New Epigenetic Therapeutic Intervention for Metastatic Breast Cancer
2016-04-01
transcription factor Twist are markedly over-expressed in TNBC but not luminal breast cancer cells. We also discovered that constitutively activated NF -kB in...transcription factors Twist and NF -kB in gene activation require lysine acetylation, which signs to activate the transcriptional machinery in chromatin...including Twist, NF -kB and STAT3. b. Define the molecular basis of the BET BrDs’ selective interactions with effector proteins through structure-guided
Factors Potentially Influencing Student Acceptance of Biological Evolution
NASA Astrophysics Data System (ADS)
Wiles, Jason R.
This investigation explored scientific, religious, and otherwise nonscientific factors that may influence student acceptance of biological evolution and related concepts, how students perceived these factors to have influenced their levels of acceptance of evolution and changes therein, and what patterns arose among students' articulations of how their levels of acceptance of evolution may have changed. This exploration also measured the extent to which students' levels of acceptance changed following a treatment designed to address factors identified as potentially affecting student acceptance of evolution. Acceptance of evolution was measured using the MATE instrument (Rutledge and Warden, 1999; Rutledge and Sadler, 2007) among participants enrolled in a secondary-level academic program during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than pre-treatment levels both immediately following and slightly over one year after treatment. Qualitative data from informal questionnaires, from formal course evaluations, and from semi-structured interviews of students engaged in secondary level education and former students at various stages of post-secondary education confirmed that the suspected factors were perceived by participants to have influenced their levels of acceptance of evolution. Furthermore, participant reports provided insight regarding the relative effects they perceived these factors to have had on their evolution acceptance levels. Additionally, many participants reported that their science teachers in public schools had avoided, omitted, or denigrated evolution during instruction, and several of these students expressed frustration regarding what they perceived to have been a lack of education of an important scientific principle. Finally, no students expressed feelings of being offended by having been taught about evolutionary science, and the overwhelming majority of the participants expressed enjoyment of the course and appreciation for having been taught about evolution.
Evolution. A case of system dynamics.
Apáthy, Z
1990-01-01
It is contended that the Darwinian theory of evolution is merely a special case of the obsolete Newtonian paradigm. A modern vision of reality, consistent with structuralism in biology, is presented. Some well-known neo-Darwinist explanations of the evolutionary process are quoted accompanied by structuralist interpretations of the same cases. These lead to a different 'mechanism' of evolution, based on internal factors, consistent with contemporary science. It is argued that a great number of specialists who dismiss the Darwinian theory of evolution share a common reason for rejecting it, but differ widely in guessing the motivating factor or factors of evolution.
NASA Astrophysics Data System (ADS)
Wiles, Jason R.; Alters, Brian
2011-12-01
This investigation provides an extensive review of scientific, religious, and otherwise non-scientific factors that may influence student acceptance of biological evolution. We also measure the extent to which students' levels of acceptance changed following an educational experience designed to address an inclusive inventory of factors identified as potentially affecting student acceptance of evolution (n = 81, pre-test/post-test) n = 37, one-year longitudinal). Acceptance of evolution was measured using the Measure of Acceptance of the Theory of Evolution (MATE) instrument among participants enrolled in a secondary-level academic programme during the summer prior to their final year of high school and as they transitioned to the post-secondary level. Student acceptance of evolution was measured to be significantly higher than initial levels both immediately following and over one year after the educational experience. Results reported herein carry implications for future quantitative and qualitative research as well as for cross-disciplinary instruction plans related to evolutionary science and non-scientific factors which may influence student understanding of evolution.
Position specific variation in the rate of evolution in transcription factor binding sites
Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B
2003-01-01
Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA. PMID:12946282
Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip
2017-06-01
The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Disentangling the Correlated Evolution of Monogamy and Cooperation.
Dillard, Jacqueline R; Westneat, David F
2016-07-01
Lifetime genetic monogamy, by increasing sibling relatedness, has been proposed as an important causal factor in the evolution of altruism. Monogamy, however, could influence the subsequent evolution of cooperation in other ways. We present several alternative, non-mutually exclusive, evolutionary processes that could explain the correlated evolution of monogamy and cooperation. Our analysis of these possibilities reveals that many ecological or social factors can affect all three variables of Hamilton's Rule simultaneously, thus calling for a more holistic, systems-level approach to studying the evolution of social traits. This perspective reveals novel dimensions to coevolutionary relationships and provides solutions for assigning causality in complex cases of correlated social trait evolution, such as the sequential evolution of monogamy and cooperation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of multiple quantum coherences with scaled dipolar Hamiltonian
NASA Astrophysics Data System (ADS)
Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.
2017-08-01
In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.
Successive gain of insulator proteins in arthropod evolution.
Heger, Peter; George, Rebecca; Wiehe, Thomas
2013-10-01
Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that-in contrast to the bilaterian-wide distribution of CTCF-all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism's gene regulatory repertoire and its potential for morphological plasticity. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Feyertag, Felix; Chakraborty, Sandip
2017-01-01
Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629
K-8 Educators Perceptions and Preparedness for Teaching Evolution Topics
ERIC Educational Resources Information Center
Nadelson, Louis S.; Nadelson, Sandra
2010-01-01
Many science education standards mandate teaching evolution concepts in the K-8 curriculum. Yet, not all K-8 certified educators embrace the notion of teaching evolution content Factors influencing K-8 teacher engagement with evolution curriculum include evolution familiarity and personal beliefs conflicts. With this in mind, we investigated the…
Mistakes and Molecular Evolution.
ERIC Educational Resources Information Center
Trevors, J. T.
1998-01-01
Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)
Within-Host Evolution of Human Influenza Virus.
Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D
2018-03-10
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wiles, Jason R.; Alters, Brian
2011-01-01
This investigation provides an extensive review of scientific, religious, and otherwise non-scientific factors that may influence student acceptance of biological evolution. We also measure the extent to which students' levels of acceptance changed following an educational experience designed to address an inclusive inventory of factors identified…
NASA Astrophysics Data System (ADS)
Athanasiou, Kyriacos; Papadopoulou, Penelope
2012-04-01
In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship between the acceptance and parents' education level, thinking dispositions and frequency of religious practice as independent variables. Students' moderate acceptance of evolution theory is positively correlated with the frequency of religious practices and thinking dispositions. Our findings indicate that studying a controversial issue such as the acceptance of evolution theory in a multivariate fashion, using conceptual ecology as a theoretical lens to interpret the findings, is informative. They also indicate the differences that exist between societies and how socio-cultural factors such as the nature of religion, as part of the conceptual ecology, influence acceptance of evolution and have an influence on evolution education.
An overview of transverse momentum dependent factorization and evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Ted C.
I review TMD factorization and evolution theorems, with an emphasis on the treatment by Collins and originating in the Collins-Soper-Sterman (CSS) formalism. Furthermore, I summarize basic results while attempting to trace their development over that past several decades.
An overview of transverse-momentum-dependent factorization and evolution
NASA Astrophysics Data System (ADS)
Rogers, T. C.
2016-06-01
I review TMD factorization and evolution theorems, with an emphasis on the treatment by Collins and originating in the Collins-Soper-Sterman (CSS) formalism. I summarize basic results while attempting to trace their development over that past several decades.
An overview of transverse momentum dependent factorization and evolution
Rogers, Ted C.
2016-06-17
I review TMD factorization and evolution theorems, with an emphasis on the treatment by Collins and originating in the Collins-Soper-Sterman (CSS) formalism. Furthermore, I summarize basic results while attempting to trace their development over that past several decades.
The evolution of the small x gluon TMD
NASA Astrophysics Data System (ADS)
Zhou, Jian
2016-06-01
We study the evolution of the small x gluon transverse momentum dependent (TMD) distribution in the dilute limit. The calculation has been carried out in the Ji-Ma-Yuan scheme using a simple quark target model. As expected, we find that the resulting small x gluon TMD simultaneously satisfies both the Collins-Soper (CS) evolution equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. We thus confirmed the earlier finding that the high energy factorization (HEF) and the TMD factorization should be jointly employed to resum the different type large logarithms in a process where three relevant scales are well separated.
The Causality of Evolution on Different Fitness Landscapes
NASA Astrophysics Data System (ADS)
Vyawahare, Saurabh; Austin, Robert; Zhang, Qiucen; Kim, Hyunsung; Bestoso, John
2013-03-01
Evolution of antibiotic resistance is a growing problem. One major reason why most antibiotics fail is because of mutations on drug targets (e.g. essential enzymes). Sequencing of clinically resistant isolates have shown that multiple mutational-hotspots exist in coding regions, which could potentially prohibit the binding of drugs. However, it is not clear whether the appearance of each mutation is random or influenced by other factors. In this paper, we compare evolution of resistance to ciprofloxacin from two distinct but well characterized genetic backgrounds. By combining our recently developed evolution reactor and deep whole-genome sequencing, we show different alleles of σs factor lead to fixation of different mutations in gyrA gene that confer ciprofloxacin resistance to bacteria Escherichia coli. Such causality of evolution in different genes provides an opportunity to control the evolution of antibiotic resistance. Sponsored by the NCI/NIH Physical Sciences Oncology Centers
Guérin, A; Lebel, D; Marando, N; Prot-Labarthe, S; Bourdon, O; Bussières, J-F
2014-05-01
Hospital pharmacy practice has evolved differently between France and Quebec. While this development is part of broader systems, French and Quebec hospitals have undergone significant changes over the years to cope with challenges, among others, the economic and demographic realities. The main objective is to evaluate and compare the perception of French and Quebec hospital pharmacists about the factors that have contributed to the evolution of pharmacy practice in their respective context. This is a descriptive cross-sectional study. The study focuses on a sample of experienced hospital pharmacists in France and Quebec. We targeted a convenience sample of 50 respondents per country. An online questionnaire with 15 pharmaceutical activities to which are connected nine factors that may have influenced the implementation of each of these activities in each country was used. The mean score was calculated for each of the nine factors for each activity. The perception of French and Quebec hospital pharmacists was then compared. A P value less than 0.05 was considered statistically significant. Two hundred and sixty hospital pharmacists were directly contacted in France and 79 in Quebec. Seventy-eight French pharmacists and 77 Quebec pharmacists responded to the survey, that is a respective response rate of 30% and 97%, respectively. The hierarchy of factors that contributed to the evolution of pharmacy practice was similar between the two countries, legislative and regulatory factors as well as the concern for risk management and quality dominate; scientific human, economic factors and training have a relatively similar position. For cons, the news factor (6th in France against the 10th position in Quebec) and the academic factor (10th position in France against the 6th position in Quebec) obtained inverse scores between France and Quebec. There are few data on the determinants of the evolution of hospital pharmacy in France and Quebec. The hierarchy of factors that contributed to the evolution of pharmacy practice is similar between the two countries, although differences of rank were found for the news and academic factors. Further studies are needed to better understand the factors that influence the evolution of pharmacy practice in health care institutions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
NASA Astrophysics Data System (ADS)
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Heavy quarkonium production at collider energies: Factorization and evolution
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George
2014-08-01
We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
Ord, Terry J.; Garcia-Porta, Joan
2012-01-01
Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820
ERIC Educational Resources Information Center
Barnes, M. Elizabeth; Brownell, Sara E.
2018-01-01
Students' religious beliefs and religious cultures have been shown to be the main factors predicting whether they will accept evolution, yet college biology instructors teaching evolution at public institutions often have religious beliefs and cultures that are different from their religious students. This difference in religious beliefs and…
Martin, Ryan A; Riesch, Rüdiger; Heinen-Kay, Justa L; Langerhans, R Brian
2014-02-01
Sexual signal evolution can be complex because multiple factors influence the production, transmission, and reception of sexual signals, as well as receivers' responses to them. To grasp the relative importance of these factors in generating signal diversity, we must simultaneously investigate multiple selective agents and signaling traits within a natural system. We use the model system of the radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes to test the effects of resource availability, male body size and other life-history traits, key aspects of the transmission environment, sex ratio, and predation risk on variation in multiple male color traits. Consistent with previous work examining other traits in this system, several color traits have repeatedly diverged between predation regimes, exhibiting greater elaboration in the absence of predators. However, other factors proved influential as well, with variation in resource levels, body size, relative testes size, and background water color being especially important for several color traits. For one prominent signaling trait, orange dorsal fins, we further confirmed a genetic basis underlying population differences using a laboratory common-garden experiment. We illustrate a promising approach for gaining a detailed understanding of the many contributing factors in the evolution of multivariate sexual signals. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian
2014-01-01
This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.
Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian
2014-01-01
This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA. PMID:24772033
Collard, Mark; Buchanan, Briggs; O'Brien, Michael J; Scholnick, Jonathan
2013-11-19
Identifying factors that influence technological evolution in small-scale societies is important for understanding human evolution. There have been a number of attempts to identify factors that influence the evolution of food-getting technology, but little work has examined the factors that affect the evolution of other technologies. Here, we focus on variation in technological richness (total number of material items and techniques) among recent hunter-gatherers from western North America and test three hypotheses: (i) technological richness is affected by environmental risk, (ii) population size is the primary determinant of technological richness, and (iii) technological richness is constrained by residential mobility. We found technological richness to be correlated with a proxy for environmental risk-mean rainfall for the driest month-in the manner predicted by the risk hypothesis. Support for the hypothesis persisted when we controlled for shared history and intergroup contact. We found no evidence that technological richness is affected by population size or residential mobility. These results have important implications for unravelling the complexities of technological evolution.
Collard, Mark; Buchanan, Briggs; O'Brien, Michael J.; Scholnick, Jonathan
2013-01-01
Identifying factors that influence technological evolution in small-scale societies is important for understanding human evolution. There have been a number of attempts to identify factors that influence the evolution of food-getting technology, but little work has examined the factors that affect the evolution of other technologies. Here, we focus on variation in technological richness (total number of material items and techniques) among recent hunter–gatherers from western North America and test three hypotheses: (i) technological richness is affected by environmental risk, (ii) population size is the primary determinant of technological richness, and (iii) technological richness is constrained by residential mobility. We found technological richness to be correlated with a proxy for environmental risk—mean rainfall for the driest month—in the manner predicted by the risk hypothesis. Support for the hypothesis persisted when we controlled for shared history and intergroup contact. We found no evidence that technological richness is affected by population size or residential mobility. These results have important implications for unravelling the complexities of technological evolution. PMID:24101622
Researcher, Teacher, Education Researcher: The Evolution of a University Geoscience Instructor
ERIC Educational Resources Information Center
Owens, Katharine D.; Steer, David; McConnell, David
2006-01-01
This case study describes a professor's evolution from geoscience researcher to effective teacher to education researcher. The article details his initial beliefs about teaching, looks at the factors that prompted him to seek a different teaching approach, and enumerates the supports and challenges that he had on his journey. Factors essential to…
ERIC Educational Resources Information Center
Athanasiou, Kyriacos; Papadopoulou, Penelope
2012-01-01
In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…
Skinner, Michael K
2015-04-26
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Woese on the received view of evolution.
Sarkar, Sahotra
2014-01-01
As part of his attempt to reconstruct the earliest phase of the evolution of life on Earth, Woese produced a compelling critique of the received view of evolution from the 20th century. This paper explicitly articulates two related features of that critique that are fundamental but the first of which has not been sufficiently clearly recognized in the context of evolutionary theorizing: (1) according to Woese's scenario of communal evolution during life's earliest phase (roughly, the first billion years of life on Earth), well-defined biological individuals (and, thus, individual lineages) did not exist; and (2) during that phase, evolutionary change took place through ubiquitous horizontal gene transfer (HGT) rather than through vertical transmission of features (including genes) and the combinatorics of HGT was the dominant mechanism of evolutionary change. Both factors present serious challenges to the received view of evolution and that framework would have to be radically altered to incorporate these factors. The extent to which this will be necessary will depend on whether Woese's scenario of collective early evolution is correct.
NASA Astrophysics Data System (ADS)
Lasukov, V. V.; Lasukova, T. V.; Abdrashitova, M. O.
2018-05-01
It is shown that a cosmological medium consisting of a kinetic and a potential component, at the outset of its evolution is vacuum-like and at the end of its evolution asymptotically becomes the quintessence.
Lee, Meonghun; Yoe, Hyun
2015-01-01
The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206
2017-02-01
ERDC/CHL CHETN-II-56 February 2017 Approved for public release; distribution is unlimited. Coastal Foredune Evolution, Part 1: Environmental... Coastal and Hydraulics Engineering Technical Note (CHETN) is the first of two CHETNs focused on improving technologies to forecast coastal foredune...morphodynamic evolution of coastal foredunes. Part 2 reviews modeling approaches to forecast these changes and develops a probabilistic modeling framework to
Factors Shaping the Evolution of Electronic Documentation Systems. Research Activity No. IM.4.
ERIC Educational Resources Information Center
Dede, C. J.; And Others
The first of 10 sections in this report focuses on factors that will affect the evolution of Space Station Project (SSP) documentation systems. The goal of this project is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge about the space station which…
ERIC Educational Resources Information Center
Girardet, Céline; Berger, Jean-Louis
2018-01-01
Two studies were conducted to investigate the evolution of 71 Swiss vocational teachers' classroom management as a result of the inputs of a teacher education program, and to identify the factors that encouraged or impeded teacher change. Study 1 consisted of a longitudinal survey, and Study 2 of interviews. Longitudinal analyses were performed…
Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.
Musser, Jacob M; Arendt, Detlev
2017-11-01
Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Are we alone? Lessons from the evolution of life on earth.
Via, S
2001-12-01
The understanding of life on Earth that we have obtained from the science of evolutionary biology offers clues to the qustion of what life might be like if found elsewhere. After presenting the basics of the evolutionary process, I discuss the factors that determine the outcome of evolution, the role of key innovations and extinction in evolution, and whether the evolution of human life is inevitable.
A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys
NASA Astrophysics Data System (ADS)
Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong
2018-06-01
The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.
Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E
2018-05-01
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Emerging principles of regulatory evolution.
Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B
2007-05-15
Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.
ERIC Educational Resources Information Center
Hsu, Ying-Shao; Wu, Hsin-Kai; Hwang, Fu-Kwun
2007-01-01
Sandholtz, Ringstaff, & Dwyer (1996) list five stages in the "evolution" of a teacher's capacity for computer-based instruction--entry, adoption, adaptation, appropriation and invention--which hereafter will be called the teacher's computer-based instructional evolution. In this study of approximately six hundred junior high school…
Yedid, G; Ofria, C A; Lenski, R E
2008-09-01
Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.
ERIC Educational Resources Information Center
Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan
2008-01-01
In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…
The effect of selection environment on the probability of parallel evolution.
Bailey, Susan F; Rodrigue, Nicolas; Kassen, Rees
2015-06-01
Across the great diversity of life, there are many compelling examples of parallel and convergent evolution-similar evolutionary changes arising in independently evolving populations. Parallel evolution is often taken to be strong evidence of adaptation occurring in populations that are highly constrained in their genetic variation. Theoretical models suggest a few potential factors driving the probability of parallel evolution, but experimental tests are needed. In this study, we quantify the degree of parallel evolution in 15 replicate populations of Pseudomonas fluorescens evolved in five different environments that varied in resource type and arrangement. We identified repeat changes across multiple levels of biological organization from phenotype, to gene, to nucleotide, and tested the impact of 1) selection environment, 2) the degree of adaptation, and 3) the degree of heterogeneity in the environment on the degree of parallel evolution at the gene-level. We saw, as expected, that parallel evolution occurred more often between populations evolved in the same environment; however, the extent of parallel evolution varied widely. The degree of adaptation did not significantly explain variation in the extent of parallelism in our system but number of available beneficial mutations correlated negatively with parallel evolution. In addition, degree of parallel evolution was significantly higher in populations evolved in a spatially structured, multiresource environment, suggesting that environmental heterogeneity may be an important factor constraining adaptation. Overall, our results stress the importance of environment in driving parallel evolutionary changes and point to a number of avenues for future work for understanding when evolution is predictable. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates
Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin
2014-01-01
The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579
Origin and Evolution of the Sponge Aggregation Factor Gene Family.
Grice, Laura F; Gauthier, Marie E A; Roper, Kathrein E; Fernàndez-Busquets, Xavier; Degnan, Sandie M; Degnan, Bernard M
2017-05-01
Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A key ecological trait drove the evolution of biparental care and monogamy in an amphibian.
Brown, Jason L; Morales, Victor; Summers, Kyle
2010-04-01
Linking specific ecological factors to the evolution of parental care pattern and mating system is a difficult task of key importance. We provide evidence from comparative analyses that an ecological factor (breeding pool size) is associated with the evolution of parental care across all frogs. We further show that the most intensive form of parental care (trophic egg feeding) evolved in concert with the use of small pools for tadpole deposition and that egg feeding was associated with the evolution of biparental care. Previous research on two Peruvian poison frogs (Ranitomeya imitator and Ranitomeya variabilis) revealed similar life histories, with the exception of breeding pool size. This key ecological difference led to divergence in parental care patterns and mating systems. We present ecological field experiments that demonstrate that biparental care is essential to tadpole survival in small (but not large) pools. Field observations demonstrate social monogamy in R. imitator, the species that uses small pools. Molecular analyses demonstrate genetic monogamy in R. imitator, the first example of genetic monogamy in an amphibian. In total, this evidence constitutes the most complete documentation to date that a single ecological factor drove the evolution of biparental care and genetic and social monogamy in an animal.
Evolution and proximate expression of human paternal investment.
Geary, D C
2000-01-01
In more than 95% of mammalian species, males provide little direct investment in the well-being of their offspring. Humans are one notable exception to this pattern and, to date, the factors that contributed to the evolution and the proximate expression of human paternal care are unexplained (T. H. Clutton-Brock, 1989). The nature, extent, and influence of human paternal investment on the physical and social well-being of children are reviewed in light of the social and ecological factors that are associated with paternal investment in other species. On the basis of this review, discussion of the evolution and proximate expression of human paternal investment is provided.
Evolution of a tissue-specific splicing network
Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.
2011-01-01
Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555
Miles, Meredith C; Cheng, Samantha; Fuxjager, Matthew J
2017-05-01
Gestural displays are incorporated into the signaling repertoire of numerous animal species. These displays range from complex signals that involve impressive and challenging maneuvers, to simpler displays or no gesture at all. The factors that drive this evolution remain largely unclear, and we therefore investigate this issue in New World blackbirds by testing how factors related to a species' geographical distribution and social mating system predict macro-evolutionary patterns of display elaboration. We report that species inhabiting temperate regions produce more complex displays than species living in tropical regions, and we attribute this to (i) ecological factors that increase the competitiveness of the social environment in temperate regions, and (ii) different evolutionary and geological contexts under which species in temperate and tropical regions evolved. Meanwhile, we find no evidence that social mating system predicts species differences in display complexity, which is consistent with the idea that gestural displays evolve independently of social mating system. Together, these results offer some of the first insight into the role played by geographic factors and evolutionary context in the evolution of the remarkable physical displays of birds and other vertebrates. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Telecommunications systems evolution for Mars Exploration
NASA Technical Reports Server (NTRS)
Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.
2003-01-01
This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).
NASA Astrophysics Data System (ADS)
You, Jinjun; Gan, Hong; Wang, Lin; Bi, Xue; Du, Sisi
2010-05-01
The evolution of groundwater is one of the key problems of water cycle study. It is a result of joint effect of natural condition and human activities, but until now the driving forces of groundwater system evolution were not fully understood due to the complexity of groundwater system structures and the uncertainty of affecting factors. Geology, precipitation and human activity are the main factors affecting the groundwater system evolution and interact each other, but the influence of such three factors on groundwater system are not clarified clearly on a macroscopic scale. The precipitation changes the volume of water recharge and the groundwater pumping effect the discharge of groundwater. Another important factor influencing balance of groundwater storage is the underlaying that affects the renewablility of groundwater. The underlaying is decided mainly by geological attributes but also influenced by human activited. The macroscopic environment of groundwater evolves under the natural and anthropic factors. This paper study the general law of groundwater evolution among the factors based on the case study in Haihe River Basin, a typical area with dramatic groundwater change under natural precipitation attenuation and gradually increase of water suuply. Haihe River Basin is located in north-China, covers an area of 320,041 km2 with over 40% plain areas. The plain area of Haihe Basin is densely populated with many large and medium-sized cities, including metropolis of Beijing and Tianjin, and concentrated irrigated areas, playing important roles in China's economy and food production. It is the unique basin where groundwater occupies majority of total water supply in China. Long-term groundwater over-exploitation causes a series of ecological and environmental problems that threats the sustainable development. In this paper, the historical process of groundwater balance in Haihe Basin is divided into three phases by decrease of rainfall and increase of water pumping. The different problems caused by groundwater shrinkage are summarized. The volume of recharge from natural precipitation and artificial water cycle, natural evaporation and groundwater exploitation are analyzed based on water balance. Through the historical data analysis the changing trend of coefficients of groundwater balance discovers the evolution of groundwater. The general law is concluded with deeper analysis displays the contribution of natural and artificial factors causing deterioration of groundwater balance. A general law of groundwater evolution is put forward to describe the affection of both natural and anthropogenic factors with a relation curve. Considering the water demand of future socio-economic development in Haihe River Basin, the prospective of future vision of groundwater cycle is analyzed by the law of groundwater evolution. Iterated scenario analysis based on comparison of ameliorative function on groundwater balance to point out reasonable control on groundwater exploitation and rational water allocation under the condition of completion of South-to-North Water Transfer Project that could bring more than 7 billion m3 into Haihe River Basin from Yantze River. Finally, the advantages and disadvantages are concluded through the case study and the farther research in this field is pointed out.
ERIC Educational Resources Information Center
Glaze, Amanda L.; Goldston, M. Jenice; Dantzler, John
2015-01-01
Evolution continues to be a controversial topic around the world but nowhere is this more apparent locally than in the Southeastern region of the USA. In this study, we explored acceptance and rejection of evolution among pre-service science teachers in a teaching college in the rural Southeast and sought to determine (1) what relationships exist…
ERIC Educational Resources Information Center
Partin, Matthew L.; Underwood, Eileen M.; Worch, Eric A.
2013-01-01
To develop a more scientifically literate society, students need to understand the nature of science, which may be affected by controversial topics such as evolution. There are conflicting views among researchers concerning the relationships between understanding evolution, acceptance of evolution, and understanding of the nature of science. Four…
NASA Astrophysics Data System (ADS)
Gu, Tian-Qing; Zhang, Hui-Miao; Sun, Shi-Hua
1996-03-01
A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has been isolated and extracted from a cell-free preparation of Spirulina platensis. The effect of the s-factor in the reaction system is similar to that of Na2S2O4, but is coupled with light. The s-factor has the maximum absorption peak at 620 nm in the oxidized state, at 590 nm in the reduced state. The partially purified s-factor showed two bands by SDS-PAGE and is distinctly different from phycocyanin, which has no change of oxidized state and reduced state absorption spectra, and also has no promoting effect on hydrogenase of Spirulina platensis under the light.
NASA Astrophysics Data System (ADS)
Smith, Mike U.
2010-06-01
Scholarship that addresses teaching and learning about evolution has rapidly increased in recent years. This review of that scholarship first addresses the philosophical/epistemological issues that impinge on teaching and learning about evolution, including the proper philosophical goals of evolution instruction; the correlational and possibly causal relationships among knowing, understanding, accepting, and believing; and the factors that affect student understanding, acceptance, and/or belief. Second, I summarize the specific epistemological issues involved, including empiricism, naturalism, philosophical vs methodological materialism, science vs religion as non-overlapping magisteria, and science as a way of knowing. Third, the paper critically reviews the strengths and weaknesses of the research tools available to measure the nature of science, epistemological beliefs, and especially the acceptance of evolution. Based on these findings, further research in these areas, especially study of the factors that cause lack of explanatory coherence as well as replications of studies that promise to explain current confusing findings about the interrelationships among student understanding, acceptance, and belief in evolution, are called for. In addition, this review calls for more longitudinal studies to delineate causal connections as well as improved measurement tools.
Transverse momentum dependent parton distributions at small- x
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
2017-05-23
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Transverse momentum dependent parton distributions at small-x
NASA Astrophysics Data System (ADS)
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
2017-08-01
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky-Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins-Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Transverse momentum dependent parton distributions at small- x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping
2018-04-01
Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Relative importance of natural and anthropogenic factors influencing karst rocky desertification
NASA Astrophysics Data System (ADS)
Xu, Erqi; Zhang, Hongqi
2017-04-01
As the most severe ecological issue in southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors influencing KRD improvement, and even natural factors have a higher impact on KRD deterioration. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.
An evolutionary perspective on the history of flap reconstruction in the upper extremity.
Fang, Frank; Chung, Kevin C
2014-05-01
Examining the evolution of flap reconstruction of the upper extremity is similar to studying the evolution of biological species. This analogy provides a perspective to appreciate the contributing factors that led to the development of the current arsenal of techniques. It shows the trajectory for the future and provides a glimpse of the factors that that will be influential in the future. Copyright © 2014 Elsevier Inc. All rights reserved.
Observational constraints on finite scale factor singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denkiewicz, Tomasz, E-mail: atomekd@wmf.univ.szczecin.pl
2012-07-01
We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is anmore » allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.« less
A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines
Splitter, Derek A.; Pawlowski, Alex E.; Wagner, Robert M.
2016-01-06
In our work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical timeframes, trends, and illustrated how three factors: consumer preferences, technical capabilities, and regulatory legislation, affect personal mobility. Data showed that throughout history these three factors have a complex and time sensitive interplay. Long term trends in the data were identified where interaction and evolution between all three factors was observed. Transportation efficiency per unit power (gal/ton-mi/hp) was found to bemore » a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented.« less
Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease.
Itoh, Nobuyuki; Ornitz, David M
2011-02-01
Fibroblast growth factors (FGFs) are a family of structurally related polypeptides that are essential for embryonic development and that function postnatally as homoeostatic factors, in the response to injury, in the regulation of electrical excitability of cells and as hormones that regulate metabolism. In humans, FGF signalling is involved in developmental, neoplastic, metabolic and neurological diseases. Fgfs have been identified in metazoans but not in unicellular organisms. In vertebrates, FGFs can be classified as having intracrine, paracrine and endocrine functions. Paracrine and endocrine FGFs act via cell-surface FGF receptors (FGFRs); while, intracrine FGFs act independent of FGFRs. The evolutionary history of the Fgf family indicates that an intracrine Fgf is the likely ancestor of the Fgf family. During metazoan evolution, the Fgf family expanded in two phases, after the separation of protostomes and deuterostomes and in the evolution of early vertebrates. These expansions enabled FGFs to acquire diverse actions and functions.
Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng
2016-01-01
WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes. PMID:26975939
Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng
2016-03-15
WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.
A Proof of Factorization Theorem of Drell-Yan Process at Operator Level
NASA Astrophysics Data System (ADS)
Zhou, Gao-Liang
2016-02-01
An alternative proof of factorization theorem for Drell-Yan process that works at operator level is presented in this paper. Contributions of interactions after the hard collision for such inclusive processes are proved to be canceled at operator level according to the unitarity of time evolution operator. After this cancellation, there are no longer leading pinch singular surface in Glauber region in the time evolution of electromagnetic currents. Effects of soft gluons are absorbed into Wilson lines of scalar-polarized gluons. Cancelation of soft gluons is attribute to unitarity of time evolution operator and such Wilson lines. Supported by the National Natural Science Foundation of China under Grant No. 11275242
NASA Astrophysics Data System (ADS)
Tavares, Gustavo Medina; Bobrowski, Vera Lucia
2018-03-01
The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students' perceptions towards evolution, and studies can help to reveal those factors. We used a conceptual questionnaire, the Measure of Acceptance of the Theory of Evolution (MATE) instrument, and a Knowledge test to assess (1) the level of acceptance and understanding of 23 undergraduate Biology students nearing the end of their course, (2) other factors that could affect these levels, including course structure, and (3) the most difficult topics regarding evolutionary biology. The results of this study showed that the students, on average, had a 'Very High Acceptance' (89.91) and a 'Very Low Knowledge' (59.42%) of Evolutionary theory, and also indicated a moderate positive correlation between the two (r = 0.66, p = .001). The most difficult topics were related to the definition of evolution and dating techniques. We believe that the present study provides evidence for policymakers to reformulate current school and university curricula in order to improve the teachers' acceptance and understanding of evolution and other biological concepts, consequently, helping students reduce their misconceptions related to evolutionary biology.
Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs
Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico
2016-01-01
The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers. PMID:27336480
Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs.
Montelli, Stefano; Peruffo, Antonella; Patarnello, Tomaso; Cozzi, Bruno; Negrisolo, Enrico
2016-01-01
The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers.
Natural and Chemotherapy-Induced Clonal Evolution of Tumors.
Ibragimova, M K; Tsyganov, M M; Litviakov, N V
2017-04-01
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
NASA Astrophysics Data System (ADS)
Hermann, Ronald S.
2007-12-01
The purpose of this study was to identify factors impacting students' ability to develop understanding of evolutionary theory. A novel approach to worldview theory was employed according to which individuals are seen as having one worldview that is comprised of many perspectives. One's worldview is comprised of numerous worldview assumptions, some of which coalesce to form worldview perspectives. Some assumptions are consistent with a scientific perspective while others are more consistent with a religious perspective. Scientific and religious perspectives were quantified based on participants' agreement with assumptions associated with each perspective. Participants completed a 103-item questionnaire addressing several variables: understanding of evolution, understanding of photosynthesis (non-confounding variable), strength of worldview perspectives and exposure to factors influencing the development of worldview perspectives. Increased exposure to factors influencing the development of a strong scientific worldview perspective was hypothesized to cause an increased understanding of evolution. The dependent variable understanding was measured by scores on two Likert-type measures. A causal-comparative study was conducted with 13 high school biology teachers and 67 high school biology students. To determine causation t-tests compared the mean scores on the variables measured. Extreme-group methods were used and data was analyzed for statistical differences between mean scores. Strong scientific worldview perspectives (t=1.003, p=3.19) and exposure to scientific factors (t=2.373, p=.02) were associated with a higher understanding of evolution. Strong religious worldview perspectives (t=-1.991, p=.05) and exposure to religious factors (t=-1.059, p=.31) were associated with a lower understanding of evolution. The results suggest that scientific worldview perspectives play an important role in increasing understanding of evolution; however, religious worldview perspectives play an equally important role in hindering understanding. Furthermore, the strongest interaction between variables (t=-5.247, p=.00) was found between the strength of scientific worldview perspective and strength of religious worldview perspective. A strong religious worldview perspective caused a weak scientific worldview perspective, supporting the conclusion that most participants perceived science and religion as conflicting entities. These findings suggest that science students must be exposed to the nature and methods of science from an early age and that evolution education should acknowledge the perceived conflict between science and religion.
Zhou, Xiaorun; Lu, Taiping; Zhu, Yadan; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Yang, Yongzhen; Chen, Yongkang; Xu, Bingshe
2017-12-01
Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H 2 ) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H 2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H 2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H 2 proportion further increases, stress relaxation and H 2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.
NASA Astrophysics Data System (ADS)
Bilica, Kimberly Lynn
The teaching of biological evolution in public science classrooms has been mitigated by a lingering and historic climate of controversy (Skoog, 1984; Skoog, 1979). This controversy has successfully stalled attempts to bring authentic science literacy to the American public (Bybee, 1997). The first encouraging signs of the abatement of this controversy occurred during the early 1990s when several prominent science organizations promoted evolution to its appropriate status as a central and unifying concept in biology (National Science Teachers Association, 1992; National Research Council, 1996; American Association for the Advancement of Science, 1990, 1993). The organizations acknowledged that not only should biological evolution be taught, evolution should stand as one of a select group of essential concepts upon which biology curricula should be built. Bandura's Social Learning theory (Bandura, 1997; Lumpe, Haney, & Czerniak, 2000) and Helms' Model of Identity (Helms, 1998) provide the theoretical basis for this study. Both Bandura and Helms explain the actions of teachers by examining the beliefs and values that influence their decisions. The models distinguish between two types of belief systems: capacity beliefs and context beliefs (Lumpe, et al, 2000; Helms, 1998). Both belief types influence and are influenced by individual actions. In this study, the action to be described is the decision that teachers make about the degree of emphasis on evolution in the classroom. The capacity beliefs that will be examined are teachers' beliefs about their capability to teach evolution. The contextual beliefs in this study are perceptions about students' capabilities to learn evolution, the status of evolution in science, the place of evolution in the biology classroom, the influence of textbooks, time, and community/school values. This study contributes to and extends the knowledge base established by studies of evolution education by exploring the relative amount of emphasis that Texas biology teachers currently as well as prefer to place on fundamental evolution concepts in relationship to specific belief factors which influence biology teachers' curricular decisions.
Origin and Evolution of the Sponge Aggregation Factor Gene Family
Grice, Laura F.; Gauthier, Marie E.A.; Roper, Kathrein E.; Fernàndez-Busquets, Xavier; Degnan, Sandie M.
2017-01-01
Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self–nonself recognition systems in the animal kingdom. PMID:28104746
[Clinical and biological prognostic factors in relapsed acute myeloid leukemia patients].
Yébenes-Ramírez, Manuel; Serrano, Josefina; Martínez-Losada, Carmen; Sánchez-García, Joaquín
2016-09-02
Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Despite recent advances in the characterization of pathogenesis of AML, the cure rates are under 40%, being leukemia relapse the most common cause of treatment failure. Leukaemia relapse occurs due to clonal evolution or clonal escape. In this study, we aimed to analyze the clinical and biological factors influencing outcomes in patients with AML relapse. We included a total of 75 AML patients who experienced leukaemia relapse after achieving complete remission. We performed complete immunophenotyping and conventional karyotyping in bone marrow aspirates obtained at diagnosis and at leukemia relapse. Overall survival (OS) of the series was 3.7%±2.3, leukaemia progression being the most common cause of death. Patients relapsing before 12 months and those with adverse cytogenetic-molecular risk had statistically significant worse outcomes. A percentage of 52.5 of patients showed phenotypic changes and 50% cytogenetic changes at relapse. We did not find significant clinical factors predicting clonal evolution. The presence of clonal evolution at relapse did not have a significant impact on outcome. Patients with relapsed AML have a dismal prognosis, especially those with early relapse and adverse cytogenetic-molecular risk. Clonal evolution with phenotypic and cytogenetic changes occurred in half of the patients without predictive clinical factors or impact on outcome. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V
2017-02-07
Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
Portik, Daniel M; Blackburn, David C
2016-09-01
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co-evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Rapid evolution of cis-regulatory sequences via local point mutations
NASA Technical Reports Server (NTRS)
Stone, J. R.; Wray, G. A.
2001-01-01
Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.
Evolution of epigenetic regulation in vertebrate genomes
Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting
2016-01-01
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453
Rojas Sánchez, Patricia; Cobos, Alberto; Navaro, Marisa; Ramos, José Tomas; Pagán, Israel
2017-01-01
Abstract Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients. PMID:29044435
Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J
2008-02-01
Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial "break in" period of the simulation.
Selection and Transmission of Antibiotic-Resistant Bacteria.
Andersson, Dan I; Hughes, Diarmaid
2017-07-01
Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.
The Further Evolution of Cooperation
NASA Astrophysics Data System (ADS)
Axelrod, Robert; Dion, Douglas
1988-12-01
Axelrod's model of the evolution of cooperation was based on the iterated Prisoner's Dilemma. Empirical work following this approach has helped establish the prevalence of cooperation based on reciprocity. Theoretical work has led to a deeper understanding of the role of other factors in the evolution of cooperation: the number of players, the range of possible choices, variation in the payoff structure, noise, the shadow of the future, population dynamics, and population structure.
Barbier, O; Anract, P; Pluot, E; Larouserie, F; Sailhan, F; Babinet, A; Tomeno, B
2010-12-01
Extra-abdominal desmoid fibromatosis (EADF) is a benign tumoral condition, classically managed by more or less radical and sometimes mutilating excision. This treatment strategy is associated with a recurrence rate of nearly 50% according to various reports. EADF may show spontaneous stabilization over time. A retrospective series of 26 cases of EADF managed by simple observation was studied to assess spontaneous favorable evolution and identify possible factors impacting evolution. Eleven cases were of primary EADF with no treatment or surgery, and 15 of recurrence after surgery with no adjuvant treatment. MRI was the reference examination during follow-up. Twenty-four cases showed stabilization at a median 14 months; there were no cases of renewed evolution after stabilization. One primary tumor showed spontaneous regression, and one recurrence still showed evolution at end of follow-up (23 months). The sole factor impacting potential for evolution was prior surgery. No radiologic or pathologic criteria of evolution emerged from analysis. The present series, one of the largest dedicated to EADF managed by observation, confirmed recent literature findings: a conservative "wait-and-see" attitude is reasonable and should be considered when large-scale resection would entail significant functional or esthetic impairment. Level IV, retrospective study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Evolutionary biology and chemical geology: a timely marriage.
Cintas, Pedro
2004-07-05
For more than 150 years natural selection has been perceived to be the overwhelming force in evolution. Only in recent decades have we obtained new insights into environmental and physicochemical factors that participate with selection in a synergic way. Far from denying Darwin's theory, such neglected factors put order to the bewildering range of genotypes and morphologies found in living organisms and, more importantly, they place evolution in a planetary context where biology, geology, and chemistry can easily be integrated.
Robotic technology evolution and transfer
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1992-01-01
A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.
The evolution of Saccharomycotina yeasts
USDA-ARS?s Scientific Manuscript database
Associations between traits are prevalent in nature, occurring across a diverse range of taxa and traits. The evolution of trait correlations can be driven by factors intrinsic or extrinsic to an organism, but few studies, especially in microbes, have simultaneously investigated both across a broad ...
NASA Astrophysics Data System (ADS)
Skoog, Gerald; Bilica, Kimberly
2002-07-01
This study analyzed the science frameworks of 49 states and the District of Colombia to determine the emphasis given to evolution in these documents at the middle and secondary levels. These concepts were species evolve over time, speciation, diversity of life, descent with modification from common ancestry, evidence of evolution, natural selection, pace and direction of evolution, and human evolution. Collectively, the 50 science frameworks emphasized evolution in a manner that suggests that if the public's support for standards-based curricula is a reality, the study of evolution will be emphasized in an unprecedented manner in the nation's schools in the near future. However, all concepts were not emphasized equally in these documents. For example, human evolution was included in only seven documents. The word evolution is absent from some standards. Despite these negatives, recent actions to improve existing standards or to adopt new standards that emphasize evolution have occurred. The metaphor lever of change is often used in the context of school reform. This metaphor suggests a simple system where one change can result in a desired outcome. However, in classrooms where curriculum decisions evolve constantly, multiple factors interact and reinforce one another in response to both internal and external contingencies that emerge. Educational change can not be reduced to a simple linear cause/effect situation. The change process involved is nonlinear where what goes in is not proportional to what comes out because of feedback loops and other factors that complicate results. This nonlinearity is reflected in the varied responses of teachers to specific contingencies. Yet, systems can be changed and nudged towards a structure where desired outcomes will emerge. Judicial rulings indicating that the teaching of evolution cannot be prohibited or equal time for creationism mandated, improved coverage of evolution in secondary school biology textbooks, the negative response of many leaders, scientists, organizations, and editorial writers to the 1999 decision of the Kansas State Board of Education to deemphasize and misrepresent evolution in the state's science standards, and the emphasis given to evolution in the standards reviewed for this study, all coalesce to provide needed support for administrators and teachers who are striving to create science curricula that emphasize evolution in a manner commensurate with its importance in understanding the natural world and our place within it.
NASA Astrophysics Data System (ADS)
Aguillard, Donald Wayne
Louisiana public school biology teachers were surveyed to investigate their attitudes toward biological evolution. A mixed method investigation was employed using a questionnaire and open-ended interviews. Results obtained from 64 percent of the sample receiving the questionnaire indicate that although teachers endorse the study of evolution as important, instructional time allocated to evolution is disproportionate with its status as a unifying concept of science. Two variables, number of college courses specifically devoted to evolution and number of semester credit hours in biology, produced a significant correlation with emphasis placed on evolution. The data suggest that teachers' knowledge base emerged as the most significant factor in determining degree of classroom emphasis on evolution. The data suggest a need for substantive changes in the training of biology teachers. Thirty-five percent of teachers reported pursuing fewer than 20 semester credit hours in biology and 68 percent reported fewer than three college courses in which evolution was specifically discussed. Fifty percent reported a willingness to undergo additional training about evolution. In spite of the fact that evolution has been identified as a major conceptual theme across all of the sciences, there is strong evidence that Louisiana biology teachers de-emphasize evolutionary theory. Even when biology teachers allocate instructional time to evolutionary theory, many avoid discussion of human evolution. The research data show that only ten percent of teachers reported allocating more than sixty minutes of instructional time to human evolution. Louisiana biology teachers were found to hold extreme views on the subject of creationism as a component of the biology curriculum. Twenty-nine percent indicated that creationism should be taught in high school biology and 25--35 percent allocated instructional time to discussions of creationism. Contributing to the de-emphasis of evolutionary theory, as a unifying theme of biology, is the courtesy extended to classroom teachers to determine what topics are emphasized. The inclusion of evolution in curriculum documents is not sufficient to ensure that evolutionary theory is regarded as a unifying theme of biology. School administrators, science supervisors, and local school boards have a clear responsibility to articulate strong support for requiring classroom discussions of evolutionary theory.
Molecular evolution of the vertebrate mechanosensory cell and ear.
Fritzsch, Bernd; Beisel, Kirk W; Pauley, Sarah; Soukup, Garrett
2007-01-01
The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.
Ecology and evolution of pine life histories
Keeley, Jon E.
2012-01-01
Conclusion - Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.
Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?
NASA Astrophysics Data System (ADS)
Anokhina, A.; Morozov, A.
2018-04-01
R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.
NASA Astrophysics Data System (ADS)
Rama, S. Kalyana
2017-08-01
The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to (d + 1) dimensions and to any function f( x). Depending on f( x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor a(t) ∝ t^{ 2 q/(2 q - 1) (1 + w) d} for f(x) = x^q, and find explicit Kasner-type solutions if w = 2 q - 1 also. A result which we find particularly fascinating is that, for f(x) = √{x}, the evolution is non singular and the scale factor a( t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.
NASA Astrophysics Data System (ADS)
Hermann, Ronald S.
2013-06-01
In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.
NASA Astrophysics Data System (ADS)
Darussyamsu, R.; Fadilah, M.; Putri, D. H.
2018-04-01
Emotional and spiritual aspect is one of main factors that influence students’ acceptance of a theory. This study aim to measure university students’ acceptance of evolution by learns evolution using emotional and spiritual quotient (ESQ) approach. This is a quasi-experimental research using one shot case study design with the subject 36 biology educational students at Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Padang. Data collected using the MATE instrument by Rutledge and Warden (2000) after the students learn evolution for eight meetings since January until March 2017. The result showed that by learning evolution theory combine with ESQ aspects increase students acceptance from very low become moderate acceptance. It concluded that ESQ aspects can improve students’ acceptance of evolution. Any criteria depend on it are discussed.
Bao, Rima; Wu, Zhikui; Li, Hao; Wang, Fang; Miao, Xinyang; Feng, Chengjing
2017-01-01
The study of fluid inclusion is one of the important means to understanding the evolution of mineral crystals, and can therefore provide original information of mineral evolution. In the process of evolution, outside factors such as temperature and pressure, directly affect the number and size of inclusions, and thus are related to the properties of crystals. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to detect sodium sulfate crystals with different growth temperatures, and absorption coefficient spectra of the samples were obtained. It is suggested that the evolution of sodium sulfate could be divided into two stages, and 80°C was the turning point. X-ray diffraction (XRD) and polarizing microscopy were used to support this conclusion. The research showed that THz-TDS could characterize the evolution of mineral crystals, and it had a unique advantage in terms of crystal evolution.
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-01-01
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402
Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.
Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying
2016-04-08
This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.
Network evolution model for supply chain with manufactures as the core.
Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.
Network evolution model for supply chain with manufactures as the core
Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201
Polly, P David
2015-05-01
Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.
Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales.
Marx, Felix G; Uhen, Mark D
2010-02-19
Modern cetaceans, a poster child of evolution, play an important role in the ocean ecosystem as apex predators and nutrient distributors, as well as evolutionary "stepping stones" for the deep sea biota. Recent discussions on the impact of climate change and marine exploitation on current cetacean populations may benefit from insights into what factors have influenced cetacean diversity in the past. Previous studies suggested that the rise of diatoms as dominant marine primary producers and global temperature change were key factors in the evolution of modern whales. Based on a comprehensive diversity data set, we show that much of observed cetacean paleodiversity can indeed be explained by diatom diversity in conjunction with variations in climate as indicated by oxygen stable isotope records (delta18O).
Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku
2017-01-01
One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A mathematical model for evolution and SETI.
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
Modelling Evolution and SETI Mathematically
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2012-05-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factor increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions constrained between the time axis and the exponential growth curve. Finally, since each lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
A Mathematical Model for Evolution and SETI
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2011-12-01
Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.
Evolution of tuf genes: ancient duplication, differential loss and gene conversion.
Lathe, W C; Bork, P
2001-08-03
The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.
Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications
2013-01-01
Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome. PMID:24267946
Barnes, M. Elizabeth
2017-01-01
Abstract Students’ religious beliefs and religious cultures have been shown to be the main factors predicting whether they will accept evolution, yet college biology instructors teaching evolution at public institutions often have religious beliefs and cultures that are different from their religious students. This difference in religious beliefs and cultures may be a barrier to effective evolution education. To explore when evolution instructors have similar religious cultures and beliefs as their students, we interviewed 32 evolution instructors at Christian universities nationwide about their practices and experiences teaching evolution. Christian university instructors emphasized teaching for acceptance of evolution while holding an inclusive teaching philosophy that they perceived led to a safe environment for students. Additionally, almost all instructors reported using practices that have been shown to increase student acceptance of evolution and reduce student conflict between evolution and religion. Further, we found that these instructors perceived that their own religious backgrounds have guided their decisions to teach evolution to their students in a culturally competent way. We discuss how these data, combined with past research literature on public college instructors, indicate that cultural competence could be a useful new framework for promoting effective evolution education in higher education institutions. PMID:29398727
Rapidity evolution of Wilson lines at the next-to-leading order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, Ian; Chirilli, Giovanni
2013-12-01
At high energies particles move very fast so the proper degrees of freedom for the fast gluons moving along the straight lines are Wilson-line operators - infinite gauge factors ordered along the line. In the framework of operator expansion in Wilson lines the energy dependence of the amplitudes is determined by the rapidity evolution of Wilson lines. We present the next-to-leading order hierarchy of the evolution equations for Wilson-line operators.
The Academic Structure in Japan: Institutional Hierarchy and Academic Mobility.
ERIC Educational Resources Information Center
Arimoto, Akira
The characteristics of the Japanese academic structure are examined with attention to the evolution of institutional hierarchy, the closed academic structure, and the effects of the academic structure upon academic research. The evolution of Japan's institutional hierarchy in academics has been tightly related to factors of nationalism,…
Women's Participation in the Greek Educational System.
ERIC Educational Resources Information Center
Polydorides, Georgia
The evolution of women's participation in the Greek educational system during the last 20 years is considered, with emphasis on present developments. The pattern of this evolution along with educational policy measures and reforms are also discussed. Factors related to women's achievement patterns and mobility between educational levels are also…
Apollo experience report: Evolution of the attitude time line
NASA Technical Reports Server (NTRS)
Duncan, R. D.
1973-01-01
The evolution of the attitude time line is discussed. Emphasis is placed on the operational need for and constraints on the time line and on how these factors were involved in the time line generation procedure. Examples of constraints on and applications of the complete time line are given.
Spatial evolution of laser filaments in turbulent air
NASA Astrophysics Data System (ADS)
Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan
2018-04-01
In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.
The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media
NASA Astrophysics Data System (ADS)
Friedman, Avner; Hu, Bei; Velazquez, Juan J. L.
When a crack Γs propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γs. In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γs) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A1(s), A2(s), as functions of s, satisfy:
Valenzuela, Carlos Y
2013-01-01
The Neutral Theory of Evolution (NTE) proposes mutation and random genetic drift as the most important evolutionary factors. The most conspicuous feature of evolution is the genomic stability during paleontological eras and lack of variation among taxa; 98% or more of nucleotide sites are monomorphic within a species. NTE explains this homology by random fixation of neutral bases and negative selection (purifying selection) that does not contribute either to evolution or polymorphisms. Purifying selection is insufficient to account for this evolutionary feature and the Nearly-Neutral Theory of Evolution (N-NTE) included negative selection with coefficients as low as mutation rate. These NTE and N-NTE propositions are thermodynamically (tendency to random distributions, second law), biotically (recurrent mutation), logically and mathematically (resilient equilibria instead of fixation by drift) untenable. Recurrent forward and backward mutation and random fluctuations of base frequencies alone in a site make life organization and fixations impossible. Drift is not a directional evolutionary factor, but a directional tendency of matter-energy processes (second law) which threatens the biotic organization. Drift cannot drive evolution. In a site, the mutation rates among bases and selection coefficients determine the resilient equilibrium frequency of bases that genetic drift cannot change. The expected neutral random interaction among nucleotides is zero; however, huge interactions and periodicities were found between bases of dinucleotides separated by 1, 2... and more than 1,000 sites. Every base is co-adapted with the whole genome. Neutralists found that neutral evolution is independent of population size (N); thus neutral evolution should be independent of drift, because drift effect is dependent upon N. Also, chromosome size and shape as well as protein size are far from random.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.
1997-04-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less
The evolution of complex life.
Billingham, J
1989-01-01
In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.
Molecular evolution and the latitudinal biodiversity gradient.
Dowle, E J; Morgan-Richards, M; Trewick, S A
2013-06-01
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements
Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H.; Bird, David M.; Blaxter, Mark L.; Lunt, David H.
2016-01-01
Abstract Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host’s genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes. PMID:27566762
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X; Fares, Mario A
2016-09-26
The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500-5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Assessing the determinants of evolutionary rates in the presence of noise.
Plotkin, Joshua B; Fraser, Hunter B
2007-05-01
Although protein sequences are known to evolve at vastly different rates, little is known about what determines their rate of evolution. However, a recent study using principal component regression (PCR) has concluded that evolutionary rates in yeast are primarily governed by a single determinant related to translation frequency. Here, we demonstrate that noise in biological data can confound PCRs, leading to spurious conclusions. When equalizing noise levels across 7 predictor variables used in previous studies, we find no evidence that protein evolution is dominated by a single determinant. Our results indicate that a variety of factors--including expression level, gene dispensability, and protein-protein interactions--may independently affect evolutionary rates in yeast. More accurate measurements or more sophisticated statistical techniques will be required to determine which one, if any, of these factors dominates protein evolution.
Brain shape convergence in the adaptive radiation of New World monkeys
Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan
2016-01-01
Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427
Vignuzzi, Marco; Higgs, Stephen
2017-09-29
Chikungunya virus, first isolated in the 1950s, has since reemerged to cause several epidemics and millions of infections throughout the world. What was once blurred and confused with dengue virus in both diagnosis and name has since become one of the best-characterized arboviral diseases. In this review, we cover the history of this virus, its evolution into distinct genotypes and lineages, and, most notably, the convergent evolution observed in recent years. We highlight research that reveals to what extent convergent evolution, and its inherent predictability, may occur and what genetic or environmental factors may hinder it.
[Risk factors for malignant evolution of gastrointestinal stromal tumors].
Andrei, S; Andrei, Adriana; Tonea, A; Andronesi, D; Becheanu, G; Dumbravă, Mona; Pechianu, C; Herlea, V; Popescu, I
2007-01-01
Gastrointestinal stromal tumors are the most frequent non-epithelial digestive tumors, being classified in the group of primitive mesenchymal tumors of the digestive tract. These tumors have a non predictable evolution and where stratified regarding the risk for malignant behavior in 4 categories: very low risk, low risk, intermediate risk and high risk. We performed a retrospective non randomised study including the patients with gastrointestinal stromal tumors treated in the Department of General Surgery and Liver Transplantation of Fundeni Clinical Institute in the period January 2002 - June 2007, to define the epidemiological, clinico-paraclinical, histological and especially evolutive features of the gastrointestinal stromal tumors from this group, with a special regard to the risk factors for their malignant behavior. The most important risk factors in gastrointestinal stromal tumors are the tumor size and the mitotic index, based on them being realised the classification of Fletcher in the 4 risk categories mentioned above. In our group all the local advanced or metastatic gastrointestinal stromal tumors, regardless of their location, were classified in the group of high risk for the malignant behavior. The gastric location and the epithelioid type were positive prognostic factors, and the complete resection of the tumor, an other important positive prognostic feature, was possible in about 80% of the cases, probably because the gastrointestinal stromal tumors in our study were diagnosed in less advanced evolutive situations, only about one third being metastatic and about 14% being locally advanced at the time of diagnose. The association with other neoplasias was in our cases insignificant, only 5% of the patients presenting concomitant malignant digestive tumors and 7.6% intraabdominal benign tumors. Gastrointestinal stromal tumors remain a challenge for the medical staff, regarding their diagnose and therapeutical management, the stratification of the risk for their malignant behavior being essential for the evolution of these patients.
Intersections between immune responses and morphological regulation in plants.
Uchida, Naoyuki; Tasaka, Masao
2010-06-01
Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.
Evolution 2.0. the Unexpected Learning Experience of Making a Digital Archive
ERIC Educational Resources Information Center
Andersen, Casper; Bek-Thomsen, Jakob; Clasen, Mathias; Grumsen, Stine Slot; Hjermitslev, Hans Henrik; Kjaergaard, Peter C.
2013-01-01
Studies in the history of science and education have documented that the reception and understanding of evolutionary theory is highly contingent on local factors such as school systems, cultural traditions, religious beliefs, and language. This has important implications for teaching evolution in primary and secondary schools. No universal…
Evolution of competitive ability within Lonicera japonica's invaded range
Gregory A. Evans; Francis F. Kilkenny; Laura F. Galloway
2013-01-01
Factors influencing invasive taxa may change during the course of an invasion. For example, intraspecific competition is predicted to be more important in areas with older stands of dense monospecific invaders than at the margins of an invaded range. We evaluated evolution in response to predicted changes in competition by comparing the intraspecific competitive...
ERIC Educational Resources Information Center
Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope
2012-01-01
In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…
Intellectual Initiatives at a Research University: Origins, Evolutions, and Challenges.
ERIC Educational Resources Information Center
Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.
This qualitative case study explored the origins, evolutions, and challenges of 12 cross-disciplinary intellectual initiatives at 1 research university. Researchers conducted open-ended interviews with leaders of the 12 initiatives and used program literature to support the data gathered from the interviews. The study found that key factors such…
Some Trends in the Evolution of Science Curriculum Centres in Asia. Occasional Papers No. 12.
ERIC Educational Resources Information Center
Maddock, M. N.
Recent trends in science education associated with the evolution of science curriculum development centers in the Asian region are reviewed. These trends, and factors influencing them, are discussed under the following headings: science education and curriculum development centers; adaptation phase; shifts toward indigenous programs; science…
Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-06-01
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.
Life on Mars? II. Physical restrictions
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.; Banin, A.
1995-01-01
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-01-01
Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039
Gerstein, Aleeza C; Nielsen, Kirsten
2017-04-01
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan; ...
2017-05-30
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
Portik, Daniel M.; Blackburn, David C.
2016-01-01
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co‐evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. PMID:27402182
Shi, Haiyun; Gao, Chao; Dong, Changming; Xia, Changshui; Xu, Guanglai
2017-01-01
River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles. PMID:28953218
TRF2 and the evolution of the bilateria.
Duttke, Sascha H C; Doolittle, Russell F; Wang, Yuan-Liang; Kadonaga, James T
2014-10-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. © 2014 Duttke et al.; Published by Cold Spring Harbor Laboratory Press.
Fu, Bang-ze; Tang, Qiao-ling; Huang, Ling; He, Juan
2013-03-01
To explore the onset cycle of scarlet fever in Beijing and its association with theory of five evolutive phases and six climatic factors (FEPSCF). Based on the monthly scarlet fever data from 1970 to 2004, Complex Morlet wavelet was adopted to analyze the annual incidence and the incidence of six climatic factors in the past 35 years. Its association with the cycles of FEP-SCF was explored. The features of heavenly stems and earthly branches in the year that the wave peak corresponded and their correlations with doctrine of FEPSCF were analyzed. The annual incidence of scarlet fever and the incidence of FEPSCF had two main cycles, i.e., 5 years and 28 years. The 5-year primary cycle was consistent with 5-year cycle of FEPSCF theory. The high incidence year of 5-year primary cycle was Jinyun. The cycle of five evolutive phases was consistent with the onset cycle of scarlet fever. The quasi-periodic phenomenon and multi-cycle superimposed phenomenon of FEPSCF theory existed in the incidence of scarlet fever.
Evolution of the central safety factor during stabilized sawtooth instabilities at KSTAR
NASA Astrophysics Data System (ADS)
Messmer, M. C. C.; Ko, J.; Chung, J.; Woo, M. H.; Lee, K.-D.; Jaspers, R. J. E.
2018-01-01
A motional Stark effect (MSE) diagnostic has recently been installed in the KSTAR tokamak. A difficulty faced at KSTAR and common to other MSE diagnostics is calibration of the system for absolute measurements. In this report we present our novel calibration routine and discuss first results, evaluating the evolution of the the central safety factor during sawtooth instabilities. The calibration scheme ensures that the bandpass filters typically used in MSE systems are aligned correctly and identifies and removes systematic offsets present in the measurement. This is verified by comparing the reconstructed safety factor profile against various discharges where the locations of rational q surfaces have been obtained from MHD markers. The calibration is applied to analyse the evolution of q 0 in a shot where the sawteeth are stabilized by neutral beam injection. Within the analysed sawtooth periods q 0 drops below unity during the quiescent phase and relaxes close to or slightly above unity at the sawtooth crash. This finding is in line with the classical Kadomtsev model of full magnetic reconnection and earlier findings at JET.
Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model
Barbosa, Camilo; Beardmore, Robert; Jansen, Gunther
2018-01-01
The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction—irrespective of whether combinations were compared at the same level of inhibition or not—while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution. PMID:29708964
The evolution of complex and higher organisms
NASA Technical Reports Server (NTRS)
Milne, D. (Editor); Raup, D. (Editor); Billingham, J. (Editor); Niklaus, K. (Editor); Padian, K. (Editor)
1985-01-01
The evolution of Phanerozoic life has probably been influenced by extraterrestrial events and properties of the Earth-Moon system that have not, until now, been widely recognized. Tide range, gravitational strength, the Earth's axial tilt, and other planetary properties provide background conditions whose effects on evolution may be difficult to distinguish. Solar flares, asteroid impacts, supernovae, and passage of the solar system through galactic clouds can provide catastrophic changes on the Earth with consequent characteristic extinctions. Study of the fossil record and the evolution of complex Phanerozoic life can reveal evidence of past disturbances in space near the Earth. Conversely, better understanding of environmental influences caused by extraterrestrial factors and properties of the solar system can clarify aspects of evolution, and may aid in visualizing life on other planets with different properties.
Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X.; Fares, Mario A.
2016-01-01
Abstract The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. PMID:27566759
Evolutionary response when selection and genetic variation covary across environments.
Wood, Corlett W; Brodie, Edmund D
2016-10-01
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.
Evolutionary theory and teleology.
O'Grady, R T
1984-04-21
The order within and among living systems can be explained rationally by postulating a process of descent with modification, effected by factors which are extrinsic or intrinsic to the organisms. Because at the time Darwin proposed his theory of evolution there was no concept of intrinsic factors which could evolve, he postulated a process of extrinsic effects--natural selection. Biological order was thus seen as an imposed, rather than an emergent, property. Evolutionary change was seen as being determined by the functional efficiency (adaptedness) of the organism in its environment, rather than by spontaneous changes in intrinsically generated organizing factors. The initial incompleteness of Darwin's explanatory model, and the axiomatization of its postulates in neo-Darwinism, has resulted in a theory of functionalism, rather than structuralism. As such, it introduces an unnecessary teleology which confounds evolutionary studies and reduces the usefulness of the theory. This problem cannot be detected from within the neo-Darwinian paradigm because the different levels of end-directed activity--teleomatic, teleonomic, and teleological--are not recognized. They are, in fact, considered to influence one another. The theory of nonequilibrium evolution avoids these problems by returning to the basic principles of biological order and developing a structuralist explanation of intrinsically generated change. Extrinsic factors may affect the resultant evolutionary pattern, but they are neither necessary nor sufficient for evolution to occur.
Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance
NASA Astrophysics Data System (ADS)
Grimes, Larry G.
Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and beliefs to their teaching. The purpose of this study was to explore how biology teachers perceive, describe, and value their teaching of evolution. This research question was explored through a heuristic qualitative methodology. Eight veteran California high school biology teachers were queried as to their beliefs, perceptions, experiences and practices of teaching evolution. Both personal and professional documents were collected. Data was presented in the form of biographical essays that highlight teachers' backgrounds, experiences, perspectives and practices of teaching evolution. Of special interest was how they describe pressure over teaching evolution during a decade of standards and No Child Left Behind high-stakes testing mandates. Five common themes emerged. Standards have increased the overall amount of evolution that is taught. High-stakes testing has decreased the depth at which evolution is taught. Teacher belief systems strongly influence how evolution is taught. Fear of creationist challenges effect evolution teaching strategies. And lastly, concern over the potential effects of teaching evolution on student worldviews was mixed. Three categories of teacher concern over the potential impact of evolution on student worldviews were identified: Concerned, Strategist, and Carefree. In the final analysis teacher beliefs and attitudes still appeared to he the most important factor influencing how evolution is taught.
Longitudinal Factor Score Estimation Using the Kalman Filter.
ERIC Educational Resources Information Center
Oud, Johan H.; And Others
1990-01-01
How longitudinal factor score estimation--the estimation of the evolution of factor scores for individual examinees over time--can profit from the Kalman filter technique is described. The Kalman estimates change more cautiously over time, have lower estimation error variances, and reproduce the LISREL program latent state correlations more…
NASA Astrophysics Data System (ADS)
Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo
2018-02-01
Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.
Mineralogy and evolution of the surface of Mars: A review
NASA Astrophysics Data System (ADS)
Chevrier, V.; Mathé, P. E.
2007-02-01
We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.
ERIC Educational Resources Information Center
Hermann, Ronald S.
2013-01-01
In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of…
Evolution of specialization in resource utilization in structured metapopulations.
Nurmi, Tuomas; Geritz, Stefan; Parvinen, Kalle; Gyllenberg, Mats
2008-07-01
We study the evolution of resource utilization in a structured discrete-time metapopulation model with an infinite number of patches, prone to local catastrophes. The consumer faces a trade-off in the abilities to consume two resources available in different amounts in each patch. We analyse how the evolution of specialization in the utilization of the resources is affected by different ecological factors: migration, local growth, local catastrophes, forms of the trade-off and distribution of the resources in the patches. Our modelling approach offers a natural way to include more than two patch types into the models. This has not been usually possible in the previous spatially heterogeneous models focusing on the evolution of specialization.
Joint evolution of specialization and dispersal in structured metapopulations.
Nurmi, Tuomas; Parvinen, Kalle
2011-04-21
We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |
video Download the transcript Agent-based Models of How Segregation and Peer Effects Influence Solar PV to estimate the relative influence of peer effects, cognitive factors, and economic factors in solar
Katvala, M; Rönn, J L; Arnqvist, G
2008-03-01
Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven-seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade-offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.
Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.
2010-01-01
Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773
Diculescu, Mircea; Iacob, Răzvan; Iacob, Speranţa; Croitoru, Adina; Becheanu, Gabriel; Popeneciu, Valentin
2002-09-01
It has been a consensus that prognostic factors should always be taken into account before planning treatment in colorectal cancer. A 5 year prospective study was conducted, in order to assess the importance of several histopathological and clinical prognostic variables in the prediction of evolution in colon cancer. Some of the factors included in the analysis are still subject to dispute by different authors. 46 of 53 screened patients qualified to enter the study and underwent a potentially curative resection of the tumor, followed, when necessary, by adjuvant chemotherapy. Univariate and multivariate analyses were carried out in order to identify independent prognostic indicators. The endpoint of the study was considered the recurrence of the tumor or the detection of metastases. 65.2% of the patients had a good evolution during the follow up period. Multivariate survival analysis performed by Cox proportional hazard model identified 3 independent prognostic factors: Dukes stage (p = 0.00002), the grade of differentiation (p = 0.0009) and the weight loss index, representing the weight loss of the patient divided by the number of months when it was actually lost (p = 0.02). Age under 40 years, sex, microscopic aspect of the tumor, tumor location, anemia degree were not identified by our analysis as having prognostic importance. Histopathological factors continue to be the most valuable source of information regarding the possible evolution of patients with colorectal cancer. Individual clinical symptoms or biological parameters such as erytrocyte sedimentation rate or hemoglobin level are of little or no prognostic value. More research is required relating to the impact of a performance status index (which could include also weight loss index) as another reliable prognostic variable.
Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
Feyertag, Felix; Berninsone, Patricia M; Alvarez-Ponce, David
2017-03-01
The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E-R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein-protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E-R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E-R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E-R anticorrelation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
NASA Astrophysics Data System (ADS)
Aybat, S. Mert; Rogers, Ted C.
2011-06-01
We assess the current phenomenological status of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable, QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain processes. In this article, we focus on spin-independent processes because they provide the simplest illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical developments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, nonperturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that evolution has important consequences, both qualitatively and quantitatively, and argue that it should be included in future phenomenological studies of TMD functions. Our analysis is also suggestive of extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or Collins functions, which we intend to pursue in future publications. At our website [http://projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the TMD parametrizations presented herein.
Anisotropic evolution of 5D Friedmann-Robertson-Walker spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Chad A.; Stanley, Ethan
2011-10-15
We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we obtain an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the Friedmann-Robertson-Walker field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective Friedmann-Robertson-Walker field equations. We examine the effective field equations inmore » the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric function and cannot, in general, be inverted to yield an analytical expression for the 3D scale factor as a function of time. When the hypergeometric function is expanded for small and large arguments, we obtain a generalized treatment of the dynamical compactification scenario of Mohammedi [Phys. Rev. D 65, 104018 (2002)] and the 5D vacuum solution of Chodos and Detweiler [Phys. Rev. D 21, 2167 (1980)], respectively. By expanding the hypergeometric function near a branch point, we obtain the perturbative solution for the 3D scale factor in the small time regime. This solution exhibits accelerated expansion, which, remarkably, is independent of the value of the 4D equation of state parameter w. This early-time epoch of accelerated expansion arises naturally out of the anisotropic evolution of 5D spacetime when the pressure in the extra dimension is negative and offers a possible alternative to scalar field inflationary theory.« less
Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel
NASA Astrophysics Data System (ADS)
Ren, Gang; Du, Jian-ming; Zhang, Wen-hai
2018-05-01
We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel by using the two-mode entangled state in the Fock space and Kraus operator. The explicit formulation of the output state is also given. It is found that the output state does not exhibit sub-Poissonian behavior for the nonnegative value of the Mandel's Q-parameters in a wide range of values of squeezing parameter and dissipation factor. It is interesting to see that second-order correlation function is independent of the dissipation factor. However, the photon-number distribution of the output quantum state shows remarkable oscillations with respect to the dissipation factor. The shape of Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the amplitude dissipative channel.
Tmd Factorization and Evolution for Tmd Correlation Functions
NASA Astrophysics Data System (ADS)
Mert Aybat, S.; Rogers, Ted C.
We discuss the application of transverse momentum dependent (TMD) factorization theorems to phenomenology. Our treatment relies on recent extensions of the Collins-Soper-Sterman (CSS) formalism. Emphasis is placed on the importance of using well-defined TMD parton distribution functions (PDFs) and fragmentation functions (FFs) in calculating the evolution of these objects. We explain how parametrizations of unpolarized TMDs can be obtained from currently existing fixed-scale Gaussian fits and previous implementations of the CSS formalism in the Drell-Yan process, and provide some examples. We also emphasize the importance of agreed-upon definitions for having an unambiguous prescription for calculating higher orders in the hard part, and provide examples of higher order calculations. We end with a discussion of strategies for extending the phenomenological applications of TMD factorization to situations beyond the unpolarized case.
Hunt, Tam
2012-01-01
This essay provides a critical review of two recent books on evolution: Richard Dawkins’ The Greatest Show on Earth, and Jerry Coyne’s Why Evolution is True, as well as a critique of mainstream evolutionary theory and of natural selection. I also suggest a generalization of sexual selection theory that acknowledges mind as pervasive in nature. Natural selection, as the primary theory of how biological change occurs, must be carefully framed to avoid the long-standing “tautology problem” and must also be modified to more explicitly include the role of mind in evolution. A propensity approach to natural selection, in which “expected fitness” is utilized rather than “fitness,” can save natural selection from tautology. But to be a productive theory, natural selection theory should be placed alongside sexual selection – which is explicitly agentic/intentional – as a twin force, but also placed alongside purely endogenous factors such as genetic drift. This framing is contrary to the normal convention that often groups all of these factors under the rubric of “natural selection.” I suggest some approaches for improving modern evolutionary theory, including a “generalized sexual selection,” a panpsychist extension of Darwin’s theory of sexual selection that explicitly recognizes the role of mind at all levels of nature and which may play the part of a general theory of evolution better than natural selection theory. PMID:23181154
Alton, Lesley A; Condon, Catriona; White, Craig R; Angilletta, Michael J
2017-01-01
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields
NASA Astrophysics Data System (ADS)
Heger, A.; Woosley, S. E.; Spruit, H. C.
2005-06-01
As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun
2014-01-01
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706
Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.
Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M
2017-04-01
The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters
NASA Technical Reports Server (NTRS)
Debes, John H.; Jackson, Brian
2010-01-01
The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.
ERIC Educational Resources Information Center
Wagler, Amy; Wagler, Ron
2013-01-01
The Measure of Acceptance of the Theory of Evolution (MATE) was constructed to be a single-factor instrument that assesses an individual's overall acceptance of evolutionary theory. The MATE was validated and the scores resulting from the MATE were found to be reliable for the population of inservice high school biology teachers. However, many…
ERIC Educational Resources Information Center
Park, Eunil; Kim, Ki Joon
2013-01-01
Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…
Evolutionary dynamics of general group interactions in structured populations
NASA Astrophysics Data System (ADS)
Li, Aming; Broom, Mark; Du, Jinming; Wang, Long
2016-02-01
The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.
The Soldiers in Societies: Defense, Regulation, and Evolution
Tian, Li; Zhou, Xuguo
2014-01-01
The presence of reproductively altruistic castes is one of the primary traits of the eusocial societies. Adaptation and regulation of the sterile caste, to a certain extent, drives the evolution of eusociality. Depending on adaptive functions of the first evolved sterile caste, eusocial societies can be categorized into the worker-first and soldier-first lineages, respectively. The former is marked by a worker caste as the first evolved altruistic caste, whose primary function is housekeeping, and the latter is highlighted by a sterile soldier caste as the first evolved altruistic caste, whose task is predominantly colony defense. The apparent functional differences between these two fundamentally important castes suggest worker-first and soldier-first eusociality are potentially driven by a suite of distinctively different factors. Current studies of eusocial evolution have been focused largely on the worker-first Hymenoptera, whereas understanding of soldier-first lineages including termites, eusocial aphids, gall-dwelling thrips, and snapping shrimp, is greatly lacking. In this review, we summarize the current state of knowledge on biology, morphology, adaptive functions, and caste regulation of the soldier caste. In addition, we discuss the biological, ecological and genetic factors that might contribute to the evolution of distinct caste systems within eusocial lineages. PMID:24644427
Analyzing endocrine system conservation and evolution.
Bonett, Ronald M
2016-08-01
Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Parasitism and the evolutionary ecology of animal personality
Barber, Iain; Dingemanse, Niels J.
2010-01-01
The ecological factors responsible for the evolution of individual differences in animal personality (consistent individual differences in the same behaviour across time and contexts) are currently the subject of intense debate. A limited number of ecological factors have been investigated to date, with most attention focusing on the roles of resource competition and predation. We suggest here that parasitism may play a potentially important, but largely overlooked, role in the evolution of animal personalities. We identify two major routes by which parasites might influence the evolution of animal personality. First, because the risk of acquiring parasites can be influenced by an individual's behavioural type, local parasite regimes may impose selection on personality traits and behavioural syndromes (correlations between personality traits). Second, because parasite infections have consequences for aspects of host ‘state’, parasites might induce the evolution of individual differences in certain types of host behaviour in populations with endemic infections. Also, because infection often leads to specific changes in axes of personality, parasite infections have the potential to decouple behavioural syndromes. Host–parasite systems therefore provide researchers with valuable tools to study personality variation and behavioural syndromes from a proximate and ultimate perspective. PMID:21078659
Wootton, J Timothy
1987-07-01
I examined age at first reproduction of 547 mammalian species to determine the influence of diet and habitat on the evolution of life-history traits. Body mass correlated positively with age at first reproduction, explaining 56% of the variance. Habitat and trophic groups deviated significantly from the allometric curve in a pattern generally consistent with predictions from r/K selection theory and its modifications. However, mammalian orders also deviated significantly from the allometric curve, and different habitat and diet groups contained different ratios of mammalian orders. When the effects of orders were removed, residual deviations did not differ among ecological groups. Adjusting for ecological differences did not eliminate the differences between orders. These results suggest that body mass (or some correlated factor) and phylogeny strongly constrain age at first reproduction. Ecological factors appear to have little effect on the evolution of age at first reproduction. Apparent differences in weight-specific ages at first reproduction within habitats and trophic groups may be the result of ecological selection of order composition in the present, rather than ecologically driven evolution of life history in the past. © 1987 The Society for the Study of Evolution.
Does aquatic foraging impact head shape evolution in snakes?
Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony
2016-01-01
Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887
Evolution of mixing width induced by general Rayleigh-Taylor instability.
Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin
2016-06-01
Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.
Trends in global warming and evolution of matrix protein 2 family from influenza A virus.
Yan, Shao-Min; Wu, Guang
2009-12-01
The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.
Prospects for the Study of Evolution in the Deep Biosphere
Biddle, Jennifer F.; Sylvan, Jason B.; Brazelton, William J.; Tully, Benjamin J.; Edwards, Katrina J.; Moyer, Craig L.; Heidelberg, John F.; Nelson, William C.
2012-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org). PMID:22319515
Prospects for the study of evolution in the deep biosphere.
Biddle, Jennifer F; Sylvan, Jason B; Brazelton, William J; Tully, Benjamin J; Edwards, Katrina J; Moyer, Craig L; Heidelberg, John F; Nelson, William C
2011-01-01
Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo
2015-09-01
We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.
The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model
Bank, Claudia; Bürger, Reinhard; Hermisson, Joachim
2012-01-01
How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability. PMID:22542972
The tempo and mode of evolution: body sizes of island mammals.
Raia, Pasquale; Meiri, Shai
2011-07-01
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
The quantitative theory of within-host viral evolution
NASA Astrophysics Data System (ADS)
Rouzine, Igor M.; Weinberger, Leor S.
2013-01-01
During the 1990s, a group of virologists and physicists began development of a quantitative theory to explain the rapid evolution of human immunodeficiency virus type 1 (HIV-1). This theory also proved to be instrumental in understanding the rapid emergence of drug resistance in patients. Over the past two decades, this theory expanded to account for a broad array of factors important to viral evolution and propelled development of a generalized theory applicable to a broad range of asexual and partly sexual populations with many evolving sites. Here, we discuss the conceptual and theoretical tools developed to calculate the speed and other parameters of evolution, with a particular focus on the concept of ‘clonal interference’ and its applications to untreated patients.
Wagner, Peter J
2012-02-23
Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.
Kin competition and the evolution of cooperation
Platt, Thomas G.; Bever, James D.
2017-01-01
Kin and multilevel selection theories predict that genetic structure is required for the evolution of cooperation. However, local competition among relatives can limit cooperative benefits, antagonizing the evolution of cooperation. We show that several ecological factors determine the extent to which kin competition constrains cooperative benefits. In addition, we argue that cooperative acts that expand local carrying capacity are less constrained by kin competition than other cooperative traits, and are therefore more likely to evolve. These arguments are particularly relevant to microbial cooperation, which often involves the production of public goods that promote population expansion. The challenge now is to understand how an organism’s ecology influences how much cooperative groups contribute to future generations and thereby the evolution of cooperation. PMID:19409651
Monogamy and haplodiploidy act in synergy to promote the evolution of eusociality.
Fromhage, Lutz; Kokko, Hanna
2011-07-19
In eusocial species, some individuals sacrifice their own reproduction for the benefit of others. The evolutionary transition towards eusociality may have been facilitated by ancestral species having a monogamous mating system (the monogamy hypothesis) or a haplodiploid genetic system (the haplodiploidy hypothesis), or it may have been entirely driven by other (ecological) factors. Here we show, using a model that describes the dynamics of insect colony foundation, growth and death, that monogamy and haplodiploidy facilitate the evolution of eusociality in a novel, mutually reinforcing way. Our findings support the recently questioned importance of relatedness for the evolution of eusociality, and simultaneously highlight the importance of explicitly accounting for the ecological rules of colony foundation, growth and death in models of social evolution.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas
2012-09-22
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B.; Zimmermann, Niklaus E.; Salamin, Nicolas
2012-01-01
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs. PMID:22719034
Slowly switching between environments facilitates reverse evolution in small populations.
Tan, Longzhi; Gore, Jeff
2012-10-01
Natural populations must constantly adapt to ever-changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these "genetic distances." As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright-Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Bhat, Virunya S; Meek, M E Bette; Valcke, Mathieu; English, Caroline; Boobis, Alan; Brown, Richard
2017-10-01
The application of chemical-specific toxicokinetic or toxicodynamic data to address interspecies differences and human variability in the quantification of hazard has potential to reduce uncertainty and better characterize variability compared with the use of traditional default or categorically-based uncertainty factors. The present review summarizes the state-of-the-science since the introduction of the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) guidance on chemical-specific adjustment factors (CSAF) in 2005 and the availability of recent applicable guidance including the WHO/IPCS guidance on physiologically-based pharmacokinetic (PBPK) modeling in 2010 as well as the U.S. EPA guidance on data-derived extrapolation factors in 2014. A summary of lessons learned from an analysis of more than 100 case studies from global regulators or published literature illustrates the utility and evolution of CSAF in regulatory decisions. Challenges in CSAF development related to the adequacy of, or confidence in, the supporting data, including verification or validation of PBPK models. The analysis also identified issues related to adequacy of CSAF documentation, such as inconsistent terminology and often limited and/or inconsistent reporting, of both supporting data and/or risk assessment context. Based on this analysis, recommendations for standardized terminology, documentation and relevant interdisciplinary research and engagement are included to facilitate the continuing evolution of CSAF development and guidance.
Santo, Vítor E.; Mano, João F.; Reis, Rui L.
2013-01-01
The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320
Natural selection and the predictability of evolution in Timema stick insects.
Nosil, Patrik; Villoutreix, Romain; de Carvalho, Clarissa F; Farkas, Timothy E; Soria-Carrasco, Víctor; Feder, Jeffrey L; Crespi, Bernard J; Gompert, Zach
2018-02-16
Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time ( r 2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection ( r 2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The relationship between crustal tectonics and internal evolution in the moon and Mercury
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1977-01-01
The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.
Theoretical study of mode evolution in active long tapered multimode fiber.
Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng
2016-08-22
A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.
Model selection as a science driver for dark energy surveys
NASA Astrophysics Data System (ADS)
Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin
2006-07-01
A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.
Nonperturbative Transverse Momentum Effects in p +p and p +A Collisions at PHENIX
NASA Astrophysics Data System (ADS)
Skoby, Michael; Phenix Collaboration
2017-09-01
Due to the non-Abelian nature of QCD, there is a prediction that quarks can become correlated across colliding protons in hadron production processes sensitive to nonperturbative transverse momentum effects. Measuring the evolution of nonperturbative transverse momentum widths as a function of the hard interaction scale can help distinguish these effects from other possibilities. Collins-Soper-Sterman evolution comes directly from the proof of transverse-momentum-dependent (TMD) factorization for processes such as Drell-Yan, semi-inclusive deep-inelastic scattering, and e +e- annihilation and predicts nonperturbative momentum widths to increase with hard scale. Experimental results from proton-proton and proton-nucleus collisions, in which TMD factorization is predicted to be broken, will be presented. The results show that these widths decrease with hard scale, suggesting possible effects from TMD factorization breaking.
ERIC Educational Resources Information Center
Athanasiou, Kyriacos; Papadopoulou, Penelope
2015-01-01
In this study, we make an effort to compare studies that explore the factors related to acceptance of evolutionary theory among Greek and Turkish students-future teachers, using conceptual ecology for biological evolution as the theoretical framework. We aimed to look into the acceptance and the understanding of evolutionary theory and also to…
ERIC Educational Resources Information Center
Jaatinen, Riitta; Saarivirta, Toni
2014-01-01
This study describes the evolution of English language teaching in Finland and looks into the connections of the societal and educational changes in the country as explanatory factors in the process. The results of the study show that the language teaching methodology and the status of foreign languages in Finland are clearly connected to the…
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
Evolution of disease response genes in loblolly pine: insights from candidate genes.
Ersoz, Elhan S; Wright, Mark H; González-Martínez, Santiago C; Langley, Charles H; Neale, David B
2010-12-06
Host-pathogen interactions that may lead to a competitive co-evolution of virulence and resistance mechanisms present an attractive system to study molecular evolution because strong, recent (or even current) selective pressure is expected at many genomic loci. However, it is unclear whether these selective forces would act to preserve existing diversity, promote novel diversity, or reduce linked neutral diversity during rapid fixation of advantageous alleles. In plants, the lack of adaptive immunity places a larger burden on genetic diversity to ensure survival of plant populations. This burden is even greater if the generation time of the plant is much longer than the generation time of the pathogen. Here, we present nucleotide polymorphism and substitution data for 41 candidate genes from the long-lived forest tree loblolly pine, selected primarily for their prospective influences on host-pathogen interactions. This dataset is analyzed together with 15 drought-tolerance and 13 wood-quality genes from previous studies. A wide range of neutrality tests were performed and tested against expectations from realistic demographic models. Collectively, our analyses found that axr (auxin response factor), caf1 (chromatin assembly factor) and gatabp1 (gata binding protein 1) candidate genes carry patterns consistent with directional selection and erd3 (early response to drought 3) displays patterns suggestive of a selective sweep, both of which are consistent with the arm-race model of disease response evolution. Furthermore, we have identified patterns consistent with diversifying selection at erf1-like (ethylene responsive factor 1), ccoaoemt (caffeoyl-CoA-O-methyltransferase), cyp450-like (cytochrome p450-like) and pr4.3 (pathogen response 4.3), expected under the trench-warfare evolution model. Finally, a drought-tolerance candidate related to the plant cell wall, lp5, displayed patterns consistent with balancing selection. In conclusion, both arms-race and trench-warfare models seem compatible with patterns of polymorphism found in different disease-response candidate genes, indicating a mixed strategy of disease tolerance evolution for loblolly pine, a major tree crop in southeastern United States.
Opposing effects of folding and assembly chaperones on evolvability of Rubisco.
Durão, Paulo; Aigner, Harald; Nagy, Péter; Mueller-Cajar, Oliver; Hartl, F Ulrich; Hayer-Hartl, Manajit
2015-02-01
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the fixation of CO2 in photosynthesis. Despite its pivotal role, Rubisco is an inefficient enzyme and thus is a key target for directed evolution. Rubisco biogenesis depends on auxiliary factors, including the GroEL/ES-type chaperonin for folding and the chaperone RbcX for assembly. Here we performed directed evolution of cyanobacterial form I Rubisco using a Rubisco-dependent Escherichia coli strain. Overexpression of GroEL/ES enhanced Rubisco solubility and tended to expand the range of permissible mutations. In contrast, the specific assembly chaperone RbcX had a negative effect on evolvability by preventing a subset of mutants from forming holoenzyme. Mutation F140I in the large Rubisco subunit, isolated in the absence of RbcX, increased carboxylation efficiency approximately threefold without reducing CO2 specificity. The F140I mutant resulted in a ∼55% improved photosynthesis rate in Synechocystis PCC6803. The requirement of specific biogenesis factors downstream of chaperonin may have retarded the natural evolution of Rubisco.
Primate Socioecology: New Insights from Males
NASA Astrophysics Data System (ADS)
Kappeler, Peter M.
Primate males have only recently returned to the center stage of socioecological research. This review surveys new studies that examine variation in the behavior of adult males and their role in social evolution. It is shown that group size, composition, and social behavior are determined not only by resource distribution, predation risk, and other ecological factors, but that life history traits and social factors, especially those related to sexual coercion, can have equally profound consequences for social systems. This general point is illustrated by examining male behavior at three levels: the evolution of permanent associations between males and females, the causes and consequences of variation in the number of males between group-living species, and the determinants of social relationships within and between the sexes. Direct and indirect evidence reviewed in connection with all three questions indicates that the risk of infanticide has been a pervasive force in primate social evolution. Several areas are identified for future research on male life histories that should contribute to a better understanding of male reproductive strategies and corresponding female counterstrategies.
TRF2 and the evolution of the bilateria
Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang
2014-01-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724
Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.
Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan
2017-09-01
The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.
Ecology and evolution of metabolic cross-feeding interactions in bacteria.
D'Souza, Glen; Shitut, Shraddha; Preussger, Daniel; Yousif, Ghada; Waschina, Silvio; Kost, Christian
2018-05-01
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution
Lee, Yuh Chwen G; Karpen, Gary H
2017-01-01
Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI: http://dx.doi.org/10.7554/eLife.25762.001 PMID:28695823
Modeling evolution of dark matter substructure and annihilation boost
NASA Astrophysics Data System (ADS)
Hiroshima, Nagisa; Ando, Shin'ichiro; Ishiyama, Tomoaki
2018-06-01
We study evolution of dark matter substructures, especially how they lose mass and change density profile after they fall in gravitational potential of larger host halos. We develop an analytical prescription that models the subhalo mass evolution and calibrate it to results of N -body numerical simulations of various scales from very small (Earth size) to large (galaxies to clusters) halos. We then combine the results with halo accretion histories and calculate the subhalo mass function that is physically motivated down to Earth-mass scales. Our results—valid for arbitrary host masses and redshifts—have reasonable agreement with those of numerical simulations at resolved scales. Our analytical model also enables self-consistent calculations of the boost factor of dark matter annihilation, which we find to increase from tens of percent at the smallest (Earth) and intermediate (dwarfs) masses to a factor of several at galaxy size, and to become as large as a factor of ˜10 for the largest halos (clusters) at small redshifts. Our analytical approach can accommodate substructures in the subhalos (sub-subhalos) in a consistent framework, which we find to give up to a factor of a few enhancements to the annihilation boost. The presence of the subhalos enhances the intensity of the isotropic gamma-ray background by a factor of a few, and as the result, the measurement by the Fermi Large Area Telescope excludes the annihilation cross section greater than ˜4 ×10-26 cm3 s-1 for dark matter masses up to ˜200 GeV .
Yokoyama, Ken Daigoro; Pollock, David D
2012-01-01
Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.
Yokoyama, Ken Daigoro; Pollock, David D.
2012-01-01
Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068
Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya
2018-01-01
Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.
The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors
NASA Astrophysics Data System (ADS)
Skoglöv, E.; Erikson, A.
2002-11-01
It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.
Di Gregorio, Maria; Gaetani, Lorenzo; Eusebi, Paolo; Floridi, Piero; Picchioni, Antonella; Rosi, Giovanni; Mancini, Andrea; Floridi, Chiara; Baschieri, Francesca; Gentili, Lucia; Sarchielli, Paola; Calabresi, Paolo; Di Filippo, Massimiliano
2018-03-01
The MRI evidence of persistent black holes (pBHs) on T1-weighted images reflects brain tissue loss in multiple sclerosis (MS). The evolution of contrast-enhancing lesions (CELs) into pBHs probably depends on the degree and persistence of focal brain inflammation. The aim of our retrospective study was to evaluate the effect of a single cycle of intravenous methylprednisolone (IVMP), as for MS relapse treatment, on the risk of CELs' evolution into pBHs. We selected 57 patients with CELs on the baseline MRI scan. We evaluated the evolution of CELs into pBHs on a follow-up MRI scan performed after ≥ 6 months in patients exposed and not exposed to IVMP for the treatment of relapse after the baseline MRI. In our cohort, 182 CELs were identified in the baseline MRI and 57 of them (31.3%) evolved into pBHs. In the multivariate analysis, the exposure of CELs to IVMP resulted to be a significant independent protective factor against pBHs' formation (OR 0.28, 95% CI 0.11-0.766, p = 0.005), while ring enhancement pattern and the fact of being symptomatic were significant risk factors for CELs' conversion into pBHs (OR 6.42, 95% CI 2.55-17.27, p < 0.001 and OR 13.19, 95% CI 1.56-288.87, p = 0.037). The exposure of CELs to a cycle of IVMP as for relapse treatment is associated with a lower risk of CELs' evolution into pBHs. Future studies are required to confirm the potential independent protective effect of IVMP on CELs' evolution into pBHs.
Wilson, Keen A; Andrews, Mary E; Rudolf Turner, F; Raff, Rudolf A
2005-01-01
The transcription factors Gsc and Msx are expressed in the oral ectoderm of the indirect-developing sea urchin Heliocidaris tuberculata. Their patterns of expression are highly modified in the direct developer Heliocidaris erythrogramma, which lacks an oral ectoderm. We here test the hypothesis that they are large effect genes responsible for the loss of the oral ectoderm module in the direct-developing larva of H. erythrogramma as well as for the restoration of an overt oral ectoderm in H.e. xH.t. hybrids. We undertook misexpression/overexpression and knockdown assays in the two species and in hybrids by mRNA injection. The results indicate that dramatic changes of function of these transcription factors has occurred. One of these genes, Gsc, has the ability when misexpressed to partially restore oral ectoderm in H. erythrogramma. On the other hand, Msx has lost any oral function and instead has a role in mesoderm proliferation and patterning. In addition, we found that the H. tuberculataGsc is up regulated in H.e. xH.t. hybrids, showing a preferential use of the indirect developing parental gene in the development of the hybrid. We suggest that Gsc qualifies as a gene of large evolutionary effect and is partially responsible for the evolution of direct development of H. erythrogramma. We discuss these results in light of modularity and genetic networks in development, as well as in their implications for the rapid evolution of large morphological changes in development.
Lister, Callum; Arbuckle, Kevin; Jackson, Timothy N W; Debono, Jordan; Zdenek, Christina N; Dashevsky, Daniel; Dunstan, Nathan; Allen, Luke; Hay, Chris; Bush, Brian; Gillett, Amber; Fry, Bryan G
2017-11-01
A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology. Copyright © 2017 Elsevier Inc. All rights reserved.
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-01-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253
Wagner, Peter J.
2012-01-01
Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution. PMID:21795266
Preliminary Study for a Tetrahedron Formation: Quality Factors and Visualization
NASA Technical Reports Server (NTRS)
Guzman, Jose J.; Schiff, Conrad; Bauer, Frank (Technical Monitor)
2002-01-01
Spacecraft flying in tetrahedron formations are excellent for electromagnetic and plasma studies. The quality of the science recorded is strongly affected by the tetrahedron evolution. This paper is a preliminary study on the computation of quality factors and visualization for a formation of four or five satellites. Four of the satellites are arranged geometrically in a tetrahedron shape. If a fifth satellite is present, it is arbitrarily initialized at the geometric center of the tetrahedron. The fifth satellite could act as a collector or as a spare spacecraft. Tetrahedron natural coordinates are employed for the initialization. The natural orbit evolution is visualized in geocentric equatorial inertial and in geocentric solar magnetospheric coordinates.
Constraining the double gluon distribution by the single gluon distribution
Golec-Biernat, Krzysztof; Lewandowska, Emilia; Serino, Mirko; ...
2015-10-03
We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. Furthermore, we study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violatedmore » in agreement with the sum rule.« less
Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice
2015-03-01
Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.
Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.
Siepielski, Adam M; Beaulieu, Jeremy M
2017-04-01
Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Yang, Bo; Tong, Yuting
2017-04-01
With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.
Tempo and mode of climatic niche evolution in Primates.
Duran, Andressa; Pie, Marcio R
2015-09-01
Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant-rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
Duthie, A Bradley; Bocedi, Greta; Reid, Jane M
2016-09-01
Polyandry is often hypothesized to evolve to allow females to adjust the degree to which they inbreed. Multiple factors might affect such evolution, including inbreeding depression, direct costs, constraints on male availability, and the nature of polyandry as a threshold trait. Complex models are required to evaluate when evolution of polyandry to adjust inbreeding is predicted to arise. We used a genetically explicit individual-based model to track the joint evolution of inbreeding strategy and polyandry defined as a polygenic threshold trait. Evolution of polyandry to avoid inbreeding only occurred given strong inbreeding depression, low direct costs, and severe restrictions on initial versus additional male availability. Evolution of polyandry to prefer inbreeding only occurred given zero inbreeding depression and direct costs, and given similarly severe restrictions on male availability. However, due to its threshold nature, phenotypic polyandry was frequently expressed even when strongly selected against and hence maladaptive. Further, the degree to which females adjusted inbreeding through polyandry was typically very small, and often reflected constraints on male availability rather than adaptive reproductive strategy. Evolution of polyandry solely to adjust inbreeding might consequently be highly restricted in nature, and such evolution cannot necessarily be directly inferred from observed magnitudes of inbreeding adjustment. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Aidala, C.; Ajitanand, N. N.
Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less
Birth-order differences can drive natural selection on aging.
Gillespie, Duncan O S; Trotter, Meredith V; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad D
2014-03-01
Senescence-the deterioration of survival and reproductive capacity with increasing age-is generally held to be an evolutionary consequence of the declining strength of natural selection with increasing age. The diversity in rates of aging observed in nature suggests that the rate at which age-specific selection weakens is determined by species-specific ecological factors. We propose that, in iteroparous species, relationships between parental age, offspring birth order, and environment may affect selection on senescence. Later-born siblings have, on average, older parents than do first borns. Offspring born to older parents may experience different environments in terms of family support or inherited resources, factors often mediated by competition from siblings. Thus, age-specific selection on parents may change if the environment produces birth-order related gradients in reproductive success. We use an age-and-stage structured population model to investigate the impact of sibling environmental inequality on the expected evolution of senescence. We show that accelerated senescence evolves when later-born siblings are likely to experience an environment detrimental to lifetime reproduction. In general, sibling inequality is likely to be of particular importance for the evolution of senescence in species such as humans, where family interactions and resource inheritance have important roles in determining lifetime reproduction. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Adare, A.; Aidala, C.; Ajitanand, N. N.; ...
2017-04-04
Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less
Does aquatic foraging impact head shape evolution in snakes?
Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony
2016-08-31
Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).
Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
Wcislo, William T; Tierney, Simon M
2009-02-01
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung
2015-07-27
Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A Model of Substitution Trajectories in Sequence Space and Long-Term Protein Evolution
Usmanova, Dinara R.; Ferretti, Luca; Povolotskaya, Inna S.; Vlasov, Peter K.; Kondrashov, Fyodor A.
2015-01-01
The nature of factors governing the tempo and mode of protein evolution is a fundamental issue in evolutionary biology. Specifically, whether or not interactions between different sites, or epistasis, are important in directing the course of evolution became one of the central questions. Several recent reports have scrutinized patterns of long-term protein evolution claiming them to be compatible only with an epistatic fitness landscape. However, these claims have not yet been substantiated with a formal model of protein evolution. Here, we formulate a simple covarion-like model of protein evolution focusing on the rate at which the fitness impact of amino acids at a site changes with time. We then apply the model to the data on convergent and divergent protein evolution to test whether or not the incorporation of epistatic interactions is necessary to explain the data. We find that convergent evolution cannot be explained without the incorporation of epistasis and the rate at which an amino acid state switches from being acceptable at a site to being deleterious is faster than the rate of amino acid substitution. Specifically, for proteins that have persisted in modern prokaryotic organisms since the last universal common ancestor for one amino acid substitution approximately ten amino acid states switch from being accessible to being deleterious, or vice versa. Thus, molecular evolution can only be perceived in the context of rapid turnover of which amino acids are available for evolution. PMID:25415964
Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.
Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.
2015-01-01
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246
Evolution of functional specialization and division of labor.
Rueffler, Claus; Hermisson, Joachim; Wagner, Günter P
2012-02-07
Division of labor among functionally specialized modules occurs at all levels of biological organization in both animals and plants. Well-known examples include the evolution of specialized enzymes after gene duplication, the evolution of specialized cell types, limb diversification in arthropods, and the evolution of specialized colony members in many taxa of marine invertebrates and social insects. Here, we identify conditions favoring the evolution of division of labor by means of a general mathematical model. Our starting point is the assumption that modules contribute to two different biological tasks and that the potential of modules to contribute to these tasks is traded off. Our results are phrased in terms of properties of performance functions that map the phenotype of modules to measures of performance. We show that division of labor is favored by three factors: positional effects that predispose modules for one of the tasks, accelerating performance functions, and synergistic interactions between modules. If modules can be lost or damaged, selection for robustness can counteract selection for functional specialization. To illustrate our theory we apply it to the evolution of specialized enzymes coded by duplicated genes.
Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing
We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less
Wu, E-Jiao; Yang, Li-Na; Zhu, Wen; Chen, Xiao-Mei; Shang, Li-Ping; Zhan, Jiasui
2016-01-01
Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen. PMID:27193142
Gay, L; Hosken, D J; Vasudev, R; Tregenza, T; Eady, P E
2009-05-01
The evolutionary factors affecting testis size are well documented, with sperm competition being of major importance. However, the factors affecting sperm length are not well understood; there are no clear theoretical predictions and the empirical evidence is inconsistent. Recently, maternal effects have been implicated in sperm length variation, a finding that may offer insights into its evolution. We investigated potential proximate and microevolutionary factors influencing testis and sperm size in the bruchid beetle Callosobruchus maculatus using a combined approach of an artificial evolution experiment over 90 generations and an environmental effects study. We found that while polyandry seems to select for larger testes, it had no detectable effect on sperm length. Furthermore, population density, a proximate indicator of sperm competition risk, was not significantly associated with sperm length or testis size variation. However, there were strong maternal effects influencing sperm length.
Apoptosis in unicellular organisms: mechanisms and evolution.
Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A
2004-10-01
Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.
Definition and Evolution of Transverse Momentum Distributions
NASA Astrophysics Data System (ADS)
Echevarría, Miguel G.; Idilbi, Ahmad; Scimemi, Ignazio
We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.
NASA Astrophysics Data System (ADS)
Aybat, S. Mert; Prokudin, Alexei; Rogers, Ted C.
2012-06-01
The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the transverse-momentum-dependent (TMD) evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD functions that follow from the TMD-factorization theorem. Accordingly, the nonperturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent preliminary COMPASS measurements are consistent with the suppression prescribed by TMD evolution.
The evolution of WRKY transcription factors.
Rinerson, Charles I; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Rushton, Paul J
2015-02-27
The availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain. Only two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways. We propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses of WRKY gene evolution: The "Group I Hypothesis" sees all WRKY genes evolving from Group I C-terminal WRKY domains. The alternative "IIa + b Separate Hypothesis" sees Groups IIa and IIb evolving directly from a single domain algal gene separate from the Group I-derived lineage.
Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei
2017-06-01
The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. Copyright © 2017 Yoshikawa et al.
Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio
2017-01-01
ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. PMID:28331087
NASA Astrophysics Data System (ADS)
Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua
2016-06-01
Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.
Faster-X evolution: Theory and evidence from Drosophila.
Charlesworth, Brian; Campos, José L; Jackson, Benjamin C
2018-02-12
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mert Aybat, Ted Rogers, Alexey Prokudin
In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering atmore » high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.« less
Could Bertrand Russell's barber have bitten his own teeth? A problem of logic and definitions.
Aitken, Kenneth John
2014-08-01
Guiding the positive evolution of behavior is an admirable goal. Wilson et al.'s arguments are based largely on studies of problem correction. The methodology is sound, but not the post hoc ergo procter hoc extrapolation. What is required is evidence that it can proactively generate positive change. The evolution of human behavior to date has been affected by many factors that include unmalleable and unpredicted environmental changes.
[Key morphofunctional transformations in the evolution of chiropterans (Bats, Chiroptera)].
Kovaleva, I M
2014-01-01
Study on the morphology and morphogenesis of wing membranes in Bats has revealed some peculiarities in their structure and development. Understanding the embryogenesis of these animals, as well as attraction of data obtained on their molecular genetics and paleontology, allows one to single out some factors that could have initiated evolutionary modifications in development programs. A scenario of the key morphofunctional transformations in the forelimbs during the evolution of chiropterans is given.
NASA Astrophysics Data System (ADS)
Yoon, Sung-Chul
2017-10-01
Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.
The evolution of headache from childhood to adulthood: a review of the literature
2014-01-01
Headache is one of the most common disorders in childhood, with an estimated 75% of children reporting significant headache by the age of 15 years. Pediatric migraine is the most frequent recurrent headache disorder, occurring in up to 28% of older teenagers. Headaches rank third among the illness-related causes of school absenteeism and result in substantial psychosocial impairment among pediatric patients. The aim of this study was to clarify the evolution of the clinical features of primary headache in the transition from childhood to adulthood through a review of relevant data available in the PubMed and Google Scholar databases for the period 1988 to July 2013. The search strategy identified 15 published articles which were considered eligible for inclusion in the analysis (i.e. relevant to the investigation of pediatric headache outcome). All were carried out after the publication of the first version of the International Classification of Headache Disorders (ICHD-I). The availability of data on the evolution of primary headaches over a period of time is important from both a clinical and a public health perspective. The identification of prognostic factors of the evolution of headache (remission or evolution into another headache form) over time should be an objective of future headache research for the development of prevention strategies. Given that headache is a major factor contributing to school absenteeism and poorer quality of life not only in childhood but also in adolescence, understanding the natural history and the management of the different headache forms is vital for our future. PMID:24641507
The evolution of headache from childhood to adulthood: a review of the literature.
Antonaci, Fabio; Voiticovschi-Iosob, Cristina; Di Stefano, Anna Luisia; Galli, Federica; Ozge, Aynur; Balottin, Umberto
2014-03-18
Headache is one of the most common disorders in childhood, with an estimated 75% of children reporting significant headache by the age of 15 years. Pediatric migraine is the most frequent recurrent headache disorder, occurring in up to 28% of older teenagers. Headaches rank third among the illness-related causes of school absenteeism and result in substantial psychosocial impairment among pediatric patients. The aim of this study was to clarify the evolution of the clinical features of primary headache in the transition from childhood to adulthood through a review of relevant data available in the PubMed and Google Scholar databases for the period 1988 to July 2013.The search strategy identified 15 published articles which were considered eligible for inclusion in the analysis (i.e., relevant to the investigation of pediatric headache outcome). All were carried out after the publication of the first version of the International Classification of Headache Disorders (ICHD-I). The availability of data on the evolution of primary headaches over a period of time is important from both a clinical and a public health perspective. The identification of prognostic factors of the evolution of headache (remission or evolution into another headache form) over time should be an objective of future headache research for the development of prevention strategies. Given that headache is a major factor contributing to school absenteeism and poorer quality of life not only in childhood but also in adolescence, understanding the natural history and the management of the different headache forms is vital for our future.
NASA Astrophysics Data System (ADS)
Holanda, R. F. L.
2018-05-01
In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.
Golan, Guy; Oksenberg, Adi; Peleg, Zvi
2015-09-01
Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
de Souza, Rogério F.; de Carvalho, Marcelo; Matsuo, Tiemi; Zaia, Dimas A. M.
2010-04-01
This paper reports the results of a questionnaire administered to university students, about several questions involving the origin of the Universe and life and biological evolution, as well as questions related to more common scientific themes. As few as between 2.4% (philosophy students) and 14% (geography students) did not accept the theory of evolution, because they believed in creation as described in the Bible. However, between 41.5% (philosophy students) and 71.3% (biology students) did not see any conflict between religion and evolution. About 80% of the students believed that the relationship between lung cancer and smoking is well established by science, but this number falls to 65% for biological evolution and 28.9% for the big bang theory. It should be pointed out that for 24.5% and 7.4% of the students the big bang theory and biological evolution, respectively, are poorly established by science. The students who self-reported being Christian but not Roman Catholic are more conservative in the acceptance of biological evolution and the old age of Earth and the Universe than are other groups of students. Other factors, such as family income and the level of education of parents, appear to influence the students' acceptance of themes related to the origin of the Universe and biological evolution.
Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.
Li, Xinguo; Wu, Harry X; Southerton, Simon G
2010-06-21
Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.
Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants
2010-01-01
Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution. PMID:20565927
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).
Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T
2014-10-01
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Martinez, Christopher M; Sparks, John S
2017-09-01
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
The D/H ratio and the evolution of water in the terrestrial planets.
de Bergh, C
1993-02-01
The presence of liquid water at the surface of the Earth has played a major role in the biological evolution of the Earth. None of the other terrestrial planets--Mercury, Venus and Mars--has liquid water at its surface. However, it has been suggested, since the early seventies, from both geological and atmospheric arguments that, although Venus and Mars are presently devoid of liquid water, their surfaces could have been partially or completely covered by water at some time of their evolution. There are many possible diagnostics of the long-term evolution of the planets, either from the present characteristics of their surfaces or from their present atmospheric compositions. Among them, the present value of the D/H ratio is of particular interest, although its significance in terms of long term evolution has been challenged by some authors. Recent progress has been made in this field. We now have evidence for higher D/H ratios on Mars and Venus than on Earth, with an enrichment factor of the order of 5 on Mars, and about 100 on Venus. Any scenario for the evolution of these planets must take this into The most recent models on the evolution of Mars and Venus are reviewed in light of these new measurements.
Constructal Law of Vascular Trees for Facilitation of Flow
Razavi, Mohammad S.; Shirani, Ebrahim; Salimpour, Mohammad Reza; Kassab, Ghassan S.
2014-01-01
Diverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures. PMID:25551617
Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2015-01-01
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Evolutionary rescue of a parasite population by mutation rate evolution.
Greenspoon, Philip B; Mideo, Nicole
2017-10-01
The risk of antibiotic resistance evolution in parasites is a major problem for public health. Identifying factors which promote antibiotic resistance evolution is thus a priority in evolutionary medicine. The rate at which new mutations enter the parasite population is one important predictor; however, mutation rate is not necessarily a fixed quantity, as is often assumed, but can itself evolve. Here we explore the possible impacts of mutation rate evolution on the fate of a disease circulating in a host population, which is being treated with drugs, the use of which varies over time. Using an evolutionary rescue framework, we find that mutation rate evolution provides a dramatic increase in the probability that a parasite population survives treatment in only a limited region, while providing little or no advantage in other regions. Both epidemiological features, such as the virulence of infection, and population genetic parameters, such as recombination rate, play important roles in determining the probability of evolutionary rescue and whether mutation rate evolution enhances the probability of evolutionary rescue or not. While efforts to curtail mutation rate evolution in parasites may be worthwhile under some circumstances, our results suggest that this need not always be the case. Copyright © 2017 Elsevier Inc. All rights reserved.
Klug, Hope; Bonsall, Michael B
2007-12-01
Parental care and filial cannibalism (the consumption of one's own offspring) co-occur in many animals. While parental care typically increases offspring survival, filial cannibalism involves the killing of one's young. Using an evolutionary ecology approach, we evaluate the importance of a range of factors on the evolution of parental care and filial cannibalism. Parental care, no care/total abandonment, and filial cannibalism evolved and often coexisted over a range of parameter space. While no single benefit was essential for the evolution of filial cannibalism, benefits associated with adult or offspring survival and/or reproduction facilitated the evolution of cannibalism. Our model highlights the plausibility of a range of alternative hypotheses. Specifically, the evolution of filial cannibalism was enhanced if (1) parents could selectively cannibalize lower-quality offspring, (2) filial cannibalism increased egg maturation rate, (3) energetic benefits of eggs existed, or (4) cannibalism increased a parent's reproductive rate (e.g., through mate attractiveness). Density-dependent egg survivorship alone did not favor the evolution of cannibalism. However, when egg survival was density dependent, filial cannibalism invaded more often when the density dependence was relatively more intense. Our results suggest that population-level resource competition potentially plays an important role in the evolution of both parental care and filial cannibalism.
Duthie, A. Bradley; Bocedi, Greta; Reid, Jane M.
2016-01-01
Polyandry is often hypothesized to evolve to allow females to adjust the degree to which they inbreed. Multiple factors might affect such evolution, including inbreeding depression, direct costs, constraints on male availability, and the nature of polyandry as a threshold trait. Complex models are required to evaluate when evolution of polyandry to adjust inbreeding is predicted to arise. We used a genetically explicit individual‐based model to track the joint evolution of inbreeding strategy and polyandry defined as a polygenic threshold trait. Evolution of polyandry to avoid inbreeding only occurred given strong inbreeding depression, low direct costs, and severe restrictions on initial versus additional male availability. Evolution of polyandry to prefer inbreeding only occurred given zero inbreeding depression and direct costs, and given similarly severe restrictions on male availability. However, due to its threshold nature, phenotypic polyandry was frequently expressed even when strongly selected against and hence maladaptive. Further, the degree to which females adjusted inbreeding through polyandry was typically very small, and often reflected constraints on male availability rather than adaptive reproductive strategy. Evolution of polyandry solely to adjust inbreeding might consequently be highly restricted in nature, and such evolution cannot necessarily be directly inferred from observed magnitudes of inbreeding adjustment. PMID:27464756
NASA Astrophysics Data System (ADS)
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of nonperturbative contributions to the evolution of transverse-momentum-dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that nonperturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and nonperturbative. We make a motivated proposal for the parametrization of the nonperturbative part of the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical nonperturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A (bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A (bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell-Yan experiments to measure the Sivers function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae
The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factormore » of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.« less
Phylogenomics of MADS-Box Genes in Plants - Two Opposing Life Styles in One Gene Family.
Gramzow, Lydia; Theißen, Günter
2013-09-12
The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.
Santana, Sharlene E.; Dobson, Seth D.; Diogo, Rui
2014-01-01
Facial colour patterns and facial expressions are among the most important phenotypic traits that primates use during social interactions. While colour patterns provide information about the sender's identity, expressions can communicate its behavioural intentions. Extrinsic factors, including social group size, have shaped the evolution of facial coloration and mobility, but intrinsic relationships and trade-offs likely operate in their evolution as well. We hypothesize that complex facial colour patterning could reduce how salient facial expressions appear to a receiver, and thus species with highly expressive faces would have evolved uniformly coloured faces. We test this hypothesis through a phylogenetic comparative study, and explore the underlying morphological factors of facial mobility. Supporting our hypothesis, we find that species with highly expressive faces have plain facial colour patterns. The number of facial muscles does not predict facial mobility; instead, species that are larger and have a larger facial nucleus have more expressive faces. This highlights a potential trade-off between facial mobility and colour patterning in primates and reveals complex relationships between facial features during primate evolution. PMID:24850898
The Evolution of Epidemic Suicide on Guam: Context and Contagion
ERIC Educational Resources Information Center
Booth, Heather
2010-01-01
Thirty years of suicide rates for Guam were analyzed by age, sex, period, and cohort. Youth suicide increased rapidly in the 1990s; certain cohorts have higher rates. Four explanatory factors are discussed, including ecological factors and migration from the Federated States of Micronesia. Direct and indirect suicide contagion followed the death…
ERIC Educational Resources Information Center
Marek, Michael W.; Wu, Wen-Chi Vivian
2014-01-01
This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…
Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin
1998-07-01
Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.
Different evolution dynamics of vector solitons depending on their polarization states
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chen, Guo-Jie
2014-03-01
There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.
Chen, Rubing; Vasilakis, Nikos
2011-01-01
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence. PMID:21994796
Diet and the evolution of the earliest human ancestors
Teaford, Mark F.; Ungar, Peter S.
2000-01-01
Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758
Geography and Similarity of Regional Cuisines in China
Zhu, Yu-Xiao; Huang, Junming; Zhang, Zi-Ke; Zhang, Qian-Ming; Zhou, Tao; Ahn, Yong-Yeol
2013-01-01
Food occupies a central position in every culture and it is therefore of great interest to understand the evolution of food culture. The advent of the World Wide Web and online recipe repositories have begun to provide unprecedented opportunities for data-driven, quantitative study of food culture. Here we harness an online database documenting recipes from various Chinese regional cuisines and investigate the similarity of regional cuisines in terms of geography and climate. We find that geographical proximity, rather than climate proximity, is a crucial factor that determines the similarity of regional cuisines. We develop a model of regional cuisine evolution that provides helpful clues for understanding the evolution of cuisines and cultures. PMID:24260166
Geography and similarity of regional cuisines in China.
Zhu, Yu-Xiao; Huang, Junming; Zhang, Zi-Ke; Zhang, Qian-Ming; Zhou, Tao; Ahn, Yong-Yeol
2013-01-01
Food occupies a central position in every culture and it is therefore of great interest to understand the evolution of food culture. The advent of the World Wide Web and online recipe repositories have begun to provide unprecedented opportunities for data-driven, quantitative study of food culture. Here we harness an online database documenting recipes from various Chinese regional cuisines and investigate the similarity of regional cuisines in terms of geography and climate. We find that geographical proximity, rather than climate proximity, is a crucial factor that determines the similarity of regional cuisines. We develop a model of regional cuisine evolution that provides helpful clues for understanding the evolution of cuisines and cultures.
Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.
Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V
2017-04-01
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.
Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa
2018-05-01
A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.
Evolution equation for quantum entanglement
NASA Astrophysics Data System (ADS)
Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas
2008-02-01
Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.
[Theory of V.A. dogiel on polymerization and oligomerization as a general integration concept].
Makmaev, Iu V
2010-01-01
The theory of V.A. Dogiel on the significance of polymerization and ligomerization processes in the evolution of Protozoa and Metazoa is compared with the paper of I.I. Schmalhauisen (1972) on factors and steps of aromorph evolution. Dogiel's theory is considered as a general integration conception. Four steps are distinguished in the evolution of biological systems: (1) formation of morphofunctional system by units of the lower structural level, (2) polymerization of morphofunctional units of a system, (3) oligomerization of morphofunctional units of system by means of their reduction, uniting, or differentiation, (4) integration and stabilization of a system owing to development of morphofunctional connections between its parts.
NASA Astrophysics Data System (ADS)
Kyzer, Peggy Mckewen
Organizations in science and science education call for students to have a thorough understanding of the theory of evolution. Yet many high school biology teachers do not teach evolution and/or include creationism in their instruction (National Academy of Science, 1998). Historically, the controversy surrounding evolution has created tension for teachers. This case study explored the sociocultural influences related to teaching evolution in three Southern 10th-grade public high school biology classrooms. It also explored the socially and culturally embedded influences on teachers' instructional goals and personal perspectives toward evolution as well as modification of instruction when evolution is taught. Theoretically framed using symbolic interactionism and sociocultural theory, data were collected between October 2003 and April 2004 and included classroom observations two to three times per week, artifacts, and in-depth interviews of the participating teachers, their science department chairpersons, their students, and a Protestant minister. The classroom teachers were unaware of the focus of the study until after evolution was taught. The analysis used in this study was an inductive, interpretative approach that allowed exploration of the sociocultural influences that affect how teachers teach evolution. The sociocultural influences and the lived experiences of each teacher created a continuum for teaching evolution. One of the participating teachers who was heavily involved in the community and one of its fundamentalist churches elected to avoid teaching evolution. Another participating teacher at the same school integrated the theory of evolution in every unit. The third teacher who taught in another school elected to teach evolution in a superficial manner to avoid conflict. The data revealed that the participating teachers' sociocultural situatedness influenced their decisions and instruction on evolution. The influence of strong religious beliefs within the Southern culture was a theme that cut across all the teachers' decisions. In particular, religious beliefs made teaching human evolution difficult. Other recurring themes included the influence of the textbook and factors that served as escape routes for the teachers electing to avoid evolution. The escape routes included the pressure of time, the mixed messages from the state board of education, and the double-edged sword of teacher autonomy.
NASA Astrophysics Data System (ADS)
Fowler, Samantha R.
The purpose of this study was to explore the evolution science content used during college students' negotiation of biology-based socioscientific issues (SSI) and examine how it related to students' conceptual understanding and acceptance of biological evolution. Specific research questions were, (1a) what specific evolutionary science content do college students evoke during SSI negotiation, (1b) what is the depth of the evolutionary science content reflected in college students. SSI negotiation, and (2) what is the nature of the interaction between evolution understanding and evolution acceptance as they relate to depth of use of evolution content during SSI negotiation? The Socioscientific Issues Questionnaire (SSI-Q) was developed using inductive data analysis to examine science content use and to develop a rubric for measuring depth of evolutionary science content use during SSI negotiation. Sixty upper level undergraduate biology and non-biology majors completed the SSI-Q and also the Conceptual Inventory of Natural Selection (CINS: Anderson, Fisher, & Norman, 2002) to measure evolution understanding and the Measure of Acceptance of the Theory of Evolution (MATE: Rutledge & Warden, 1999) to measure evolution acceptance. A multiple regression analysis tested for interaction effects between the predictor variables, evolution understanding and evolution acceptance. Results indicate that college students primarily use science concepts related to evolution to negotiate biology-based SSI: variation in a population, inheritance of traits, differential success, and change through time. The hypothesis that the extent of one's acceptance of evolution is a mitigating factor in how evolution content is evoked during SSI negotiation was supported by the data. This was seen in that evolution was the predominant science content used by participants for each of the three SSI scenarios used in this study and used consistently throughout the three SSI scenarios. In addition to its potential to assess aspects of argumentation, a modification of the SSI-Q could be used for further study about students' misconceptions about evolution or scientific literacy, if it is defined as one's tendency to utilize science content during a decision-making process within an SSI context.
Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model
Surcel, Mihaela
2017-01-01
We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC). C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL)-1-beta, IL-6, IL-10, IL-12 (p70), interferon (IFN)-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein (MIP)-1alpha, monocyte chemoattractant protein (MCP-1), and keratinocyte-derived chemokine (KC). Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model. PMID:29318162
Expanding the eco-evolutionary context of herbicide resistance research.
Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M
2014-09-01
The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.
Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes
Holzman, Roi; Collar, David C.; Price, Samantha A.; Hulsey, C. Darrin; Thomson, Robert C.; Wainwright, Peter C.
2012-01-01
Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution. PMID:21993506
Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes.
Holzman, Roi; Collar, David C; Price, Samantha A; Hulsey, C Darrin; Thomson, Robert C; Wainwright, Peter C
2012-04-07
Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.
Toju, Hirokazu; Sota, Teiji
2009-09-01
One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.
Chaos and the (un)predictability of evolution in a changing environment
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-01-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104
NASA Astrophysics Data System (ADS)
Lee, G. M.; McGee, P. A.; Oldroyd, B. P.
2013-03-01
The queens of many eusocial insect species are polyandrous. The evolution of polyandry from ancestral monoandry is intriguing because polyandry undermines the kin-selected benefits of high intracolonial relatedness that are understood to have been central to the evolution of eusociality. An accumulating body of evidence suggests that polyandry evolved from monoandry in part because genetically diverse colonies better resist infection by pathogens. However, a core assumption of the "parasite-pathogen hypothesis", that there is variation in virulence among strains of pathogens, remains largely untested in vivo. Here, we demonstrate variation in virulence among isolates of Ascosphaera apis, the causative organism of chalkbrood disease in its honey bee ( Apis mellifera) host. More importantly, we show a pathogen-host genotypic interaction for resistance and pathogenicity. Our findings therefore support the parasite-parasite hypothesis as a factor in the evolution of polyandry among eusocial insects.
A conceptual framework for the evolutionary origins of multicellularity
NASA Astrophysics Data System (ADS)
Libby, Eric; Rainey, Paul B.
2013-06-01
The evolution of multicellular organisms from unicellular counterparts involved a transition in Darwinian individuality from single cells to groups. A particular challenge is to understand the nature of the earliest groups, the causes of their evolution, and the opportunities for emergence of Darwinian properties. Here we outline a conceptual framework based on a logical set of possible pathways for evolution of the simplest self-replicating groups. Central to these pathways is the recognition of a finite number of routes by which genetic information can be transmitted between individual cells and groups. We describe the form and organization of each primordial group state and consider factors affecting persistence and evolution of the nascent multicellular forms. Implications arising from our conceptual framework become apparent when attempting to partition fitness effects at individual and group levels. These are discussed with reference to the evolutionary emergence of individuality and its manifestation in extant multicellular life—including those of marginal Darwinian status.
Modelling language evolution: Examples and predictions
NASA Astrophysics Data System (ADS)
Gong, Tao; Shuai, Lan; Zhang, Menghan
2014-06-01
We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.
Evolution of helping and harming in heterogeneous populations.
Rodrigues, António M M; Gardner, Andy
2012-07-01
There has been much interest in understanding how demographic factors can mediate social evolution in viscous populations. Here, we examine the impact of heterogeneity in patch quality--that is, the availability of reproductive resources for each breeder--upon the evolution of helping and harming behaviors. We find that, owing to a cancellation of relatedness and kin competition effects, the evolution of obligate and facultative helping and harming is not influenced by the degree of viscosity in populations characterized by either spatial or temporal heterogeneity in patch quality. However, facultative helping and harming may be favored when there is both spatial and temporal heterogeneity in patch quality, with helping and harming being favored in both high-quality and low-quality patches. We highlight the prospect for using kin selection theory to explain within-population variation in social behavior, and point to the need for further theoretical and empirical investigation of this topic. © 2012 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu
2014-12-15
Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. Themore » temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less
Renn, Jürgen
2015-01-01
ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188
Override the controversy: Analytic thinking predicts endorsement of evolution.
Gervais, Will M
2015-09-01
Despite overwhelming scientific consensus, popular opinions regarding evolution are starkly divided. In the USA, for example, nearly one in three adults espouse a literal and recent divine creation account of human origins. Plausibly, resistance to scientific conclusions regarding the origins of species-like much resistance to other scientific conclusions (Bloom & Weisberg, 2007)-gains support from reliably developing intuitions. Intuitions about essentialism, teleology, agency, and order may combine to make creationism potentially more cognitively attractive than evolutionary concepts. However, dual process approaches to cognition recognize that people can often analytically override their intuitions. Two large studies (total N=1324) found consistent evidence that a tendency to engage analytic thinking predicted endorsement of evolution, even controlling for relevant demographic, attitudinal, and religious variables. Meanwhile, exposure to religion predicted reduced endorsement of evolution. Cognitive style is one factor among many affecting opinions on the origin of species. Copyright © 2015 Elsevier B.V. All rights reserved.
Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh
2012-05-01
Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.
Hypocretin underlies the evolution of sleep loss in the Mexican cavefish
Jaggard, James B; Stahl, Bethany A; Lloyd, Evan; Prober, David A; Duboue, Erik R
2018-01-01
The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation. PMID:29405117
Mistranslation can enhance fitness through purging of deleterious mutations
Bratulic, Sinisa; Toll-Riera, Macarena; Wagner, Andreas
2017-01-01
Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. PMID:28524864
Weis, Matthew Robert; Zhang, Peng; Lau, Yue Ying; ...
2014-12-17
Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces.more » The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less
Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.
Marvig, Rasmus Lykke; Sommer, Lea Mette; Molin, Søren; Johansen, Helle Krogh
2015-01-01
Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.
Patterson, Larissa B.; Bain, Emily J.; Parichy, David M.
2014-01-01
Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation. PMID:25374113
Secreted Proteins Defy the Expression Level–Evolutionary Rate Anticorrelation
Feyertag, Felix; Berninsone, Patricia M.; Alvarez-Ponce, David
2017-01-01
The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E–R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein–protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E–R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E–R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E–R anticorrelation. PMID:28007979
Three-dimensional numerical simulation of the 20 June 1991, Orlando microburst
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1992-01-01
On 20 June 1991, NASA's Boeing 737, equipped with in-situ and look-ahead wind-shear detection systems, made direct low-level penetrations (300-350 m AGL) through a microburst during several stages of its evolution. This microburst was located roughly 20 km northeast of Orlando International Airport and was monitored by a Terminal Doppler Weather Radar (TDWR) located about 10 km south of the airport. The first NASA encounter with this microburst (Event 142), at approximately 2041 UTC, was during its intensification phase. At flight level, in-situ measurements indicated a peak 1-km (averaged) F-factor of approximately 0.1. The second NASA encounter (Event 143) occurred at approximately 2046 UTC, about the time of microburst peak intensity. It was during this penetration that a peak 1-km F-factor of approximately 17 was encountered, which was the largest in-situ measurement of the 1991 summer deployment. By the third encounter (Event 144), at approximately 2051 UTC, the microburst had expanded into a macroburst. During this phase of evolution, an in-situ 1-km F-factor of 0.08 was measured. The focus of this paper is to examine this microburst via numerical simulation from an unsteady, three-dimensional meteorological cloud model. The simulated high-resolution data fields of wind, temperature, radar reflectivity factor, and precipitation are closely examined so as to derive information not readily available from 'observations' and to enhance our understanding of the actual event. Characteristics of the simulated microburst evolution are compared with TDWR and in-situ measurements.
The effect of the pore-fluid factor on strength and failure mechanism of Wilkeson sandstone
NASA Astrophysics Data System (ADS)
Kätker, A. K.; Rempe, M.; Renner, J.
2016-12-01
The effective stress law, σn,eff = σn - αpf, is a central tool in analysing phenomena related to hydromechanical coupling, such as fluid-induced seismicity or aftershock activity. The effective-stress coefficient α assumes different values for specific physical properties and may deviate from 1. The limited number of studies suggest that brittle compressive strength obeys an effective-stress law when effective drainage is achieved. Yet, open questions remain regarding, e.g., the role of the loading path. We performed suites of triaxial compression tests on samples of Wilkeson sandstone at a range of pore-fluid pressures but identical effective confining pressure (60, 100, and 120 MPa) maintaining the pore-fluid factor λ = pf / pc constant (0.05, 0.2, 0.4, 0.55) during the isostatic loading stage to ensure uniform loading paths. Samples were shortened with a strain rate of 4×10-7 s-1 yielding drained conditions. All tests were terminated at a total axial strain of 4.5% for comparability of microstructures. The tests also included continuous permeability determination and ultrasonic p-wave-velocity measurements to monitor microstructural evolution. Results from experiments conducted at peff = 100 MPa show that dry samples exhibit a higher peak strength and brittle failure while water-saturated samples tend to deform at lower stress by cataclastic flow indicating physico-chemical weakening. Regardless of pore-fluid factor, the saturated experiments exhibit similar peak and residual strength. Differences in failure mechanism (degree of macroscopic localization) and volumetric strain evolution are however noticed, albeit without systematic relation to pore-fluid factor. Microstructure analyses by optical and scanning electron microscopy revealed an evolution from localized shear zones in dry experiments and experiments with a low pore-fluid factor to rather distributed cataclastic flow for experiments with high pore fluid factors. Yet, mechanical and structural differences observed so far may result from sample-to-sample variability and the proximity of the experimental conditions to the brittle-ductile transition.
Proton structure functions at small x
Hentschinski, Martin
2015-11-03
Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. As a result, predictions for the structure function F L are found to be in agreement with the existing HERA data.« less
Black-hole universe: time evolution.
Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi
2013-10-18
Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.
Evolution of the transcription complex during sporulation of Bacillus subtilis.
Brevet, J
1976-01-01
Ribonucleic acid polymerase activity in partially purified extract of cells of Bacillus subtilis harvested at different times (t-1, to, t1, and t2) was studied by zone centrifugation. During the course of sporulation, vegetative sigma-factor activity decreased and the transcription complex lost some of its affinity for active sigma factor. The complex underwent a two-stage change in sedimentation value, from 14.5S in vegetative growth phase to a 13S species very early in sporulation to a 16S species at later times. Two SpoO mutants have been studied by zone centrifugation. One strain, a rifampin-resistant (RfmR) mutant, failed to show any modification of the transcription complex, whereas the other, a Rfms strain, underwent a partial evolution of the transcription complex after to.
Foth, Christian; Hedrick, Brandon P; Ezcurra, Martin D
2016-01-01
Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs. Thus, the current work represents an exploratory analysis. To better understand the cranial ontogeny and the impact of heterochrony on skull evolution in saurischians, the data set that we present here must be expanded and complemented with further sampling from future fossil discoveries, especially of juvenile individuals.
A new paradigma on the plant evolution: from a natural evolution to an artificial evolution?
Bennici, Andrea
2005-01-01
After evidencing the great importance of plants for animals and humans in consequence of the photosynthesis, several considerations on plant evolution are made. One of the peculiar characteristics of the plant is the sessile property, due especially to the cell wall. This factor, principally, strengthened by the photosynthetic process, determined the particular developmental pattern of the plant, which is characterized by the continuous formation of new organs. The plant immobility, although negative for its survival, has been, in great part, overcome by the acquisition of the capacity of adaptation (plasticity) to the environmental stresses and changes, and the establishment of more adapted genotypes. This capacity to react to the external signals induced Trewavas to speak of "plant intelligence". The plant movement incapacity and the evolution of the sexual reproduction system were strongly correlated. In this context, the evolution of the flower in the Angiosperms has been particularly important to allow the male gamete to fertilize the immobile female gamete. Moreover, the formation of fruit and seed greatly improved the dispersal and conservation of the progeny in the environment. With the flower, mechanisms to favour the outcrossing among different individuals appeared, which are essential to increase the genetic variability and, then, the plant evolution itself. Although the Angiosperms seem highly evolved, the plant evolution is not surely finished, because many reported morpho-physiological processes may be still considered susceptible of further improvement. In the last years the relationships among humans, plants and environment are becoming closer and closer. This is due to the use of the DNA recombinant techniques with the aim to modify artificially plant characters. Therefore, the risk of a plant evolution strongly directed towards practical or commercial objectives, or "an artificial evolution", may be hypothesized.
On the thermodynamics of multilevel evolution.
Tessera, Marc; Hoelzer, Guy A
2013-09-01
Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Scale factor duality for conformal cyclic cosmologies
NASA Astrophysics Data System (ADS)
Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.
2016-11-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
Jabbour, Florian; Ronse De Craene, Louis P; Nadot, Sophie; Damerval, Catherine
2009-10-01
Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty. METHODS; The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors. In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla. It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.
Jabbour, Florian; Ronse De Craene, Louis P.; Nadot, Sophie; Damerval, Catherine
2009-01-01
Background and Aims Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty. Methods The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors. Key Results In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla. Conclusions It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait. PMID:19608573
Low-Resolution Vision-at the Hub of Eye Evolution.
Nilsson, Dan-E; Bok, Michael J
2017-11-01
Simple roles for photoreception are likely to have preceded more demanding ones such as vision. The driving force behind this evolution is the improvement and elaboration of animal behaviors using photoreceptor input. Because the basic role for all senses aimed at the external world is to guide behavior, we argue here that understanding this "behavioral drive" is essential for unraveling the evolutionary past of the senses. Photoreception serves many different types of behavior, from simple shadow responses to visual communication. Based on minimum performance requirements for different types of tasks, photoreceptors have been argued to have evolved from non-directional receptors, via directional receptors, to low-resolution vision, and finally to high-resolution vision. Through this sequence, the performance requirements on the photoreceptors have gradually changed from broad to narrow angular sensitivity, from slow to fast response, and from low to high contrast sensitivity during the evolution from simple to more advanced and demanding behaviors. New behaviors would only evolve if their sensory performance requirements to some degree overlap with the requirements of already existing behaviors. This need for sensory "performance continuity" must have determined the order by which behaviors have evolved and thus been an important factor guiding animal evolution. Naturally, new behaviors are most likely to evolve from already existing behaviors with similar neural processing needs and similar motor responses, pointing to "neural continuity" as another guiding factor in sensory evolution. Here we use these principles to derive an evolutionary tree for behaviors driven by photoreceptor input. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution
Kovchegov, Yuri V.; Sievert, Matthew D.
2015-12-24
We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber–Gribov–Mueller/McLerran–Venugopalan approximation to allow for the possibility of spin–orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large “nucleus.” To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer–Mulders distribution. Here, we observe that spin–orbit coupling leads to mixing betweenmore » different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon.« less
Expected rate of fisheries-induced evolution is slow.
Andersen, Ken H; Brander, Keith
2009-07-14
Commercial fisheries exert high mortalities on the stocks they exploit, and the consequent selection pressure leads to fisheries-induced evolution of growth rate, age and size at maturation, and reproductive output. Productivity and yields may decline as a result, but little is known about the rate at which such changes are likely to occur. Fisheries-induced evolution of exploited populations has recently become a subject of concern for policy makers, fisheries managers, and the general public, with prominent calls for mitigating management action. We make a general evolutionary impact assessment of fisheries by calculating the expected rate of fisheries-induced evolution and the consequent changes in yield. Rates of evolution are expected to be approximately 0.1-0.6% per year, and the consequent reductions in fisheries yield are <0.7% per year. These rates are at least a factor of 5 lower than published values based on experiments and analyses of population time series, and we explain why the published rates may be overestimates. Dealing with evolutionary effects of fishing is less urgent than reducing the direct detrimental effects of overfishing on exploited stocks and on their marine ecosystems.
On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission
NASA Astrophysics Data System (ADS)
Yuan, Zunli; Wang, Jiancheng
2012-01-01
The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.
Barros, F C; Herrel, A; Kohlsdorf, T
2011-11-01
Habitat usage comprises interactions between ecological parameters and organismal capacities, and the selective pressures that ultimately determine the outcome of such processes in an evolutionary scale may be conflicting when the same morphological structure is recruited for different activities. Here, we investigate the roles of diet and locomotion in the evolution of cranial design in gymnophthalmid lizards and test the hypothesis that microhabitat use drives head shape evolution, particularly in head-first burrowers. Morphological factors were analysed in relation to continuous ecological indexes (prey hardness and substrate compactness) using conventional and phylogenetic approaches. Results suggest that the evolution of head morphology in Gymnophthalmidae was shaped under the influence of microhabitat use rather than diet: burrowers have shorter heads with lower rostral angulation, independently of the prey consumed. Food preferences appear to be relatively conserved throughout the phylogeny of the group, which may have permitted the extensive radiation of gymnophthalmids into fossorial microhabitats. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
The Evolution of Clutch Size in Hosts of Avian Brood Parasites.
Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna
2017-11-01
Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
NASA Astrophysics Data System (ADS)
Losh, Susan Carol; Nzekwe, Brandon
2011-05-01
Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs among 540 female and 123 male upperclass preservice teachers, comparing them with representative samples of comparably educated American adults. Future teachers resembled national adults on basic science knowledge. Their scores on evolution; creationism; intelligent design; fantastic beasts; magic; and extraterrestrials indices depended on the topic. Exempting science education, preservice teachers rejected evolution, accepting Biblical creation and intelligent design accounts. Sizable minorities "awaited more evidence" about fantastic beasts, magic, or extraterrestrials. Although gender, disciplinary major, grade point average, science knowledge, and two religiosity measures related to beliefs about evolution-creation, these factors were generally unassociated with the other indices. The findings suggest more training is needed for preservice educators in the critical evaluation of material evidence. We also discuss the judicious use of pseudoscience beliefs in such training.
Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover
2014-01-01
The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.
Hite, Jessica L; Cressler, Clayton E
2018-05-05
What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
NASA Technical Reports Server (NTRS)
Goebel, Kai; Vachtsevanos, George; Orchard, Marcos E.
2013-01-01
Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage.
Utilization of PD modalities: evolution.
Venkataraman, Vijaya; Nolph, Karl D
2002-01-01
In the early 1960s, peritoneal dialysis (PD) was introduced as a form of long-term maintenance therapy in patients with end-stage renal disease (ESRD). We have come a long way since. Increasing understanding of peritoneal kinetic behavior, its innovative manipulation to meet patient needs, critical monitoring of clinical outcomes, and parallel development in technology have all contributed to the worldwide success of the therapy over the past four decades. In this article we review the evolution of the various PD modalities in the context of these factors.
Examining evolving performance on the Force Concept Inventory using factor analysis
NASA Astrophysics Data System (ADS)
Semak, M. R.; Dietz, R. D.; Pearson, R. H.; Willis, C. W.
2017-06-01
The application of factor analysis to the Force Concept Inventory (FCI) has proven to be problematic. Some studies have suggested that factor analysis of test results serves as a helpful tool in assessing the recognition of Newtonian concepts by students. Other work has produced at best ambiguous results. For the FCI administered as a pre- and post-test, we see factor analysis as a tool by which the changes in conceptual associations made by our students may be gauged given the evolution of their response patterns. This analysis allows us to identify and track conceptual linkages, affording us insight as to how our students have matured due to instruction. We report on our analysis of 427 pre- and post-tests. The factor models for the pre- and post-tests are explored and compared along with the methodology by which these models were fit to the data. The post-test factor pattern is more aligned with an expert's interpretation of the questions' content, as it allows for a more readily identifiable relationship between factors and physical concepts. We discuss this evolution in the context of approaching the characteristics of an expert with force concepts. Also, we find that certain test items do not significantly contribute to the pre- or post-test factor models and attempt explanations as to why this is so. This may suggest that such questions may not be effective in probing the conceptual understanding of our students.
Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E.
2016-01-01
Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this ‘ancient’ fern lineage across the tropics. PMID:27412279
Evolution of olfaction in non-avian theropod dinosaurs and birds
Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.
2011-01-01
Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. PMID:21490022
Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E
2016-07-13
Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. © 2016 The Author(s).
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John; Rogers, Ted
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
Evolution equation for quantum coherence
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Genomic basis for the convergent evolution of electric organs
Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.
2017-01-01
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089
Monitoring of the effect of biological activity on the pedogenesis of a constructed Technosol
NASA Astrophysics Data System (ADS)
Salifou Jangorzo, Nouhou; Watteau, Françoise; Schwartz, Christophe
2014-05-01
Pedogenesis is the set of steps, which lead to the formation and evolution of soils under pedogenetic factors and processes. They may be described quantitatively for a modeling end. For this purpose, constructed Technosols are candidates to be studied, because their initial composition is well described. Furthermore, among pedogenetic factors, living organisms are known to play a major role in soil formation. The most challenging objective of our work is then to monitor in situ the effect of biological agents on soil evolution. However, soil pedogenesis is known to be dynamic, therefore visualizing in situ plant roots or soil fauna in contact with soil, will help understand better how pedogenesis occurs realistically. The aim of this work is to study in situ, visually and quantitatively, the evolution of a constructed Technosol pedogenesis using an innovative dispositive of observation on cosmes. The Technosol is constructed in three horizons, from bottom to top we have: gravels, treated industrial soil and paper mill sludge (2/3, 1/3 masse ratio) and green waste compost. The soil is put into a cosme equipped with image acquisition devices. Factors are organized into two modalities each repeated three times. "Plant", where five seeds of white lupin are sown in each cosme. "Plant and Fauna" where six epigeic adult earthworms and five seeds of white lupin are inoculated, and a "control". A moisture of 60 - 80 % field capacity is maintained in all modalities. Results show that roots grow at 10 mm.day-1 speed during the first three weeks. Roots increase porosity and aggregation with time. Earthworms explore the soil randomly by creating and filling burrows. At a second time, they create their burrows preferentially along plant roots. Roots and earthworms contribute to the rapid increase of porosity (9.81 times control at 268 days) and aggregation (10.15 times control at 268 days) during time, in the early stages of pedogenesis. In situ and non-destructive observation of soil profiles is therefore an innovative way of monitoring and quantifying the impact of pedogenetic factors on the evolution of Technosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.
2004-10-28
We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.
Differential pleiotropy and HOX functional organization.
Sivanantharajah, Lovesha; Percival-Smith, Anthony
2015-02-01
Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution.
Cairns, Johannes; Becks, Lutz; Jalasvuori, Matti; Hiltunen, Teppo
2017-01-19
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Massol, François; Débarre, Florence
2015-07-01
Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution
2017-01-01
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria–phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920385
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067
Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.
Leal, Francisca; Cohn, Martin J
2016-11-07
Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Peng; Yuan, Feng
2013-12-01
We examine the QCD evolution for the transverse momentum dependent observables in hard processes of semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp collisions, including the spin-average cross sections and Sivers single transverse spin asymmetries. We show that the evolution equations derived by a direct integral of the Collins-Soper-Sterman evolution kernel from low to high Q can describe well the transverse momentum distributions of the unpolarized cross sections in the Q2 range from 2 to 100GeV2. In addition, the matching is established between our evolution and the Collins-Soper-Sterman resummation with b* prescription and Konychev-Nodalsky parametrization of the nonperturbative form factors, which are formulated to describe the Drell-Yan lepton pair and W/Z boson production in hadronic collisions. With these results, we present the predictions for the Sivers single transverse spin asymmetries in Drell-Yan lepton pair production and W± boson production in polarized pp and π-p collisions for several proposed experiments. We emphasize that these experiments will not only provide crucial test of the sign change of the Sivers asymmetry but also provide important opportunities to study the QCD evolution effects.
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
Massive horizontal transfer of transposable elements in insects
Peccoud, Jean; Loiseau, Vincent; Cordaux, Richard
2017-01-01
Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution. PMID:28416702
NASA Astrophysics Data System (ADS)
Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu
2016-06-01
Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.
Genetic Differences Between Great Apes and Humans: Implications for Human Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varki, Ajit
2004-03-17
When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship tomore » a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.« less
Yuan, Jianbo; Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai
2017-07-05
Crustacea, particularly Decapoda, contains many economically important species, such as shrimps and crabs. Crustaceans exhibit enormous (nearly 500-fold) variability in genome size. However, limited genome resources are available for investigating these species. Exopalaemon carinicauda Holthuis, an economical caridean shrimp, is a potential ideal experimental animal for research on crustaceans. In this study, we performed low-coverage sequencing and de novo assembly of the E. carinicauda genome. The assembly covers more than 95% of coding regions. E. carinicauda possesses a large complex genome (5.73 Gb), with size twice higher than those of many decapod shrimps. As such, comparative genomic analyses were implied to investigate factors affecting genome size evolution of decapods. However, clues associated with genome duplication were not identified, and few horizontally transferred sequences were detected. Ultimately, the burst of transposable elements, especially retrotransposons, was determined as the major factor influencing genome expansion. A total of 2 Gb repeats were identified, and RTE-BovB, Jockey, Gypsy, and DIRS were the four major retrotransposons that significantly expanded. Both recent (Jockey and Gypsy) and ancestral (DIRS) originated retrotransposons responsible for the genome evolution. The E. carinicauda genome also exhibited potential for the genomic and experimental research of shrimps.
Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier
2016-04-01
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Relaxation of selection, niche construction, and the Baldwin effect in language evolution.
Yamauchi, Hajime; Hashimoto, Takashi
2010-01-01
Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung
2015-01-01
Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934
Strbak, Oliver; Kanuchova, Zuzana; Krafcik, Andrej
2016-11-01
A critical phase in the transition from prebiotic chemistry to biological evolution was apparently an asymmetric ion flow across the lipid membrane. Due to imbalance in the ion flow, the early lipid vesicles could selectively take the necessary molecules from the environment, and release the side-products from the vesicle. Natural proton gradients played a definitively crucial role in this process, since they remain the basis of energy transfer in the present-day cells. On the basis of this supposition, and the premise of the early vesicle membrane's impermeability to protons, we have shown that the emergence of the proton gradient in the lipid vesicle could be a key physical factor in the evolution of the forced transport mechanism (pore formation and active transport) across the lipid bilayer. This driven flow of protons across the membrane is the result of the electrochemical proton gradient and osmotic pressures on the integrity of the lipid vesicle. At a critical number of new lipid molecules incorporated into the vesicle, the energies associated with the creation of the proton gradient exceed the bending stiffness of the lipid membrane, and overlap the free energy of the lipid bilayer pore formation.
Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu
2016-06-27
Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.
Are relationships between pollen-ovule ratio and pollen and seed size explained by sex allocation?
Burd, Martin
2011-10-01
Positive correlations between pollen-ovule ratio and seed size, and negative correlations between pollen-ovule ratio and pollen grain size have been noted frequently in a wide variety of angiosperm taxa. These relationships are commonly explained as a consequence of sex allocation on the basis of a simple model proposed by Charnov. Indeed, the theoretical expectation from the model has been the basis for interest in the empirical pattern. However, the predicted relationship is a necessary consequence of the mathematics of the model, which therefore has little explanatory power, even though its predictions are consistent with empirical results. The evolution of pollen-ovule ratios is likely to depend on selective factors affecting mating system, pollen presentation and dispensing, patterns of pollen receipt, pollen tube competition, female mate choice through embryo abortion, as well as genetic covariances among pollen, ovule, and seed size and other reproductive traits. To the extent the empirical correlations involving pollen-ovule ratios are interesting, they will need explanation in terms of a suite of selective factors. They are not explained simply by sex allocation trade-offs. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Maekawa, Kiyoto; Lo, Nathan; Rose, Harley A; Matsumoto, Tadao
2003-06-22
Morphologically similar cockroaches in the subfamilies Panesthiinae and Geoscapheinae (Blattaria: Blaberidae) display contrasting feeding habits, behaviour and biogeographical distributions. Panesthiinae, found throughout Asia and Australia, all live in and feed on decaying wood that they burrow into. Geoscapheinae are restricted to Australia and construct and live in burrows in the soil, where they feed on dry leaves taken from the surface. A lack of knowledge about phylogenetic relationships among these cockroaches hinders an understanding of the factors that have shaped the evolution of their diverse lifestyles and biogeography. To address this issue, we sequenced three genes from representatives of nine of the 10 genera in the two subfamilies, and performed phylogenetic analyses. The well-supported topology revealed the Panesthiinae to be paraphyletic with respect to the Geoscapheinae. Soil-burrowing cockroaches appear to have evolved from a lineage of wood burrowers that invaded Australia from the north some time after the merging of the Asian and Australian tectonic plates ca. 20 Myr ago. The main factor promoting the evolution of soil burrowing is likely to have been one of the periods of strong aridity that Australia has experienced since the Miocene period.
Crowder, David W; Carrière, Yves
2009-12-07
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069
NASA Astrophysics Data System (ADS)
Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.
2018-04-01
GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.
Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.
2018-01-01
Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M. H.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration
2017-04-01
Dihadron and isolated direct photon-hadron angular correlations are measured in p +p collisions at √{s }=510 GeV . Correlations of charged hadrons of 0.7
Compton, Alex A.; Emerman, Michael
2013-01-01
Naturally circulating lentiviruses are abundant in African primate species today, yet their origins and history of transmitting between hosts remain obscure. As a means to better understand the age of primate lentiviruses, we analyzed primate genomes for signatures of lentivirus-driven evolution. Specifically, we studied the adaptive evolution of host restriction factor APOBEC3G (A3G) in Old World Monkey (OWM) species. We find recurrent mutation of A3G in multiple primate lineages at sites that determine susceptibility to antagonism by the lentiviral accessory protein Vif. Using a broad panel of SIV Vif isolates, we demonstrate that natural variation in OWM A3G confers resistance to Vif-mediated degradation, suggesting that adaptive variants of the host factor were selected upon exposure to pathogenic lentiviruses at least 5–6 million years ago (MYA). Furthermore, in members of the divergent Colobinae subfamily of OWM, a multi-residue insertion event in A3G that arose at least 12 MYA blocks the activity of Vif, suggesting an even more ancient origin of SIV. Moreover, analysis of the lentiviruses associated with Colobinae monkeys reveal that the interface of the A3G-Vif interaction has shifted and given rise to a second genetic conflict. Our analysis of virus-driven evolution describes an ancient yet ongoing genetic conflict between simian primates and lentiviruses on a million-year time scale. PMID:23359341
Suppression of Beneficial Mutations in Dynamic Microbial Populations
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.
2017-01-01
Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.
Miles, Meredith C.; Cheng, Samantha; Fuxjager, Matthew J.
2017-01-01
Gestural displays are incorporated into the signaling repertoire of numerous animal species. These displays range from complex signals that involve impressive and challenging maneuvers, to simpler displays or no gesture at all. The factors that drive this evolution remain largely unclear, and we therefore investigate this issue in New World blackbirds by testing how factors related to a species’ geographical distribution and social mating system predict macro‐evolutionary patterns of display elaboration. We report that species inhabiting temperate regions produce more complex displays than species living in tropical regions, and we attribute this to (i) ecological factors that increase the competitiveness of the social environment in temperate regions, and (ii) different evolutionary and geological contexts under which species in temperate and tropical regions evolved. Meanwhile, we find no evidence that social mating system predicts species differences in display complexity, which is consistent with the idea that gestural displays evolve independently of social mating system. Together, these results offer some of the first insight into the role played by geographic factors and evolutionary context in the evolution of the remarkable physical displays of birds and other vertebrates. PMID:28240772
McNamara, John M.; Wolf, Max
2015-01-01
Strong asymmetries in parental care, with one sex providing more care than the other, are widespread across the animal kingdom. At present, two factors are thought to ultimately cause sex differences in care: certainty of parentage and sexual selection. By contrast, we here show that the coevolution of care and the ability to care can result in strong asymmetries in both the ability to care and the level of care, even in the absence of these factors. While the coevolution of care and the ability to care does not predict which sex evolves to care more than the other, once other factors give rise to even the slightest differences in the cost and benefits of care between the sexes (e.g. differences in certainty in parentage), a clear directionality emerges; the sex with the lower cost or higher benefit of care evolves both to be more able to care and to provide much higher levels of care than the other sex. Our findings suggest that the coevolution of levels of care and the ability to care may be a key factor underlying the evolution of sex differences in care. PMID:25694618
NASA Astrophysics Data System (ADS)
Cao, Pengfei; Fu, Wenyu
2017-10-01
Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.
Systematic review of renal carcinoma prognostic factors.
Lorente, D; Trilla, E; Meseguer, A; Planas, J; Placer, J; Celma, A; Salvador, C; Regis, L; Morote, J
2017-05-01
The natural history of renal cell carcinoma is heterogeneous. Some scenarios can be found in terms of clinical presentation, clinical evolution or type of recurrence (local/metastatic). The aim of this publication is to analyze the most important prognostic factors published in the literature. A literature review ob published papers was performed using the Pubmed, from first Motzer's classification published in 1999 to 2015, according to PRISMA declaration. Search was done using the following keywords: kidney neoplasm, kidney cancer, renal cell carcinoma, prognostic factors, mortality, survival and disease progression. Papers were classified according to level of evidence, the number of patients included and the type of study performed. The evolution in the knowledge of molecular pathways related to renal oncogenesis and the new targeted therapies has left to remain obsolete the old prognostic models. It's necessary to perform a continuous review to actualize nomograms and to adapt them to the new scenarios. Is necessary to perform a proper external validation of existing prognostic factors using prospective and multicentric studies to add them into the daily urologist clinical practice. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.
2016-12-13
Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computingmore » this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.« less
Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas
2015-11-10
Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
The Evolution of Fertility Expectations over the Life Course
HAYFORD, SARAH R.
2009-01-01
In low-fertility contexts, how many children people have is largely a product of how many children they want. However, the social, institutional, and individual factors that influence how many children people want are not well understood. In particular, there is scant evidence about how fertility expectations change over the life course. This article provides an empirical description of changes in women’s expected fertility over the entire span of childbearing years. Using data from the National Longitudinal Survey of Youth, 1979 cohort, group-based trajectory analysis illuminates common patterns in the evolution of fertility intentions and identifies individual characteristics associated with these patterns. Factors related to family formation, such as marriage and whether a woman has a child at an early age, are found to be the most consistent correlates of patterns of change in expected family size. PMID:20084828
The contrasting phylodynamics of human influenza B viruses.
Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G
2015-01-16
A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.
The significance of developmental robustness for species diversity.
Melzer, Rainer; Theißen, Günter
2016-04-01
The origin of new species and of new forms is one of the fundamental characteristics of evolution. However, the mechanisms that govern the diversity and disparity of lineages remain poorly understood. Particularly unclear are the reasons why some taxa are vastly more species-rich than others and the manner in which species diversity and morphological disparity are interrelated. Evolutionary innovations and ecological opportunities are usually cited as among the major factors promoting the evolution of species diversity. In many cases it is likely that these factors are positively reinforcing, with evolutionary innovations creating ecological opportunities that in turn foster the origin of new innovations. However, we propose that a third factor, developmental robustness, is very often essential for this reinforcement to be effective. Evolutionary innovations need to be stably and robustly integrated into the developmental genetic programme of an organism to be a suitable substrate for selection to 'explore' ecological opportunities and morphological 'design' space (morphospace). In particular, we propose that developmental robustness of the bauplan is often a prerequisite for the exploration of morphospace and to enable the evolution of further novelties built upon this bauplan Thus, while robustness may reduce the morphological disparity at one level, it may be the basis for increased morphological disparity and for evolutionary innovations at another level, thus fostering species diversity. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Imitative and Direct Learning as Interacting Factors in Life History Evolution.
Bullinaria, John A
2017-01-01
The idea that lifetime learning can have a significant effect on life history evolution has recently been explored using a series of artificial life simulations. These involved populations of competing individuals evolving by natural selection to learn to perform well on simplified abstract tasks, with the learning consisting of identifying regularities in their environment. In reality, there is more to learning than that type of direct individual experience, because it often includes a substantial degree of social learning that involves various forms of imitation of what other individuals have learned before them. This article rectifies that omission by incorporating memes and imitative learning into revised versions of the previous approach. To do this reliably requires formulating and testing a general framework for meme-based simulations that will enable more complete investigations of learning as a factor in any life history evolution scenarios. It does that by simulating imitative information transfer in terms of memes being passed between individuals, and developing a process for merging that information with the (possibly inconsistent) information acquired by direct experience, leading to a consistent overall body of learning. The proposed framework is tested on a range of learning variations and a representative set of life history factors to confirm the robustness of the approach. The simulations presented illustrate the types of interactions and tradeoffs that can emerge, and indicate the kinds of species-specific models that could be developed with this approach in the future.
Lo, Wen-Sui; Kuo, Chih-Horng
2017-12-01
Genetic differentiation among symbiotic bacteria is important in shaping biodiversity. The genus Spiroplasma contains species occupying diverse niches and is a model system for symbiont evolution. Previous studies have established that two mosquito-associated species have diverged extensively in their carbohydrate metabolism genes despite having a close phylogenetic relationship. Notably, although the commensal Spiroplasma diminutum lacks identifiable pathogenicity factors, the pathogenic Spiroplasma taiwanense was found to have acquired a virulence factor glpO and its associated genes through horizontal transfer. However, it is unclear if these acquired genes have been integrated into the regulatory network. In this study, we inferred the gene content evolution in these bacteria, as well as examined their transcriptomes in response to glucose availability. The results indicated that both species have many more gene acquisitions from the Mycoides-Entomoplasmataceae clade, which contains several important pathogens of ruminants, than previously thought. Moreover, several acquired genes have higher expression levels than the vertically inherited homologs, indicating possible functional replacement. Finally, the virulence factor and its functionally linked genes in S. taiwanense were up-regulated in response to glucose starvation, suggesting that these acquired genes are under expression regulation and the pathogenicity may be a stress response. In summary, although differential gene losses are a major process for symbiont divergence, gene gains are critical in counteracting genome degradation and driving diversification among facultative symbionts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Lebourg, T.; Llop, R.; Provitolo, D.; Allignol, F.; Zerathe, S.
2009-04-01
The objective of this paper is to show the impact of the instrumentation on an urban area on the principle of prevention of the landslides risk and thus to contribute to decrease the vulnerability for an urban long-term future development. We show that the analyze by instrumentation of triggered factors which characterize the risk (by the quantification of the evolution in time of the mechanical properties versus weathered processes) suggest that it exists a relation between "susceptibility of landslides" and urban development The evolution of the stakes during time is at the same time, factor of evolution of the susceptibility and triggered factor of the vulnerability evolution of urban areas. The scientific goal relates to the urban systems vulnerability and resilience modelling versus landslides processes for the assistance to the risks prevention. Indeed, the installation of an effective risks prevention policy is based on a good evaluation of the intensity, the period of return of the phenomena and their zone of expansion, but also on an identification of the sectors exposed to the risks, their vulnerability and their resilience. The strategy of prevention of the risks generally relates to the construction of fortifications to protect the society but it can also be founded on the resilience concept. This other approach is not opposed to the risk, but proposes to reduce the impacts. The anthroposysteme concept of makes it possible to take into accounts the determining role played by the human society in the space system evolution; natural and social systems associated on a given territory. The study of a space system passes then by the identification of components of the physical world (natural) and the living world (social), these two components forming integral part of the Society. To be concluded, this paper and study applies to the Mediterranean coastline anthroposystemes (northern bank) where urban growth, saturation of the littorals, constructions in danger zone, dynamic of risks and vulnerabilities are strongly overlapping. The town of Grasse in the Maritimes-Alps (France) is more particularly retained for this study. This choice is not trivial. The studied sector cumulates two important characteristics (I) the urbanization was made on slopes higher than 10/20° in an unfavourable geological context (urbanization, risk and vulnerability are thus in interaction) (II) an important demographic expansion passed and to come. The Geographical Information System (ArcGis) will be common support of this study which materialize simulations, observations and results of instrumentations carried out on tests sites, but also the landslides models of simulation.
Measuring and Understanding Public Opinion on Human Evolution
NASA Astrophysics Data System (ADS)
Gwon, Misook
The theory of evolution has long generated controversy in American society, but Americans' attitudes about human evolution are often neglected in studies of "culture wars" and the nature of mass belief systems more generally (Berkman and Plutzer 2010; Freeland and Houston 2009). Gallup and other survey organizations have polled about evolution, but offered limited response categories that mask complexity in public opinion (Bishop 2006; Moore 2008). The main problems concerning the leading survey questions about evolution are: first, questions measure only a single dimension, thus they ignore the potential for multidimensionality in people's attitudes. Second, depending on question wording and response options, the results of public opinion surveys vary by polling groups. This is an example of measurement error which misleads the interpretation and impression of American public opinion on the origin of humankind. A number of studies have analyzed Americans' beliefs about evolution and hypothesized about the influential effects of several factors (Deckman 2002; Mazur 2005; Mooney 2005; Miller et al. 2006; Newport 2006; Forrest 2007;Nisbet and Goidel 2007;Scott 2009). However, there remains a lack of complete understanding of what Americans know and believe about human evolution. Given the salience of this issue and the significant influence of public opinion on policy-making in America (Page and Shapiro 1992; Stimson 2004; Newport 2004), the measurement error and explanation of polling results on controversial issues related to this topic are in need of clarification. In this study, I address these deficiencies with analyses of data from a 2008 national survey by Harris Interactive (n= 4,626) that included numerous measures of factual knowledge and beliefs about evolution. The items offer more nuanced response options than the standard three-category question asked for decades by the Gallup poll. The Harris survey also had multiple measures of religiosity and the Right-Wing-Authoritarianism personality scale. Using this uniquely rich data set I develop a model of the nature and organization of these various attitude structures. Data analyses on explanation of public acceptance or rejection of evolution indicate that the Right-wing-authoritarianism and religious factors including beliefs in God's existence, views of the Bible, frequency of church attendance, and Evangelical Protestant affiliation are significant predictors across all measures. Scientific literacy, genetic science knowledge and familiarity, in general, are another contributor to prediction of public attitudes toward evolution. On measurement validity, consistency of measurement and responses are examined. The results from data analyses reveal the effect of question wording form and context is at play. In addition, public beliefs and knowledge about evolution are not consistent, rather contradictory, and are susceptible to framing effects. As scholars of public opinion warn, we should avoid the referendum view of polls on controversial issues (Schuman 2008; Moore 2008; Bishop 2005). Findings from this research lead to two key conclusions. First, great caution should be taken interpreting poll results on human evolution. Second, for better understanding of public opinion on this issue, a modified standard question should replace the current question.
Recurrent rewiring and emergence of RNA regulatory networks.
Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin
2017-04-04
Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.
Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.
Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A
2016-03-01
Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Turchak, L. I.
2012-10-01
The objective is the general review of impact of aircraft wake vortices on the follower aircraft encountering the wake. Currently, the presence of wake vortices past aircraft limits the airspace capacity and flight safety level for aircraft of different purposes. However, wake vortex nature and evolution have not been studied in full measure. A mathematical model simulating the process of near wake generation past bodies of different shapes, as well as the wake evolution after rolling-up into wake vortices (far wake) is developed. The processes are suggested to be modeled by means of the Method of Discrete Vortices. Far wake evolution is determined by its complex interaction with the atmosphere and ground boundary layer. The main factors that are supposed to take into account are: wind and ambient turbulence 3Ddistributions, temperature stratification of the atmosphere, wind shear, as well as some others which effects will be manifested as considerable during the investigation. The ground boundary layer effects on wake vortex evolution are substantial at low flight altitudes and are determined through the boundary layer separation.
Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs
NASA Astrophysics Data System (ADS)
Chhotray, Atul; Lazzati, Davide
2018-05-01
We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.
A Brief History of the Status of Transposable Elements: From Junk DNA to Major Players in Evolution
Biémont, Christian
2010-01-01
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as “transposable elements” in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. PMID:21156958
Geologic evolution of the terrestrial planets
NASA Technical Reports Server (NTRS)
Head, J. W.; Mutch, T. A.; Wood, C. A.
1977-01-01
The paper presents a geologic comparison of the terrestrial planets Mercury, Venus, Earth, the Moon and Mars, in the light of the recent photogeologic and other evidence gathered by satellites, and discusses the relationships between their regional terrain types, ages, and planetary evolution. The importance of the two fundamental processes, impact cratering and volcanism, which had formed these planets are stressed and the factors making the earth unique, such as high planetary evolution index (PEI), dynamic geological agents and the plate tectonics, are pointed out. The igneous processes which dominate earth and once existed on the others are outlined together with the planetary elevations of the earth which has a bimodal distribution, the moon which has a unimodal Gaussian distribution and Mars with a distribution intermediate between the earth and moon. Questions are raised concerning the existence of a minimum planetary mass below which mantle convection will not cause lithospheric rifting, and as to whether each planet follows a separate path of evolution depending on its physical properties and position within the solar system.
Modelling evolution of asteroid's rotation due to the YORP effect
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Lipatova, Veronika; Scheeres, Daniel J.
2016-05-01
The Yarkovsky--O'Keefe--Radzievskii--Paddack (or YORP) effect is influence of light pressure on rotation of asteroids. It is the most important factor for evolution of rotation state of small asteroids, which can drastically alter their rotation rate and obliquity over cosmologic timescales.In the poster we present our program, which calculates evolution of ratation state of small asteroids subject to the YORP effect. The program accounts for both axial and obliquity components of YORP, takes into account the thermal inertia of the asteroid's soil, and the tangential YORP. The axial component of YORP is computed using the model by Steinberg and Sari (AJ, 141, 55). The thermal inertia is accounted for in the framework of Golubov et al. 2016 (MNRAS, stw540). Computation of the tangential YORP is based on a siple analytical model, whose applicability is verified via comparison to exact numeric simulations.We apply the program to different shape models of asteroids, and study coupled evolution of their rotation rate and obliquity.
Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests
Ye, Wei; Song, Xiaoping; Ma, Yuantai; Li, Ying
2017-01-01
The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer. PMID:29099061
Kim, Jung-Woong; Yang, Hyun-Jin; Oel, Adam Phillip; Brooks, Matthew John; Jia, Li; Plachetzki, David Charles; Li, Wei; Allison, William Ted; Swaroop, Anand
2016-06-20
Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution. Published by Elsevier Inc.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
NASA Astrophysics Data System (ADS)
Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing
2017-07-01
The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy of soils and granular rocks during deformation, for instance during landslides, and to use the evolution of the conductivity tensor to monitor mechanical properties.
Multi-frequency properties of synthetic blazar radio light curves within the shock-in-jet scenario
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Fuhrmann, L.; Perucho, M.
2015-08-01
Context. Blazars are among the most powerful extragalactic objects as a sub-class of active galactic nuclei. They launch relativistic jets and their emitted radiation shows strong variability across the entire electro-magnetic spectrum. The mechanisms producing the variability are still controversial, and different models have been proposed to explain the observed variations in multi-frequency blazar light curves. Aims: We investigate the capabilities of the classical shock-in-jet model to explain and reconstruct the observed evolution of flares in the turnover frequency - turnover flux density (νm-Sm) plane and their frequency dependent light curve parameters. With a detailed parameter space study, we provide the framework for future, detailed comparisons of observed flare signatures with the shock-in-jet scenario. Methods: Based on the shock model, we compute synthetic single-dish light curves at different radio frequencies (2.6 to 345 GHz) and for different physical conditions in a conical jet (e.g. magnetic field geometry and Doppler factor). From those we extract the slopes of the different energy loss stages within the (νm-Sm) plane and deduce the frequency dependence of different light curve parameters, such as flare amplitude, time scale, and cross-band delays. Results: The evolution of the Doppler factor along the jet has the strongest influence on the evolution of the flare and on the frequency dependent light curve parameters. The synchrotron stage can be hidden in the Compton or in the adiabatic stage, depending mainly on the evolution of the Doppler factor, which makes it difficult to detect its signature in observations. In addition, we show that the time lags between different frequencies can be used as an efficient tool to better constrain the physical properties of these objects. Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda
2017-12-01
The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.
Quantifying patterns of research interest evolution
NASA Astrophysics Data System (ADS)
Jia, Tao; Wang, Dashun; Szymanski, Boleslaw
Changing and shifting research interest is an integral part of a scientific career. Despite extensive investigations of various factors that influence a scientist's choice of research topics, quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing research interest evolution of individual scientists remain limited. Here we perform a large-scale analysis of extensive publication records, finding that research interest change follows a reproducible pattern characterized by an exponential distribution. We identify three fundamental features responsible for the observed exponential distribution, which arise from a subtle interplay between exploitation and exploration in research interest evolution. We develop a random walk based model, which adequately reproduces our empirical observations. Our study presents one of the first quantitative analyses of macroscopic patterns governing research interest change, documenting a high degree of regularity underlying scientific research and individual careers.
Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F
2015-01-01
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Ligand binding was acquired during evolution of nuclear receptors
Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent
1997-01-01
The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646
Role of Massive Stars in the Evolution of Primitive Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara
2012-01-01
An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.
Internal Charmonium Evolution in the Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Chen, Baoyi; Du, Xiaojian; Rapp, Ralf
2017-08-01
We employ a time-dependent Schrödinger equation to study the evolution of a c c ‾ dipole in a quark-gluon plasma (QGP). Medium effects on the heavy-quark potential in the QGP are found to significantly affect the timescales of the internal evolution of the dipole. Color-screening can enhance the overlap of the expanding wavepackage with excited states at high temperature, while it is reduced at lower temperatures where the dipole favors the formation of the charmonium ground state. We investigate the consequences of this mechanism on the double ratio of charmonium nuclear modification factors, RAAψ (2 S) /RAAJ/ψ, in heavy-ion collisions. The impact of the transition mechanisms on this ratio turns out to be rather sensitive to the attractive strength of the potential, and to its temperature dependence.
Miyake, Keiko; Olson, Matthew S
2009-06-01
After over a half century of empirical and theoretical research regarding the evolution and maintenance of gynodioecy in plants, unexplored factors influencing the relative fitnesses of females and hermaphrodites remain. Theoretical studies suggest that hermaphrodite self-fertilization (selfing) rate influences the maintenance of gynodioecy and we hypothesized that population sex ratio may influence hermaphrodite selfing rate. An experimental test for frequency-dependent self-fertilization was conducted using replicated populations constructed with different sex ratios of the gynodioecious plant Silene vulgaris. We found that hermaphrodite selfing increased with decreased hermaphrodite frequency, whereas evidence for increased inbreeding depression was equivocal. We argue that incorporation of context dependent inbreeding into future models of the evolution of gynodioecy is likely to yield novel insights into sex ratio evolution.
The Origins and Evolution of the p53 Family of Genes
Belyi, Vladimir A.; Ak, Prashanth; Markert, Elke; Wang, Haijian; Hu, Wenwei; Puzio-Kuter, Anna; Levine, Arnold J.
2010-01-01
A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern‐day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p63/p73 ancestor in cartilaginous fish. Bony fish contain all three genes, p53, p63, and p73, and the functions of these three transcription factors diversify in the higher vertebrates. Thus, this gene family has preserved its structural features and functional activities for over one billion years of evolution. PMID:20516129
Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.
Gallant, Jason R; Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold H; Samanta, Manoj P; Sussman, Michael R
2014-06-27
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Copyright © 2014, American Association for the Advancement of Science.
A brief history of Sandia's National security missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drewien, Celeste A.; O'Canna, Myra Lynn; Stikar, John Anthony.
2014-09-01
To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.
Gas Fluxing of Molten Aluminum: An Overview
NASA Astrophysics Data System (ADS)
Sigworth, Geoffrey K.; Williams, Edward M.; Chesonis, D. Corleen
The aluminum industry is under continual pressure to improve metal quality, while at the same time reduce costs. Although a reasonably mature technology, there has been a continual evolution in degassing equipment over the years. A detailed review and theoretical analysis is given of the chemical and kinetic factors which control the metal quality after gas fluxing, and the evolution of degassing technology in Alcoa is summarized. Particular emphasis is placed on hydrogen removal, minimization of chlorine use, reduced operating costs and minimization of environmental emissions. Considerations related to inclusion removal are also discussed briefly.
Reconstructing human evolution: Achievements, challenges, and opportunities
Wood, Bernard
2010-01-01
This contribution reviews the evidence that has resolved the branching structure of the higher primate part of the tree of life and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret the taxonomy and systematics of the human fossil record. How do you to tell an early human taxon from one in a closely related clade? How do you determine the number of taxa represented in the human clade? How can homoplasy be recognized and factored into attempts to recover phylogeny? PMID:20445105
Hänni, C; Meyer, J; Iida, S; Arber, W
1982-01-01
We found Tn2671 (the 23-kb long IS1-flanked r-determinant of NR1-Basel) inserted into the ampicillin resistance gene bla of the Tn3-related transposon Tn902. The resulting 28-kilobase-long composite transposon Tn2672 (= Tn902 bla::Tn2671) is stable, and it translocates as a unit into various loci including IS1 of the resistance transfer factor of R100-1. These results are discussed with respect to the evolution of R plasmids providing multiple drug resistance. Images PMID:6281241
Symmetric factorization of the conformation tensor in viscoelastic fluid models
NASA Astrophysics Data System (ADS)
Thomases, Becca; Balci, Nusret; Renardy, Michael; Doering, Charles
2010-11-01
The positive definite symmetric polymer conformation tensor possesses a unique symmetric square root that satisfies a closed evolution equation in the Oldroyd-B and FENE-P models of viscoelastic fluid flow. When expressed in terms of the velocity field and the symmetric square root of the conformation tensor, these models' equations of motion formally constitute an evolution in a Hilbert space with a total energy functional that defines a norm. Moreover, this formulation is easily implemented in direct numerical simulations resulting in significant practical advantages in terms of both accuracy and stability.
NASA Technical Reports Server (NTRS)
Schmidt, Gavin A.; Shindell, Drew T.; Tsigaridis, Konstantinos
2014-01-01
Climate models projected stronger warming over the past 15 years than has been seen in observations. Conspiring factors of errors in volcanic and solar inputs, representations of aerosols, and El NiNo evolution, may explain most of the discrepancy.
Measuring, Achieving, And Promoting Smoothness Of Virginia's Asphalt Overlays
DOT National Transportation Integrated Search
1999-04-01
This study was initiated with the goal of identifying the predominant factors affecting the achievable smoothness of asphalt overlays. In addition, the researcher chronicles the evolution of Virginia's innovative special provision for smoothness, whi...
Sequence-Level Mechanisms of Human Epigenome Evolution
Prendergast, James G.D.; Chambers, Emily V.; Semple, Colin A.M.
2014-01-01
DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage. PMID:24966180
Willemet, Romain
2012-05-18
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.
Satellite DNA: An Evolving Topic
Garrido-Ramos, Manuel A.
2017-01-01
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution. PMID:28926993
Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.
2012-01-01
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956
Expected rate of fisheries-induced evolution is slow
Andersen, Ken H.; Brander, Keith
2009-01-01
Commercial fisheries exert high mortalities on the stocks they exploit, and the consequent selection pressure leads to fisheries-induced evolution of growth rate, age and size at maturation, and reproductive output. Productivity and yields may decline as a result, but little is known about the rate at which such changes are likely to occur. Fisheries-induced evolution of exploited populations has recently become a subject of concern for policy makers, fisheries managers, and the general public, with prominent calls for mitigating management action. We make a general evolutionary impact assessment of fisheries by calculating the expected rate of fisheries-induced evolution and the consequent changes in yield. Rates of evolution are expected to be ≈0.1–0.6% per year, and the consequent reductions in fisheries yield are <0.7% per year. These rates are at least a factor of 5 lower than published values based on experiments and analyses of population time series, and we explain why the published rates may be overestimates. Dealing with evolutionary effects of fishing is less urgent than reducing the direct detrimental effects of overfishing on exploited stocks and on their marine ecosystems. PMID:19564596
Gu, Quan; Long, Jinlin; Zhuang, Huaqiang; Zhang, Chaoqiang; Zhou, Yangen; Wang, Xuxu
2014-06-28
A variety of ternary nanoheterostructures composed of Pt nanoparticles (NPs), SnOx species, and anatase TiO2 are designed elaborately to explore the effect of interfacial electron transfer on photocatalytic H2 evolution from a biofuel-water solution. Among numerous factors controlling the H2 evolution, the significance of Pt sites for the H2 evolution is highlighted by tuning the loading procedure of Pt NPs and SnOx species over TiO2. A synergistic enhancement of H2 evolution can be achieved over the Pt/SnOx/TiO2 heterostructures formed by anchoring Pt NPs at atomically-isolated Sn-oxo sites, whereas the Pt/TiO2/SnOx counterparts prepared by grafting single-site Sn-oxo species on Pt/TiO2 show a marked decrease in the rate of H2 evolution. The characterization results clearly reveal that the synergy of Pt NPs and SnOx species originates from the vectorial electron transfer of TiO2 → SnOx → Pt occurring on the former, while the latter results from the competitive electron transfer from TiO2 to SnOx and to Pt NPs.
Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0
NASA Astrophysics Data System (ADS)
van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.
2008-11-01
Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Based on observations collected at the European Southern Observatory, Chile (169.A-0458). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
The Life and Times of a Learning Technology System: The Impact of Change and Evolution
ERIC Educational Resources Information Center
Pahl, Claus
2013-01-01
With the inception of the web now being more than 20 years ago, many web-based learning technology systems (LTS) have had a long life and have undergone many changes, both affecting content and infrastructure technologies. A change factor model can capture the various factors causing LTS to change. Methods for change-aware design of LTS have been…
Astrophysical factors: Zero energy vs most effective energy
NASA Astrophysics Data System (ADS)
Liolios, Theodore E.
2001-07-01
Effective astrophysical factors for nonresonant astrophysical nuclear reaction are usually calculated with respect to a zero-energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective-energy limit. The latter is used in order to modify the thermonuclear reaction rate formula in stellar evolution codes so that it takes into account both plasma and laboratory screening effects.
Evolution of multinucleated Ashbya gossypii hyphae from a budding yeast-like ancestor.
Schmitz, Hans-Peter; Philippsen, Peter
2011-06-01
In the filamentous ascomycete Ashbya gossypii polarity establishment at sites of germ tube and lateral branch emergence depends on homologues of Saccharomyces cerevisiae factors controlling bud site selection and bud emergence. Maintenance of polar growth involves homologues of well-known polarity factors of budding yeast. To achieve the much higher rates of sustained polar surface expansion of hyphae compared to mainly non-polarly growing yeast buds five important alterations had to evolve. Permanent presence of the polarity machinery at a confined area in the rapidly expanding hyphal tip, increased cytoplasmic space with a much enlarged ER surface for generating secretory vesicles, efficient directed transport of secretory vesicles to and accumulation at the tip, increased capacity of the exocytosis system to process these vesicles, and an efficient endocytosis system for membrane and polarity factor recycling adjacent to the zone of exocytosis. Morphological, cell biological, and molecular aspects of this evolution are discussed based on experiments performed within the past 10 y. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Llamas-Covarrubias, Mara Anaís; Valle, Yeminia; Navarro-Hernández, Rosa Elena; Guzmán-Guzmán, Iris Paola; Ramírez-Dueñas, María Guadalupe; Rangel-Villalobos, Héctor; Estrada-Chávez, Ciro; Muñoz-Valle, José Francisco
2012-08-01
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unknown etiology. Many cytokines have been found to be associated with RA pathogenesis and among them is macrophage migration inhibitory factor (MIF). The aim of this study was to determine whether MIF serum levels are associated with RA course, clinical activity, and clinical biomarkers of the disease. MIF levels were determined in serum samples of 54 RA patients and 78 healthy subjects (HS) by enzyme-linked immunosorbent assay (ELISA). Disease activity was evaluated using the DAS28 score. Patients were subgrouped according to disease activity and years of evolution of disease. Statistical analysis was carried out by SPSS 10.0 and GraphPad Prism 5 software. RA patients presented increased levels of MIF as compared to HS. MIF levels were raised on early stages of RA and tend to decrease according to years of evolution. Moreover, MIF levels positively correlated with rheumatoid factor in RA patients and with C reactive protein in all individuals studied. Our findings suggest that MIF plays a role in early stages of RA.
Liu, Qiaolin; Xu, Baohong; Xiao, Tiaoyi; Su, Jianming; Zhong, Lei
2013-08-01
Coagulation factor VII has been studied in several species but, to date, not in grass carp (Ctenopharyngodon idella), a commercially important freshwater fish found in China. In this study, the full-length cDNA of grass carp coagulation factor VII (GcCFVII) was cloned using a RACE-Ready cDNA Kit, grass carp were challenged with a hemorrhagic virus, and temporal expression profiles of GcCFVII in the thymus, gills, liver, spleen, and head kidney were examined at 0 h, 24 h, 48 h, 72 h, 96 h, and 138 h using fluorescence quantitative PCR. The results showed the 1480 bp GcCFVII to contain three conservative motifs: Gla, EGF-CA, and Tryp-SPc, similar to other species. Phylogenetic analysis showed the evolution of GcCFVII gene to be consistent with the evolution of the species. After viral challenge, GcCFVII expression in five tissues of grass carp showed different patterns of fluctuation. These results provide a solid basis for further investigation of GcCFVII and its relationship with grass carp hemorrhage. Copyright © 2013 Elsevier Ltd. All rights reserved.
The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak
NASA Astrophysics Data System (ADS)
Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.
2014-12-01
Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.
Wilhelmsson, Per K I; Mühlich, Cornelia; Ullrich, Kristian K
2017-01-01
Abstract Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition. PMID:29216360
NASA Astrophysics Data System (ADS)
Anderson, R. E.; Huber, J. A.; Parsons, C.; Stüeken, E.
2017-12-01
Since the origin of life over 4 billion years ago, life has fundamentally altered the habitability of Earth. Similarly, the environment molds the evolutionary trajectory of life itself through natural selection. Microbial genomes retain a "memory" of the co-evolution of life and Earth and can be analyzed to better understand trends and events in both the recent and distant past. To examine evolutionary trends in the more recent past, we have used metagenomics analyses to investigate which environmental factors play the strongest role in driving the evolution of microbes in deep-sea hydrothermal vents, which are thought to have been important habitats in the earliest stages of life's evolution. We have shown that microbial populations in a deep, basalt-hosted system appear to be under stronger purifying selection than populations inhabiting a cooler serpentinizing system less than 20 km away, suggesting that environmental context and geochemistry have an important impact on evolutionary rates and trends. We also found evidence that viruses play an important role in driving evolution in these habitats. Changing environmental conditions may also effect long-term evolutionary trends in Earth's distant past, as revealed by comparative genomics. By reconciling phylogenetic trees for microbial species with trees of metabolic genes, we can determine approximately when crucial metabolic genes began to spread across the tree of life through horizontal gene transfer. Using these methods, we conducted an analysis of the relative timing of the spread of genes related to the nitrogen cycle. Our results indicate that the rate of horizontal gene transfer for important genes related to denitrification increased after the Great Oxidation Event, concurrent with geochemical evidence for increasing availability of nitrate, suggesting that the oxygenation of the atmosphere and surface ocean may have been an important determining factor for the spread of denitrification genes across the tree of life. In contrast, genes related to nitrogen fixation display much more consistent rates of horizontal gene transfer throughout Earth's history. Studies that couple genomics approaches with geochemistry have the potential to reveal insights into the co-evolution of life and Earth both in the recent and distant past.
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.
2016-10-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.
NASA Technical Reports Server (NTRS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.;
2016-01-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extra solar planets yet to be discovered.
Measuring, achieving and promoting smoothness of Virginia's asphalt overlays.
DOT National Transportation Integrated Search
1999-01-01
This study was initiated with the goal of identifying the predominant factors affecting the achievable smoothness of asphalt overlays. In addition, it chronicles the evolution of Virginia's innovative special provision for smoothness, which was devel...
A novel framework of classical and quantum prisoner's dilemma games on coupled networks.
Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen
2016-03-15
Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner's dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner's dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner's dilemma is greatly impacted by the combined effect of entanglement and coupling.
The contrasting phylodynamics of human influenza B viruses
Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne CF; Halpin, Rebecca; Lee, Raphael TC; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin JD; Barr, Ian G
2015-01-01
A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology. DOI: http://dx.doi.org/10.7554/eLife.05055.001 PMID:25594904
Structure and dynamics of Ebola virus matrix protein VP40 by a coarse-grained Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Pandey, Ras; Farmer, Barry
Ebola virus matrix protein VP40 (consisting of 326 residues) plays a critical role in viral assembly and its functions such as regulation of viral transcription, packaging, and budding of mature virions into the plasma membrane of infected cells. How does the protein VP40 go through structural evolution during the viral life cycle remains an open question? Using a coarse-grained Monte Carlo simulation we investigate the structural evolution of VP40 as a function of temperature with the input of a knowledge-based residue-residue interaction. A number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) are analyzed with our large-scale simulations. Our preliminary data show that the structure of the protein evolves through different state with well-defined morphologies which can be identified and quantified via a detailed analysis of structure factor.
A novel framework of classical and quantum prisoner’s dilemma games on coupled networks
Deng, Xinyang; Zhang, Qi; Deng, Yong; Wang, Zhen
2016-01-01
Evolutionary games on multilayer networks are attracting growing interest. While among previous studies, the role of quantum games in such a infrastructure is still virgin and may become a fascinating issue across a myriad of research realms. To mimick two kinds of different interactive environments and mechanisms, in this paper a new framework of classical and quantum prisoner’s dilemma games on two-layer coupled networks is considered. Within the proposed model, the impact of coupling factor of networks and entanglement degree in quantum games on the evolutionary process has been studied. Simulation results show that the entanglement has no impact on the evolution of the classical prisoner’s dilemma, while the rise of the coupling factor obviously impedes cooperation in this game, and the evolution of quantum prisoner’s dilemma is greatly impacted by the combined effect of entanglement and coupling. PMID:26975447
Kang, Joonsoo; Malhotra, Nidhi
2015-01-01
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177
Double Parton Fragmentation Function and its Evolution in Quarkonium Production
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo
2014-01-01
We summarize the results of a recent study on a new perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum pT at collider energies. Such a new factorization formalism includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the mQ2/p_T^2 expansion for heavy quark mass mQ. For the NLP contribution, the so-called double parton fragmentation functions are involved, whose evolution equations have been derived. We estimate fragmentation functions in the non-relativistic QCD formalism, and found that their contribution reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization, in contrast to the single parton fragmentation function. This might shed some light on the heavy quarkonium polarization puzzle.
Transverse momentum in double parton scattering: factorisation, evolution and matching
NASA Astrophysics Data System (ADS)
Buffing, Maarten G. A.; Diehl, Markus; Kasemets, Tomas
2018-01-01
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution
Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles
2013-01-01
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358
Rate of language evolution is affected by population size
Bromham, Lindell; Hua, Xia; Fitzpatrick, Thomas G.; Greenhill, Simon J.
2015-01-01
The effect of population size on patterns and rates of language evolution is controversial. Do languages with larger speaker populations change faster due to a greater capacity for innovation, or do smaller populations change faster due to more efficient diffusion of innovations? Do smaller populations suffer greater loss of language elements through founder effects or drift, or do languages with more speakers lose features due to a process of simplification? Revealing the influence of population size on the tempo and mode of language evolution not only will clarify underlying mechanisms of language change but also has practical implications for the way that language data are used to reconstruct the history of human cultures. Here, we provide, to our knowledge, the first empirical, statistically robust test of the influence of population size on rates of language evolution, controlling for the evolutionary history of the populations and formally comparing the fit of different models of language evolution. We compare rates of gain and loss of cognate words for basic vocabulary in Polynesian languages, an ideal test case with a well-defined history. We demonstrate that larger populations have higher rates of gain of new words whereas smaller populations have higher rates of word loss. These results show that demographic factors can influence rates of language evolution and that rates of gain and loss are affected differently. These findings are strikingly consistent with general predictions of evolutionary models. PMID:25646448
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.
Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles
2013-08-20
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.
Magnetic field evolution in white dwarfs: The hall effect and complexity of the field
NASA Technical Reports Server (NTRS)
Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.
1995-01-01
We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.
Oxygen and Early Animal Evolution
NASA Astrophysics Data System (ADS)
Xiao, S.
2012-12-01
It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.
When did C4 Photosynthesis originate: New evidence from δ13C analysis of single grass-pollen grains
NASA Astrophysics Data System (ADS)
Urban, M. A.; Nelson, D. M.; Pearson, A.; Hu, F.
2009-12-01
C4 grasses account for >20% of global primary productivity and dominate tropical, subtropical, and warm-temperate grassland ecosystems. Thus it is vital to understand when and why C4 photosynthesis first evolved in the grass family (Poaceae). However, because of limitations of most proxies, the origin of C4 grasses remains ambiguous. Grass pollen is morphologically indistinct below the family level, making pollen analysis a crude instrument for studying C4-grass evolution. Previous studies have investigated the timing of C4 evolution using molecular tools and δ13C records from n-alkanes, ungulate teeth, and paleosols, but they yield disparate results. Molecular clocks suggest that C4 grasses first evolved between 27 and 36 Ma (million years before present), coincident with the Oligocene decline in pCO2 from >1000 to <500 ppm. In contrast, δ13C-based approaches do not detect the presence of C4 grasses until the middle Miocene, indicating that they were previously uncommon or absent on the landscape. To investigate when C4 photosynthesis first appeared in the grass family, we utilized Single Pollen Isotope Ratio AnaLysis (SPIRAL), a technique that reliably distinguishes C4 from C3 grass pollen via δ13C. We analyzed 837 single grains of grass pollen from eight lacustrine geological samples (~100 grains/sample) from France and Spain spanning the earliest Oligocene to middle Miocene. To distinguish C3/C4 ratios, we used an optimal threshold value of -19.2‰ adjusted for small (~1‰) temporal variations in atmospheric δ13C. Initial results provide unequivocal evidence of C4 grass pollen in all samples (24-57% C4 grass pollen ±9.2% on average) lending further credence to the molecular data, which posits that C4 grasses appeared as early as the Late Eocene, which is a plausible outcome when considering alternate schemes of dating phylogenetic trees. A C4 origin prior to pCO2 reaching its lowest levels of the Cenozoic at the Oligocene/Miocene boundary indicates that ecological or climatic factors played a pivotal role in the evolution of C4 grasses. However, our estimates for the timing of C4 evolution remain imprecise. We do not have SPIRAL data from samples older than ~34 Ma. Future analyzes will include well-dated samples from additional sites as old as the the late Paleocene, when grass pollen first appeared in the fossil record. In addition, we are refining the C3/C4 threshold value using grass pollen from herbarium specimens. New results should help pinpoint the timing of C4 evolution. Comparison of the timing of C4 evolution with independent pCO2, paleoclimate and paleoecological records will be used to assess the factor(s) that drove the evolution and eventual dominance of C4 grasses.
Karageorgos, Spyridon A; Stratakou, Soultana; Koulentaki, Mairi; Voumvouraki, Argyro; Mantaka, Aikaterini; Samonakis, Dimitrios; Notas, George; Kouroumalis, Elias A
2017-01-01
No sequential long-term data exist for Greece on the etiological evolution and incidence of cirrhosis and hepatocellular carcinoma. Therefore, we studied their etiological evolution over a period of 25 years in the island of Crete. We studied 812 cases of cirrhosis (561 male, median age 69 years) and 321 cases of hepatocellular carcinoma (234 male, median age 70 years) from the database of our Center. Cases were classified into five-year periods according to incidence and etiology (hepatitis B, hepatitis C, alcohol, alcohol plus viral, and non-alcoholic fatty liver disease). Overall, there was an increase in the incidence of hepatocellular carcinoma. A significant fourfold reduction in the incidence of hepatitis C-related cirrhosis was observed, which was degraded from first to third place as a risk factor for cirrhosis. Alcohol gradually became the first risk factor in cirrhosis (1990-94: 36.1%, 2010-14: 52.3%) and carcinoma, while the steepest increase in incidence of cirrhosis and carcinoma was associated with non-alcoholic fatty liver disease. The incidence of cirrhosis remained constant over the years, but the incidence of hepatocellular carcinoma increased during the last decade. Risk factors for cirrhosis and hepatocellular carcinoma have changed over the past 25 years in Crete. The initial high hepatitis C virus association has significantly decreased, with alcohol now ranking first among risk factors. Non-alcoholic fatty liver disease is continually increasing and is a prominent risk factor for cirrhosis and hepatocellular carcinoma.
[Genetic and environmental factors of asthma and allergy: Results of the EGEA study].
Bouzigon, E; Nadif, R; Le Moual, N; Dizier, M-H; Aschard, H; Boudier, A; Bousquet, J; Chanoine, S; Donnay, C; Dumas, O; Gormand, F; Jacquemin, B; Just, J; Margaritte-Jeannin, P; Matran, R; Pison, C; Rage, E; Rava, M; Sarnowski, C; Smit, L A M; Temam, S; Varraso, R; Vignoud, L; Lathrop, M; Pin, I; Demenais, F; Kauffmann, F; Siroux, V
2015-10-01
The EGEA study (epidemiological study on the genetics and environment of asthma, bronchial hyperresponsiveness and atopy), which combines a case-control and a family-based study of asthma case (n=2120 subjects) with three surveys over 20 years, aims to identify environmental and genetic factors associated with asthma and asthma-related phenotypes. We summarize the results of the phenotypic characterization and the investigation of environmental and genetic factors of asthma and asthma-related phenotypes obtained since 2007 in the EGEA study (42 articles). Both epidemiological and genetic results confirm the heterogeneity of asthma. These results strengthen the role of the age of disease onset, the allergic status and the level of disease activity in the identification of the different phenotypes of asthma. The deleterious role of active smoking, exposure to air pollution, occupational asthmogenic agents and cleaning products on the prevalence and/or activity of asthma has been confirmed. Accounting for gene-environment interactions allowed the identification of new genetic factors underlying asthma and asthma-related traits and better understanding of their mode of action. The EGEA study is contributing to the advances in respiratory research at the international level. The new phenotypic, environmental and biological data available in EGEA study will help characterizing the long-term evolution of asthma and the factors associated to this evolution. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.
Simionato, Elena; Ledent, Valérie; Richards, Gemma; Thomas-Chollier, Morgane; Kerner, Pierre; Coornaert, David; Degnan, Bernard M; Vervoort, Michel
2007-01-01
Background Molecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole superfamily of transcription factors, the basic helix-loop-helix (bHLH) proteins, at the scale of the whole metazoan kingdom. Results We identified in silico the putative full complement of bHLH genes in the sequenced genomes of 12 different species representative of the main metazoan lineages, including three non-bilaterian metazoans, the cnidarians Nematostella vectensis and Hydra magnipapillata and the demosponge Amphimedon queenslandica. We have performed extensive phylogenetic analyses of the 695 identified bHLHs, which has allowed us to allocate most of these bHLHs to defined evolutionary conserved groups of orthology. Conclusion Three main features in the history of the bHLH gene superfamily can be inferred from these analyses: (i) an initial diversification of the bHLHs has occurred in the pre-Cambrian, prior to metazoan cladogenesis; (ii) a second expansion of the bHLH superfamily occurred early in metazoan evolution before bilaterians and cnidarians diverged; and (iii) the bHLH complement during the evolution of the bilaterians has been remarkably stable. We suggest that these features may be extended to other developmental gene families and reflect a general trend in the evolution of the developmental gene repertoires of metazoans. PMID:17335570
Wild tobacco genomes reveal the evolution of nicotine biosynthesis.
Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T
2017-06-06
Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.
The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes
2013-01-01
Background Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component. Results We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602 kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein. Conclusions L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole. PMID:24359881
Song, Ci; Pei, Tao; Yao, Ling
2015-01-01
Fine particulate matter (PM2.5) has been recognized as a serious hazard linked to deleterious health effects. In this study, all PM2.5 Pollution Episodes (PPEs) in Beijing during 2013 were investigated with hourly PM2.5 observations from the Olympic Sport Center site, and then their characteristics and evolution modes analysed. Results show that 80 PPEs, covering 209 days, occurred in Beijing during 2013. Average PM2.5 concentrations during PPEs were almost twice (1.86) the annual mean value, although the PPEs showed significant seasonal variations. The most hazardous PPEs tended to occur in winter, whereas PPEs with long duration occurred in autumn. The PPEs could be divided into six clusters based on their compositions of different pollution levels, which were strongly related to meteorological factors. We used series peaks of PM2.5 concentrations to analyse the evolution modes of PPEs and found that the more peaks there were within the evolution mode, the longer the duration, and the higher the average and maximum PM2.5 concentrations. Each peak within a PPE can be identified by “rise” and “fall” patterns. The “rise” patterns are widely related to relative humidity, whereas the “fall” patterns are affected principally by wind speed for one-peak PPEs and boundary layer height for multi-peak PPEs. The peak patterns cannot be explained fully by meteorological factors; however, they might also be closely related to complex and diversified human activities. PMID:25648172
Parallel evolution of auditory genes for echolocation in bats and toothed whales.
Shen, Yong-Yi; Liang, Lu; Li, Gui-Sheng; Murphy, Robert W; Zhang, Ya-Ping
2012-06-01
The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.
Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel
NASA Astrophysics Data System (ADS)
Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.
2017-10-01
Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.
Bailey, Susan F; Bataillon, Thomas
2016-01-01
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Xiang, Yezi; Huang, Chien-Hsun; Hu, Yi; Wen, Jun; Li, Shisheng; Yi, Tingshuang; Chen, Hongyi; Xiang, Jun; Ma, Hong
2017-02-01
Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali
2017-09-01
Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.
Pazos, Florencio; Chagoyen, Monica
2018-01-16
Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Structural Biology and Evolution of the TGF-β Family
Hinck, Andrew P.; Mueller, Thomas D.; Springer, Timothy A.
2017-01-01
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo. PMID:27638177
Real, Jose T; Folgado, José; Molina Mendez, Mercedes; Martinez-Hervás, Sergio; Peiro, Marta; Ascaso, Juan F
2016-01-01
To study new risk factors for peripheral macroangiopathy (PM) in patients with diabetes, as oxidative stress (OS) and its interaction with classical risk factors: age, Lp(a), plasma homocysteine values and HbA1c. We studied 204 type2 diabetic (T2DM) patients, consecutive selected form a reference hospital and a secondary hospital form our Community (2009-2010). Design was a case (ABI<0.89) control (ABI0.9-1.2) study. PM was defined using ankle brachial index (ABI). Thirty nine T2DM subjects presented ABI>1.2 and were excluded. Clinical and biological parameters were determined using standard methods. Comparing clinical and biological parameters obtained in both studied groups (T2DM+ABI<0.9 vs T2DM+ABI0.9-1.2), we found statistical significant differences in age, evolution time of diabetes, Lp(a) and plasma homocysteine values. No differences were found in OS parameters: reduced glutathione, oxidized glutathione and maloldialdehide between studied groups. Plasma homocysteine values were an independent risk factor for the presence of PM and were related to evolution time of diabetes and reduced glutathione. We have confirmed that Lp(a) and independently plasma homocysteine values were related to PM in T2DM subjects. No association with PM and OS markers (GSH, GSSG and MDA) were found in T2DM with more than 10years of evolution time of their disease and high prevalence of chronic complications. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Differential Evolution algorithm applied to FSW model calibration
NASA Astrophysics Data System (ADS)
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P
2000-12-25
We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).
Horizontal Gene Exchange in Environmental Microbiota
Aminov, Rustam I.
2011-01-01
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT. PMID:21845185
Constraining the evolution of the Hubble Parameter using cosmic chronometers
NASA Astrophysics Data System (ADS)
Dickinson, Hugh
2017-08-01
Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 < z < 2, using the cosmic chronometer method, based on differential age measurements for passively evolving galaxies. Existing WFC3-IR G102 and G141 grisms data obtained by the WISP, 3D-HST+AGHAST, FIGS, and CLEAR surveys will yield a sample of 140 suitable standard clocks, expanding existing samples by a factor of five. These additional data will enable us to improve existing constraints on the evolution of H at high redshift, and insodoing to better understand the fundamental nature of dark energy.
The Primordial Entropy of Jupiter
NASA Astrophysics Data System (ADS)
Cumming, Andrew; Helled, Ravit; Venturini, Julia
2018-04-01
The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modeling Jupiter's evolution and internal structure.
Multiphysics of bone remodeling: A 2D mesoscale activation simulation.
Spingarn, C; Wagner, D; Rémond, Y; George, D
2017-01-01
In this work, we present an evolutive trabecular model for bone remodeling based on a boundary detection algorithm accounting for both biology and applied mechanical forces, known to be an important factor in bone evolution. A finite element (FE) numerical model using the Abaqus/Standard® software was used with a UMAT subroutine to solve the governing coupled mechanical-biological non-linear differential equations of the bone evolution model. The simulations present cell activation on a simplified trabeculae configuration organization with trabecular thickness of 200µm. For this activation process, the results confirm that the trabeculae are mainly oriented in the active direction of the principal mechanical stresses and according to the principal applied mechanical load directions. The trabeculae surface activation is clearly identified and can provide understanding of the different bone cell activations in more complex geometries and load conditions.
Studying Biological Responses to Global Change in Atmospheric Oxygen
Powell, Frank L.
2010-01-01
A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257
The primordial entropy of Jupiter
NASA Astrophysics Data System (ADS)
Cumming, Andrew; Helled, Ravit; Venturini, Julia
2018-07-01
The formation history of giant planets determines their primordial structure and consequent evolution. We simulate various formation paths of Jupiter to determine its primordial entropy, and find that a common outcome is for proto-Jupiter to have non-convective regions in its interior. We use planet formation models to calculate how the entropy and post-formation luminosity depend on model properties such as the solid accretion rate and opacity, and show that the gas accretion rate and its time evolution play a key role in determining the entropy profile. The predicted luminosity of Jupiter shortly after formation varies by a factor of 2-3 for different choices of model parameters. We find that entropy gradients inside Jupiter persist for ˜10 Myr after formation. We suggest that these gradients should be considered together with heavy-element composition gradients when modelling Jupiter's evolution and internal structure.
de Mendoza, Alex; Sebé-Pedrós, Arnau; Šestak, Martin Sebastijan; Matejčić, Marija; Torruella, Guifré; Domazet-Lošo, Tomislav; Ruiz-Trillo, Iñaki
2013-01-01
Transcription factors (TFs) are the main players in transcriptional regulation in eukaryotes. However, it remains unclear what role TFs played in the origin of all of the different eukaryotic multicellular lineages. In this paper, we explore how the origin of TF repertoires shaped eukaryotic evolution and, in particular, their role into the emergence of multicellular lineages. We traced the origin and expansion of all known TFs through the eukaryotic tree of life, using the broadest possible taxon sampling and an updated phylogenetic background. Our results show that the most complex multicellular lineages (i.e., those with embryonic development, Metazoa and Embryophyta) have the most complex TF repertoires, and that these repertoires were assembled in a stepwise manner. We also show that a significant part of the metazoan and embryophyte TF toolkits evolved earlier, in their respective unicellular ancestors. To gain insights into the role of TFs in the development of both embryophytes and metazoans, we analyzed TF expression patterns throughout their ontogeny. The expression patterns observed in both groups recapitulate those of the whole transcriptome, but reveal some important differences. Our comparative genomics and expression data reshape our view on how TFs contributed to eukaryotic evolution and reveal the importance of TFs to the origins of multicellularity and embryonic development. PMID:24277850
Wang, Chi-Hsu; Chen, Chun-Yao; Hung, Kun-Neng
2015-06-01
In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.
Paleoproductivity evolution in the West Philippine Sea during the last 700 ka
NASA Astrophysics Data System (ADS)
Tang, Zheng; Li, Tiegang; Chang, Fengming; Nan, Qingyun; Li, Qing
2013-03-01
In order to reconstruct the paleoproductivity evolution history of the West Philippine Sea during the last 700 ka, the vertical gradient of Δδ13C in dissolved inorganic carbon (Δδ13C between those of foraminifera Pulleniatina obliquiloculata and Cibicidoides wuellerstorfi) and planktonic foraminiferal assemblages were analysed in piston Core MD06-3047 retrieved from the Benham Rise (east of the Luzon Island). Paleoproductivity evolution in the West Philippine Sea during the last 700 ka is closely related to glacial-interglacial cycles and precession-controlled insolation. Controlling factors of paleoproductivity could have been both thermocline fluctuations related with ENSO-like processes and eolian input associated with East Asian winter monsoon, and the former could have been the primary factor. A higher productivity and a shallower thermocline coeval with the occurrence of low CO2 concentrations in the EPICA Dome C ice core might indicate that biological export production in the low-latitude could act as a significant sink in the global carbon cycle, and modify atmospheric CO2 concentrations. Spectral analysis further reveals that the paleoproductivity is mainly controlled by thermocline fluctuations subjected to ENSO processes responding to processional variability of insolation. High coherences in eccentricity, obliquity and precession periods further revealing the close link between thermocline fluctuations, paleoproductivity and atmospheric CO2 levels.
Inferring directions of evolution from patterns of variation: The legacy of Sergei Meyen
Sharov, Alexei A.; Igamberdiev, Abir U.
2014-01-01
In the era of the Extended Evolutionary Synthesis, which no longer considers natural selection as the only leading factor of evolution, it is meaningful to revisit the legacy of biologists who discussed the role of alternative factors. Here we analyze the evolutionary views of Sergei Meyen (1935-1987), a paleobotanist who argued that the theory of evolution should incorporate a “nomothetical” approach which infers the laws of morphogenesis (i.e., form generation) from the observed patterns of variation in living organisms and in the fossil records. Meyen developed a theory of “repeated polymorphic sets” (RPSs), which he applied consistently to describe inter-organism variation in populations, intra-organism variation of metameric organs, variation of abnormalities, heterotopy, changes during embryo development, and inter-species variation within evolutionary lineages. The notion of RPS assumes the active nature of organisms that possess hidden morphogenic and behavioural capacities. Meyen's theory is compatible with Darwin's natural selection; however Meyen emphasized the importance of other forms of selection (e.g., selection of developmental trajectories, habitats, and behaviours) in choosing specific elements from the RPS. Finally, Meyen developed a new typological concept of time, where time represents variability (i.e., change) of real objects such as living organisms or geological formations. PMID:25072709
Sakai, Satoki
2013-02-01
To examine the factors favoring large megagametophytes of gymnosperms and tiny ones of angiosperms, a game model for seed production was developed in which megagametophytes growing in the same female parent compete for resources provided by the parent. In the model, megagametophytes may continue to grow until seed completion or may cease to grow at a certain time and regrow at pollination or fertilization. Autonomous abortion of unpollinated or unfertilized megagametophytes may occur either at pollination or fertilization. Those megagametophytes absorb a certain amount of resources before abortion, due to constraints in the signal process, in addition to the resources absorbed before pollination or fertilization. It was found that both growth habits can be the ESS: megagametophytes continue to grow without cessation and monopolize resources, such as gymnosperms, or cease to grow until fertilization to reduce the loss of resources due to autonomous abortion, such as angiosperms. The former and the latter are the ESS if the time interval between pollination and fertilization is long and short, respectively. Thus, the fertilization interval may be a critical factor selecting for large megagametophytes of gymnosperms or tiny ones of angiosperms. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Social support and clinical and functional outcome in people with schizophrenia.
Vázquez Morejón, Antonio J; León Rubio, Jose Mª; Vázquez-Morejón, Raquel
2018-05-01
The impact of Social Support (SS) on the clinical and functional evolution of patients diagnosed with schizophrenia was studied from a multidimensional concept of SS in the framework of the vulnerability-stress model. In total, 152 patients diagnosed with schizophrenia according to the International Classification of Diseases, Tenth Edition (ICD-10) treated in a Community Mental Health Unit were assessed using the Mannheim Interview on Social Support (MISS) and the Brief Psychiatric Rating Scale (BPRS). Then they were followed up for 3 years with a final assessment for the period using the Social Functioning Scale. The impact of SS was explored in clinical and functional measurements with a multiple regression analysis in a 3-year longitudinal prospective design. The quality of Global Social Support (GSS) and satisfaction with GSS appeared to be protective factors from frequency and duration of hospital admissions, with explanatory intensity varying from 9% in survival time to relapse to 13% in number of relapses. Concerning functional measurements, GSS quantity, quality and satisfaction showed an explanatory power for several different dimensions of social functioning, varying from 12% in isolation to 20% in communication. The results confirm SS as a protective factor in the evolution of schizophrenia patients and enable the SS variables with the most explanatory power in their clinical and functional evolution to be identified.
[Prevalence of urinary tract symptoms in women with diabetes mellitus].
Jiménez-Rodríguez, Javier; Carbajal-Ramírez, Angélica; Meza-Vázquez, Héctor; Moreno-Palacios, Jorge; Serrano-Brambila, Eduardo
2016-01-01
The objective was to evaluate the prevalence of urinary tract symptoms and the impact in the quality of life in women with diabetes, the association with DM and neuropathy evolution time and glycemic control. A cohort of women from the DiabetIMSS program was evaluated from January 2011 to 2013. The personal history, time of DM diagnosis, neuropathy, urinary symptoms, glycemic control and quality of life impact were noted. A total of 169 women were evaluated. The median age was 58 years (29-85) and DM main evolution time was 9 years (0.5-31). Urinary tract symptoms were present in 128 (75.7 %) patients. Stress and urge incontinence were predominantly present (45.3 and 40.6 % respectively), followed by obstructive and irritative symptoms (25 and 10.1 % respectively). The impact in the quality of life was mild-moderate in 91.1 % of the patients. At least one criteria for neuropathy was noted in 154 (91.1 %) patients. Neuropathy evolution time was longer in the symptomatic group (12 vs 4.8 months). Symptoms were mainly present in patients with more than one year of neuropathy; p < 0.05. There is a high prevalence of urinary tract symptoms in diabetic women. The only associated risk factor was neuropathy. No significative association was found between the rest of the factors.
Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan
2018-06-21
The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.
Brain size and thermoregulation during the evolution of the genus Homo.
Naya, Daniel E; Naya, Hugo; Lessa, Enrique P
2016-01-01
Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chilton, K.; Spotila, J. A.
2017-12-01
Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.
Yang, Jie; Wang, Zhen Long; Zhao, Xin Quan; Wang, De Peng; Qi, De Lin; Xu, Bao Hong; Ren, Yong Hong; Tian, Hui Fang
2008-01-01
Background Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. Methodology/Principal Findings To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Conclusions/Significance Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin. PMID:18213380
R. J. Dyer; R. D. Westfall; V. L. Sork; P. E. Smouse
2004-01-01
Patterns of pollen dispersal are central to both the ecology and evolution of plant populations. However, the mechanisms controlling either the dispersal process itself or our estimation of that process may be influenced by site-specific factors such as local forest structure and nonuniform adult genetic structure. Here, we present an extension of the AMOVA model...
ERIC Educational Resources Information Center
Girardet, Céline
2018-01-01
Considering the crucial goals dependent on classroom management, such as creating a classroom environment conducive to student learning and facilitating student engagement and motivation, it is an important skill for teachers to learn. Accordingly, this literature review aims at untangling the factors influencing the evolution of teachers'…
Rodríguez, L L; Fitch, W M; Nichol, S T
1996-11-12
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P
2011-12-01
Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P < 0.0001). The maximum creep effect happens during the first 15 min of infusion. In this work, height of the liquid in the bag and tube creep were found to be the main variation factors in GFI flow-rate. This new mathematical model should help to explain the differences observed in drug plasma levels with gravity-fed devices.
From the big five to the general factor of personality: a dynamic approach.
Micó, Joan C; Amigó, Salvador; Caselles, Antonio
2014-10-28
An integrating and dynamic model of personality that allows predicting the response of the basic factors of personality, such as the Big Five Factors (B5F) or the general factor of personality (GFP) to acute doses of drug is presented in this paper. Personality has a dynamic nature, i.e., as a consequence of a stimulus, the GFP dynamics as well as each one of the B5F of personality dynamics can be explained by the same model (a system of three coupled differential equations). From this invariance hypothesis, a partial differential equation, whose solution relates the GFP with each one of the B5F, is deduced. From this dynamic approach, a co-evolution of the GFP and each one of the B5F occurs, rather than an unconnected evolution, as a consequence of the same stimulus. The hypotheses and deductions are validated through an experimental design centered on the individual, where caffeine is the considered stimulus. Thus, as much from a theoretical point of view as from an applied one, the models here proposed open a new perspective in the understanding and study of personality like a global system that interacts intimately with the environment, being a clear bet for the high level inter-disciplinary research.
The Water Sciences: Present and Future.
ERIC Educational Resources Information Center
Sasseville, J. L.; de Marsily, G.
1998-01-01
Explores factors that can explain the rapid evolution of the water sciences. Discusses the investment in measuring systems that allow characterizations of water properties and the expansion of mathematical and systemic approaches to the interpretation of data. Contains 23 references. (DDR)
Organellar maturases: A window into the evolution of the spliceosome.
Schmitz-Linneweber, Christian; Lampe, Marie-Kristin; Sultan, Laure D; Ostersetzer-Biran, Oren
2015-09-01
During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron-exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues on the evolution of nuclear splicing. Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover, they seem to function in the splicing of group II introns together with a number of additional nuclear-encoded splicing factors, possibly acting as an organellar proto-spliceosome. Together, this makes them interesting models for the early evolution of nuclear spliceosomal splicing. In this review, we summarize recent advances in our understanding of the role of plant maturases and their accessory factors in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-level human evolution: ecological patterns in hominin phylogeny.
Parravicini, Andrea; Pievani, Telmo
2016-06-20
Evolution is a process that occurs at many different levels, from genes to ecosystems. Genetic variations and ecological pressures are hence two sides of the same coin; but due both to fragmentary evidence and to the influence of a gene-centered and gradualistic approach to evolutionary phenomena, the field of paleoanthropology has been slow to take the role of macro-evolutionary patterns (i.e. ecological and biogeographical at large scale) seriously. However, several very recent findings in paleoanthropology stress both climate instability and ecological disturbance as key factors affecting the highly branching hominin phylogeny, from the earliest hominins to the appearance of cognitively modern humans. Allopatric speciation due to geographic displacement, turnover-pulses of species, adaptive radiation, mosaic evolution of traits in several coeval species, bursts of behavioral innovation, serial dispersals out of Africa, are just some of the macro-evolutionary patterns emerging from the field. The multilevel approach to evolution proposed by paleontologist Niles Eldredge is adopted here as interpretative tool, and has yielded a larger picture of human evolution that integrates different levels of evolutionary change, from local adaptations in limited ecological niches to dispersal phenotypes able to colonize an unprecedented range of ecosystems. Changes in global climate and Earth's surface most greatly affected human evolution. Precisely because it is cognitively hard for us to appreciate the long-term common destiny we share with the whole biosphere, it is particularly valuable to highlight the accumulating evidence that human evolution has been deeply affected by global ecological changes that transformed our African continent of origin.
Kwantes, Michiel; Liebsch, Daniela; Verelst, Wim
2012-01-01
Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.
Genetic and developmental basis for parallel evolution and its significance for hominoid evolution.
Reno, Philip L
2014-01-01
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.(1-4) However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan-Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo-devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution. © 2014 Wiley Periodicals, Inc.
HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkolnik, Evgenya L.; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu
2014-10-01
The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation andmore » evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.« less
Galaxy Zoo: Observing secular evolution through bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Edmond; Faber, S. M.; Koo, David C.
In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We findmore » that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).« less
Evolution of CAM and C4 carbon-concentrating mechanisms
Keeley, Jon E.; Rundel, Philip W.
2003-01-01
Mechanisms for concentrating carbon around the Rubisco enzyme, which drives the carbon-reducing steps in photosynthesis, are widespread in plants; in vascular plants they are known as crassulacean acid metabolism (CAM) and C4 photosynthesis. CAM is common in desert succulents, tropical epiphytes, and aquatic plants and is characterized by nighttime fixation of CO2. The proximal selective factor driving the evolution of this CO2-concentrating pathway is low daytime CO2, which results from the unusual reverse stomatal behavior of terrestrial CAM species or from patterns of ambient CO2 availability for aquatic CAM species. In terrestrials the ultimate selective factor is water stress that has selected for increased water use efficiency. In aquatics the ultimate selective factor is diel fluctuations in CO2 availability for palustrine species and extreme oligotrophic conditions for lacustrine species. C4 photosynthesis is based on similar biochemistry but carboxylation steps are spatially separated in the leaf rather than temporally as in CAM. This biochemical pathway is most commonly associated with a specialized leaf anatomy known as Kranz anatomy; however, there are exceptions. The ultimate selective factor driving the evolution of this pathway is excessively high photorespiration that inhibits normal C3 photosynthesis under high light and high temperature in both terrestrial and aquatic habitats. CAM is an ancient pathway that likely has been present since the Paleozoic era in aquatic species from shallow-water palustrine habitats. While atmospheric CO2 levels have undoubtedly affected the evolution of terrestrial plant carbon-concentrating mechanisms, there is reason to believe that past atmospheric changes have not played as important a selective role in the aquatic milieu since palustrine habitats today are not generally carbon sinks, and the selective factors driving aquatic CAM are autogenic. Terrestrial CAM, in contrast, is of increasing selective value under extreme water deficits, and undoubtedly, high Mesozoic CO2 levels reduced the amount of landscape perceived by plants as water limited. Late Tertiary and Quaternary reductions in atmospheric CO2, coupled with increasing seasonality, were probably times of substantial species radiation and ecological expansion for CAM plants. C4 photosynthesis occurs in only about half as many families as CAM, and three-fourths of C4 species are either grasses or sedges. Molecular phylogenies indicate C4 is a more recent innovation than CAM and that it originated in the mid-Tertiary, 20–30 Ma, although some data support an earlier origin. While the timing of the origin of C4 remains controversial, the nearly explosive increase in C4 species is clearly documented in the late Miocene, 4–7 Ma. Increasing seasonality has been widely suggested as an important climatic stimulus for this C4 expansion. Alternatively, based on models of photosynthetic quantum yield at different temperatures and CO2 concentration, it has been hypothesized that the late Miocene C4 expansion resulted from declining atmospheric CO2 levels. This model is most appropriate for explaining the transition from C3 grasslands to C4 grasslands but by itself may not be sufficient to explain the more likely scenario of a late Miocene transition from C3 woodland/ savanna to C4 grasslands. A largely unexplored hypothesis is that climatic changes in late Miocene altered disturbance regimes, in particular the incidence of fires, which today are often associated with maintenance of C4 grasslands. Oceanic charcoal sediments that appear to represent Aeolian deposits from continental wildfires follow a strikingly similar pattern of explosive increase in late Miocene. Climate, CO2, and disturbance are not mutually exclusive explanations and probably all acted in concert to promote the expansion of C4 grasslands. More recently, late Quaternary changes in CO2 may have been responsible for driving major changes in the landscape distribution of C4 species. The theory is sound; however, many of the studies cited in support of this model are open to alternative interpretations, and none has eliminated climatic factors as important selective agents. CAM and C4 evolution required coupling of biochemical pathways with structural changes in photosynthetic tissues, succulence in CAM and Kranz in C4. This was apparently accomplished by piecemeal evolution beginning with mechanisms for recapturing respiratory CO2, although this need not have been so in aquatic CAM species. It has been proposed that the extreme rarity of both pathways in the same plant results from biochemical and structural incompatibilities (Sage 2002). Equally important is the fact that the selective environments are quite different, with CAM evolution thriving on stressful sites inhospitable to C3 species whereas C4 evolution has selected for rapid growth capable of outcompeting associated C3 plants.
[Natural history of flowers and gravity].
Yamashita, Masamichi; Tomita-Yokotani, Kaori; Nakamura, Teruko
2004-06-01
Many flowers have coevolved with their pollinator animals. Gravity has been one of selection pressure for the evolution of flowers. Gravity rules morphology and other features of flowers in many aspects. Pair matching between the flower and its specific pollinator is one of factors that determine the fitness of both sides. Evolution of flower morphology and its molecular basis are reviewed briefly. Anemophilous flowers are also under the influence of gravity. Shape and other features of entomophilous flowers have been highly diversed. Gravitropic response and its mechanism are summarized. Recent findings on gravitropism and phototropism of pistils and stamens are presented in this article.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
[Judicial institutions of medical experts].
Godoy, Roberto Lm
2016-05-01
This article considers the evolutive process that judicial organisms of medical experts have experienced in Argentina since their creation and formulates a proposal for its adequacy and modernization. Due to multiple and various evolutive factors, judicial organisms managing medicolegal expert activities show, nowadays, signals that a structural and dynamic reform is needed. They remain as organizational units of Public Administration and their effectiveness and efficiency depends not only of a scientific criteria but a managing one. The present and future challenge will be their conceptual transformation, from "corporate scientific entities" to "public-service-providing units" within the justice administration system.
Evolution of systemic hypertension in Pakistani population.
Aziz, Kalim Uddin
2015-04-01
The prevalence of essential hypertension is alarmingly increasing in Pakistani population inspite of the demographics being of lower BMI and nutrition. In this review, the possible factors responsible for this increase are identified by reviewing the population studies conducted in Pakistan. The prevalence rate is about 3 - 4% in childhood and steeply rises near the middle age. The factors peculiar to Pakistan were increased genetic susceptibility, environmental factors such as gender, females gender, urbanization, obesity and sedentary life styles particularly in middle age, cultural practices promoting sedentary life style in female.