data from the Galaxy Evolution Explorer (GALEX) at the near-ultraviolet (NUV) band (λeff=2275Å). The mosaic covers an area of 15deg2 on the LMC. the central ~3x1deg2 of the LMC (the bar-region) was later observed by the Swift Ultraviolet-Optical Telescope (UVOT) Magellanic Clouds Survey (SUMAC; Siegel+ 2014AJ....148..131S). The optical data used here are from the Magellanic Cloud Photometric Survey (MCPS; Zaritsky+ 2004, J/AJ/128/1606). These authors observed the central 64deg2 of the LMC with 3.8-5.2 minute exposures at the Johnson U, B, V, and Gunn i filters of the Las Campanas Swope Telescope. Meixner+ (2006, J/AJ/132/2268) performed a uniform and unbiased imaging survey of the LMC (called Surveying the Agents of a Galaxy's Evolution, or SAGE), covering the central 7deg2 with both the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on-board the Spitzer Space Telescope. (1 data file).
The GALEX/S4G UV-IR Color-Color Diagram: Catching Spiral Galaxies Away from the Blue Sequence
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Boissier, Samuel; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Zaritsky, Dennis; Laine, Jarkko; Gallego, Jesús; Peletier, Reynier F.; Röck, Benjamin R.; Knapen, Johan H.
2015-02-01
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for \\gt 2000 galaxies, available for 90% of the S4G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV-NUV) versus (NUV-[3.6]) color-color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, at (NUV-[3.6]) \\gt 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by {{M}[3.6]}) since both massive ({{M}\\star }\\gt {{10}11}{{M}⊙ }) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 108 yr.
The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0
NASA Astrophysics Data System (ADS)
Rhee, Jaehyon; Fink, M.; Rhee, W.
2012-01-01
Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.
Modelling the diffuse dust emission around Orion
NASA Astrophysics Data System (ADS)
Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti
2018-06-01
We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.
VizieR Online Data Catalog: IRX-β relation of HII regions in NGC628 (Ye+, 2016)
NASA Astrophysics Data System (ADS)
Ye, C.; Zou, H.; Lin, L.; Lian, J.; Hu, N.; Kong, X.
2016-10-01
NGC 628 has been observed by the PPAK IFS Nearby Galaxies Survey (PINGS) performed by the 3.5m telescope of the Calar Alto Observatory. The IFU provides a sampling of 2.7", an optical wavelength range of 3700-7000Å with a spectral resolution of ~8Å. The final data set comprises 11094 individual spectra, and the typical spatial resolution is about 3.5"-4". The slice image at the Hα wavelength is used to determine HII regions. FUV and near-UV (NUV) images of NGC 628 were taken by the Galaxy Evolution Explorer (GALEX), which are centered at wavelengths of 1516 and 2267Å. IR images were taken by Spitzer IRAC (3.6um, 8.0um) and MIPS (24um). The spatial resolutions of UV and IR images are 4.3", 5.3", 1.9", 2.8", and 6.4", respectively. We obtain these images from the data release website of Local Volume Legacy (LVL) survey DR5 (Dale+, 2009, J/ApJ/703/517; http://irsa.ipac.caltech.edu/data/SPITZER/LVL/). (2 data files).
VizieR Online Data Catalog: GALEX BCG galaxies sample properties (Boissier+, 2018)
NASA Astrophysics Data System (ADS)
Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.
2018-01-01
Tables 2 to 5 from the paper, providing the properties of a sample of 166 BCG galaxies with UV photometry from GALEX. In table 3 -9.999999 indicates galaxies for which no values is provided. (4 data files).
Comparation between different tracers of SFR in the CALIFA sample
NASA Astrophysics Data System (ADS)
Catalán-Torrecilla, C.; Armando Gil de Paz, A.; África Castillo-Morales, A.; Jorge Iglesias-Páramo, J.; Almudena Alonso-Herrero, A.; Califa Team
2013-05-01
The Calar Alto Legacy Integral Field Area survey (CALIFA survey) has been designed to be the first survey to provide Integral Field Spectroscopy (IFS) data for a statistical sample of all galaxy types (˜ 600 galaxies) in the Local Universe (0.005
The Lives and Deaths of Planets and Stars in the Value-Added UV Photon Catalog
NASA Astrophysics Data System (ADS)
Hogg, David
The lives and deaths of planets and stars in the Value-Added UV Photon Catalog Over its lifetime, the GALEX satellite has detected nearly two trillion photons with its ultraviolet- sensitive, photon-counting detectors. This time-tagged data set remains largely unexplored time-variable science. This proposal is to extract and calibrate the full photon time stream from the GALEX raw data products and to use that time stream to make discoveries in two rapidlydeveloping areas of astrophysical research: exoplanets around hot white dwarf stars and prompt ultraviolet emission from supernovae. It is only around white dwarf stars that rocky planets in the habitable zone generate frequent eclipses at large depth and with high likelihood. Theories of planet formation and evolution, now confronted with heterogeneous exoplanet discoveries around main-sequence stars, make strong predictions about planets around white dwarf stars, establishing unique and sensitive tests for ultraviolet surveys. Almost every GALEX pointing contains a bright white dwarf in the field of view. This project would be the first ever photon-limited and ultraviolet search for exoplanet eclipses. A preliminary study by the proposers has discovered new white-dwarf--main-sequence-star eclipsing binaries (and confirmed known systems) using time-resolved GALEX images, but because a calibrated photon stream is not available, it has not been possible to reach the photon limit. This proposal is to calibrate the photon time stream and perform the first UV search for planets, moons and asteroids around white dwarfs and other blue stars. The project will produce a statistically complete sample of exoplanets around white dwarfs and a similarly complete sample of binary stars. Although any exoplanet system is interesting in its own right, the proposers will also produce a probabilistic estimate of the frequency with which stellar remnants host planets of different kinds at different radii. Supernovae models have long predicted a "shock breakout" flash or prompt emission at ignition. The first shock- breakout detection in the UV was discovered a few years ago, in GALEX data with poor time resolution. Models of the prompt emission during shock-breakout predict that a photonlimited search will detect new events in the calibrated photon time stream. Using the same data set as that produced for exoplanet discovery, these predictions will be tested. Once again, each such event is individually interesting, but another outcome is an estimate of the frequency as a function of flash and host-galaxy properties, especially fluence and redshift. This study will employ generative modeling of the photon time stream--explicit approximation of the probability of the data given the model--using the latest models for exoplanet transits and supernovae prompt flares. Essential for obtaining high purity is to compete these models with models of more mundane or alternative phenomena that are confusing, including stellar variability of various kinds and hardware artifacts. Early results indicate that candidate lists can be produced with high completeness and purity. In addition to the exoplanet and supernova deliverables, the project will produce a publicly available, curated photon time stream (coordinates and time of arrival for every GALEX photon) along with the spacecraft field-of-view and sensitivity information that make it useful. It will also produce improved spacecraft calibration information, including especially improved flat-field modeling in the focal plane, and a time- and position-dependent sky background rate estimate. The proposed scientific investigations and deliverable data products will permit new kinds of timedomain astrophysics projects (including many ex-post-facto studies), and improve dramatically the legacy value of all GALEX data
Ultraviolet imaging of planetary nebulae with GALEX
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; Thilker, David
2018-05-01
Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.
Hazardous Early Days In (and Beyond) the Habitable Zones Around Ultra-Low-Mass Stars
NASA Astrophysics Data System (ADS)
Kastner, Joel
Although a majority of stars in the solar neighborhood are of mid- to late-M type, the magnetically-induced coronal (X-ray) and chromospheric (UV, H-alpha) activity of such stars remain essentially unexplored for the important age range 10-100 Myr. Such information on high-energy processes associated with young M stars would provide much-needed constraints on models of the effects of stellar irradiation on the physics and chemistry of planet-forming disks and newborn planets. In addition, X-ray and UV observations of ultra-low-mass young stars can serve to probe the (presently ill-defined) spectral type boundary that determines which very low-mass objects will eventually become M stars -- as opposed to brown dwarfs (BDs) -- following their pre-main sequence evolutionary stages. Via ADAP support, we have developed the GALEX Nearby Young Star Search (GALNYSS), a search method that combines GALEX, 2MASS, WISE and proper motion catalog information to identify nearby, young, lowmass stars. We have applied this method to identify ~2000 candidate young (10-100 Myr), low-mass (M-type) stars within 150 pc. These GALNYSS-identified young star candidates are distributed over the entire GALEX-covered sky, and their spectral types peak in the M3-4 range; followup optical spectroscopic work is ongoing (Rodriguez et al. 2013, ApJ, 774, 101). We now propose an ADA program to determine the X-ray properties of representative stars among these GALNYSS candidates, so as to confirm their youth and investigate the early evolution of coronal activity near the low-mass star/BD boundary and the effects of such activity on planet formation. Specifically, we will exploit the presence in the HEASARC archives of XMM-Newton and (to a lesser extent) Chandra X-ray Observatory data for a few dozen GALNYSS candidates that have been observed serendipitously by one or both of these space observatories. The proposed ADA program will yield the full reduction and analysis of these as-yet unexplored data. The results will be used to constrain models describing the dispersal of protoplanetary disks and evaporation of planetary atmospheres due to intense irradiation by high-energy photons from young, low-mass stars, and to shed new light on the early evolution of magnetic activity of stars with masses down to near the H-burning limit.
VizieR Online Data Catalog: AGB stars with GALEX observations (Montez+, 2017)
NASA Astrophysics Data System (ADS)
Montez, R.; Ramstedt, S.; Kastner, J. H.; Vlemmings, W.; Sanchez, E.
2018-01-01
Our sample of AGB stars is derived from numerous AGB samples found in the literature and was originally compiled by Ramstedt+ (2012A&A...543A.147R) to search for X-ray detections associated with AGB stars. The GALEX mission performed a two-band survey of the UV sky. Using a dichromatic beam splitter, GALEX simultaneously observed far-UV (FUV; λeff~1528Å; 1344-1786Å) and near-UV (NUV; λeff~2310Å; 1771-2831Å) in surveys with different depths. The spatial resolution is 4.3" in FUV and 5.3" in NUV. As described in further detail in Morrissey+ (2007ApJS..173..682M), spectroscopic observations place a grism into the converging beam of the telescope to simultaneously disperse all sources onto the detector plane. According to Morrissey+ (2007), the usable ranges of the grism spectra are 1300-1820Å and 1820-3000Å in the FUV and NUV, with average resolutions of 8Å and 20Å, respectively. To supplement our study of the GALEX observations of AGB stars, we collected photometric data from across the electromagnetic spectrum for all the AGB stars considered using SIMBAD and VizieR tools. We aslo collected AAVSO light curves that span the GALEX mission lifetime (2003 May 28 to 2013 June 28) from the AAVSO International Database. (3 data files).
THE GALEX/S{sup 4}G UV–IR COLOR–COLOR DIAGRAM: CATCHING SPIRAL GALAXIES AWAY FROM THE BLUE SEQUENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Gallego, Jesús
We obtained GALEX FUV, NUV, and Spitzer/IRAC 3.6 μm photometry for >2000 galaxies, available for 90% of the S{sup 4}G sample. We find a very tight GALEX blue sequence (GBS) in the (FUV–NUV) versus (NUV–[3.6]) color–color diagram, which is populated by irregular and spiral galaxies, and is mainly driven by changes in the formation timescale (τ) and a degeneracy between τ and dust reddening. The tightness of the GBS provides an unprecedented way of identifying star-forming galaxies and objects that are just evolving to (or from) what we call the GALEX green valley (GGV). At the red end of the GBS, atmore » (NUV–[3.6]) > 5, we find a wider GALEX red sequence (GRS) mostly populated by E/S0 galaxies that has a perpendicular slope to that of the GBS and of the optical red sequence. We find no such dichotomy in terms of stellar mass (measured by M{sub [3.6]}) since both massive (M{sub ⋆}>10{sup 11}M{sub ⊙}) blue- and red-sequence galaxies are identified. The type that is proportionally more often found in the GGV is the S0-Sa’s, and most of these are located in high-density environments. We discuss evolutionary models of galaxies that show a rapid transition from the blue to the red sequence on a timescale of 10{sup 8} yr.« less
UV SEDs of early-type cluster galaxies: a new look at the UV upturn
NASA Astrophysics Data System (ADS)
Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.
2018-05-01
Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.
The Extreme Hosts of Extreme Supernovae
NASA Astrophysics Data System (ADS)
Neill, James D.
2012-01-01
We present the results from a deeper survey of Luminous Supernova (LSN) hosts with the Galaxy Evolution Explorer (GALEX). We have added new, multiple kilo-second observations to our original observations of seventeen LSN hosts providing better constraints on their physical properties. We place the LSNe hosts on the galaxy NUV-r versus M(r) color magnitude diagram (CMD) with a larger comparison sample ( 26,000) to illustrate the extreme nature of these galaxies. The LSN hosts favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. The new observations provide tighter constraints on the star formation rates (SFRs) and stellar masses, M(*), and show that the LSNe result from regions of high specific star formation and yet low total SFR. This regime is of particular interest for exploring the upper end of the stellar IMF and its variation. If our understanding of the progenitors of the LSNe leans toward very massive (> 200 M_sun) progenitors, the potential for a conflict with IMF theory exists because the conditions found in the hosts producing the LSNe should not create such massive stars. If it also required that LSNe can only be produced in primordial or very low metallicity environments, then they will also provide evidence for strong variation in metallicity within a dwarf galaxy, since their masses are consistent with low, but not extreme metallicity.
Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation
NASA Astrophysics Data System (ADS)
Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya
2015-11-01
The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.
2017-12-01
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.
Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution
NASA Technical Reports Server (NTRS)
Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek
2012-01-01
We explore the application of XMM Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.
Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution
NASA Astrophysics Data System (ADS)
Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek
2012-02-01
We explore the application of XMM-Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.
Nep-Akari Evolution with Redshift of Dust Attenuation in 8 ㎛ Selected Galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Oi, N.; Burgarella, D.; Malek, K.; Matsuhara, H.; Murata, K.; Serjeant, S.; Takeuchi, T. T.; Malkan, M.; Pearson, C.; Wada, T.
2017-03-01
We built a 8um selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15
Dwarf galaxies in the coma cluster: Star formation properties and evolution
NASA Astrophysics Data System (ADS)
Hammer, Derek M.
The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.
New UV-source catalogs, UV spectral database, UV variables and science tools from the GALEX surveys
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; de la Vega, Alexander; Shiao, Bernard; Bohlin, Ralph
2018-03-01
We present a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX All-Sky Imaging survey: GUVcat_AIS (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017). The catalog includes 83 million unique sources (duplicate measurements and rim artifacts are removed) measured in far-UV and near-UV. With respect to previous versions (Bianchi et al. in Mon. Not. R. Astron. Soc. 411:2770 2011a, Adv. Space Res. 53:900-991, 2014), GUVcat_AIS covers a slightly larger area, 24,790 square degrees, and includes critical corrections and improvements, as well as new tags, in particular to identify sources in the footprint of extended objects, where pipeline source detection may fail and custom-photometry may be necessary. The UV unique-source catalog facilitates studies of density of sources, and matching of the UV samples with databases at other wavelengths. We also present first results from two ongoing projects, addressing respectively UV variability searches on time scales from seconds to years by mining the GALEX photon archive, and the construction of a database of ˜120,000 GALEX UV spectra (range ˜1300-3000 Å), including quality and calibration assessment and classification of the grism, hence serendipitous, spectral sources.
GALEX UV grism for slitless spectroscopy survey
NASA Astrophysics Data System (ADS)
Grange, Robert; Milliard, Bruno; Flamand, Jean; Pauget, Alain; Waultier, Gabrielle; Moreaux, Gabriel; Rossin, Christelle; Viton, Maurice; Neviere, Michel
2017-11-01
The NASA Space Mission Galex is designed to map the history of star formation by performing imaging and spectroscopic surveys in vacuum ultraviolet. The dispersive component for the spectroscopic mode is a CaF2 Grism which can be inserted with loose tolerances in the convergent beam to produce slitless spectra. Grisms are widely used in ground based astronomy in the visible or near infrared bands but the UV cutoff of the resin involved in their manufacturing process prevents their use in the UV range. LAS and Jobin-Yvon developed a proprietary process to imprint the blazed profile into the CaF2 crystal. We will present the measured optical performance of prototypes and flight models delivered this summer to NASA/JPL. We will also present a three bipod flexures mount we designed to minimize the mechanical stress on the optical component. The flight Grism bonded to such a mount has successfully passed the Galex environmental qualification.
GALEX Grism Spectroscopy of the Globular Cluster Omega Centauri
NASA Astrophysics Data System (ADS)
Sweigart, Allen
We propose to obtain GALEX FUV-only grism spectroscopy of the hot stars in omega Centauri, the most massive globular cluster in our Galaxy. Previous UIT imagery of omega Cen showed that it contains about 2000 hot horizontal branch (HB) stars, and we estimate that GALEX spectra can be obtained for about 500 of these stars in the outer regions of the cluster, including about 50 of the hot ``blue hook'' stars discovered with UIT. The blue hook stars appear to be both hotter (35,000 K) and less luminous in the UIT color-magnitude diagram than predicted by canonical HB models and, indeed, are unexplained by standard evolutionary theory. Brown et al. (2001) have suggested that the blue hook stars are the progeny of stars which mixed their surface hydrogen into their hot He-burning interior during a delayed helium flash subsequent to leaving the red giant branch. This ``flash-mixing'' results in a hot hydrogen-deficient star with a typical surface abundance of 96% He and 4% C by mass. The GALEX spectral region includes the strong lines of C III 1426, 1578 A, C IV 1550 A, and He II 1640 A which will allow this predicted carbon and helium enrichment to be detected. These observations will therefore provide a crucial test of the Brown et al. flash-mixing hypothesis and will determine if flash mixing represents a new evolutionary channel for populating the hot HB. The GALEX spectra will also address other questions concerning the hot HB in omega Cen including (1) the metallicity distribution of HB stars with 9,000 K < Teff < 11,000 K, (2) the effect of radiative levitation on the UV spectra of stars with Teff > 11,000 K, and (3) the origin of the subluminous HB stars found in the UIT photometry with 15,000K < Teff < 30,000 K.
Multispectral Observations and Analysis of the Rosette Nebula
NASA Astrophysics Data System (ADS)
Huber, Jeremy
The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.
NASA Astrophysics Data System (ADS)
Lindgren, Joseph B.
The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.
A Study on Atomically Thin Ultra Short Conducting Channels, Breakdown, and Environmental Effects
NASA Astrophysics Data System (ADS)
Sundararajan, Abhishek
The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.
VizieR Online Data Catalog: GALEX/S4G surface brightness profiles. I. (Bouquin+, 2018)
NASA Astrophysics Data System (ADS)
Bouquin, A. Y. K.; Gil de, Paz A.; Munoz-Mateos, J. C.; Boissier, S.; Sheth, K.; Zaritsky, D.; Peletier, R. F.; Knapen, J. H.; Gallego, J.
2018-03-01
The Spitzer Survey of Stellar Structure in Galaxies (S4 Sheth+ 2010, J/PASP/122/1397) galaxy sample is a deep infrared survey of a (mainly) volume-limited sample of nearby galaxies within d<40Mpc observed at 3.6 and 4.5um with the IRAC. In this paper, we have used the surface photometry at 3.6um (IRAC1) measurements from the output of pipeline 3 (P3) of the S4G sample (Munoz-Mateos+ 2015ApJS..219....3M). We have collected these data from the IRSA database. We gathered all available GALEX FUV and NUV images and related data products for 1931 S4G galaxies that had been observed in at least one of these two UV bands. We collected imaging data from all kinds of surveys, such as the All-sky Imaging Survey, Medium Imaging Survey, Deep Imaging Survey, and Nearby Galaxy Survey, as well as from Guest Investigator (GIs/GIIs) Programs. (5 data files).
GALEX Study of the UV Variability of Nearby Galaxies and a Deep Probe of the UV Luminosity Function
NASA Technical Reports Server (NTRS)
Schlegel, Eric
2005-01-01
The proposal has two aims - a deep exposure of NGC 300, about a factor of 10 deeper than the GALEX all-sky survey; and an examination of the UV variability. The data were received just prior to a series of proposal deadlines in early spring. A subsequent analysis delay includes a move from SAO to the University of Texas - San Antonio. Nevertheless, we have merged the data into a single deep exposure as well as undertaking a preliminary examination of the variability. No UV halo is present as detected in the GALEX observation of M83. No UV bursts are visible; however a more stringent limit will only be obtained through a differencing of the sub-images. Papers: we expect 2 papers at about 12 pages/paper to flow from this project. The first paper will report on the time variability while the second will focus on the deep UV image obtained from stacking the individual observations.
Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1
NASA Astrophysics Data System (ADS)
Zhang, Keming; Schiminovich, David
2018-01-01
We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 < z < 1 based on GALEX photometry, with redshift measurements from four spectroscopic and photometric-redshift catalogs: NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Suk; Rey, Soo-Chang; Lisker, Thorsten
We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We also find that the UV CMRs of dEsmore » in the outer cluster region are slightly steeper than that of their counterparts in the inner region, due to the existence of faint, blue dEs in the outer region. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. We confirm that the feature of delayed star formation of early-type dwarf galaxies in the Virgo cluster is strongly correlated with their morphology and environment. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. Our results suggest that dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment. In any case, UV photometry provides a powerful tool to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories.« less
NASA Astrophysics Data System (ADS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L.
2013-03-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in ~40 deg2 of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of ~3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5σ level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |Δm| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |Δm| > 0.2 mag of ~8.0, 7.7, and 1.8 deg-2 for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of ~15 and 52 deg-2 yr-1 for M dwarfs and extragalactic transients, respectively.
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration
2018-01-01
The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.
2017-12-01
The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.
Short duration flares in GALEX data
NASA Astrophysics Data System (ADS)
Brasseur, Clara; Osten, Rachel A.
2018-06-01
Flares on cool stars indicate short time-scale magnetic reconnection processes that provide temporary increases in the stellar radiative output. While recent work has focused on long-duration flares from solar-like stars and those of lower mass, the existence of short-duration flares in the ultraviolet has not been systematically probed before. We will present an interesting population of short duration flares we discovered in a sample of ~37,000 light curves observed from 2009-2012 by the GALEX and Kepler missions. These flares range in duration from under a minute to a few minutes and are almost entirely distinct from a previous flare survey of Kepler data. We were able to detect this unique population of flares because the time resolution of the GALEX data allowed us to construct light curves with a 10 second cadence and thus detect shorter duration flares than could be detected within Kepler data. We applied algorithmic flare detection to a sample of ~37,000 stars, and identified a final count of 2,065 flares on 1,121 stars. We discuss the implication of these events for the flare frequency distributions of solar-like stars.
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Kilic, Mukremin; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin; Kirkpatrick, J. Davy; Griffith, Roger L.
2011-01-01
With the launch of the Wide-Field Infrared Survey Explorer (WISE), a new era of detecting planetary debris around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED survey will be sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs and covering a large fraction of known WDs detected with the SDSS DR4 WD catalog. In this paper, we report an initial result of the WIRED survey, the detection of the heavily polluted hydrogen WD (spectral type DAZ) GALEX Jl93156.S-KlI1745 at 3.35 and 4.6/Lm. We find that the excess is consistent with either a narrow dusty ring with an inner radius of 29 RWD. outer radius of 40 RWD, and a face-on inclination, or a disk with an inclination of 70 , an inner radius of 23 RWD. and an outer radius of 80 RWD. We also report initial optical spectroscopic monitoring of several metal lines present in the photosphere and find no variability in the line strengths or radial velocities of the lines. We rule out all but planetary mass companions to GALEXl931 out to 0.5 AU.
HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkolnik, Evgenya L.; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu
2014-10-01
The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation andmore » evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.« less
NASA Astrophysics Data System (ADS)
Thilker, David
At the close of nearly a decade of observing, GALEX has accumulated an unprecedented archive of ultraviolet (UV) images revealing both the scope and intricacy of star formation (SF) in many thousands of galaxies inhabiting the local universe. If the observed hierarchical SF morphology can be quantified systematically, and physically interpreted with multi-wavelength ancillary data and modeling, then the low redshift GALEX legacy will approach completion. However, the GALEX GR6 pipeline database contains a highly incomplete census of young stellar complexes even for very well-studied galaxies. We propose to apply a dedicated photometry algorithm that has been optimized for measuring the properties of irregularly shaped sources in crowded galaxy images containing spatially variant, diffuse intra-clump emission. Structures will be selected in the UV, but we will compile UV-visible-MIR SEDs for each detection utilizing Pan-STARRS1+SDSS and WISE data. These SEDs will then be fit using population-synthesis models to derive estimated stellar mass, age, and extinction. Processing will be completed for the entire diameter-limited GALEX Large Galaxy Atlas (GLGA) sample of 20,000+ galaxies, at a variety of standardized spatial resolutions. Although the precise categorization of the cataloged substructures will depend on galaxy distance, the outcome of our analysis will be a catalog similar to the stellar association surveys of past decades for very nearby galaxies based on resolved stars (e.g. van den Bergh 1964, Hodge 1986, Efremov et al. 1987), except that our investigation will probe a galaxy sample of dramatically larger size using the integrated UV light from such groupings of young stars. Our algorithm is multi-scale in nature and will thus preserve the hierarchical properties of the stellar distribution, by linking sub-clumps to their larger-scale parent feature(s). The resulting database will be a fundamental resource for follow-up multi-wavelength studies probing SF-driven galaxy evolution using both existing NASA databases and operating instruments, in addition to upcoming space telescopes. While a legacy of our project will be the hierarchical photometric database (disseminated via MAST and NED) which supports extragalactic community science, our own goals from the proposed comprehensive measurements address some vital issues: (i) Currently there is controversy regarding the power-law slope of the empirical star formation law (SFL). Is there constant star formation efficiency above the HI-to-H_2 transition gas surface density (implying ~unity slope, see papers by Bigiel et al. and Leroy et al.), or is the SFL relation a stronger function of gas density with a super-linear form (as observed by Kennicutt et al. 2007)? Liu et al. (2011) have shown that the answer may depend critically on whether or not diffuse emission underlying star-forming substructures is removed. Our analysis will allow firm resolution of this issue, as we will also apply our photometry algorithm to Spitzer imaging for a subset of our sample galaxies, thus providing background-subtracted L(UV) and L(IR) measurements for substructures which can then be compared to existing and forthcoming (ALMA) CO imaging. (ii) We will also verify/calibrate our SED-fit based determination of age, extinction, and mass for UV-bright structures via direct comparison to the ground-truth stemming from resolved stellar populations (e.g. in ANGST galaxies) and also high-resolution HST UV-optical star cluster surveys (further out in the Local Volume). (iii) Finally, we will measure the diffuse UV fraction in a few hundred of the nearest galaxies (accounting for variation tied only to spatial resolution), trying to ascertain the characteristic fraction in galaxies of different Hubble type and dust-to-gas ratio. Systematic local variations in diffuse fraction and color will also be quantified as a function of environment.
Galaxy evolution in groups. NGC 3447/NGC 3447A: the odd couple in LGG 225
NASA Astrophysics Data System (ADS)
Mazzei, P.; Marino, A.; Rampazzo, R.; Plana, H.; Rosado, M.; Arias, L.
2018-02-01
Context. Local Group (LG) analogs (LGAs) are galaxy associations dominated by a few bright spirals reminiscent of the LG. The NGC 3447/NGC 3447A system is a member of the LGG 225 group, a nearby LGA. This system is considered a physical pair composed of an intermediate-luminosity late-type spiral, NGC 3447 itself, and an irregular companion, NGC 3447A, linked by a faint, short filament of matter. A ring-like structure in the NGC 3447 outskirts has been emphasised by Galaxy Evolution Explorer (GALEX) observations. Aims: This work aims to contribute to the study of galaxy evolution in low-density environments, a favourable habitat to highly effective encounters, shedding light on the evolution of the NGC 3447/NGC 3447A system. Methods: We performed a multi-λ analysis of the surface photometry of this system to derive its spectral energy distribution and structural properties using ultraviolet (UV), Swift UVOT, and optical Sloan Digital Sky Survey (SDSS) images complemented with available far-IR observations. We also characterised the velocity field of the pair using two-dimensional Hα kinematical observations of the system obtained with PUMA Fabry-Perot interferometer at the 2.1 m telescope of San Pedro Mártir (Mexico). All these data are used to constrain smooth particle hydrodynamic simulations with chemo-photometric implementation to shed light on the evolution of this system. Results: The luminosity profiles, from UV to optical wavelengths, are all consistent with the presence of a disc extending and including NGC 3447A. The overall velocity field does not emphasise any significant rotation pattern, rather a small velocity gradient between NGC 3447 and NGC 3447A. Our simulation, detached from a large grid explored to best-fit the global properties of the system, suggests that this arises from an encounter between two halos of equal mass. Conclusions: NGC 3447 and NGC 3447A belong to the same halo, NGC 3447A being a substructure of the same disk including NGC 3447. The halo gravitational instability, enhanced by the encounter, fuels a long-lived instability in this dark-matter-dominated disk, driving the observed morphology. The NGC 3447/NGC 3447A system may warn of a new class of "false pairs" and the potential danger of a misunderstanding of such objects in pair surveys that could produce a severe underestimate of the total mass of a system. The reduced images and datacubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A8
Accretion and Diffusion in the DAZ White Dwarf GALEX J1931+0117
NASA Astrophysics Data System (ADS)
Vennes, Stéphane; Kawka, Adéla; Németh, Péter
2011-03-01
We present an analysis of high-dispersion and high signal-to-noise ratio spectra of the DAZ white dwarf GALEX J1931+0117. The spectra obtained with the VLT-Kueyen/UV-Visual Echelle Spectrograph show several well-resolved Si II spectral lines enabling a study of pressure effects on line profiles. We observed large Stark shifts in silicon lines in agreement with laboratory measurements. A model atmosphere analysis shows that the magnesium, silicon and iron abundances exceed solar abundances, while the oxygen and calcium abundances are below solar. Also, we compared the observed line profiles to synthetic spectra computed with variable accretion rates and vertical abundance distributions assuming diffusion steady-state. The inferred accretion rates vary from Ṁ = 2×106 for calcium to 2×109 g s-1 for oxygen and indicate that the accretion flow is dominated by oxygen, silicon and iron while being deficient in carbon, magnesium and calcium. The lack of radial velocity variations between two measurement epochs suggests that GALEX J1931+0117 is probably not in a close binary and that the source of the accreted material resides in a debris disc.
NASA Technical Reports Server (NTRS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.;
2013-01-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in approximately 40 deg(exp 2) of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of approximately 3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5 sigma level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to absolute value(?m) = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV less than 23 mag and absolute value(?m) greater than 0.2 mag of approximately 8.0, 7.7, and 1.8 deg(exp -2) for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of approximately 15 and 52 deg(exp -2 yr-1 for M dwarfs and extragalactic transients, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borthakur, Sanchayeeta; Heckman, Timothy; Tumlinson, Jason
We present a study exploring the nature and properties of the circumgalactic medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the H i 21 cm line. Our sample includes 45 low-z (0.026–0.049) galaxies from the GALEX Arecibo SDSS Survey (Galaxy Evolution Explorer/Arecibo/Sloan Digital Sky Survey). Their CGM was probed via absorption in the spectra of background quasi-stellar objects at impact parameters of 63–231 kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Lyα absorption lines) in the CGMmore » of 92% of the galaxies. We find that the radial profile of the CGM as traced by the Lyα equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of the sightline relative to the galaxy’s major axis and the Lyα equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the ISM. We find a strong correlation (99.8% confidence) between the gas fraction (M(H i)/M{sub ⋆}) and the impact-parameter-corrected Lyα equivalent width. This is stronger than the analogous correlation between corrected Lyα equivalent width and specific star formation rate (SFR)/M{sub ⋆} (97.5% confidence). These results imply a physical connection between the H i disk and the CGM, which is on scales an order of magnitude larger. This is consistent with the picture in which the H i disk is nourished by accretion of gas from the CGM.« less
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left) represents the survey's blue, red, and infrared bands with the colors blue, green, and red. The overlay indicating the location of hydrogen gas in the Leo Ring is based on observations made at the Arecibo Observatory in Puerto Rico.NASA Astrophysics Data System (ADS)
Neely, Ray Kreswell
The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.
VizieR Online Data Catalog: UV and IR properties for galaxies (Mao+, 2014)
NASA Astrophysics Data System (ADS)
Mao, Y.-W.; Kong, X.; Lin, L.
2017-03-01
Broadband FUV and NUV imaging data were obtained from GALEX observations and downloaded from the Multimission Archive at Space Telescope Science Institute (MAST) Web site (http://galex.stsci.edu/); 8um (dust-only) and 24um images were observed by the Spitzer Space Telescope (Spitzer) and retrieved from the SINGS data distribution service (http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/). Hα narrowband imaging data are also employed in this work. The Hα narrowband image for NGC 3031 was observed by the 60/90 cm Schmidt telescope at Xing-Long station of the National Astronomical Observatories of China with the filter of transmission profile FWHM~120Å. (2 data files).
VizieR Online Data Catalog: Rapidly pulsating sdB stars search with GALEX (Boudreaux+, 2017)
NASA Astrophysics Data System (ADS)
Boudreaux, T. M.; Barlow, B. N.; Fleming, S. W.; Soto, A. V.; Million, C.; Reichart, D. E.; Haislip, J. B.; Linder, T. R.; Moore, J. P.
2018-04-01
Here we present a search for short-period hot subdwarf B (sdB) pulsations in the archived GALEX data set using gPhoton (Million+ 2016ApJ...833..292M). An initial sample of 5613 hot subdwarfs (Geier+ 2017, J/A+A/600/A50), which represents a good approximation of all cataloged hot subdwarf stars, was down-selected based on magnitudes, coordinates, and total exposure time available in the gPhoton database, described fully in Section 2. These selection criteria yielded 1881 targets upon which we focused our investigation. Calibrated light curves with time bins of 30s were generated for each target using gPhoton. (4 data files).
Tracing Star Formation in the Outskirts of the Milky Way
NASA Astrophysics Data System (ADS)
Casetti, Dana
Discovery of the presence of young stars in the Leading Arm of the Magellanic Stream and in the periphery of the Large Magellanic Cloud (Casetti-Dinescu et al. 2014, Moni Bidin et al. 2017) poses a fundamental question as to how star formation can occur in intergalactic space within an environment of very low gas density. Recent models indicate that the hydrodynamical interaction with the gaseous component of the Milky Way may be of significant importance in shaping the Leading Arm of the Magellanic Stream; however models are still poorly constrained due to a lack of observational data. The existence of such stars is crucial as it informs on both star-formation and the Clouds' interaction with one another and with the Milky Way. Moreover, stars, as opposed to gas, provide secure distances to constrain the interactions. In the discovery of these young stars, the GALEX UV mission played the key role in selecting potential candidates. Together with infrared photometry from 2MASS and optical V from ground-based data, our team developed a method to select such candidates that were then followed up with spectroscopy (Casetti-Dinescu et al. 2012). This pilot study demonstrated that, with large sky coverage, our team could explore significant portions of the Magellanic Stream, whereas previously only regions adjacent to the Clouds had been studied. Still, the pilot study was limited to the southern sky (Dec. d -20°). Here, we propose to recreate a young-star candidate list using two completed NASA space missions: the recently updated GALEX (DR6plus7) and the infrared WISE missions. Together with optical photometry from Gaia DR1 (and/or PanSTARRS), we will increase the sample of candidate OB-type stars by exploring a volume of space over four times that of our previous, pilot study. The area coverage for the proposed new study will be the entire sky; previous spatial gaps in earlier versions of GALEX are now filled in, and the depth of the study will increase by 0.3 to 0.5 magnitudes due to use of AllWISE. By covering the entire sky, we will be able to explore the presence (or lack thereof) of such stars diametrically opposite to the LA, where it is inferred the Magellanic Stream is crossing the Galactic plane a second time, if the Clouds have had two pericenter passages about the Galaxy. Alternatively, we may find entirely new structure at the edge of the Galactic disk, related to interactions with other yet-unknown Milky-Way satellites, or due to ejection mechanisms from OB associations in the disk. Star-forming regions as informed from OB-type stars have been studied in our Galaxy and in external galaxies, in well-known gas-rich regions. The novelty of our study is that it is designed to find such stars in unexpected regions by exploring the entire sky. It is noted that within the time frame of this proposal, Gaia data release 2 will become available; therefore, with these candidates having already been identified, we will be able to further investigate their distances and kinematics. Our list of candidates will be made publicly available for follow-up spectroscopic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Myron A.; Shiao, Bernard; Bianchi, Luciana, E-mail: myronmeister@gmail.com, E-mail: shiao@stsci.edu, E-mail: bianchi@pha.jhu.edu
We report on intriguing photometric properties of Galactic stars observed in the Galaxy Evolution Explorer (GALEX) satellite's far-UV (FUV) and near-UV (NUV) bandpasses, as well as from the ground-based Sloan Digital Sky Survey (SDSS) and the Kepler Input Catalog. The first property is that the (FUV – NUV) color distribution of stars in the Kepler field consists of two well-separated peaks. A second and more perplexing property is that for stars with spectral types G or later the mean (FUV – NUV) color becomes much bluer, contrary to expectation. Investigating this tendency further, we found in two samples of mid-Fmore » through K type stars that 17%-22% of them exhibit FUV excesses relative to their NUV fluxes and spectral types. A correction for FUV incompleteness of the FUV magnitude-limited star sample brings this ratio to 14%-18%. Nearly the same fractions are also discovered among members of the Kepler Eclipsing Binary Catalog and in the published list of Kepler Objects of Interest. These UV-excess ('UVe') colors are confirmed by the negative UV continuum slopes in GALEX spectra of members of the population. The SDSS spectra of some UVe stars exhibit metallic line weakening, especially in the blue. This suggests an enhanced contribution of UV flux relative to photospheric flux of a solar-type single star. We consider the possibility that the UV excesses originate from various types of hot stars, including white dwarf DA and sdB stars, binaries, and strong chromosphere stars that are young or in active binaries. The space density of compact stars is too low to explain the observed frequency of the UVe stars. Our model atmosphere-derived simulations of colors for binaries with main-sequence pairs with a hot secondary demonstrate that the color loci conflict with the observed sequence. As a preferred alternative we are left with the active chromospheres explanation, whether in active close binaries or young single stars, despite the expected paucity of young, chromospherically active stars in the field. We also address a third perplexing color property, namely, the presence of a prominent island of 'UV red' stars surrounded by 'UV blue' stars in the diagnostic (NUV–g), (g – i) color diagram. We find that the subpopulation composing this island is mainly horizontal branch stars. These objects do not exhibit UV excesses and therefore have UV colors typical for their spectral types. This subpopulation appears 'red' in the UV only because the stars' colors are not pulled to the blue by the inclusion of UVe stars.« less
The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip
NASA Astrophysics Data System (ADS)
Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.
2012-10-01
We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend between outflow velocity and SFR. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both SFR and SFR surface density predicted by theory. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Sánchez-Janssen
2011-12-01
Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.
Stellar flare oscillations: evidence for oscillatory reconnection and evolution of MHD modes
NASA Astrophysics Data System (ADS)
Doyle, J. G.; Shetye, J.; Antonova, A. E.; Kolotkov, D. Y.; Srivastava, A. K.; Stangalini, M.; Gupta, G. R.; Avramova, A.; Mathioudakis, M.
2018-04-01
Here, we report on the detection of a range of quasi-periodic pulsations (20-120 s; QPPs) observed during flaring activity of several magnetically active dMe stars, namely AF Psc, CR Dra, GJ 3685A, Gl 65, SDSS J084425.9+513830, and SDSS J144738.47+035312.1 in the GALEX NUV filter. Based on a solar analogy, this work suggests that many of these flares may be triggered by external drivers creating a periodic reconnection in the flare current sheet or an impulsive energy release giving rise to an avalanche of periodic bursts that occur at time intervals that correspond to the detected periods, thus generating QPPs in their rising and peak phases. Some of these flares also show fast QPPs in their decay phase, indicating the presence of fast sausage mode oscillations either driven externally by periodic reconnection or intrinsically in the post-flare loop system during the flare energy release.
DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.
2012-02-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less
NASA Technical Reports Server (NTRS)
Wade, Richard A.; Stark, M. A.; Green, Richard F.; Durrell, Patrick R.
2009-01-01
The hot subdwarf (sd) stars in the Palomar Green (PG) catalog of ultraviolet excess (UVX) objects play a key role in investigations of the frequency and types of binary companions and the distribution of orbital periods. These are important for establishing whether and by which channels the sd stars arise from interactions in close binary systems. It has been suggested that the list of PG sd stars is biased by the exclusion of many stars in binaries, whose spectra show the Ca I1 K line in absorption. A total of 1125 objects that were photometrically selected as candidates were ultimately rejected from the final PG catalog using this K-line criterion. We study 88 of these 'PG-Rejects' (PGRs), to assess whether there are significant numbers of unrecognized sd stars in binaries among the PGR objects. The presence of a sd should cause a large UVX, compared with the cool K-line star. We assemble GALEX, Johnson V, and 2MASS photometry and compare the colors of these PGR objects with those of known sd stars, cool single stars, and hot+cool binaries. Sixteen PGRs were detected in both the far- and near-ultraviolet GALEX passbands. Eleven of these, plus the 72 cases with only an upper limit in the far-ultraviolet band, are interpreted as single cool stars, appropriately rejected by the PG spectroscopy. Of the remaining five stars, three are consistent with being sd stars paired with a cool main sequence companion, while two may be single stars or composite systems of another type. We discuss the implications of these findings for the 1125 PGR objects as a whole. An enlarged study is desirable to increase confidence in these first results and to identify individual sd+cool binaries or other composites for follow-up study. The GALEX AIS data have sufficient sensitivity to carry out this larger study.
Deep UV Luminosity Functions at the Infall Region of the Coma Cluster
NASA Technical Reports Server (NTRS)
Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.
2011-01-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.
'Ghost of Mirach' Rears its Spooky Head
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The 'Ghost of Mirach' galaxy is shown in visible light on the left, and in ultraviolet as seen by NASA's Galaxy Evolution Explorer on the right. The fields of view are identical in both pictures, with the Ghost of Mirach a galaxy called NGC 404 seen as the whitish spot in the center of the images. Mirach is a red giant star that looms large in visible light. Because NGC 404 is lost in the glare of this star, it was nicknamed the Ghost of Mirach. But when the galaxy is viewed in ultraviolet light, it comes to 'life,' revealing a never-before-seen ring. This ring, seen in blue in the picture on the right, contains new stars a surprise considering that the galaxy was previously thought to be, essentially, dead. The field of view spans 55,000 light years across. The Ghost of Mirach is located 11 million light-years from Earth. The star Mirach is very close in comparison it is only 200 light-years away and is visible with the naked eye. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md.NASA Astrophysics Data System (ADS)
Abdurro'uf; Akiyama, Masayuki
2017-08-01
We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.
The resolved star formation history of M51a through successive Bayesian marginalization
NASA Astrophysics Data System (ADS)
Martínez-García, Eric E.; Bruzual, Gustavo; Magris C., Gladis; González-Lópezlira, Rosa A.
2018-02-01
We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey and near-infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near-infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affect the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved SFH of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the big bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t ≈ 11.9 Gyr after the big bang.
Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.
2014-01-01
The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.
Toward a Prescription for Feedback from Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Bourjaily, M.; Munsell, J.; Brotherton, M. S.; Bhattacharjee, A.; Runnoe, J.; Charlton, J. C.; Eracleous, M.
2011-01-01
Models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, distance, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 14000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) estimates of the quasar black hole mass. To this, we are adding photometry from GALEX, 2MASS, and ROSAT in an effort to characterize more fully the quasar SEDs. ROSAT photometry provides estimates of the level of soft X-ray absorption, which helps regulate the velocity of outflows. GALEX photometry samples the extreme ultraviolet range where several high ionization species, that may be present in the outflows, absorb light. 2MASS photometry samples the rest-frame optical, where the effects of absorption and dust reddening are minimal, yield better estimates of the bolometric luminosity (hence, Eddington ratio). In this poster, we will present preliminary measurements of the amount of absorption in the soft X-ray and extreme ultraviolet bands as a function of both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
NASA Technical Reports Server (NTRS)
2006-01-01
This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring, one as a neon blob and the other as a green spiral. Previously, scientists believed the ring marked the outermost edge of the galaxy, but the latest GALEX observations detect a faint disk, not visible in this image, that extends to twice the diameter of the ring.Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
NASA Astrophysics Data System (ADS)
Shinn, Jong-Ho; Seon, Kwang-Il
2015-12-01
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
The Arecibo Pisces-Perseus Survey: An Undergraduate ALFALFA Team Project
NASA Astrophysics Data System (ADS)
O'Donoghue, Aileen A.; Koopmann, Rebecca A.; Haynes, Martha P.; Jones, Michael; Craig, David; Hallenbeck, Gregory L.; Rosenberg, Jessica L.; Venkatesan, Aparna; Undergraduate ALFALFA Team
2016-01-01
The Milky Way's position in an outer filament of Lanieakea affords us a striking view of the Pisces-Perseus Supercluster (PPS) arcing roughly from 22h to 4h and 0° to +50° concentrated between cz = 4,000 km/s and cz = 8,000 km/s as a "wall" parallel to the plane of the sky. It is bounded by voids both between Laniakea and PPS and beyond PPS. Within this box, the 70% ALFALFA survey has detected 4,800 galaxies within cz = 8,000 km/s. Of these, 80% have masses greater than 108 M⊙. At the distance of the PPS, galaxies with MHI ≤ 108 M⊙ are below the ALFALFA detection limit. Thus to further explore this rich diversity of galaxy environments and the adjoining voids, the Undergraduate ALFALFA Team is in the process of using the L-band Wide receiver at Arecibo Observatory for the Arecibo Pisces-Perseus Supercluster Survey (APPSS). We will observe galaxies with 108 M⊙ ≤ MHI ≤ 109 M⊙ chosen from the SDSS DR12 and GALEX catalogs. We are limiting our observations to the PPS ridge in 21h 30m to 3h 15m and 23° to 35°. Since this region lacks SDSS spectroscopy, targets have been selected using photometric criteria derived from SDSS and GALEX observations for galaxies detected by ALFALFA. The results of these observations will allow us to constrain the HI mass function along the PPS ridge. Application of the Tully-Fisher relation will allow a robust measure of the infall velocities of galaxies into the filament. This work has been supported by NSF grant AST-1211005.
ScienceCast 35: Stellar Extremophiles
2011-11-03
"GALEX" has found stars forming in extreme galactic environments, places where researchers thought stars should not be. The finding could affect astronomy much as the discovery of microbial extremophiles affected biology in the 1970s.
Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars
NASA Astrophysics Data System (ADS)
Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot
2017-11-01
The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, M.; Elbaz, D.; Daddi, E.
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less
Binary supersoft X-ray sources and the supernova Ia progenitor problem
NASA Astrophysics Data System (ADS)
Nelson, Thomas John
In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe Ia that appear to be associated with recent star formation.
Using XMM-OM UV Data to Study Cluster Galaxy Evolution
NASA Astrophysics Data System (ADS)
Miller, Neal A.; O'Steen, R.
2010-01-01
The XMM-Newton satellite includes an Optical Monitor (XMM-OM) for the simultaneous observation of its X-ray targets at UV and optical wavelengths. On account of XMM's excellent characteristics for the observation of the hot intracluster medium, a large number of galaxy clusters have been observed by XMM and there is consequently a large and virtually unused database of XMM-OM UV data for galaxies in the cores of these clusters. We have begun a program to capitalize on such data, and describe here our efforts on a subsample of ten nearby clusters having XMM-OM, GALEX, and SDSS data. We present our methods for photometry and calibration of the XMM-OM UV data, and briefly present some applications including galaxy color magnitude diagrams (and identification of the red sequence, blue cloud, and green valley) and SED fitting (and galaxy stellar masses and star formation histories). Support for this work is provided by NASA Award Number NNX09AC76G.
Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since z ∼ 1.0
NASA Astrophysics Data System (ADS)
Cooke, Kevin C.; Fogarty, Kevin; Kartaltepe, Jeyhan S.; Moustakas, John; O’Dea, Christopher P.; Postman, Marc
2018-04-01
We investigate the evolution of star formation rates (SFRs), stellar masses, and M/L 3.4 μm ratios of brightest cluster galaxies (BCGs) in the COSMOS survey since z ∼ 1 to determine the contribution of star formation to the growth-rate of BCG stellar mass over time. Through the spectral energy density (SED) fitting of the GALEX, CFHT, Subaru, Vista, Spitzer, and Herschel photometric data available in the COSMOS2015 catalog, we estimate the stellar mass and SFR of each BCG. We use a modified version of the iSEDfit package to fit the SEDs of our sample with both stellar and dust emission models, as well as constrain the impact of star formation history assumptions on our results. We find that in our sample of COSMOS BCGs, star formation evolves similarly to that in BCGs in samples of more massive galaxy clusters. However, compared to the latter, the magnitude of star formation in our sample is lower by ∼1 dex. Additionally, we find an evolution of BCG baryonic mass-to-light ratio (M/L 3.4 μm) with redshift which is consistent with a passively aging stellar population. We use this to build upon Wen et al.'s low-redshift νL 3.4 μm–M Stellar relation, quantifying a correlation between νL 3.4 μm and M Stellar to z ∼ 1. By comparing our results to BCGs in Sunyaev–Zel’dovich and X-ray-selected samples of galaxy clusters, we find evidence that the normalization of star formation evolution in a cluster sample is driven by the mass range of the sample and may be biased upwards by cool cores.
2005-07-25
This image shows two companion galaxies, NGC 4625 top and NGC 4618 bottom, and their surrounding cocoons of cool hydrogen gas purple. The huge set of spiral arms on NGC 4625 blue was discovered by the ultraviolet eyes of NASA GALEX.
Release of the gPhoton Database of GALEX Photon Events
NASA Astrophysics Data System (ADS)
Fleming, Scott W.; Million, Chase; Shiao, Bernie; Tucker, Michael; Loyd, R. O. Parke
2016-01-01
The GALEX spacecraft surveyed much of the sky in two ultraviolet bands between 2003 and 2013 with non-integrating microchannel plate detectors. The Mikulski Archive for Space Telescopes (MAST) has made more than one trillion photon events observed by the spacecraft available, stored as a 130 TB database, along with an open-source, python-based software package to query this database and create calibrated lightcurves or images from these data at user-defined spatial and temporal scales. In particular, MAST users can now conduct photometry at the intra-visit level (timescales of seconds and minutes). The software, along with the fully populated database, was officially released in Aug. 2015, and improvements to both software functionality and data calibration are ongoing. We summarize the current calibration status of the gPhoton software, along with examples of early science enabled by gPhoton that include stellar flares, AGN, white dwarfs, exoplanet hosts, novae, and nearby galaxies.
VizieR Online Data Catalog: Palomar/MSU and SDSS-DR7 M dwarfs with GALEX obs. (Jones+, 2016)
NASA Astrophysics Data System (ADS)
Jones, D. O.; West, A. A.
2016-03-01
To compare magnetic activity in the optical with UV activity, we matched the SDSS Data Release 7 (DR7; Abazajian et al. 2009, II/294) M dwarf spectroscopic catalog (West et al. 2011, J/AJ/141/97; R~2000) to GALEX data from Data Releases 6 and 7 (NUV: ~1750-2750Å and FUV: ~1350-1750Å; see II/312). The DR7 M dwarf catalog consists of 70841 SDSS M dwarfs with spectral types verified by eye. We supplemented the SDSS sample with the Palomar/MSU Nearby-Star Spectroscopic Survey (PMSU; Reid et al. 1995, III/198), which contains 1684 nearby low-mass stars (1415 M dwarfs) as part of the northern sample (δ>-30°) and 282 nearby low-mass stars (228 M dwarfs) as part of the southern sample. (2 data files).
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; Shiao, Bernie; Thilker, David; Barr, Robert; Girardi, Leo
2018-01-01
GUVcat is a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX surveys (Bianchi et al. 2017, ApJ Suppl, 230, 24; arXiv:1704.05903). It contains 83million unique sources measured in FUV and NUV (duplicate measurements and rim artifacts removed) at AIS depth (about FUV < 20, NUV<20.8 ABmag). It covers an area of 24,790 sq.deg., larger than that of previous versions (e.g., Bianchi et al. 2011 MNRAS 411, 2770; Bianchi et al.2014 J. ASR. 53, 900). In GUVcat we cured 640 fields improperly coadded by the GALEX pipeline, and implemented other improvements and new tags, e.g. to mark sources in the footprint of nearby extended galaxies or crowded clusters.The UV unique-source catalog facilitates studies of density of sources, and matching with catalogs at other wavelegths. We matched GUVcat with SDSS and Pan-STARRS surveys, which provide five optical bands each, and used the UV-to-optical colors to classify sources by astrophysical class, and to characterize classes of stellar sources to which UV data are uniquely sensitive, such as hot white dwarfs (WD), including elusive types of binaries. We compared the content of Galactic sources with Milky Way models, computed with different prescriptions. We also matched GUVcat with the first Gaia source and Gaia TGAS releases, which add precise position and G-band photometry for the bright sources, and direct distance measurements for a few very bright sources. GALEX spectra are also available and included in the analysis. Follow-up observations with HST are ongoing for an exploratory subsample.The source catalogs and related tools are available from the uvsky web site http://dolomiti.pha.jhu.edu/uvsky/#GUVcat . GUVcat_AIS is also available from MAST casjobs and soon from Vizier. A useful tool for calculating the effective area coverage of GUVcat, and of the matched catalogs, in user-chosen regions of the sky, is also available at the above url.Acknowledgements: Partial support for this work was provided by NASA grants: NNX16AF40G, NNX14AF88G, HST-GO-14119.001
NGC 3934: a shell galaxy in a compact galaxy environment
NASA Astrophysics Data System (ADS)
Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.
2011-10-01
Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.
2012-05-16
NGC 7293, better known as the Helix nebula, displays its ultraviolet glow courtesy of NASA GALEX. The Helix is the nearest example of a planetary nebula, which is the eventual fate of a star, like our own Sun, as it approaches the end of its life.
The Helix Nebula: Unraveling at the Seams
2012-10-03
This image from NASA Spitzer and GALEX shows the Helix nebula, a dying star throwing a cosmic tantrum. In death, the star dusty outer layers are unraveling into space, glowing from the intense UV radiation being pumped out by the hot stellar core.
NASA Astrophysics Data System (ADS)
Vennes, S.; Kawka, A.; Németh, P.
2011-06-01
We present a detailed model atmosphere analysis of high-dispersion and high signal-to-noise ratio spectra of the heavily polluted DAZ white dwarf GALEX J1931+0117. The spectra obtained with the Very Large Telescope (VLT)-Kueyen/UV-Visual Echelle Spectrograph show several well-resolved Si II spectral lines enabling a study of pressure effects on line profiles. We observed large Stark shifts in silicon lines in agreement with theoretical predictions and laboratory measurements. Taking into account Stark shifts in the calculation of synthetic spectra, we reduced the scatter in individual line radial velocity measurements from ˜3 to ≲1 km s-1. We present revised abundances of O, Mg, Si, Ca and Fe based on a critical review of line-broadening parameters and oscillator strengths. The new measurements are generally in agreement with our previous analysis with the exception of magnesium with a revised abundance of a factor of 2 lower than previously estimated. The magnesium, silicon and iron abundances exceed solar abundances, but the oxygen and calcium abundances are below solar. Also, we compared the observed line profiles to synthetic spectra computed with variable accretion rates and vertical abundance distributions assuming diffusive steady state. The inferred accretion rates vary from ? for calcium to 2 × 109 g s-1 for oxygen. We find that the accretion flow must be oxygen rich while being deficient in calcium relative to solar abundances. The lack of radial velocity variations between two measurement epochs suggests that GALEX J1931+0117 is probably not in a close binary and that the source of the accreted material resides in a debris disc. Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Paranal Observatory under programme 283.D-5060.
White Dwarfs in the GALEX Survey
NASA Technical Reports Server (NTRS)
Kawka, Adela; Vennes, Stephane
2007-01-01
We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.
Tidal Disruption Events in Pan-STARRS1
NASA Astrophysics Data System (ADS)
Gezari, Suvi
2018-01-01
The Pan-STARRS1 (PS1) Medium Deep Survey made an important contribution to the study of tidal disruption events (TDEs) by discovering TDEs on the rise to peak and enabling prompt spectroscopic follow-up observations. The two PS1 TDEs, PS1-10jh and PS1-11af, were the first TDEs to have detailed light curves and transient broad line features in their spectra, both of which could be used to constrain the physical parameters of the events. I will describe how cotemporal NUV observations from the GALEX Time Domain Survey were critical in the identification of these relatively rare events as bonifide TDEs among the PS1 transient alert stream. I will also show how we can use the PS1+GALEX data set as a training set to prepare for culling TDEs from the deluge of transients to be produced by the next generation of optical time domain surveys, in order that they may be used as effective probes of supermassive black hole demographics and accretion physics.
Estimation of the Spectral Type of the Progenitor of the ASASSN-17oz Transient
NASA Astrophysics Data System (ADS)
McCollum, B.; Rottler, Lee
2017-11-01
We report the result of SED fitting of the precursor object of the ASASSN-17oz transient (ATel #10991) using pre-outburst archival photometry. We used the following magnitudes, from the sources noted: GALEX All-sky FUV (1516A) = 21 (AB magnitude upper limit) GALEX All-sky NUV (2267A) = 22 (AB magnitude upper limit) Johnson B = 17.17 +/- 0.55 (USNO-B1.0 catalog, two values) Johnson V = 16.3 (Jayasinghe et al. 2017, ATel #10991) Johnson R = 16.02 (NOMAD catalog, Zacharias 2005) Pan-STARRS g = 17.108 +/- 0.049 Pan-STARRs r = 16.424 +/- 0.017 Pan-STARRS i = 15.885 +/- 0.053 Pan-STARRS z = 15.77 +/- 0.019 2MASS J = 14.544 +/- 0.032 2MASS H = 14.025 +/- 0.04 2MASS Ks = 13.755 +/- 0.044 WISE W1 = 13.78 +/- 0.028 WISE W2 = 14.712 +/- 0.041 WISE W3 = 12.581 (upper limit) These measurements were obtained at epochs spread over a few decades.
Galactoseismology: From The Milky Way To XUV Disks
NASA Astrophysics Data System (ADS)
Chakrabarti, Sukanya
The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST observations. By mapping to the HI image, the GALEX UV image, the multi-wavelength SED of XUV disks, as well as the masses and deprojected distances of the satellites in a statistically robust way using a Monte Carlo Markov Chain analysis, we will produce evolutionary histories of XUV disks and their satellite populations for the first time. This will enable an apples-to-apples comparison for XUV disks in the Local Volume. There is currently no study that has examined the morphological effects of satellites in cosmological simulations on the gas and stellar disk. This is a critical test of the distribution (the number, the mass, and orbits) of satellites in cosmological simulations. We will also investigate if the vast polar structure (VPOS) of dwarf galaxies around the Milky Way is a serious problem for the Lambda-CDM paradigm. Here we ask two simple questions: 1) Is the VPOS dynamically coherent? If the VPOS is a serious problem for Lambda-CDM, one expects that it should persist over a dynamical time and should not be unique to the present day. 2) Are there certain satellites that drive the appearance of the planar structure at present day? If so, it is critical to examine whether a sub-set excluding these satellites resembles cosmological simulations. Our preliminary results show that this structure is not dynamically coherent, and is driven by two satellites: Leo I and Leo II, both of which have extreme kinematic properties. We will also examine the evolution of the VPOS in non-spherical and time-dependent potentials. We will seek to obtain more accurate proper motions of Leo II in the upcoming HST cycle, as we find that Leo II particularly influences the fit to the planar structure. These results will have far-reaching impact in understanding data from many NASA missions - HST, GALEX, Spitzer, and Herschel to JWST and WFIRST missions. We will also provide a framework for understanding data from the GAIA and GALAH surveys of the Milky Way.
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Darvish, Behnam; Seibert, Mark
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less
Finding the elusive substellar members of young moving groups
NASA Astrophysics Data System (ADS)
Aller, Kimberly Mei
Young moving groups (YMGs) consist of coeval, comoving stars, with ages between 10-100Myrs, that have migrated from their origins after formation. They provide a valuable link between ongoing star formation in molecular clouds (˜1Myr) and old field stars (≥1Gyr). However, previous searches based on optical surveys such as Hipparcos and the Palomar Sky Survey were insensitive to these very faint cool dwarfs. More recent surveys with GALEX have begun to reveal the nearby (<25 pc) low-mass members (≥ 0.1 M solar massses) but the cool, substellar members have remained elusive. We have increased the search volume by a factor of ˜10 using a novel combination of photometry and proper motions from Pan-STARRS, WISE, and 2MASS in order to uncover the missing substellar members down to ≥ 00.1 M solar massses (at 10Myr). We have obtained NIR low-resolution spectroscopy and confirmed the youth of 65 new ultracool dwarf YMG candidates. We also obtained high-resolution NIR spectroscopy to determine radial velocities for our young brown dwarfs. With our RVs and PS1 parallaxes, we have nearly doubled the number of confirmed bona fide substellar YMG members, which are also brown dwarf age benchmarks. Our new young brown dwarfs empirically define the substellar spectral evolution with age and provide us with a snapshot of brown dwarf evolution. Finally, our resulting young brown dwarfs will be valuable targets for future surveys of brown dwarf binarity and young exoplanet characterization.
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David
2017-06-01
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.
Multi-wavelength Morphological Study Of Star Forming Regions In Nearby Cluster-rich Lirgs
NASA Astrophysics Data System (ADS)
Vavilkin, Tatjana; Evans, A.; Mazzarella, J.; Surace, J.; Kim, D.; Howell, J.; Armus, L.; GOALS Team
2009-05-01
Luminous Infrared Galaxies (LIRGs) are believed to play an important role in star formation history of the universe. Many LIRGs undergo intense bursts of star formation as a result of interaction/merger process. Given the dusty nature of LIRGs, it is necessary to probe Luminous Infrared Galaxies at multiple wavelengths. The Great Observatories All-sky LIRG Survey (GOALS) combines data from NASA's Spitzer, Hubble, Chandra and GALEX observatories and offers a unique opportunity to gain insights into the physical processes in these highly dust enshrouded systems. We examine a sample of 11 nearby (z < 0.03) cluster-rich (> 200 clusters as seen in HST ACS images) LIRG systems at various interaction stages. The combined HST ACS optical imaging, Spitzer IRAC 8 micron channel and GALEX near-UV imaging allows us to access the properties of visible and obscured star forming regions. We study the spatial distribution of star forming regions at these wavelengths, correlate locations of young stellar clusters with PAH and UV emission regions and trace changes with merger stage.
White dwarf variability with gPhoton: pulsators
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Fleming, Scott W.; Pelisoli, Ingrid; Romero, Alejandra; Bell, Keaton J.; Kepler, S. O.; Caton, Daniel B.; Debes, John; Montgomery, Michael H.; Thompson, Susan E.; Koester, Detlev; Million, Chase; Shiao, Bernie
2018-04-01
We present results from a search for short time-scale white dwarf variability using gPhoton, a time-tagged data base of GALEX photon events and associated software package. We conducted a survey of 320 white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than ˜30 min. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE W1 and W2 bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and GALEX data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.
UV/Optical Detections of Candidate Tidal Disruption Events by GALEX and CFHTLS
NASA Astrophysics Data System (ADS)
Gezari, S.; Basa, S.; Martin, D. C.; Bazin, G.; Forster, K.; Milliard, B.; Halpern, J. P.; Friedman, P. G.; Morrissey, P.; Neff, S. G.; Schiminovich, D.; Seibert, M.; Small, T.; Wyder, T. K.
2008-04-01
We present two luminous UV/optical flares from the nuclei of apparently inactive early-type galaxies at z = 0.37 and 0.33 that have the radiative properties of a flare from the tidal disruption of a star. In this paper we report the second candidate tidal disruption event discovery in the UV by the GALEX Deep Imaging Survey and present simultaneous optical light curves from the CFHTLS Deep Imaging Survey for both UV flares. The first few months of the UV/optical light curves are well fitted with the canonical t-5/3 power-law decay predicted for emission from the fallback of debris from a tidally disrupted star. Chandra ACIS X-ray observations during the flares detect soft X-ray sources with Tbb = (2-5) × 105 K or Γ > 3 and place limits on hard X-ray emission from an underlying AGN down to LX(2-10 keV) lesssim 1041 ergs s-1. Blackbody fits to the UV/optical spectral energy distributions of the flares indicate peak flare luminosities of gtrsim1044-1045 ergs s-1. The temperature, luminosity, and light curves of both flares are in excellent agreement with emission from a tidally disrupted main-sequence star onto a central black hole of several times 107 M⊙. The observed detection rate of our search over ~2.9 deg2 of GALEX Deep Imaging Survey data spanning from 2003 to 2007 is consistent with tidal disruption rates calculated from dynamical models, and we use these models to make predictions for the detection rates of the next generation of optical synoptic surveys. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
HST/COS Observations Of Lyman-α Emission From
NASA Astrophysics Data System (ADS)
Wofford, Aida; Leitherer, C.; Salzer, J.; COS Science Team
2012-01-01
Although HI Lyman-alpha (Lyα, 1216 Å) is expected to be the strongest recombination line in HII nebulae, it is resonantly scattered by neutral hydrogen and is easily destroyed by dust. And yet, some star-forming galaxies show Lyα in emission. As evidenced by high dispersion HST/GHRS+STIS FUV spectroscopy of a handful of local (z<0.03) galaxies, the velocity shift between the neutral gas and the ionized gas plays a key role in driving the observed Lyα escape. We present HST/COS/G130M 1150-1450 Å (observed-frame) spectroscopy of 20 new targets located at a mean redshift of
What triggers starbursts in dwarf galaxies?
NASA Astrophysics Data System (ADS)
Johnson, Kelsey
While the processes regulating star formation and the interstellar medium in massive interacting galaxies have been studied extensively, the extent to which these processes occur in the shallower gravitational potential wells of lower mass dwarf galaxies is relatively unconstrained. While dwarf galaxies are known to undergo starbursts (Heckman et al. 1998; Johnson et al. 2000), the origins of these bursts remain unclear, and interactions and mergers with other dwarfs have not been ruled out (Lelli et al. 2012; Koleva et al. 2014). These gas-rich dwarf galaxies in the nearby universe are expected to offer glimpses of star formation modes at high redshift with their low metal content and large amounts of fuel for forming stars. Given that dwarf-dwarf mergers dominate the merger rate at any given redshift (i.e. De Lucia et al. 2006; Fakhouri et al. 2010), this lack of observational constraints leaves a significant mode of galaxy evolution in the universe mostly unexplored. While a few individual dwarf mergers/pairs have been observed (e.g., Henize 2-10: Reines et al. 2012; NGC4490: Clemens et al. 1998; NGC3448: Noreau & Kronberg 1986; IIZw40: Lequeux et al. 1980), a systematic study of the star formation histories of interacting dwarfs as a population has never been done. We propose to obtain and further process near- and far-ultraviolet (NUV/FUV), nearinfrared (NIR), and mid-infrared (MIR) imaging for a sample of 58 dwarf galaxy pairs (116 dwarfs) and 348 unpaired dwarfs (analogs matched in stellar mass, redshift, and local density enhancement) using the NASA archives for the Galaxy Evolution Explorer (GALEX; Martin et al. 2003), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), and the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) missions. We aim to characterize the impact interactions have on fueling star formation in the nearby universe for a complete sample of dwarf galaxy pairs caught in a variety of interaction stages from the TiNy Titans Survey. The archival UV observations will first allow us to determine the presence of stellar bridges and tidal tails and whether dwarf-dwarf interactions alone can trigger significant levels of star formation and/or remove stars from their host galaxies. We will then use the UV and IR photometry to place age constraints on the stellar populations and to determine stellar mass surface densities, ages, and host galaxy stellar mass as a function of pair separation and dwarf-dwarf mass ratio. We will distinguish tidally triggered star formation from star formation derived from stochastic processes by taking advantage of the wealth of observations available in all three archives for "normal" non-interacting dwarfs that we have carefully selected to be analogs to our paired dwarfs (matched in stellar mass, redshift, and environment) and by comparing the stellar populations of those dwarfs with the interacting dwarfs in our sample. Ultimately, we can combine the UV and IR imaging from this proposal with ground-based optical photometry from our current, ongoing program to model the star formation histories of these dwarfs as part of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. This study will thus characterize evidence for the hierarchical evolution of dwarf galaxies as well as the extent of pre-processing (i.e., dwarf-dwarf interactions occurring before the accretion by a massive host) that occurs.
Stellar Photon Archaeology with Gamma-Rays
NASA Technical Reports Server (NTRS)
Stecker, Floyd W.
2009-01-01
Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.
Star Formation in M 33 (HerM33es)
NASA Astrophysics Data System (ADS)
Kramer, C.; Boquien, M.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Mookerjea, B.; Relaño, M.; Verley, S.
2011-11-01
Within the key project "Herschel M 33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M 33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6 μm to 500μm, along with H i, Hα, and GALEX UV data, we have studied the dust at high spatial resolutions of 150 pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [C ii], [O i], and CO maps obtained in a first spectroscopic study of one 2' × 2' subregion of M 33, located on the inner, northern spiral arm and encompassing the H ii region BCLMP 302.
Exploring the Dust Content of Galactic Winds with MIPS
NASA Astrophysics Data System (ADS)
Martin, Crystal; Engelbracht, Charles; Gordon, Karl
2005-06-01
This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.
AKARI Deep Observations of the Chandra Deep Field South
NASA Astrophysics Data System (ADS)
Burgarella, D.; Buat, V.; Takeuchi, T. T.; Wada, T.; Pearson, C.
2009-12-01
The Chandra Deep Field South is one of the deep fields that has been observed over almost all the electromagnetic spectrum. It contains a wealth of data very useful to study and better understand distant galaxies and their evolution. However, one piece of information was missing in the Mid Infrared and that is why we have obtained 15 μm observations with AKARI/IRC infrared space telescope. From these observations, we have defined a sample of mid infrared-selected galaxies at 15 μm and 15 μm flux densities for a sample of Lyman Break Galaxies at z ˜ 1 already observed at 24 μm with Spitzer/MIPS and identified in the ultraviolet with GALEX. Of the two above samples at z ˜ 1 we have tested the validity of the conversions from luminosities νfν at 8 μm to total dust luminosities by comparing with luminosities estimated from 12 μm data used as a reference. Some calibrations seem better when compared to Ldust evaluated from longer wavelength luminosities. We also have found that the rest-frame 8 μm luminosities provide good estimates of Ldust. By comparing our data to several libraries of spectral energy distributions, we have found that models can explain the diversity of the observed f24 / f15 ratio quite reasonably. Finally, we have revisited the evolution of Ldust / LUV ratio with the redshift z by re-calibrating previous Ldust at z ˜ 2 based on our results and added new data points at higher redshifts. The decreasing trend is amplified as compared to the previous estimate.
Star formation in H I tails: HCG 92, HCG 100 and six interacting systems
NASA Astrophysics Data System (ADS)
de Mello, D. F.; Urrutia-Viscarra, F.; Mendes de Oliveira, C.; Torres-Flores, S.; Carrasco, E. R.; Cypriano, E.
2012-11-01
We present new Gemini spectra of 14 new objects found within the H I tails of Hickson Compact Groups (HCGs) 92 and 100. Nine of them are Galaxy Evolution Explorer (GALEX) far-ultraviolet (FUV) and near-ultraviolet (NUV) sources. The spectra confirm that these objects are members of the compact groups and have metallicities close to solar, with an average value of 12+log(O/H) ˜ 8.5. They have average FUV luminosities 7 × 1040 erg s-1 and very young ages (<100 Myr), and two of them resemble tidal dwarf galaxy (TDG) candidates. We suggest that they were created within gas clouds that were ejected during galaxy-galaxy interactions into the intergalactic medium, which would explain the high metallicities of the objects, inherited from the parent galaxies from which the gas originated. We conduct a search for similar objects in six interacting systems with extended H I tails: NGC 2623, NGC 3079, NGC 3359, NGC 3627, NGC 3718 and NGC 4656. We found 35 ultraviolet (UV) sources with ages < 100 Myr; however, most of them are on average less luminous/massive than the UV sources found around HCG 92 and HCG 100. We speculate that this might be an environmental effect and that compact groups of galaxies are more favourable to TDG formation than other interacting systems. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) - Observing run ID: GN-2003A-Q-53 and GN-2007B-Q-87.
The outskirts of the Coma cluster
NASA Astrophysics Data System (ADS)
Gavazzi, Giuseppe
Evolved Coma-like clusters of galaxies are constituted of relaxed cores composed of ''old'' early-type galaxies, embedded in large-scale structures, mostly constituted of unevolved (late-type) systems. According to the hierarchical theory of cluster formation the central regions are being fed with unevolved, low-mass systems infalling from the surroundings that are gradually transformed into elliptical/S0 galaxies by tidal galaxy-galaxy and galaxy-cluster interactions, taking place at some boundary distance. The Coma cluster, the most studied of all local clusters, provides us with the ideal test-bed for such an evolutionary study because of the completeness of the photometric and kinematic information already at hands. The field of view of the planned GALEX observations is not big enough to include the boundary interface where most transformations processes are expected to take place, including the truncation of the current star formation. We propose to complete the outskirt of Coma with an additional corona of 11 GALEX imaging fields of 1500 sec exposure each, matching the deepness (UV_{AB}=23.5 mag) of the fields observed in guarantee time. Given the priority of the target, we also propose one optional Central pointing that includes one bright star marginally exceeding the detector brightness limit.
MASTER-IAC: bright PSN in PGC1030654
NASA Astrophysics Data System (ADS)
Balanutsa, P.; Lipunov, V.; Lopez, R. Rebolo; Serra-Ricart, M.; Gorbovskoy, E.; Kornilov, V.; Tiurina, N.; Kuznetsov, A.; Gress, O.; Shumkov, V.; Vetrov, K.; Vladimirov, V.; Gorbunov, I.; Zimnukhov, D.; Vlasenko, D.; Kuvshinov, D.
2018-01-01
MASTER-IAC auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 14h 21m 17.5s -06d 37m 36.1s on 2018-01-26.1918UT . The OT unfiltered magnitude is (mlim=19.8) This PSN is in 7.8" from PGC 1030654 (Btc=15.7, also GALEX source).
Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, D. A.; Turner, J. A.; Cook, D. O.
2017-03-01
We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {submore » C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.« less
Initial HI results from the Arecibo Pisces-Perseus Supercluster Survey
NASA Astrophysics Data System (ADS)
Craig, David W.; Davis, Cory; Johnson, Cory; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; O'Donoghue, Aileen A.; Haynes, Martha P.; Giovanelli, Riccardo; Rosenberg, Jessica L.; Venkatesan, Aparna; Undergraduate ALFALFA Team
2017-01-01
The Arecibo Pisces-Perseus Supercluster Survey is a targeted HI survey of galaxies that began its second observing season in October 2016. The survey is conducted by members of the Undergraduate ALFALFA Team (UAT) and extensively involves undergraduates in observations, data reduction, and analysis. It aims to complement the HI sources identified by the ALFALFA extragalactic HI line survey by probing deeper in HI mass (to lower masses) than the legacy survey itself. Measurements of the HI line velocity widths will be combined with uniform processing of images obtained in the SDSS and GALEX public databases to localize the sample within the baryonic Tully Fisher relation, allowing estimates of their redshift-independent distances and thus their peculiar velocities.The survey is designed to constrain Pisces-Perseus Supercluster infall models by producing 5-σ detections of infall velocities to a precision of about 500 km/s. By targeting galaxies based on SDSS and GALEX photometry, we have achieved detection rates of 68% of the galaxies in our sample. We will discuss the target selection process, HI velocities and mass estimates from the 2015 fall observing season, preliminary results from 2016 observations, and preliminary comparisons with inflow models predicted by numerical simulations.This work has been supported by NSF grants AST-1211005, AST-1637339, AST-1637262.
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2012-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study, observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. The multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (10^{2+3} M_sun) - the regime about which there is much ongoing debate."
Colors of Dwarf Ellipticals from GALEX to WISE
NASA Astrophysics Data System (ADS)
Schombert, James M.
2018-02-01
Multicolor photometry is presented for a sample of 60 dwarf ellipticals (dE’s) selected by morphology. The sample uses data from GALEX, SDSS, and WISE to investigate the colors in the NUV, ugri, and W1 (3.4 μm) filters. We confirm the blueward shift in the color–magnitude relation (CMR) for dE’s, compared to the CMR for bright ellipticals, as seen in previous studies. However, we find that the deviation in color across the UV to near-IR for dE’s is a strong signal of a younger age for dE’s, one that indicates decreasing mean age with lower stellar mass. Lower mass dE’s are found to have mean ages of 4 Gyr and mean [Fe/H] values of ‑1.2. Age and metallicity increase tothe most massive dE’s, with mean ages similar to normal ellipticals (12 Gyr) and their lowest metallicities ([Fe/H] = ‑0.3). Deduced initial star formation rates for dE’s, combined with their current metallicities and central stellar densities, suggest a connection between field low surface brightness (LSB) dwarfs and cluster dE’s, where the cluster environment halts star formation for dE’s, triggering a separate evolutionary path.
The SDSS u-band Galaxy Survey: Luminosity functions and evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldry, Ivan K.; Glazebrook, K.; Budavari, T.
2005-01-01
We construct and analyze a u-band selected galaxy sample from the SDSS Southern Survey, which covers 275 deg{sup 2}. The sample includes 43223 galaxies with spectroscopic redshifts in the range 0.005 < z < 0.3 and with 14.5 < u < 20.5. The S/N in the u-band Petrosian aperture is improved by coadding multiple epochs of imaging data and by including sky-subtraction corrections. Luminosity functions for the near-UV {sup 0.1}u band ({lambda} {approx} 322 {+-} 26 nm) are determined in redshift slices of width 0.02, which show a highly significant evolution in M* of -0.8 {+-} 0.1 mag between zmore » = 0 and 0.3; with M* - 5 log h{sub 70} = -18.84 {+-} 0.05 (AB mag), log {phi}* = -2.06 {+-} 0.03 (h{sub 70}{sup 3} Mpc{sup -3}) and log {rho}{sub L} = 19.11 {+-} 0.02 (h{sub 70} W Hz{sup -1}Mpc{sup -3}) at z = 0.1. The faint-end slope determined for z < 0.06 is given by {alpha} = -1.05 {+-} 0.08. This is in agreement with recent determinations from GALEX at shorter wavelengths. Comparing our z < 0.3 luminosity density measurements with 0.2 < z < 1.2 from COMBO-17, we find that the 280-nm density evolves as {rho}{sub L} {proportional_to} (1+z){sup {beta}} with {beta} = 2.1 {+-} 0.2; and find no evidence for any change in slope over this redshift range. By comparing with other measurements of cosmic star formation history, we estimate that the effective dust attenuation at 280 nm has increased by 0.8 {+-} 0.3 mag between z = 0 and 1.« less
NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks
NASA Technical Reports Server (NTRS)
Hasan, Hashima
2006-01-01
NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory data are obtained, a key step to making them available to the observer is the creation and maintenance of critically compiled databases. Other areas of study, that are important for understanding planet formation, and for detection of molecules that are indicators of life, are also supported by the Laboratory Astrophysics program. Some examples are: studies of ices and dust grains in a space environment; nature and evolution of interstellar carbon-rich dust; and polycyclic aromatic hydrocarbons. In addition, the program provides an opportunity for the investigation of novel ideas, such as simulating radiative shock instabilities in plasmas, in order to understand jets observed in space. A snapshot of the currently funded program, mission needs, and relevance of laboratory data to interpreting observations, will be obtained at this workshop through invited and contributed talks and poster papers. These will form the basis for discussions in splinter groups. The Science Organization Committee will integrate the results of the discussions into a coherent White Paper, which will provide guidance to NASA in structuring the Laboratory Astrophysics program in subsequent years, and also to the scientific community in submitting research proposals to NASA for funding.
The UV and X-ray activity of the M dwarfs within 10 pc of the Sun
NASA Astrophysics Data System (ADS)
Stelzer, B.; Marino, A.; Micela, G.; López-Santiago, J.; Liefke, C.
2013-05-01
M dwarfs are the most numerous stars in the Galaxy. They are characterized by strong magnetic activity. The ensuing high-energy emission is crucial for the evolution of their planets and the eventual presence of life on them. We systematically study the X-ray and ultraviolet emission of a subsample of M dwarfs from a recent proper-motion survey, selecting all M dwarfs within 10 pc to obtain a nearly volume-limited sample (˜90 per cent completeness). Archival ROSAT, XMM-Newton and GALEX data are combined with published spectroscopic studies of Hα emission and rotation to obtain a broad picture of stellar activity on M dwarfs. We make use of synthetic model spectra to determine the relative contributions of photospheric and chromospheric emission to the ultraviolet flux. We also analyse the same diagnostics for a comparison sample of young M dwarfs in the TW Hya association (˜10 Myr). We find that generally the emission in the GALEX bands is dominated by the chromosphere but the photospheric component is not negligible in early-M field dwarfs. The surface fluxes for the Hα, near-ultraviolet, far-ultraviolet and X-ray emission are connected via a power-law dependence. We present here for the first time such flux-flux relations involving broad-band ultraviolet emission for M dwarfs. Activity indices are defined as flux ratio between the activity diagnostic and the bolometric flux of the star in analogy to the Ca IIR'HK index. For given spectral type, these indices display a spread of 2-3 dex which is largest for M4 stars. Strikingly, at mid-M spectral types, the spread of rotation rates is also at its highest level. The mean activity index for fast rotators, likely representing the saturation level, decreases from X-rays over the FUV to the NUV band and Hα, i.e. the fractional radiation output increases with atmospheric height. The comparison to the ultraviolet and X-ray properties of TW Hya members shows a drop of nearly three orders of magnitude for the luminosity in these bands between ˜10 Myr and few Gyr age. A few young field dwarfs (<1 Gyr) in the 10-pc sample bridge the gap indicating that the drop in magnetic activity with age is a continuous process. The slope of the age decay is steeper for the X-ray than for the UV luminosity.
Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst
2011-03-01
1995). Time - resolved spectroscopy (Szkody et al. 2000; Thorstensen et al. 2002) revealed a very short orbital period of 76.78 minutes, consistent with...entered. As of the current time , the white dwarf has not yet resumed its pre-outburst character. Yet, the photometry has re- vealed some interesting...that could be due to the various satellite orbits. 2.2. Optical Photometry Optical photometric data were obtained with multiple tele- scopes between 2007
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2013-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by an order of magnitude, by observing additional 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13A. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^(2+3) M_sun) - the regime about which there is much ongoing debate."
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2013-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13B. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^{2+3} M_sun) - the regime of ongoing debate. Previously allocated 1+2 nights were cancelled (telescope failures)."
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2014-01-01
The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.
Artist Concept of Galaxy Evolution Explorer
2002-12-21
The Galaxy Evolution Explorer was launched on April 28, 2003. Its mission is to study the shape, brightness, size and distance of galaxies across 10 billion years of cosmic history. The 50-centimeter-diameter (19.7-inch) telescope onboard the Galaxy Evolution Explorer sweeps the skies in search of ultraviolet-light sources. Ultraviolet is light from the higher end of the electromagnetic spectrum, just above visible light in frequency, but below X-rays and gamma rays. While a small amount of ultraviolet penetrates Earth's atmosphere, causing sunburn, the Galaxy Evolution Explorer observes those ultraviolet frequencies that can only be seen from space. http://photojournal.jpl.nasa.gov/catalog/PIA04234
ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorman, Crystal M.; Moreno, Jackeline; White, Amanda
2016-11-10
We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less
Validation: Codes to compare simulation data to various observations
NASA Astrophysics Data System (ADS)
Cohn, J. D.
2017-02-01
Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.
The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy
NASA Astrophysics Data System (ADS)
Leon, N. J.; Fisher, D. K.
2008-12-01
The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry out activities to tie in with the IYA April topic, Galaxies and the Distant Universe. The infrared Spitzer Space Telescope, as well as the Galaxy Evolution Explorer (GALEX) spacecraft are strongly represented on The Space Place web site, with interactive games, images, and crafts that explore the wonders of and latest discoveries about galaxies. In addition, in our mailings and other partner communications throughout the year, we will feature special activities and projects on spaceplace.nasa.gov, and suggest ways to use these resources in IYA-related events.
ERIC Educational Resources Information Center
Hoerr, Winfried
1997-01-01
Explores the nature of knowledge, particularly the difference between genetic knowledge and cultural knowledge, and its significance for understanding evolution. This exploration is the foundation of a discussion on medical information inherited in genes and accumulated in society. The problems of cultural medical knowledge for evolution are…
Region Evolution eXplorer - A tool for discovering evolution trends in ontology regions.
Christen, Victor; Hartung, Michael; Groß, Anika
2015-01-01
A large number of life science ontologies has been developed to support different application scenarios such as gene annotation or functional analysis. The continuous accumulation of new insights and knowledge affects specific portions in ontologies and thus leads to their adaptation. Therefore, it is valuable to study which ontology parts have been extensively modified or remained unchanged. Users can monitor the evolution of an ontology to improve its further development or apply the knowledge in their applications. Here we present REX (Region Evolution eXplorer) a web-based system for exploring the evolution of ontology parts (regions). REX provides an analysis platform for currently about 1,000 versions of 16 well-known life science ontologies. Interactive workflows allow an explorative analysis of changing ontology regions and can be used to study evolution trends for long-term periods. REX is a web application providing an interactive and user-friendly interface to identify (un)stable regions in large life science ontologies. It is available at http://www.izbi.de/rex.
Exploring metazoan evolution through dynamic and holistic changes in protein families and domains
USDA-ARS?s Scientific Manuscript database
Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...
Exploring social structure effect on language evolution based on a computational model
NASA Astrophysics Data System (ADS)
Gong, Tao; Minett, James; Wang, William
2008-06-01
A compositionality-regularity coevolution model is adopted to explore the effect of social structure on language emergence and maintenance. Based on this model, we explore language evolution in three experiments, and discuss the role of a popular agent in language evolution, the relationship between mutual understanding and social hierarchy, and the effect of inter-community communications and that of simple linguistic features on convergence of communal languages in two communities. This work embodies several important interactions during social learning, and introduces a new approach that manipulates individuals' probabilities to participate in social interactions to study the effect of social structure. We hope it will stimulate further theoretical and empirical explorations on language evolution in a social environment.
The Shortest Period sdB Plus White Dwarf Binary CD-30 11223 (GALEX J1411-3053)
NASA Astrophysics Data System (ADS)
Vennes, S.; Kawka, A.; O'Toole, S. J.; Németh, P.; Burton, D.
2012-11-01
We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M 2/M ⊙ >~ 0.77) assuming a canonical mass for the hot subdwarf (0.48 M ⊙), although a white dwarf mass as low as 0.75 M ⊙ is allowable by postulating a subdwarf mass as low as 0.44 M ⊙. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i >~ 68°) and, possibly, observable secondary transits (i >~ 74°). At the lowest permissible inclination and assuming a subdwarf mass of ~0.48 M ⊙, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M ⊙ and would exceed it for a subdwarf mass above 0.48 M ⊙. The system should be considered, like its sibling KPD 1930+2752, a candidate progenitor for a Type Ia supernova. The system should become semi-detached and initiate mass transfer within ≈30 Myr. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 83.D-0540, 85.D-0866, and 089.D-0864.
gPhoton: The GALEX Photon Data Archive
NASA Astrophysics Data System (ADS)
Million, Chase; Fleming, Scott W.; Shiao, Bernie; Seibert, Mark; Loyd, Parke; Tucker, Michael; Smith, Myron; Thompson, Randy; White, Richard L.
2016-12-01
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.
Publications of the exobiology program for 1986: A special bibliography
NASA Technical Reports Server (NTRS)
1988-01-01
A list of 1986 publications resulting from research pursued under the auspices of NASA's Exobiology Program is contained. Research supported by the program is explored in the areas of cosmic evolution of biogenic compounds, prebiotic evolution, early evolution of life, and evolution of advanced life. Premission and preproject activities supporting these areas are supported in the areas of solar system exploration and search for extraterrestrial intelligence.
Characterizing Quasar Outflows I: Sample, Spectral Measurements
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Quasar Spectral Energy Distributions As A Function Of Physical Property
NASA Astrophysics Data System (ADS)
Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Encyclopedia of Explosives and Related Items. Volume 10
1983-01-01
trinitroethyl stearate 6 E330 Ethyiphosphorodimethylamidycyanadate se Ethyl-substituted acid amides, N-trinitro derivs GA chemical warfare agent 2.C 167; 6...6 GI Galex 6 G8-G9 GA (chemical warfare agent ) 6 G 1 Galil rifle 6 G9 GA see Dimethylaminocyanophosphoric acid Galil rifle 6 G9 5 D1308-D1309 Gabeaud...G45 Gas volumes produced on expln or detonation Gelatina explosiva de guerra 6 G45 of expls 6 G36-G41 Gelatina gomma 6 G45 Gas warfare agents 2 C165
Interstellar extinction from photometric surveys: application to four high-latitude areas
NASA Astrophysics Data System (ADS)
Malkov, Oleg; Karpov, Sergey; Kilpio, Elena; Sichevsky, Sergey; Chulkov, Dmitry; Dluzhnevskaya, Olga; Kovaleva, Dana; Kniazev, Alexei; Mickaelian, Areg; Mironov, Alexey; Murthy, Jayant; Sytov, Alexey; Zhao, Gang; Zhukov, Aleksandr
2018-04-01
Information on interstellar extinction and dust properties may be obtained from modern large photometric surveys data. Virtual Observatory facilities allow users to make a fast and correct cross-identification of objects from various surveys. It yields a multicolor photometry data on detected objects and makes it possible to estimate stellar parameters and calculate interstellar extinction. A 3D extinction map then can be constructed. The method was applied to 2MASS, SDSS, GALEX and UKIDSS surveys. Results for several high-latitude areas are obtained, compared with independent sources and discussed here.
Office of exploration overview
NASA Technical Reports Server (NTRS)
Alred, John
1989-01-01
The NASA Office of Exploration case studies for FY89 are reviewed with regard to study ground rules and constraints. Three study scenarios are presented: lunar evolution, Mars evolution, and Mars expedition with emphasis on the key mission objectives.
2013-10-31
Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.
Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey
NASA Astrophysics Data System (ADS)
Melnyk, O.; Karachentseva, V.; Karachentsev, I.
2015-08-01
We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.
Galaxy Zoo: the interplay of quenching mechanisms in the group environment★
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Bamford, S. P.; Hart, R. E.; Kruk, S. J.; Masters, K. L.; Nichol, R. C.; Simmons, B. D.
2017-08-01
Does the environment of a galaxy directly influence the quenching history of a galaxy? Here, we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and near ultra-violet (NUV) detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining star formation history for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching time-scale of ˜ 2.5 Gyr from star forming to complete quiescence, during an average infall time (from ˜10R200 to 0.01R200) of ˜ 2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms that are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms that are correlated with satellite velocity, such as ram-pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead, an interplay of mergers, mass and morphological quenching and environment-driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.
SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.
2014-05-01
As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.
Overview: Exobiology in solar system exploration
NASA Technical Reports Server (NTRS)
Carle, Glenn C.; Schwartz, Deborah E.
1992-01-01
In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.
The Lyman continuum escape fraction of low mass star-forming galaxies at z~1.
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian D.; Rafelski, Marc; Henry, Alaina L.; Hayes, Matthew; Salvato, Mara; Pahl, Anthony; Mehta, Vihang; Beck, Melanie; Malkan, Matthew Arnold; Teplitz, Harry I.
2016-01-01
Star-forming galaxies (SFGs) in the high redshift universe (z>6) are believed to ionize neutral hydrogen in the intergalactic medium during the epoch of reionization. We tested this assumption by studying likely analogs of these SFGs in archival HST grism spectroscopy with GALEX UV and ground-based optical images at the redshift range in which we can directly measure the rest-frame Lyman continuum (λ<912Å, LyC) emission. We selected ~1400 SFGs for study on the presence of strong Hα emission and strongly selected against those SFGs whose GALEX FUV photometry could be contaminated by low redshift interlopers along the line of sight to produce a sample of ~600 z~1 SFGs. We made no unambiguous detection of escaping Lyman continuum radiation in individual galaxies in this sample, and stacked the individual non-detections in order to constrain the absolute Lyman continuum escape fraction, fesc<2% (3σ). We sub-divided this sample and stacked SFGs to measure upper limits to fesc with respect to stellar mass,luminosity and relative orientation. For z~1 high Hα equivalent width (EW>200Å) SFGs, we found for the first time an upper limit to fesc<9%. We discuss the implications of these limits for the ionizing emissivity of high redshift SFGs during the epoch of reionization. We conclude that reionization by SFGs is only marginally consistent with independent Planck observations of the CMB electron scattering opacity unless the LyC escape fraction of SFGs increases with redshift and an unobserved population of faint (MUV<-13 AB) SFGs contributes significantly to the UV background.
gPhoton: THE GALEX PHOTON DATA ARCHIVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Million, Chase; Fleming, Scott W.; Shiao, Bernie
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database andmore » to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.« less
Are We Correctly Measuring Star-Formation Rates?
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.
2017-01-01
Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction-corrected, integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star-formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. These results have signficant implications for measuring FUV-based SFRs of high-redshift galaxies.
Impact of solar system exploration on theories of chemical evolution and the origin of life
NASA Technical Reports Server (NTRS)
Devincenzi, D. L.
1983-01-01
The impact of solar system exploration on theories regarding chemical evolution and the origin of life is examined in detail. Major findings from missions to Mercury, Venus, the moon, Mars, Jupiter, Saturn, and Titan are reviewed and implications for prebiotic chemistry are discussed. Among the major conclusions are: prebiotic chemistry is widespread throughout the solar system and universe; chemical evolution and the origin of life are intimately associated with the origin and evolution of the solar system; the rate, direction, and extent of prebiotic chemistry is highly dependent upon planetary characteristics; and continued exploration will increase understanding of how life originated on earth and allow better estimates of the likelihood of similar processes occurring elsewhere.
Workshop on Early Crustal Genesis: Implications from Earth
NASA Technical Reports Server (NTRS)
Phinney, W. C. (Compiler)
1981-01-01
Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.
Publications of the exobiology program for 1989: A special bibliography
NASA Technical Reports Server (NTRS)
1991-01-01
A listing of 1989 publications resulting from research supported by the Exobiology Program is presented. Research supported by the Exobiology Program is explored in the following areas: (1) cosmic evolution of biogenic compounds; (2) prebiotic evolution; (3) early evolution of life; (4) and evolution of advanced life. Pre-mission and pre-project activities supporting these areas are supported in the areas of solar system exploration and search for extraterrestrial intelligence. The planetary protection subject area is included here because of its direct relevance to the Exobiology Program.
Titan Explorer: The Next Step in the Exploration of a Mysterious World
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Wright, Henry S.
2005-01-01
The Titan Explorer Mission outlined in this report is a proposed next step in the exploration of Titan, following the highly successful Huygens Titan probe of 2005. The proposed Titan Explorer Mission consists of an Orbiter and an Airship that traverses the atmosphere of Titan and can land on its surface. The Titan Explorer Mission is science driven and addresses some of the fundamental questions about the atmosphere, surface and evolution of Titan, which will add to our understanding of the origin and evolution of life on Earth and assess the likelihood of life elsewhere in the Solar System.
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered With Pan-Starrs 1 and Galex
2010-07-01
The 7 deg2 camera and 1.8 m aperture could allow IIP SNe to be used as cosmological probes at z ∼ 0.2 and the brightest events to be found out to z...ultraviolet (NUV). We discuss the implication of this rare SN for understanding the explosions and the use of Type IIP events for probing cosmology and...SFR at high redshifts. We adopt the cosmological parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7. 2. DISCOVERY AND OBSERVATIONAL DATA SN 2009kf
ERIC Educational Resources Information Center
Donnelly, Lisa A.; Kazempour, Mahsa; Amirshokoohi, Aidin
2009-01-01
Evolution is an important and sometimes controversial component of high school biology. In this study, we used a mixed methods approach to explore students' evolution acceptance and views of evolution teaching and learning. Students explained their acceptance and rejection of evolution in terms of evidence and conflicts with religion and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Jun; Wang Song; Wu Zhenyu
2012-02-15
B514 is a remote M31 globular cluster (GC) which is located at a projected distance of R{sub p} {approx_equal} 55 kpc. Deep observations with the Advanced Camera for Surveys on the Hubble Space Telescope are used to provide accurate integrated light and star counts of B514. By coupling the analysis of the distribution of the integrated light with star counts, we are able to reliably follow the profile of the cluster out to {approx}40''. Based on the combined profile, we study in detail its surface brightness distribution in the F606W and F814W filters and determine its structural parameters by fittingmore » a single-mass isotropic King model. The results showed that the surface brightness distribution departs from the best-fit King model for r > 10''. B514 is quite flat in the inner region and has a larger half-light radius than the majority of normal GCs of the same luminosity. It is interesting that, in the M{sub V} versus log R{sub h} plane, B514 lies nearly on the threshold for ordinary GCs as defined by Mackey and van den Bergh. In addition, B514 was observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey, using 13 intermediate-band filters covering a wavelength range of 3000-8500 A. Based on aperture photometry, we obtain its spectral energy distributions (SEDs) as defined by the 13 BATC filters. We determine the cluster's age and mass by comparing its SEDs (from 2267 to 20000 Angstrom-Sign , comprised of photometric data from the near-ultraviolet band of the Galaxy Evolution Explorer, 5 Sloan Digital Sky Survey bands, 13 BATC intermediate-band filters, and Two Micron All Sky Survey near-infrared JHK{sub s} filters) with theoretical stellar population synthesis models, resulting in an age of 11.5 {+-} 3.5 Gyr. This age confirms the previous suggestion that B514 is an old GC in M31. B514 has a mass of 0.96-1.08 Multiplication-Sign 10{sup 6} M{sub Sun} and is a medium-mass GC in M31.« less
Second Symposium on Chemical Evolution and the Origin of Life
NASA Technical Reports Server (NTRS)
Devincenzi, D. L. (Editor); model. (Editor)
1986-01-01
Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
Second Symposium on Chemical Evolution and the Origin of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devincenzi, D.L.; Dufour, P.A.
1986-05-01
Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?
NASA Astrophysics Data System (ADS)
Lupisella, M.
Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.
NASA Astrophysics Data System (ADS)
Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.
2018-05-01
We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.
Investigating Island Evolution: A Galapagos-Based Lesson Using the 5E Instructional Model.
ERIC Educational Resources Information Center
DeFina, Anthony V.
2002-01-01
Introduces an inquiry-based lesson plan on evolution and the Galapagos Islands. Uses the 5E instructional model which includes phases of engagement, exploration, explanation, elaboration, and evaluation. Includes information on species for exploration and elaboration purposes, and a general rubric for student evaluation. (YDS)
SDSS-IV MaNGA: the different quenching histories of fast and slow rotators
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.
2018-01-01
Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battisti, A. J.; Calzetti, D.; Johnson, B. D.
2015-02-20
We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since theremore » are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.« less
Exploring Podcasting in Heredity and Evolution Teaching
ERIC Educational Resources Information Center
Almeida-Aguiar, Cristina; Carvalho, Ana Amélia
2016-01-01
Podcasts are digital files very popular in several and very distinct areas. In higher education, they have been explored in a multitude of ways mainly to support teaching and learning processes. The study here described focuses the integration of podcasts in Heredity and Evolution, a course from the Biology and Geology Degree Program at University…
Lunar exploration: opening a window into the history and evolution of the inner Solar System
Crawford, Ian A.; Joy, Katherine H.
2014-01-01
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. PMID:25114318
Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2014-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets [1]. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these twin planets. It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more recent development, its relationship to the resurfacing of the planets enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus past as well as whether Earth could become more Venus-like in the future.
Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2015-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.
Lunar exploration: opening a window into the history and evolution of the inner Solar System.
Crawford, Ian A; Joy, Katherine H
2014-09-13
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Investigating the Origin and Evolution of Venus with in Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2016-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Giant Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi
2018-04-01
In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.
VizieR Online Data Catalog: [U]LIRGs - on the trail of AGN's types (Malek+, 2017)
NASA Astrophysics Data System (ADS)
Malek, K.; Bankowicz, M.; Pollo, A.; Takeuchi, T. T.; Buat, V.; Burgarella, D.; Goto, T.; Malkan, M.
2016-11-01
Identifications and photometric flux densities in all available wavelengths for 39 [U]LIRGs found in the ADF-S survey. All 39 sources for which a counterpart in the 40" radius on the sky has been found in the public databases are listed. The serial ADF-S number, ADF-S coordinates, redshift and fluxes (in four far-infrared (FIR) AKARI bands (65, 90, 140 and 160um), as well as photometric fluxes densities and uncertainties for 16 more bands spanning spectra from FUV (GALEX) to FIR (Herschel/SPIRE) are given for each source. Flux value set to "---" represents unknown value. (1 data file).
Wang, Jie-Hua
2012-08-01
Adaptation is an eternal theme of biological evolution. The paper aims at exploring the conception of positive correlation between traditional Chinese medicine (TCM) and human homeostatic evolution based on medical perspective. Discussions mainly involve TCM conforming to natural laws and natural evolution of life, spontaneous harmonization of yin and yang and operating system of human self-healing, modern human immunology and human endogenous immune function in TCM, self-homeostasis of human micro-ecological state and balance mechanism on regulating base in TCM, as well as adaptation-eternal theme of biological evolution and safeguarding adaptability-value of TCM. In perspective of medicine, theory and practice of TCM are in positive correlation with human homeostatic evolution, and what TCM tries to maintain is human intrinsic adaptive capability to disease and nature. Therefore, it is the core value of TCM, which is to be further studied, explored, realized and known to the world.
Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
NASA Technical Reports Server (NTRS)
Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)
1991-01-01
This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
NASA Astrophysics Data System (ADS)
Kyzer, Peggy Mckewen
Organizations in science and science education call for students to have a thorough understanding of the theory of evolution. Yet many high school biology teachers do not teach evolution and/or include creationism in their instruction (National Academy of Science, 1998). Historically, the controversy surrounding evolution has created tension for teachers. This case study explored the sociocultural influences related to teaching evolution in three Southern 10th-grade public high school biology classrooms. It also explored the socially and culturally embedded influences on teachers' instructional goals and personal perspectives toward evolution as well as modification of instruction when evolution is taught. Theoretically framed using symbolic interactionism and sociocultural theory, data were collected between October 2003 and April 2004 and included classroom observations two to three times per week, artifacts, and in-depth interviews of the participating teachers, their science department chairpersons, their students, and a Protestant minister. The classroom teachers were unaware of the focus of the study until after evolution was taught. The analysis used in this study was an inductive, interpretative approach that allowed exploration of the sociocultural influences that affect how teachers teach evolution. The sociocultural influences and the lived experiences of each teacher created a continuum for teaching evolution. One of the participating teachers who was heavily involved in the community and one of its fundamentalist churches elected to avoid teaching evolution. Another participating teacher at the same school integrated the theory of evolution in every unit. The third teacher who taught in another school elected to teach evolution in a superficial manner to avoid conflict. The data revealed that the participating teachers' sociocultural situatedness influenced their decisions and instruction on evolution. The influence of strong religious beliefs within the Southern culture was a theme that cut across all the teachers' decisions. In particular, religious beliefs made teaching human evolution difficult. Other recurring themes included the influence of the textbook and factors that served as escape routes for the teachers electing to avoid evolution. The escape routes included the pressure of time, the mixed messages from the state board of education, and the double-edged sword of teacher autonomy.
Happy Anniversary to a Galactic Explorer
2004-05-24
The Galaxy Evolution Explorer specializes in surveying galaxies in ultraviolet light. Its telescope, 50 centimeters (19.7 inches) in diameter, has a field of view that is much wider than most ground-based and space-based telescopes. This field of view, nearly three times the diameter of the Moon, allowed the Galaxy Evolution Explorer to discover seemingly newborn galaxies in our local universe. The telescope surveyed thousands of galaxies before finding three-dozen of these newborns. http://photojournal.jpl.nasa.gov/catalog/PIA05979
Explanatory Parent-Child Conversation Predominates at an Evolution Exhibit
ERIC Educational Resources Information Center
Tare, Medha; French, Jason; Frazier, Brandy N.; Diamond, Judy; Evans, E. Margaret
2011-01-01
To investigate how parents support children's learning at an exhibit on evolution, the conversations of 12 families were recorded, transcribed, and coded (6,263 utterances). Children (mean age 9.6 years) and parents visited Explore Evolution, which conveyed current research about the evolution of seven organisms. Families were engaged with the…
Character evolution and missing (morphological) data across the core asterids (Gentianidae)
USDA-ARS?s Scientific Manuscript database
Character evolution and missing (morphological) data across Asteridae. Premise of the study: Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this ...
2003-12-10
This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924
Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance
NASA Astrophysics Data System (ADS)
Grimes, Larry G.
Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and beliefs to their teaching. The purpose of this study was to explore how biology teachers perceive, describe, and value their teaching of evolution. This research question was explored through a heuristic qualitative methodology. Eight veteran California high school biology teachers were queried as to their beliefs, perceptions, experiences and practices of teaching evolution. Both personal and professional documents were collected. Data was presented in the form of biographical essays that highlight teachers' backgrounds, experiences, perspectives and practices of teaching evolution. Of special interest was how they describe pressure over teaching evolution during a decade of standards and No Child Left Behind high-stakes testing mandates. Five common themes emerged. Standards have increased the overall amount of evolution that is taught. High-stakes testing has decreased the depth at which evolution is taught. Teacher belief systems strongly influence how evolution is taught. Fear of creationist challenges effect evolution teaching strategies. And lastly, concern over the potential effects of teaching evolution on student worldviews was mixed. Three categories of teacher concern over the potential impact of evolution on student worldviews were identified: Concerned, Strategist, and Carefree. In the final analysis teacher beliefs and attitudes still appeared to he the most important factor influencing how evolution is taught.
ERIC Educational Resources Information Center
Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan
2008-01-01
In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…
ERIC Educational Resources Information Center
Athanasiou, Kyriacos; Papadopoulou, Penelope
2012-01-01
In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…
ERIC Educational Resources Information Center
Oliver, Mary
2011-01-01
A tenth grade class in an international school studied evolution for four weeks as part of the study of Biology. A diagnostic test was used to determine the main misconceptions students have as they come to the study of evolution. This was followed by a series of explorations of different conceptual models to account for evolution, structured…
Case Studies of Physics Graduates' Personal Theories of Evolution
ERIC Educational Resources Information Center
Chan, Ke-Sheng
2005-01-01
This paper reports an interview case study with two physics doctoral students designed to explore their conceptions about the theory of evolution. Analysis of interview transcripts reveals that both students mistakenly constructed a "theory of evolution by environmentally driven adaptation" instead of the commonly accepted "theory…
Evolution Acceptance and Epistemological Beliefs of College Biology Students
ERIC Educational Resources Information Center
Borgerding, Lisa A.; Deniz, Hasan; Anderson, Elizabeth Shevock
2017-01-01
Evolutionary theory is central to biology, and scientifically accurate evolution instruction is promoted within national and state standards documents. Previous literature has identified students' epistemological beliefs as potential predictors of evolution acceptance. The present work seeks to explore more directly how student views of evolution…
NASA Technical Reports Server (NTRS)
2006-01-01
The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope. The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons. Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars. Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them. Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist. Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across. This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).NASA evolution of exploration architectures
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1991-01-01
A series of charts and diagrams is used to provide a detailed overview of the evolution of NASA space exploration architectures. The pre-Apollo programs including the Werner von Braun feasibility study are discussed and the evolution of the Apollo program itself is treated in detail. The post-Apollo era is reviewed and attention is given to the resurgence of strategic planning exemplified by both ad hoc and formal efforts at planning. Results of NASA's study of the main elements of the Space Exploration Initiative which examined technical scenarios, science opportunities, required technologies, international considerations, institutional strengths and needs, and resource estimates are presented. The 90-day study concludes that, among other things, major investments in challenging technologies are required, the scientific opportunities provided by the program are considerable, current launch capabilities are inadequate, and Space Station Freedom is essential.
NASA Technical Reports Server (NTRS)
2003-01-01
This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.The Resolved Stellar Populations in the LEGUS Galaxies1
NASA Astrophysics Data System (ADS)
Sabbi, E.; Calzetti, D.; Ubeda, L.; Adamo, A.; Cignoni, M.; Thilker, D.; Aloisi, A.; Elmegreen, B. G.; Elmegreen, D. M.; Gouliermis, D. A.; Grebel, E. K.; Messa, M.; Smith, L. J.; Tosi, M.; Dolphin, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; Clayton, G. C.; Cook, D. O.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Grasha, K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Lennon, D.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.
2018-03-01
The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in 5 bands from the near-UV to the I-band, combining new Wide Field Camera 3 observations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near-UV color–magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color–magnitude diagrams to identify stars more massive than 14 M ⊙, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the timescale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Ardila, David; Barman, Travis; Beasley, Matthew; Bowman, Judd D.; Gorjian, Varoujan; Jacobs, Daniel; Jewell, April; Llama, Joe; Meadows, Victoria; Nikzad, Shouleh; Scowen, Paul; Swain, Mark; Zellem, Robert
2018-01-01
Roughly seventy-five billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. For each target, SPARCS will observe continuously over at least one complete stellar rotation (5 - 45 days). SPARCS will also advance UV detector technology by flying high quantum efficiency, UV-optimized detectors developed at JPL. These Delta-doped detectors have a long history of deployment demonstrating greater than five times the quantum efficiency of the detectors used by GALEX. SPARCS will pave the way for their application in missions like LUVOIR or HabEx, including interim UV-capable missions. SPARCS will also be capable of ‘target-of-opportunity’ UV observations for the rocky planets in M dwarf HZs soon to be discovered by NASA’s TESS mission, providing the needed UV context for the first habitable planets that JWST will characterize.Acknowledgements: Funding for SPARCS is provided by NASA’s Astrophysics Research and Analysis program, NNH16ZDA001N.
A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks
NASA Astrophysics Data System (ADS)
Rodriguez, David R.
2011-01-01
We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.
NASA Astrophysics Data System (ADS)
Chilingarian, Igor V.; Zolotukhin, Ivan Yu.; Katkov, Ivan Yu.; Melchior, Anne-Laure; Rubtsov, Evgeniy V.; Grishin, Kirill A.
2017-02-01
We present RCSED, the value-added Reference Catalog of Spectral Energy Distributions of galaxies, which contains homogenized spectrophotometric data for 800,299 low- and intermediate-redshift galaxies (0.007< z< 0.6) selected from the Sloan Digital Sky Survey spectroscopic sample. Accessible from the Virtual Observatory (VO) and complemented with detailed information on galaxy properties obtained with state-of-the-art data analysis, RCSED enables direct studies of galaxy formation and evolution over the last 5 Gyr. We provide tabulated color transformations for galaxies of different morphologies and luminosities, and analytic expressions for the red sequence shape in different colors. RCSED comprises integrated k-corrected photometry in up to 11 ultraviolet, optical, and near-infrared bands published by the GALEX, SDSS, and UKIDSS wide-field imaging surveys; results of the stellar population fitting of SDSS spectra including best-fitting templates, velocity dispersions, parameterized star formation histories, and stellar metallicities computed for instantaneous starburst and exponentially declining star formation models; parametric and non-parametric emission line fluxes and profiles; and gas phase metallicities. We link RCSED to the Galaxy Zoo morphological classification and galaxy bulge+disk decomposition results of Simard et al. We construct the color-magnitude, Faber-Jackson, and mass-metallicity relations; compare them with the literature; and discuss systematic errors of the galaxy properties presented in our catalog. RCSED is accessible from the project web site and via VO simple spectrum access and table access services using VO-compliant applications. We describe several examples of SQL queries to the database. Finally, we briefly discuss existing and future scientific applications of RCSED and prospective catalog extensions to higher redshifts and different wavelengths. .
Introductory Biology Labs... They Just Aren't Sexy Enough!
ERIC Educational Resources Information Center
Cotner, Sehoya; Gallup, Gordon G., Jr.
2011-01-01
The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…
Science Standards, Science Achievement, and Attitudes about Evolution
ERIC Educational Resources Information Center
Belin, Charlie M.; Kisida, Brian
2015-01-01
This article explores the relationships between (a) the quality of state science standards and student science achievement, (b) the public's belief in teaching evolution and the quality of state standards, and (c) the public's belief in teaching evolution and student science achievement. Using multiple measures, we find no evidence of a…
Muslim Egyptian and Lebanese Students' Conceptions of Biological Evolution
ERIC Educational Resources Information Center
BouJaoude, Saouma; Wiles, Jason R.; Asghar, Anila; Alters, Brian
2011-01-01
In this study, we investigated distinctions among the diversity of religious traditions represented by Lebanese and Egyptian Muslim high school students regarding their understanding and acceptance of biological evolution and how they relate the science to their religious beliefs. We explored secondary students' conceptions of evolution among…
Evolution Education in Policy and Practice: An Ethnographic Perspective
ERIC Educational Resources Information Center
Long, David E.
2012-01-01
Evolution education in the US is conducted unevenly, or in cases is absent. Showing the strength of ethnography as a means of deeper explication in science education, this article explores the interactions of policy and practice in evolution education. Discussing vignettes from a larger ethnographic study, Creationist rationales and practices…
Disciplining and popularizing: evolution and its publics from the modern synthesis to the present.
Smocovitis, Vassiliki Betty
2014-03-01
This paper serves as an introduction to a special collection of papers exploring the centrifugal and centripetal forces in the process of disciplining and popularizing the science of evolution in the period preceding and after the modern synthesis of evolution. Published by Elsevier Ltd.
The effect of cultural interaction on cumulative cultural evolution.
Nakahashi, Wataru
2014-07-07
Cultural transmission and cultural evolution are important for animals, especially for humans. I developed a new analytical model of cultural evolution, in which each newborn learns cultural traits from multiple individuals (exemplars) in parental generation, individually explores around learned cultural traits, judges the utility of known cultural traits, and adopts a mature cultural trait. Cultural evolutionary speed increases when individuals explore a wider range of cultural traits, accurately judge the skill level of cultural traits (strong direct bias), do not strongly conform to the population mean, increase the exploration range according to the variety of socially learned cultural traits (condition dependent exploration), and make smaller errors in social learning. Number of exemplars, population size, similarity of cultural traits between exemplars, and one-to-many transmission have little effect on cultural evolutionary speed. I also investigated how cultural interaction between two populations with different mean skill levels affects their cultural evolution. A population sometimes increases in skill level more if it encounters a less skilled population than if it does not encounter anyone. A less skilled population sometimes exceeds a more skilled population in skill level by cultural interaction between both populations. The appropriateness of this analytical method is confirmed by individual-based simulations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-07-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX, and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further seven candidates are identified from the previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR, and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased towards low z, high M⋆, and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-04-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
NASA Astrophysics Data System (ADS)
Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.
2010-11-01
The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.
ERIC Educational Resources Information Center
Flannery, Maura C.
2005-01-01
The changes in the evolution due to changes in science are explored. These changes are frustrating to paleontologists, especially when they are trying to date a singular event, like a cataclysm that precipitated a mass extinction.
ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration
NASA Technical Reports Server (NTRS)
Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan
2013-01-01
In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.
Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer
NASA Technical Reports Server (NTRS)
Ford, Virginia; Parks, Rick; Coleman, Michelle
2004-01-01
The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.
The Experimental Detection of an Emotional Response to the Idea of Evolution
ERIC Educational Resources Information Center
Bland, Mark W.; Morrison, Elizabeth
2015-01-01
Evolution is widely regarded as biology's unifying theme, yet rates of rejection of evolutionary science remain high. Anecdotal evidence suggests that cognitive dissonance leading to an emotional response is a barrier to learning about and accepting evolution. We explored the hypothesis that students whose worldviews may be inconsistent with the…
Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts
ERIC Educational Resources Information Center
Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.
2016-01-01
In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…
ERIC Educational Resources Information Center
Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.
2013-01-01
Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…
ERIC Educational Resources Information Center
Gipps, John
1991-01-01
Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)
The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life
NASA Technical Reports Server (NTRS)
Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)
1982-01-01
This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.
2003-12-10
This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923
Publications of the exobiology program for 1990: A special bibliography
NASA Technical Reports Server (NTRS)
1992-01-01
The Exobiology Program is an integrated program designed to investigate and understand those processes related to the origin, evolution, and distribution of life in the universe. The Exobiology Program is broad in scope, covering the following subject areas: cosmic evolution of biogenic compounds; prebiotic evolution; early evolution of life; evolution of advanced life; solar system exploration; search for extraterrestrial intelligence; planetary protection; and advanced programs in biological systems research. A listing of the 1990 publications resulting from research supported by the Exobiology Program is presented.
The impact of retail electricity tariff evolution on solar photovoltaic deployment
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany; ...
2017-11-10
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
The impact of retail electricity tariff evolution on solar photovoltaic deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Cole, Wesley J.; Frew, Bethany
Here, this analysis explores the impact that the evolution of retail electricity tariffs can have on the deployment of solar photovoltaics. It suggests that ignoring the evolution of tariffs resulted in up to a 36% higher prediction of the capacity of distributed PV in 2050, compared to scenarios that represented tariff evolution. Critically, the evolution of tariffs had a negligible impact on the total generation from PV $-$ both utility-scale and distributed $-$ in the scenarios that were examined.
A novel strategy for exploring the reassortment origins of newly emerging influenza virus.
Tian, Deqiao; Wang, Yumin; Zheng, Tao
2011-01-01
In early 2009, new swine-origin influenza A (H1N1) virus emerged in Mexico and the United States. The emerging influenza virus had made global influenza pandemic for nearly one year. To every emerging pathogen, exploring the origin sources is vital for viral control and clearance. Influenza virus is different from other virus in that it has 8 segments, making the segment reassortment a main drive in virus evolution. In exploring reassortment evolution origins of a newly emerging influenza virus, integrated comparing of the origin sources of all the segments is necessary. If some segments have high homologous with one parental strain, lower homologous with another parental strain, while other segments are reverse, can we proposed that this emerging influenza virus may re-assort from the two parental strains. Here we try to explore the multilevel reassortment evolution origins of 2009 H1N1 influenza virus using this method. By further validating the fidelity of this strategy, this method might be useful in judging the reassortment origins of newly emerging influenza virus.
Future NASA solar system exploration activities: A framework for international cooperation
NASA Technical Reports Server (NTRS)
French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.
1992-01-01
The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.
Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A
NASA Technical Reports Server (NTRS)
Neff, Susan
2009-01-01
We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.
X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.
2009-01-01
We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3
Telecommunications systems evolution for Mars Exploration
NASA Technical Reports Server (NTRS)
Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.
2003-01-01
This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).
Dupré, John
2017-10-06
This paper briefly describes process metaphysics, and argues that it is better suited for describing life than the more standard thing, or substance, metaphysics. It then explores the implications of process metaphysics for conceptualizing evolution. After explaining what it is for an organism to be a process, the paper takes up the Hull/Ghiselin thesis of species as individuals and explores the conditions under which a species or lineage could constitute an individual process. It is argued that only sexual species satisfy these conditions, and that within sexual species the degree of organization varies. This, in turn, has important implications for species' evolvability. One important moral is that evolution will work differently in different biological domains.
2017-01-01
This paper briefly describes process metaphysics, and argues that it is better suited for describing life than the more standard thing, or substance, metaphysics. It then explores the implications of process metaphysics for conceptualizing evolution. After explaining what it is for an organism to be a process, the paper takes up the Hull/Ghiselin thesis of species as individuals and explores the conditions under which a species or lineage could constitute an individual process. It is argued that only sexual species satisfy these conditions, and that within sexual species the degree of organization varies. This, in turn, has important implications for species' evolvability. One important moral is that evolution will work differently in different biological domains. PMID:28839921
Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life
NASA Technical Reports Server (NTRS)
Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)
1998-01-01
The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.
ERIC Educational Resources Information Center
Romine, William L.; Walter, Emily M.; Bosse, Ephiram; Todd, Amber N.
2017-01-01
We validate the Measure of Acceptance of the Theory of Evolution (MATE) on undergraduate students using the Rasch model and utilize the MATE to explore qualitatively how students express their acceptance of evolution. At least 24 studies have used the MATE, most with the assumption that it is unidimensional. However, we found that the MATE is best…
Parent-Child Conversations about Evolution in the Context of an Interactive Museum Display
ERIC Educational Resources Information Center
Shtulman, Andrew; Checa, Isabel
2012-01-01
The theory of evolution by natural selection has revolutionized the biological sciences yet remains confusing and controversial to the public at large. This study explored how a particular segment of the public--visitors to a natural history museum--reason about evolution in the context of an interactive cladogram, or evolutionary tree. The…
The Use of Narrative to Promote Primary School Children's Understanding of Evolution
ERIC Educational Resources Information Center
Browning, Emma; Hohenstein, Jill
2015-01-01
This study explores learning about evolution when information is presented in either a narrative or an expository text (ET). Narratives engage the imagination, and consequently may allow children to overcome conceptual constraints that make evolution difficult to comprehend. Participants were 16 Year One, 21 Year Two and 25 Year Three pupils from…
ERIC Educational Resources Information Center
Cavallo, Ann M. L.; White, Kevin J.; McCall, David
2011-01-01
This study explored interrelationships among high school students' views about nature of science (NOS), acceptance of evolution, and conceptual understanding of evolution, and the extent to which these may have shifted from pre- to post-instruction on evolutionary theory. Eighty-one students enrolled in ninth-grade Biology responded to…
Biology Students' and Teachers' Religious Beliefs and Attitudes towards Theory of Evolution
ERIC Educational Resources Information Center
Ozay Kose, Esra
2010-01-01
Evolution has not being well addressed in schools partly because it is a controversial topic in religious views. In the present study, it is explored to what extent Turkish secondary school biology teachers and students accommodate the theory of biological evolution with their religious beliefs. Two-hundred fifty secondary school students and…
ERIC Educational Resources Information Center
Mangahas, Ana Marie E.
2017-01-01
This mixed method study explored Christian teachers' beliefs in religious schools on evolution, their attitudes toward evolution, and their perceptions on the effect of those beliefs on the teaching of evolutionary content. Teachers (N = 52) from Association for Christian Schools International (ACSI) accredited schools in California and Hawaii…
ERIC Educational Resources Information Center
Fowler, Samantha R.
2009-01-01
The purpose of this study was to explore the evolution science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. Specific research questions were, (1a) what specific evolutionary science content do…
NASA Astrophysics Data System (ADS)
Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.
A two level mutation-selection model of cultural evolution and diversity.
Salazar-Ciudad, Isaac
2010-11-21
Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual's level) or the relative success of transmission (called the idea's level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea's level, when it is driven by the individual's level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual's capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of "selfish" ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kaufman, Jim
2010-08-01
This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems.
Kaufman, Jim
2010-01-01
This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems. PMID:20465576
The exploration of Titan with an orbiter and a lake probe
NASA Astrophysics Data System (ADS)
Mitri, Giuseppe; Coustenis, Athena; Fanchini, Gilbert; Hayes, Alex G.; Iess, Luciano; Khurana, Krishan; Lebreton, Jean-Pierre; Lopes, Rosaly M.; Lorenz, Ralph D.; Meriggiola, Rachele; Moriconi, Maria Luisa; Orosei, Roberto; Sotin, Christophe; Stofan, Ellen; Tobie, Gabriel; Tokano, Tetsuya; Tosi, Federico
2014-12-01
Fundamental questions involving the origin, evolution, and history of both Titan and the broader Saturnian system can be answered by exploring this satellite from an orbiter and also in situ. We present the science case for an exploration of Titan and one of its lakes from a dedicated orbiter and a lake probe. Observations from an orbit-platform can improve our understanding of Titan's geological processes, surface composition and atmospheric properties. Further, combined measurements of the gravity field, rotational dynamics and electromagnetic field can expand our understanding of the interior and evolution of Titan. An in situ exploration of Titan's lakes provides an unprecedented opportunity to understand the hydrocarbon cycle, investigate a natural laboratory for prebiotic chemistry and habitability potential, and study meteorological and marine processes in an exotic environment. We briefly discuss possible mission scenarios for a future exploration of Titan with an orbiter and a lake probe.
Scales, Jeffrey A; Butler, Marguerite A
2016-01-01
Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Constructive neutral evolution: exploring evolutionary theory's curious disconnect.
Stoltzfus, Arlin
2012-10-13
Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the "mutational landscape" model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.
Constructive neutral evolution: exploring evolutionary theory’s curious disconnect
2012-01-01
Abstract Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article. PMID:23062217
ERIC Educational Resources Information Center
Glaze, Amanda L.; Goldston, M. Jenice; Dantzler, John
2015-01-01
Evolution continues to be a controversial topic around the world but nowhere is this more apparent locally than in the Southeastern region of the USA. In this study, we explored acceptance and rejection of evolution among pre-service science teachers in a teaching college in the rural Southeast and sought to determine (1) what relationships exist…
ERIC Educational Resources Information Center
Rice, Diana C.; Kaya, Sibel
2012-01-01
This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…
ERIC Educational Resources Information Center
Heddy, Benjamin C.; Sinatra, Gale M.
2013-01-01
Teaching and learning about complex scientific content, such as biological evolution, is challenging in part because students have a difficult time seeing the relevance of evolution in their everyday lives. The purpose of this study was to explore the effectiveness of the Teaching for Transformative Experiences in Science (TTES) model (Pugh, 2002)…
The Evolution of Deep Space Navigation: 1989-1999
NASA Technical Reports Server (NTRS)
Wood, Lincoln J.
2008-01-01
The exploration of the planets of the solar system using robotic vehicles has been underway since the early 1960s. During this time the navigational capabilities employed have increased greatly in accuracy, as required by the scientific objectives of the missions and as enabled by improvements in technology. This paper is the second in a chronological sequence dealing with the evolution of deep space navigation. The time interval covered extends from the 1989 launch of the Magellan spacecraft to Venus through a multiplicity of planetary exploration activities in 1999. The paper focuses on the observational techniques that have been used to obtain navigational information, propellant-efficient means for modifying spacecraft trajectories, and the computational methods that have been employed, tracing their evolution through a dozen planetary missions.
Laland, Kevin N
2008-11-12
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.
NASA Technical Reports Server (NTRS)
2003-01-01
This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.2003-12-10
This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922
NASA Astrophysics Data System (ADS)
Yun, Min
Studies of massive galaxy clusters and groups at redshifts below 1 typically find environments with little-to-no star formation activity, in sharp contrast with the field. Over-dense regions are dominated by passively-evolving spheroidal (S0) and elliptical galaxies, whereas galaxies in the field tend to have spiral morphologies, younger stellar populations, and systematically higher star formation rates. Studies of the galaxy populations of clusters and massive galaxy groups have found that the increase in the fraction of spirals at higher redshifts corresponds to a decline in the fraction of S0 galaxies, which strongly suggests that field spirals are transformed into S0 galaxies at some point in their transition between field and cluster regions. This transformation necessarily involves an increase in the stellar content of the bulge relative to the disk, and then a removal of disk gas accompanied by either a rapid or gradual decline in star formation to eventually produce a red, spheroidal, passively-evolving S0 galaxy. Deep and wide area cosmological surveys such as the GOODS and COSMOS have shown that both environment and stellar mass play a distinct role in the overall galaxy evolution over a wide redshift range (to z~3). The density-morphology relation and the blue-fraction, first noted in the targeted studies of clusters and groups, also appears to be an extension of the evolutionary trends seen in the field sample. However, the trends seen in these large cosmological surveys should be taken with a caution since they are broad statistical trends of primarily massive galaxies with relatively poor sensitivity on star formation rate (SFR), associated with a relatively narrow range of sparsely sampled galaxy density. This can lead to potentially serious shortcomings when studying the role of environment because many of the physical mechanisms involved may preferentially impact the lower mass galaxies. The dominant physical mechanism(s) responsible for this transformation are still being debated, but the overwhelming evidence has shown that spirals are readily altered in groups or cluster outskirts prior to falling into a galaxy cluster (pre-processing). This implies that the best approach to catch galaxy transformation in the act is to examine galaxies in lower density environments. A complete accounting of star-formation activity for galaxies over a wide range masses and environments is needed to assess which of many possible mechanisms is the dominant cause of galaxy transformation in over-dense regions. The main goal of this proposed study is to examine the SF and quenching activities associated with galaxies using the high spatial resolution of the targeted studies of individual clusters, but covering much larger areas and density ranges (from voids to cluster cores) with the sample statistics approaching those of the cosmological surveys such as COSMOS, using exquisite stellar mass and SFR (both UV and IR) sensitivity. To achieve this, we propose a multi-wavelength study (with a specific emphasis on GALEX and WISE) of the two most prominent large scale structures in the local universe: the Coma and Perseus-Pisces Superclusters. The total sample area covers ~3000 sq. degree and contains about 7000 spectroscopically identified galaxies (from SDSS and archival spectra). In addition, we will evaluate the impacts of the high mass and SFR cut employed by deep cosmological surveys by paring down our sample in stellar mass and SFR (and resulting coarse galaxy density estimates) and examine whether any important insights are missed as a result.
The Mars Surveyor Program, Human Exploration Objectives and the Case for Gusev Crater
NASA Technical Reports Server (NTRS)
Cabrol, Nathalie A.; Grin, Edmond A.; Hand, Kevin
1999-01-01
It has been demonstrated during the past years that by its configuration, extended history of water ponding and sedimentary deposition, Gusev crater is one of the most favorable sites to consider for the incoming exploration of Mars. It provides exceptional possibilities to document the evolution of water, climate changes, and possibly the evolution of life on Mars through time. Because of all these reasons, it is probably one of the most interesting sites to target for sample return missions and human exploration, but as well, it is by all means an excellent target for the Surveyor '01, in spite of the current imposed mission constraints, as we propose to demonstrate.
Evolution of Government and Industrial Partnerships to Open the Space Frontier
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2008-01-01
If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.
Factors Potentially Influencing Student Acceptance of Biological Evolution
NASA Astrophysics Data System (ADS)
Wiles, Jason R.
This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about evolutionary science, and the overwhelming majority of the participants expressed enjoyment of the course and appreciation for having been taught about evolution.
ERIC Educational Resources Information Center
Larkin, Douglas B.; Perry-Ryder, Gail M.
2015-01-01
We present the case of Michael, a prospective high school biology teacher, to explore the implications of teacher resistance and avoidance to the topic of evolution. This case is drawn from a year-long qualitative research study that examined Michael's process of learning to teach high school biology and describes how his avoidance of evolution in…
The Genetics and Evolution of Human Skin Color: The Case of Desiree's Baby
ERIC Educational Resources Information Center
Schneider, Patricia
2004-01-01
This case explores the genetics and evolution of skin color, using a short story by Kate Chopin called "Desiree's Baby" as a starting point. Students read the story and discuss a series of questions probing the genetics of the family in the tale. Students then read an article about the evolution of skin color and write an essay analyzing the…
A Topical Trajectory on Survival: An Analysis of Link-Making in a Sequence of Lessons on Evolution
ERIC Educational Resources Information Center
Rocksén, Miranda; Olander, Clas
2017-01-01
This study explores the concept of link-making in relation to communicative strategies applied in the teaching and studying of biological evolution. The analysis focused on video recordings of 11 lessons on biological evolution conducted in a Swedish 9th grade class of students aged 15 years. It reveals how the teacher and students connected…
Process and metaphors in the evolutionary paradigm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, M.; Fox, S
1988-01-01
Presents thinking on the processes and interpretation of biological evolution, emphasizing the study of biological processes as they occur in living organisms and their communities, rather than through mechanical or statistical models. Contributors explore processes and metaphors in evolution, the origin of the genetic code, new genetic mechanisms and their implications for the formation of new species, panbiogeography, the active role of behavior in evolution, sociobiology, and more.
Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives
NASA Technical Reports Server (NTRS)
Lal, Nand (Technical Monitor); McLean, Brian
2004-01-01
The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.
Search for X-ray Emission from AGB Stars in the Coronal Graveyard
NASA Astrophysics Data System (ADS)
Montez, Rodolfo
2013-10-01
Maser observations demonstrate the existence of magnetic fields in the circumstellar envelopes of AGB stars. However, thus far, only 2-3 AGB stars have exhibited evidence for coronal X-ray emission. We have demonstrated that only the sensitivity of modern X-ray telescopes can detect magnetically-induced coronal emission and have identified a sample of AGB stars which are ideal candidates to search for such emission. Specifically, we have selected a sample of AGB stars with SiO maser emission, UV emission in at least one of the GALEX bandpasses, and low mass loss rates. The four selected AGB stars provide a pilot sample that optimally probes for coronal activity beyond the giant phase and that provides valuable tests for the launching and shaping of AGB mass loss.
Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.
Avilés, Leticia; Abbot, Patrick; Cutter, Asher D
2002-02-01
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Lim, Darlene S. S.; Hughes, S.; Kobs, S.; Garry, B.; Osinski, G. R.; Hodges, K.; Kobayashi, L.; Colaprete, A.
2015-01-01
NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).
Issues in subsurface exploration of ice sheets
NASA Technical Reports Server (NTRS)
French, L.; Carsey, F.; Zimmerman, W.
2000-01-01
Exploration of the deep subsurface ice sheets of Earth, Mars, Europa, and Titan has become a major consideration in addressing scientific objectives in climate change, extremophile biology, exobiology,chemical weathering, planetary evolution and ice dynamics.
MIGHTEE: The MeerKAT International GHz Tiered Extragalactic Exploration
NASA Astrophysics Data System (ADS)
Taylor, A. Russ; Jarvis, Matt
2017-05-01
The MeerKAT telescope is the precursor of the Square Kilometre Array mid-frequency dish array to be deployed later this decade on the African continent. MIGHTEE is one of the MeerKAT large survey projects designed to pathfind SKA key science in cosmology and galaxy evolution. Through a tiered radio continuum deep imaging project including several fields totaling 20 square degrees to microJy sensitivities and an ultra-deep image of a single 1 square degree field of view, MIGHTEE will explore dark matter and large scale structure, the evolution of galaxies, including AGN activity and star formation as a function of cosmic time and environment, the emergence and evolution of magnetic fields in galaxies, and the magnetic counter part to large scale structure of the universe.
Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus
NASA Technical Reports Server (NTRS)
Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.
2005-01-01
The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.
Item Feature Effects in Evolution Assessment
ERIC Educational Resources Information Center
Nehm, Ross H.; Ha, Minsu
2011-01-01
Despite concerted efforts by science educators to understand patterns of evolutionary reasoning in science students and teachers, the vast majority of evolution education studies have failed to carefully consider or control for item feature effects in knowledge measurement. Our study explores whether robust contextualization patterns emerge within…
Power and Vision: Group-Process Models Evolving from Social-Change Movements.
ERIC Educational Resources Information Center
Morrow, Susan L.; Hawxhurst, Donna M.
1988-01-01
Explores evolution of group process in social change movements, including the evolution of the new left, the cooperative movement,and the women's liberation movement. Proposes a group-process model that encourages people to share power and live their visions. (Author/NB)
Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks
NASA Astrophysics Data System (ADS)
Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong
2017-01-01
Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.
Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks
Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong
2017-01-01
Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276
NASA Astrophysics Data System (ADS)
Zhukovsky, K.; Oskolkov, D.
2018-03-01
A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.
McEwan, Gregor F; Groner, Maya L; Fast, Mark D; Gettinby, George; Revie, Crawford W
2015-01-01
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.
Barnes, M. Elizabeth; Brownell, Sara E.
2016-01-01
Evolution is a core concept of biology, and yet many college biology students do not accept evolution because of their religious beliefs. However, we do not currently know how instructors perceive their role in helping students accept evolution or how they address the perceived conflict between religion and evolution when they teach evolution. This study explores instructor practices and beliefs related to mitigating students’ perceived conflict between religion and evolution. Interviews with 32 instructors revealed that many instructors do not believe it is their goal to help students accept evolution and that most instructors do not address the perceived conflict between religion and evolution. Instructors cited many barriers to discussing religion in the context of evolution in their classes, most notably the instructors’ own personal beliefs that religion and evolution may be incompatible. These data are exploratory and are intended to stimulate a series of questions about how we as college biology instructors teach evolution. PMID:27193289
Participatory Exploration: The Role of the User Contribution System
NASA Technical Reports Server (NTRS)
Skytland, Nicholas G.
2009-01-01
This viewgraph presentation explores how NASA can apply the global shift in demographics, the popularity of collaborative technology and the desire for participation to the future of space exploration. Included in this is a review of the evolution of work, the engagement gap, user contribution systems and a case study concerning the "digital astronaut".
Comparing Common Origins: Using Biotechnology To Teach Evolution.
ERIC Educational Resources Information Center
McLaughlin, John; Glasson, George
2001-01-01
Presents an innovative, inquiry-oriented lesson plan for using biotechnology to teach evolution. Using acrylamide gel electrophoresis, students learn how to isolate and compare different proteins from the muscle tissue of readily available seafood specimens to determine phylogenetic relationships. Uses a 5E (engagement, exploration, explanation,…
ERIC Educational Resources Information Center
Field, George
1982-01-01
Based on the premise that discoveries raise more questions than they answer, explores various research questions related to the discovery of the planets and discoveries related to the theory of stellar evolution. (SK)
Exploring the impact of multiple grain sizes in numerical landscape evolution model
NASA Astrophysics Data System (ADS)
Guerit, Laure; Braun, Jean; Yuan, Xiaoping; Rouby, Delphine
2017-04-01
Numerical evolution models have been widely developed in order to understand the evolution of landscape over different time-scales, but also the response of the topography to changes in external conditions, such as tectonics or climate, or to changes in the bedrock characteristics, such as its density or its erodability. Few models have coupled the evolution of the relief in erosion to the evolution of the related area in deposition, and in addition, such models generally do not consider the role of the size of the sediments reached the depositional domain. Here, we present a preliminary work based on an enhanced version of Fastscape, a very-efficient model solving the stream power equation, which now integrates a sedimentary basin at the front of a relief, together with the integration of multiple grain sizes in the system. Several simulations were performed in order to explore the impact of several grain sizes in terms of stratigraphy in the marine basin. A simple setting is considered, with uniform uplift rate, precipitation rate, and rock properties onshore. The pros and cons of this approach are discussed with respect to similar simulations performed considering only flux.
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-01-01
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702
The Moon: Keystone to Understanding Planetary Geological Processes and History
NASA Technical Reports Server (NTRS)
2002-01-01
Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.
The Evolution of Consciousness in the Novel in English
NASA Astrophysics Data System (ADS)
Gojkovic, Zorica
This dissertation examines how the novel in English reflects the evolution of human consciousness. Characters in novels express a level of consciousness through their world view, which reflects the level of consciousness of the author and his/her period. Over time the world view evolves from a perception of physical reality as ultimate reality, to physical reality as illusion, in contrast to primary reality, which is spirit, or energy, or God, or the holistic frequency realm. Great mystics and sages all over the world, and throughout history, have had this understanding about the nature of reality. What is new is that different investigative currents are coming together and sharing this new vision of reality. The underlying unity, or enfolded order, is a broader realm where fragmentation is united by a deeper truth. This oneness is analogized to a hologram, where each part is in the whole and the whole in each part. The process of the evolution of consciousness in the novel is examined in three parts. In part one, Chapter One, connections are established between some of the pertinent developments in quantum physics, mysticism and Erich Neumann's theory of the evolution of consciousness. This information sets the stage for the exploration of the evolutionary process in the novel. Part two, chapters two to seven, explore various themes that demonstrate the evolutionary process in the novel. Novels that most effectively demonstrate the evolution are used. Part three, Chapter Eight, summarizes the evolutionary process and demonstrates the way in which wholeness is achieved from the initial separateness. Part three also explores some implications for the novel in light of this analysis.
Directed evolution: an approach to engineer enzymes.
Kaur, Jasjeet; Sharma, Rohit
2006-01-01
Directed evolution is being used increasingly in industrial and academic laboratories to modify and improve commercially important enzymes. Laboratory evolution is thought to make its biggest contribution in explorations of non-natural functions, by allowing us to distinguish the properties nurtured by evolution. In this review we report the significant advances achieved with respect to the methods of biocatalyst improvement and some critical properties and applications of the modified enzymes. The application of directed evolution has been elaborately demonstrated for protein solubility, stability and catalytic efficiency. Modification of certain enzymes for their application in enantioselective catalysis has also been elucidated. By providing a simple and reliable route to enzyme improvement, directed evolution has emerged as a key technology for enzyme engineering and biocatalysis.
A Lesson on Evolution & Natural Selection
ERIC Educational Resources Information Center
Curtis, Anthony D.
2010-01-01
I describe three activities that allow students to explore the ideas of evolution, natural selection, extinction, mass extinction, and rates of evolutionary change by engaging a simple model using paper, pens, chalk, and a chalkboard. As a culminating activity that supports expository writing in the sciences, the students write an essay on mass…
China Encounters Darwinism: A Case of Intercultural Rhetoric.
ERIC Educational Resources Information Center
Xiao, Xiaosui
1995-01-01
Explores how influential works of one culture are adapted to the needs, circumstances and thought patterns of another. Analyzes as a case study Yan Fu's "Heavenly Evolution," a rhetorical translation of Thomas Huxley's "Evolution and Ethics," whose publication resulted in a rapid spread of a version of Darwinism in Confucian…
On the evolution of hoarding, risk-taking, and wealth distribution in nonhuman and human populations
Bergstrom, Theodore C.
2014-01-01
This paper applies the theory of the evolution of risk-taking in the presence of idiosyncratic and environmental risks to the example of food hoarding by animals and explores implications of the resulting theory for human attitudes toward risk. PMID:25024179
ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan
Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent ofmore » the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.« less
FIREBall, CHaS, and the diffuse universe
NASA Astrophysics Data System (ADS)
Hamden, Erika Tobiason
The diffuse universe, consisting of baryons that have not yet collapsed into structures such as stars, galaxies, etc., has not been well studied. While the intergalactic and circumgalactic mediums (IGM & CGM) may contain 30-40% of the baryons in the universe, this low density gas is difficult to observe. Yet it is likely a key driver of the evolution of galaxies and star formation through cosmic time. The IGM provides a reservoir of gas that can be used for star formation, if it is able to accrete onto a galaxy. The CGM bridges the IGM and the galaxy itself, as a region of both inflows from the IGM and outflows from galactic star formation and feedback. The diffuse interstellar medium (ISM) gas and dust in the galaxy itself may also be affected by the CGM of the galaxy. Careful observations of the ISM of our own Galaxy may provide evidence of interaction with the CGM. These three regions of low density, the IGM, CGM, and ISM, are arbitrary divisions of a continuous flow of low density material into and out of galaxies. My thesis focuses on observations of this low density material using existing telescopes as well as on the development of technology and instruments that will increase the sensitivity of future missions. I used data from the Galaxy Evolution Explorer (GALEX) to create an all sky map of the diffuse Galactic far ultraviolet (FUV) background, probing the ISM of our own galaxy and comparing to other Galactic all sky maps. The FUV background is primarily due to dust scattered starlight from bright stars in the Galactic plane, and the changing intensity across the sky can be used to characterize dust scattering asymmetry and albedo. We measure a consistent low level non-scattered isotropic component to the diffuse FUV, which may be due in small part to an extragalactic component. There are also several regions of unusually high FUV intensity given other Galactic quantities. Such regions may be the location of interactions between Galactic super-bubbles and the CGM. Other ways of probing the CGM including direct detection via emission lines. I built a proto-type of the Circumgalactic Halpha Spectrograph (CHalphaS), a wide-field, low-cost, narrow-band integral field unit (IFU) that is designed to observe Halpha emission from the CGM of nearby, low-z galaxies. This proto-type has had two recent science runs, with preliminary data on several nearby galaxies. Additional probes of the CGM are emission lines in the rest ultra-violet. These include OVI, Lyalpha, CIV, SiIII, CIII, CII, FeII, and MgII. Such lines are accessible for low redshift galaxies in the space UV, historically a difficult wavelength range in which to work due in part to low efficiency of the available detectors. I have worked with NASA's Jet Propulsion Laboratory to develop advanced anti-reflection (AR) coatings for use on thinned, delta-doped charge coupled device (CCD) detectors. These detectors have achieved world record quantum efficiency (QE) at UV wavelengths (>50% between 130 nm and 300nm), with the potential for even greater QE with a more complex coating. One of these AR coated detectors will be used on the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), a balloon-born UV spectrograph designed to observe the CGM at 205 nm via redshifted Lyalpha (at z=0.7), CIV (at z=0.3), and OVI (at z=1.0). FIREBall-2 will launch in the fall of 2015.
McEwan, Gregor F.; Groner, Maya L.; Fast, Mark D.; Revie, Crawford W.
2015-01-01
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments. PMID:26485023
Student Visual Communication of Evolution
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Cook, Kristin
2017-06-01
Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.
Dust-Corrected Star Formation Rates in Galaxies with Outer Rings
NASA Astrophysics Data System (ADS)
Kostiuk, I.; Silchenko, O.
2018-03-01
The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.
The Diffuse Radiation Field at High Galactic Latitudes
NASA Astrophysics Data System (ADS)
Akshaya, M. S.; Murthy, Jayant; Ravichandran, S.; Henry, R. C.; Overduin, James
2018-05-01
We have used GALEX observations of the north and south Galactic poles to study the diffuse ultraviolet background at locations where the Galactic light is expected to be at a minimum. We find offsets of 230–290 photon units in the far-UV (1531 Å) and 480–580 photon units in the near-UV (2361 Å). Of this, approximately 120 photon units can be ascribed to dust-scattered light and another 110 photon units (190 in the near-UV) to extragalactic radiation. The remaining radiation is, as yet, unidentified and amounts to 120–180 photon units in the far-UV and 300–400 photon units in the near-UV. We find that molecular hydrogen fluorescence contributes to the far-UV when the 100 μm surface brightness is greater than 1.08 MJy sr‑1.
A FEROS Survey of Hot Subdwarf Stars
NASA Astrophysics Data System (ADS)
Vennes, Stéphane; Németh, Péter; Kawka, Adela
2018-02-01
We have completed a survey of twenty-two ultraviolet-selected hot subdwarfs using the Fiber-fed Extended Range Optical Spectrograph (FEROS) and the 2.2-m telescope at La Silla. The sample includes apparently single objects as well as hot subdwarfs paired with a bright, unresolved companion. The sample was extracted from our GALEX catalogue of hot subdwarf stars. We identified three new short-period systems (P = 3.5 hours to 5 days) and determined the orbital parameters of a long-period (P = 62d.66) sdO plus G III system. This particular system should evolve into a close double degenerate system following a second common envelope phase.We also conducted a chemical abundance study of the subdwarfs: Some objects show nitrogen and argon abundance excess with respect to oxygen. We present key results of this programme.
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
Publications of the Exobiology Program for 1988: A special bibliography
NASA Technical Reports Server (NTRS)
1990-01-01
The 1988 publications resulting from research pursued under the auspices of NASA's Exobiology Program are listed. The Exobiology Program is an integrated program designed to investigate those processes that may have been responsible for or related to the origin, evolution, and distribution of life in the universe. Research supported by this program is in the areas of cosmic evolution of biogenic compounds, prebiotic evolution, early evolution of life, and evolution of advanced life. Pre-mission and pre-project activities supporting these areas are included in the areas of solar system exploration and the search for extraterrestrial intelligence. A planetary protection subject area is also included because of its direct relevance to the Exobiology program.
Modelling the evolution and diversity of cumulative culture
Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo
2011-01-01
Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of culture. Five scenarios are explored: evolution of independent cultural elements, stepwise modification of elements, differentiation or combination of elements and systems of cultural elements. As one application of our framework, we study the evolution of cultural diversity (in time as well as between groups). PMID:21199845
xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies
NASA Astrophysics Data System (ADS)
Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.
2017-12-01
We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01< z< 0.05 from the Sloan Digital Sky Survey (SDSS) and therefore representative of the local galaxy population with {M}* > {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.
Can Binary Population Synthesis Models Be Tested With Hot Subdwarfs ?
NASA Astrophysics Data System (ADS)
Kopparapu, Ravi Kumar; Wade, R. A.; O'Shaughnessy, R.
2007-12-01
Models of binary star interactions have been successful in explaining the origin of field hot subdwarf (sdB) stars in short period systems. The hydrogen envelopes around these core He-burning stars are removed in a "common envelope" evolutionary phase. Reasonably clean samples of short-period sdB+WD or sdB+dM systems exist, that allow the common envelope ejection efficiency to be estimated for wider use in binary population synthesis (BPS) codes. About one-third of known sdB stars, however, are found in longer-period systems with a cool G or K star companion. These systems may have formed through Roche-lobe overflow (RLOF) mass transfer from the present sdB to its companion. They have received less attention, because the existing catalogues are believed to have severe selection biases against these systems, and because their long, slow orbits are difficult to measure. Are these known sdB+cool systems worth intense observational effort? That is, can they be used to make a valid and useful test of the RLOF process in BPS codes? We use the Binary Stellar Evolution (BSE) code of Hurley et al. (2002), mapping sets of initial binaries into present-day binaries that include sdBs, and distinguishing "observable" sdBs from "hidden" ones. We aim to find out whether (1) the existing catalogues of sdBs are sufficiently fair samples of the kinds of sdB binaries that theory predicts, to allow testing or refinement of RLOF models; or instead whether (2) large predicted hidden populations mandate the construction of new catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and Galex. This work has been partially supported by NASA grant NNG05GE11G and NSF grants PHY 03-26281, PHY 06-00953 and PHY 06-53462. This work is also supported by the Center for Gravitational Wave Physics, which is supported by the National Science Foundation under cooperative agreement PHY 01-14375.
NASA Astrophysics Data System (ADS)
Katsova, M. M.; Livshits, M. A.; Mishenina, T. V.; Nizamov, B. A.
2017-05-01
An analysis of the X-ray radiation of G-stars shows that the youngest fast rotating stars are characterized by saturation of activity, but part of stars demonstrate the solar-type activity, starting from rotational periods of 1.4 days. This type of activity, the level of which is determined by the rate of axial rotation, includes the formation of spots, flares and etc; first, activity is irregular, and only then there are conditions for the formation of cycles. The Kepler data show that stars of the same spectral type demonstrate two activity levels. This bimodality of different distributions of stars, change in a character of cycles and a level of Жiзнь i Bceлeннaya flare activity are evidences for an evolution of activity versus the age. By the nature of activity, we call conditionally G-dwarfs with rotation periods from 1 day to 5-6 days by the term "the Baby Sun" (the maximal number of these stars has Prot = 3 d), and we refer G-stars with Prot from 10 to 18 days to "the Young Suns". Ages of the main amount of the Baby Sun are around 200-600 Myr and the Young Sun are of about 1-2 Gyr. The Baby Suns are characterized by enhanced lithium content. We estimate the quasi-stationary X-ray and farultraviolet radiation of the outer atmosphere of the Baby Sun. From the GALEX data we obtain the FUV flux in the range 1350-1750 A for this kind of stars at the distance of 1 AU is 12.8 ± 4.2 erg/(cm^2 c), that exceeds the FUV-flux of the contemporary Sun by more than 6 times. The Kepler data demonstrate that the superflares happen more often namely on the Baby Suns. Our estimate is that superflares of the total energies 10^35 erg occur on the Baby Sun of about one per year.
The Evolution of Ly-alpha Emitting Galaxies Between z = 2.1 and z = 3.l
NASA Technical Reports Server (NTRS)
Ciardullo, Robin; Gronwall,Caryl; Wolf, Christopher; McCathran, Emily; Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Feldmeier, John J.; Treister, Ezequiel; Padilla, Nelson;
2011-01-01
We describe the results of a new, wide-field survey for z= 3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUSYC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filter's redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the approximately 1 Gyr after z approximately 3, the LAE luminosity function evolved significantly, with L * fading by approximately 0.4 mag, the number density of sources with L greater than 1.5E42 ergs/s declining by approximately 50%, and the equivalent width scalelength contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z approximately 0 to z approximately 4, LAEs contain less than approximately 10% of the star-formation rate density of the universe.
Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA
NASA Astrophysics Data System (ADS)
Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration
2017-01-01
Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.
Quasars Outflows As A Function of SED - An Empirical Approach
NASA Astrophysics Data System (ADS)
Richmond, Joseph M.; Ganguly, Rajib
2015-08-01
Feedback from quasars (jets, outflows, and luminosity) is now recognized as a vital phase in describing galaxy evolution, growth, and star formation efficiency. Regarding outflows, roughly 60% are observed to have outflowing gas appearing at large velocities and with a variety of velocity dispersions. The most extreme observed form of these outflows appears in the ultraviolet spectrum of 15-20% of objects. Understanding the physics of these outflows is important for both astrophysical and cosmological reasons. Establishing empirical relationships to test the theoretical models of how these outflows are driven (and hence, how they impact their surroundings) is currently plagued by having too few objects, where other parameters like the black hole mass or accretion rate, may add to the scatter. We aim to fix this by using a systematic study of a large sample of objects. As a follow up to a previous study, we have identified a sample of nearly 11000 z=1.7-2 quasars using archived data from the Sloan Digital Sky Survey (Data Release 7), of which roughly 4400 appear to show outflows according to the visual inspection. The specific redshift range is chosen to feature both the Mg II 2800 emission line as well as wavelengths extending to nearly 20,000 km/s blueward of the C IV 1549 emission line. Our goals for this study are: (1) To temper our visual inspection schemes with a more automated, computer-driven scheme; (2) To measure the properties of the outflows (velocity, velocity dispersion, equivalent width, ionization); (3) To supplement the SDSS spectra with photometric measurements from GALEX, 2MASS, and WISE to further characterize the spectral energy distributions (SEDs) and dust content; (4) To form spectral composites to investigate possible SED changes with outflow properties; and (5) To use published estimates of the quasar physical properties (black hole mass, accretion rate, etc.) to fully establish in an empirical way the complex dependencies between the properties of the outflow, and the physical properties of the system.
NASA Galaxy Mission Celebrates Sixth Anniversary
2009-04-28
NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998
Why the Evolution/Creation Battle Rages: What Educators Can Do.
ERIC Educational Resources Information Center
Parker, Franklin
The author explores the evolution/creation conflict and suggests what educators might do to fulfill their responsibilities with the least offense to the religious beliefs of creationists and with respect for students' right to understand their Western scientific heritage. The paper begins with a history of the confict between creationists and…
Students' Perceptions of the Nature of Evolutionary Theory
ERIC Educational Resources Information Center
Dagher, Zoubeida R.; Boujaoude, Saouma
2005-01-01
This study explored how some college students understand the nature of the theory of evolution and how they evaluate its scientific status. We conducted semistructured interviews with 15 college biology seniors in which we asked them to explain why they think evolution assumes the status of a scientific theory, how it compares to other scientific…
Lack of Evolution Acceptance Inhibits Students' Negotiation of Biology-Based Socioscientific Issues
ERIC Educational Resources Information Center
Fowler, S. R.; Zeidler, D. L.
2016-01-01
The purpose of this study was to explore science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. The Socioscientific Issues Questionnaire (SSI-Q) was developed to measure depth of evolutionary…
Exploring Hydrogen Evolution and the Overpotential
ERIC Educational Resources Information Center
Lyon, Yana A.; Roberts, Adrienne A.; McMillin, David R.
2015-01-01
The laboratory experiment described provides insight into the energetics of hydrogen evolution at an electrode as well as the intrinsic barrier that typically impedes reaction. In the course of the exercise, students find that Sn(s) is thermodynamically capable of combining with protons to form hydrogen, but that the direct reaction occurs at a…
ERIC Educational Resources Information Center
Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope
2012-01-01
In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…
Evolutionary Creation: Moving beyond the Evolution versus Creation Debate
ERIC Educational Resources Information Center
Lamoureux, Denis O.
2010-01-01
Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…
Intellectual Initiatives at a Research University: Origins, Evolutions, and Challenges.
ERIC Educational Resources Information Center
Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.
This qualitative case study explored the origins, evolutions, and challenges of 12 cross-disciplinary intellectual initiatives at 1 research university. Researchers conducted open-ended interviews with leaders of the 12 initiatives and used program literature to support the data gathered from the interviews. The study found that key factors such…
ERIC Educational Resources Information Center
Kampourakis, Kostas; Zogza, Vasso
2009-01-01
This study aimed to explore secondary students' explanations of evolutionary processes, and to determine how consistent these were, after a specific evolution instruction. In a previous study it was found that before instruction students provided different explanations for similar processes to tasks with different content. Hence, it seemed that…
ERIC Educational Resources Information Center
Wilcox, Lori
2009-01-01
This research explored the relationship of educational entrepreneurism and organizational culture in the creation and evolution of academic centers within one Midwestern land-grant university facing resource constraints. Particular attention was given to: (a) synthesizing current entrepreneurial and organizational culture and evolution theory as…
The overview effect: the impact of space exploration on the evolution of nursing science.
Butcher, H K; Forchuk, C
1992-01-01
The purpose of this article is to explore the overview effect, an experience evoked by space travel that has the capacity to transform all patterns of human existence and evolution toward greater potentials in human diversity and creativity. As nurses migrate with humanity into the solar system and beyond, they will experience the overview effect. The core components of the effect include changed perceptions of space, time, sound, and weight which have the potential to transform the evolution of nursing science. Nursing paradigms will encompass a view of humanity as integral with an infinite evolutionary universe. After generations of living in space in a diversity of new environments, the physical body will undergo radical changes, and the meaning of health will be transformed. The article concludes with a discussion on the parallels between Rogers' science of unitary human beings and the overview effect.
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Wilson, G. W.
2004-01-01
The formation of the first objects, stars and galaxies and their subsequent evolution remain a cosmological unknown. Few observational probes of these processes exist. The Cosmic Infrared Background (CIB) originates from this era, and can provide information to test models of both galaxy evolution and the growth of primordial structure. The Explorer of Diffuse Galactic Emission (EDGE) is a proposed balloon-borne mission designed to measure the spatial fluctuations in the CIB from 200 micrometers to 1 millimeter on 6' to 3 degree scales with 2 microKelvin sensitivity/resolution element. Such measurements would provide a sensitive probe of the large-scale variation in protogalaxy density at redshifts approximately 0.5-3. In this paper, we present the scientific justification for the mission and show a concept for the instrument and observations.
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki
2017-01-01
For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.
Enabling Efficient Intelligence Analysis in Degraded Environments
2013-06-01
Magnets Grid widget for multidimensional information exploration ; and a record browser of Visual Summary Cards widget for fast visual identification of...evolution analysis; a Magnets Grid widget for multi- dimensional information exploration ; and a record browser of Visual Summary Cards widget for fast...attention and inattentional blindness. It also explores and develops various techniques to represent information in a salient way and provide efficient
Complex and changing patterns of natural selection explain the evolution of the human hip.
Grabowski, Mark; Roseman, Charles C
2015-08-01
Causal explanations for the dramatic changes that occurred during the evolution of the human hip focus largely on selection for bipedal function and locomotor efficiency. These hypotheses rest on two critical assumptions. The first-that these anatomical changes served functional roles in bipedalism-has been supported in numerous analyses showing how postcranial changes likely affected locomotion. The second-that morphological changes that did play functional roles in bipedalism were the result of selection for that behavior-has not been previously explored and represents a major gap in our understanding of hominin hip evolution. Here we use evolutionary quantitative genetic models to test the hypothesis that strong directional selection on many individual aspects of morphology was responsible for the large differences observed across a sample of fossil hominin hips spanning the Plio-Pleistocene. Our approach uses covariance among traits and the differences between relatively complete fossils to estimate the net selection pressures that drove the major transitions in hominin hip evolution. Our findings show a complex and changing pattern of natural selection drove hominin hip evolution, and that many, but not all, traits hypothesized to play functional roles in bipedalism evolved as a direct result of natural selection. While the rate of evolutionary change for all transitions explored here does not exceed the amount expected if evolution was occurring solely through neutral processes, it was far above rates of evolution for morphological traits in other mammalian groups. Given that stasis is the norm in the mammalian fossil record, our results suggest that large shifts in the adaptive landscape drove hominin evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Size variation, growth strategies, and the evolution of modularity in the mammalian skull.
Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel
2013-11-01
Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
2016-01-01
The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates. PMID:28083089
NASA Astrophysics Data System (ADS)
Jones, A. P.
2016-12-01
The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-08-19
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evolving public perceptions of spaceflight in American culture
NASA Technical Reports Server (NTRS)
Launius, R. D.
2003-01-01
There is a belief that exists in the United States about public support for NASA's activities. The belief is almost universally held that NASA and the cause of space exploration enjoyed outstanding public support and confidence in the 1960s during the era of Apollo and that public support waned in the post-Apollo era, only to sink to quite low depths in the decade of the 1990s. These beliefs are predicated on anecdotal evidence that should not be discounted, but empirical evidence gleaned from public opinion polling data suggest that some of these conceptions are totally incorrect and others are either incomplete or more nuanced than previously believed. This paper explores evolution of public support for space exploration since the 1960s. Using polling data from a variety of sources it presents trends over time and offers comments on the meaning of public perceptions for the evolution of space policy and the development of space exploration in the United States. Published by Elsevier Science Ltd.
NASA Technical Reports Server (NTRS)
Logsdon, John M. (Editor); Snyder, Amy Paige (Editor); Launius, Roger D. (Editor); Garber, Stephen J. (Editor); Newport, Regan Anne (Editor)
2001-01-01
The documents selected for inclusion in this volume are presented in three major sections, each covering a particular aspect of the origins, evolution, and execution of the US space science program. Chapter 1 deals with the origins, evolution, and organization of the space science program. Chapter 2 deals with the solar system exploration. Chapter 3 deals with NASA's astronomy and astrophysics efforts. Each chapter in the present volume is introduced by an overview essay. In the main, these essays are intended to introduce and complement the documents in the chapter and to place them in a chronological and substantive context. Each essay contains references to the documents in the chapter it introduces, and may also contain references to documents in other chapters of the collection
NASA Astrophysics Data System (ADS)
Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.
2010-01-01
We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.
Using machine learning to explore the long-term evolution of GRS 1915+105
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Heil, Lucy M.; Hogg, David W.; Mueller, Andreas
2017-04-01
Among the population of known Galactic black hole X-ray binaries, GRS 1915+105 stands out in multiple ways. It has been in continuous outburst since 1992, and has shown a wide range of different states that can be distinguished by their timing and spectral properties. These states, also observed in IGR J17091-3624, have in the past been linked to accretion dynamics. Here, we present the first comprehensive study into the long-term evolution of GRS 1915+105, using the entire data set observed with Rossi X-ray Timing Explorer over its 16-yr lifetime. We develop a set of descriptive features allowing for automatic separation of states, and show that supervised machine learning in the form of logistic regression and random forests can be used to efficiently classify the entire data set. For the first time, we explore the duty cycle and time evolution of states over the entire 16-yr time span, and find that the temporal distribution of states has likely changed over the span of the observations. We connect the machine classification with physical interpretations of the phenomenology in terms of chaotic and stochastic processes.
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1998-01-01
The evolution of multidisciplinary design optimization (MDO) over the past several years has been one of rapid expansion and development. In this paper, the evolution of MDO as a field is investigated as well as the evolution of its individual linguistic components: multidisciplinary, design, and optimization. The theory and application of each component have indeed evolved on their own, but the true net gain for MDO is how these piecewise evolutions coalesce to form the basis for MDO, present and future. Originating in structural applications, MDO technology has also branched out into diverse fields and application arenas. The evolution and diversification of MDO as a discipline is explored but details are left to the references cited.
Exploring stellar evolution with gravitational-wave observations
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph
2018-05-01
Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.
Student Teachers' Understanding and Acceptance of Evolution and the Nature of Science
ERIC Educational Resources Information Center
Coleman, Joy; Stears, Michèle; Dempster, Edith
2015-01-01
The focus of this study was student teachers at a South African university enrolled in a Bachelor of Education (B.Ed.) programme and a Postgraduate Certificate in Education (PGCE), respectively. The purpose of this study was to explore students' understanding and acceptance of evolution and beliefs about the nature of science (NOS), and to…
ERIC Educational Resources Information Center
Winslow, Mark W.; Staver, John R.; Scharmann, Lawrence C.
2011-01-01
The goal of this study was to explore Christian biology-related majors' perceptions of conflicts between evolution and their religious beliefs. This naturalistic study utilized a case study design of 15 undergraduate biology-related majors at or recent biology-related graduates from a mid-western Christian university. The broad sources of data…
The Evolution and Evaluation of an Online Role Play through Design-Based Research
ERIC Educational Resources Information Center
Beckmann, Elizabeth A.; Mahanty, Sango
2016-01-01
This paper presents selected findings from a 5-year design-based research case study of the evolution of an online role play that allows postgraduate students to explore the complexities inherent in land rights negotiations between indigenous peoples and others. In the context of Laurillard's (2002) conversational framework and a design-based…
NASA Astrophysics Data System (ADS)
Shank, T. M.; German, C.; Machado, C.; Bowen, A.; Drazen, J.; Yancey, P.; Jamieson, A.; Rowden, A.; Clark, M.; Heyl, T.; Mayor, D.; Piertney, S.; Ruhl, H.
2018-05-01
Key questions on life’s evolution are being pursued in Earth’s hadal ocean, Earth’s only analog to Europa’s ocean. A recent WHOI-JPL partnership is developing an armada of autonomous underwater drone vehicles to explore of Earth’s and Europa’s oceans.
Workshop on the Tectonic Evolution of Greenstone Belts
NASA Technical Reports Server (NTRS)
1986-01-01
The Workshop on the Tectonic Evolution of Greenstone Belts, which is part of the Universities Space Research Association, Lunar and Planetary Institute, of Houston, Texas, met there on Jan. 16-18, 1986. A number of plate tectonic hypotheses have been proposed to explain the origin of Archean and Phanerozoic greenstone/ophiolite terranes. These hypotheses are explored in the abstracts.
ERIC Educational Resources Information Center
Kim, Sun Young; Nehm, Ross H.
2011-01-01
Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We…
ERIC Educational Resources Information Center
Ponterotto, Joseph G.
2006-01-01
The origins, cross-disciplinary evolution, and definition of "thick description" are reviewed. Despite its frequent use in the qualitative literature, the concept of "thick description" is often confusing to researchers at all levels. The roots of this confusion are explored and examples of "thick description" are provided. The article closes with…
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1993-01-01
A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.
Impact contribution of prebiotic reactants to Earth
NASA Astrophysics Data System (ADS)
Aggarwal, Hans R.
1993-03-01
A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.
NASA Astrophysics Data System (ADS)
Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.
2015-06-01
Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (<0.1 Z⊙) EELGs. While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and cometary or tadpole galaxies, we find that ~29% of them show additional low-surface-brightness features, which strongly suggests recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of their evolution, where they are efficiently building up a significant fraction of their present-day stellar mass in an ongoing, galaxy-wide starburst. Therefore, the EELGs constitute an ideal benchmark for comparison studies between low- and high-redshift low-mass star-forming galaxies. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A105
Exploring Venus: the Venus Exploration Analysis Group (VEXAG)
NASA Astrophysics Data System (ADS)
Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.
In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology
"Group Intelligence": An Active Learning Exploration of Diversity in Evolution
ERIC Educational Resources Information Center
Parsons, Christopher J.; Salaita, Meisa K.; Hughes, Catherine H.; Lynn, David G.; Fristoe, Adam; Fristoe, Ariel; Grover, Martha A.
2017-01-01
"Group Intelligence" is an active learning, inquiry-based activity that introduces prebiotic chemistry, emergent complexity, and diversity's importance to adaptability across scales. Students explore the molecular emergence of order and function through theatrical exercises and games. Through 20 min of audio instruction and a discussion…
Designing Digital Environments for Art Education/Exploration.
ERIC Educational Resources Information Center
Milekic, Slavko
2000-01-01
Examines the role of digital technology in the context of art education and art exploration. Discusses the development of digital environments as the next step in the evolution of traditional computers, whose main characteristic is support for simultaneous multiple-user interactions and for social and collaborative activities. (LRW)
NASA Astrophysics Data System (ADS)
Athanasiou, Kyriacos; Papadopoulou, Penelope
2012-04-01
In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship between the acceptance and parents' education level, thinking dispositions and frequency of religious practice as independent variables. Students' moderate acceptance of evolution theory is positively correlated with the frequency of religious practices and thinking dispositions. Our findings indicate that studying a controversial issue such as the acceptance of evolution theory in a multivariate fashion, using conceptual ecology as a theoretical lens to interpret the findings, is informative. They also indicate the differences that exist between societies and how socio-cultural factors such as the nature of religion, as part of the conceptual ecology, influence acceptance of evolution and have an influence on evolution education.
NASA Technical Reports Server (NTRS)
Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)
2001-01-01
The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.
Exploring a Metamorphosis: Identity Formation for an Emerging Conductor
ERIC Educational Resources Information Center
Ponchione, Cayenna
2013-01-01
Exploring the manner in which professional identity formation in emerging conductors is entangled with the cultural context of orchestras, I focus on the amorphous evolution from a student identity to that of a professional, illuminating some underlying social conditions of the ever-elusive profession of conducting. Prevailing assumptions about…
Geochemical Exploration of the Moon.
ERIC Educational Resources Information Center
Adler, Isidore
1984-01-01
Provides information based on explorations of the Apollo program about the geochemistry of the moon and its importance in developing an understanding of formation/evolution of the solar system. Includes description and some results of orbital remote sensing, lunar x-ray experiments, gamma-ray experiments, alpha-particle experiments, and the Apollo…
Teaching Cultural History from Primary Events
ERIC Educational Resources Information Center
Carson, Robert N.
2004-01-01
This article explores the relationship between specific cultural events such as Galileo's work with the pendulum and a curriculum design that seeks to establish in skeletal form a comprehensive epic narrative about the co-evolution of cultural systems and human consciousness. The article explores some of the challenges and some of the strategies…
Dust in Extragalactic Reflection Nebulae
NASA Astrophysics Data System (ADS)
Lee, Chris H.; Hodges-Kluck, Edmund J.
2017-08-01
Observational evidence for extragalactic dust has been recently found in the form of UV extragalactic reflection nebulae around edge-on spiral galaxies, but the nature of the dust is largely unknown. To derive dust parameters, UV fluxes from the spacecrafts GALEX and Swift have been compared with model UV halo SEDs, which have been created from galaxy template spectra and a silicate-graphite dust model. The model contains two free parameters, which are fractional composition and maximum grain size. These analyses have been done for a sample of 8 nearby edge-on spiral galaxies with bright UV halos, where the dust properties can be spatially resolved, such as inside and outside of galactic winds or as a function of height from the galactic disc. The dust properties give insight into how dust is expelled from the galactic disc, which can also be applied to understanding gaseous outflows from the galaxies as well.
Candidate Nearby, Young Stars in Gaia's First Data Release
NASA Astrophysics Data System (ADS)
Chalifour, Matthieu; Kastner, Joel H.; Binks, Alex; Rodriguez, David; Punzi, Kristina; Zuckerman, Ben; Sacco, Germano
2018-01-01
The nearest examples of young stars are essential subjects for the study of planet and star formation. The recent data release from Gaia, which contains accurate parallax distances for ~2.5 million stars, allows age determinations via isochronal analysis for thousands of stars within ~100 pc. We have selected nearly 400 candidates nearby, young, late-type stars in the approximate mass range 0.5-1.0 Msun from the Tycho Gaia Astrometric Solution catalog on the basis of (a) D < 100 pc, (b) Galex UV detection, and (c) isochronal age <~ 80 Myr. Approximately 10% of these candidates lie within 50 pc of Earth and, hence, may represent excellent targets for direct-imaging searches for young, self-luminous planets. We discuss our ongoing efforts to assess the accuracy of these stars' isochronal ages via various diagnostic tools, including galactic kinematics, UV excess, relative X-ray luminosity, andoptical spectroscopic indicators of youth.
THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroe, TalaWanda R.; Tumlinson, Jason; Prochaska, J. Xavier
2016-07-01
We present the first data release (DR1) from our UV-bright Quasar Survey for new z ∼ 1 active galactic nuclei (AGNs) across the sky. Using simple GALEX UV and WISE near-IR color selection criteria, we generated a list of 1450 primary candidates with FUV < 18.5 mag. We obtained discovery spectra, primarily on 3 m-class telescopes, for 1040 of these candidates and confirmed 86% as AGNs, with redshifts generally at z > 0.5. Including a small set of observed secondary candidates, we report the discovery of 217 AGNs with FUV < 18 mag that previously had no reported spectroscopic redshift. These are excellent potential targets formore » UV spectroscopy before the end of the Hubble Space Telescope mission. The main data products are publicly available through the Mikulski Archive for Space Telescopes.« less
OMCat: Catalogue of Serendipitous Sources Detected with the XMM-Newton Optical Monitor
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Harrus, Ilana; McGlynn, Thomas A.; Mushotsky, Richard F.; Snowden, Steven L.
2007-01-01
The Optical Monitor Catalogue of serendipitous sources (OMCat) contains entries for every source detected in the publically available XMM-Newton Optical Monitor (OM) images taken in either the imaging or "fast" modes. Since the OM records data simultaneously with the X-ray telescopes on XMM-Newton, it typically produces images in one or more near-UV/optical bands for every pointing of the observatory. As of the beginning of 2006, the public archive had covered roughly 0.5% of the sky in 2950 fields. The OMCat is not dominated by sources previously undetected at other wavelengths; the bulk of objects have optical counterparts. However, the OMCat can be used to extend optical or X-ray spectral energy distributions for known objects into the ultraviolet, to study at higher angular resolution objects detected with GALEX, or to find high-Galactic-latitude objects of interest for UV spectroscopy.
The Arecibo Pisces-Perseus Supercluster Survey: Declination strip 23
NASA Astrophysics Data System (ADS)
Luna, Omar; Craig, David; Jones, Michael G.; Koopmann, Rebecca A.; Haynes, Martha P.; APPS Team, Undergraduate ALFALFA Team, ALFALFA Team
2018-01-01
We report on results of the Arecibo Pisces-Perseus Supercluster Survey (APPSS) along and near declination 23 degrees. APPSS is a targeted HI survey using the L-band wide receiever at the NAIC Arecibo observatory. It is designed to detect infall onto the Pisces-Perseus Supercluster (PPS) using a statistical comparison to models of the peculiar velocity flow field. We have investigated a subset of 67 galaxies in the PPS sky region along declination 23 degrees. For detected galaxies we have determined their systemic velocity, line width, integrated flux density, and HI mass. We will illustrate HI spectral properties of interesting detections in our region and will compare them with available optical and UV data from SDSS and the GALEX archives. We will also describe the data reduction process and the ongoing collaboration among faculty and undergraduate students of the Undergraduate ALFALFA Team.
Mars sample collection and preservation
NASA Technical Reports Server (NTRS)
Blanchard, Douglas P.
1988-01-01
The intensive exploration of Mars is a major step in the systematic exploration of the solar system. Mars, earth, and Venus provide valuable contrasts in planetary evolution. Mars exploration has progressed through the stages of exploration and is now ready for a sample-return mission. About 5 kg of intelligently selected samples will be returned from Mars. A variety of samples are wanted. This requires accurate landing in areas of high interest, surface mobility and analytical capability, a variety of sampling tools, and stringent preservation and isolation measures.
Learning Progress in Evolution Theory: Climbing a Ladder or Roaming a Landscape?
ERIC Educational Resources Information Center
Zabel, Jorg; Gropengiesser, Harald
2011-01-01
The objective of this naturalistic study was to explore, model and visualise the learning progress of 13-year-old students in the domain of evolution theory. Data were collected under actual classroom conditions and with a sample size of 107 learners, which followed a teaching unit on Darwin's theory of natural selection. Before and after the…
Fire danger rating in the United States of America: An evolution since 1916
Colin C. Hardy; Charles E. Hardy
2007-01-01
Fire scientists in the United States began exploring the relationships of fire-danger and hazard with weather, fuel moisture, and ignition probabilities as early as 1916. Many of the relationships identified then persist today in the form of our National Fire-Danger-Rating System. This paper traces the evolution of fire-danger rating in the United States, including...
Secondary School Learners' Response to the Teaching of Evolution in Limpopo Province, South Africa
ERIC Educational Resources Information Center
Mpeta, M.; de Villiers, J. J. R.; Fraser, W. J.
2015-01-01
One of the major causes of the problems affecting evolution education is a lack of acceptance of this concept, particularly by some people who have strongly entrenched religious beliefs. This paper reports on a section of a study which explored the influence of the beliefs of learners in some secondary schools from the Vhembe District in the…
ERIC Educational Resources Information Center
Baker, Vicki L.; Baldwin, Roger G.
2015-01-01
We draw upon the evolutionary model of change in order to examine the organizational transformation of three liberal arts colleges (Albion College, Allegheny College, Kenyon College). Relying on our prior research (Baker, Baldwin, & Makker, 2012), we seek to continue our exploration and understanding of the evolution occurring in the important…
ERIC Educational Resources Information Center
Park, Eunil; Kim, Ki Joon
2013-01-01
Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…