Juvenile morphology in baleen whale phylogeny.
Tsai, Cheng-Hsiu; Fordyce, R Ewan
2014-09-01
Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.
Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J
1996-12-01
Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.
A Format for Phylogenetic Placements
Matsen, Frederick A.; Hoffman, Noah G.; Gallagher, Aaron; Stamatakis, Alexandros
2012-01-01
We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988
A format for phylogenetic placements.
Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros
2012-01-01
We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.
Liu, Juan; Qi, Zhe-Chen; Zhao, Yun-Peng; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun
2012-09-01
The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions. Copyright © 2012 Elsevier Inc. All rights reserved.
2010-01-01
Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504
Genomic Evolution of the Ascomycete Yeasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Haridas, Sajeet; Salamov, Asaf
2015-03-16
Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and amore » tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.« less
Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships
Yan, Jie; Li, Hongdan; Zhou, Kaiya
2008-01-01
Background Snakes as a major reptile group display a variety of morphological characteristics pertaining to their diverse behaviours. Despite abundant analyses of morphological characters, molecular studies using mitochondrial and nuclear genes are limited. As a result, the phylogeny of snakes remains controversial. Previous studies on mitochondrial genomes of snakes have demonstrated duplication of the control region and translocation of trnL to be two notable features of the alethinophidian (all serpents except blindsnakes and threadsnakes) mtDNAs. Our purpose is to further investigate the gene organizations, evolution of the snake mitochondrial genome, and phylogenetic relationships among several major snake families. Results The mitochondrial genomes were sequenced for four taxa representing four different families, and each had a different gene arrangement. Comparative analyses with other snake mitochondrial genomes allowed us to summarize six types of mitochondrial gene arrangement in snakes. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (BI, ML, MP, NJ) arrived at a similar topology, which was used to reconstruct the evolution of mitochondrial gene arrangements in snakes. Conclusion The phylogenetic relationships among the major families of snakes are in accordance with the mitochondrial genomes in terms of gene arrangements. The gene arrangement in Ramphotyphlops braminus mtDNA is inferred to be ancestral for snakes. After the divergence of the early Ramphotyphlops lineage, three types of rearrangements occurred. These changes involve translocations within the IQM tRNA gene cluster and the duplication of the CR. All phylogenetic methods support the placement of Enhydris plumbea outside of the (Colubridae + Elapidae) cluster, providing mitochondrial genomic evidence for the familial rank of Homalopsidae. PMID:19038056
Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales
Xiong, Ye; Brandley, Matthew C; Xu, Shixia; Zhou, Kaiya; Yang, Guang
2009-01-01
Background The phylogeny of Cetacea (whales) is not fully resolved with substantial support. The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae (dolphins) underestimates its diversity. To remedy these problems, we sequenced the complete mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model heterogenous rates of evolution among cetacean lineages. Results The "deep" phylogenetic relationships are well supported including the monophyly of Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the river dolphin clades Platanistidae (Indian River dolphins) and Lipotidae (Yangtze River dolphins). The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae + Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops (bottlenose dolphins) and Stenella (spotted dolphins). Conclusion Our phylogenetic analysis of complete mitochondrial genomes using recently developed models of rate autocorrelation resolved the phylogenetic relationships of the major Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our estimation of molecular divergence dates indicates that these radiations occurred in the Middle to Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and Stenella are not monophyletic, and the current taxonomy masks potentially interesting patterns of morphological, physiological, behavioral, and ecological evolution. PMID:19166626
Marine turtle mitogenome phylogenetics and evolution.
Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A
2012-10-01
The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.
Evans, Nathaniel M; Lindner, Alberto; Raikova, Ekaterina V; Collins, Allen G; Cartwright, Paulyn
2009-07-15
Correction to Evans, N.M., Lindner, A., Raikova, E.V., Collins, A.G. and Cartwright, P. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the phylum Cnidaria. BMC Evol Biol, 2008, 8:139.
2009-01-01
Correction to Evans, N.M., Lindner, A., Raikova, E.V., Collins, A.G. and Cartwright, P. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the phylum Cnidaria. BMC Evol Biol, 2008, 8:139. PMID:19604374
USDA-ARS?s Scientific Manuscript database
Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from res...
Murray, Gemma G. R.; Weinert, Lucy A.; Rhule, Emma L.; Welch, John J.
2016-01-01
Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives. PMID:26559010
Degtjareva, Galina V; Valiejo-Roman, Carmen M; Samigullin, Tahir H; Guara-Requena, Miguel; Sokoloff, Dmitry D
2012-02-01
Phylogenetic relationships in the genus Anthyllis (Leguminosae: Papilionoideae: Loteae) were investigated using data from the nuclear ribosomal internal transcribed spacer regions (ITS) and three plastid regions (psbA-trnH intergenic spacer, petB-petD region and rps16 intron). Bayesian and maximum parsimony (MP) analysis of a concatenated plastid dataset recovered well-resolved trees that are topologically similar, with many clades supported by unique indels. MP and Bayesian analyses of the ITS sequence data recovered trees that have several well-supported topological differences, both among analyses, and to trees inferred from the plastid data. The most substantial of these concerns A. vulneraria and A. lemanniana, whose placement in the parsimony analysis of the ITS data appears to be due to a strong long-branch effect. Analysis of the secondary structure of the ITS1 spacer showed a strong bias towards transitions in A. vulneraria and A. lemanniana, many of which were also characteristic of certain outgroup taxa. This may contribute to the conflicting placement of this clade in the MP tree for the ITS data. Additional conflicts between the plastid and ITS trees were more taxonomically focused. These differences may reflect the occurrence of reticulate evolution between closely related species, including a possible hybrid origin for A. hystrix. The patterns of incongruence between the plastid and the ITS data seem to correlate with taxon ranks. All of our phylogenetic analyses supported the monophyly of Anthyllis (incl. Hymenocarpos). Although they are often taxonomically associated with Anthyllis, the genera Dorycnopsis and Tripodion are shown here to be more closely related to other genera of Loteae. We infer up to six major clades in Anthyllis that are morphologically well-characterized, and which could be recognized as sections. Four of these agree with various morphology-based classifications, while the other two are novel. We reconstruct the evolution of several morphological characteristics found only in Anthyllis or tribe Loteae. Some of these characters support major clades, while others show evidence of homoplasy within Anthyllis. Copyright © 2011 Elsevier Inc. All rights reserved.
Radka Muhlsteinova; Jeffrey R. Johansen; Nicole Pietrasiak; Michael P. Martin; Karina Osorio-Santos; Steven D. Warren
2014-01-01
Little is known about the taxonomic diversity of cyanobacteria in deserts, despite their important ecological roles in these ecosystems. In this study, cyanobacterial strains from the Atacama, Colorado, and Mojave Deserts were isolated and characterized using molecular, morphological, and ecological information. Phylogenetic placement of these strains was revealed...
A global perspective on Campanulaceae: Biogeographic, genomic, and floral evolution.
Crowl, Andrew A; Miles, Nicholas W; Visger, Clayton J; Hansen, Kimberly; Ayers, Tina; Haberle, Rosemarie; Cellinese, Nico
2016-02-01
The Campanulaceae are a diverse clade of flowering plants encompassing more than 2300 species in myriad habitats from tropical rainforests to arctic tundra. A robust, multigene phylogeny, including all major lineages, is presented to provide a broad, evolutionary perspective of this cosmopolitan clade. We used a phylogenetic framework, in combination with divergence dating, ancestral range estimation, chromosome modeling, and morphological character reconstruction analyses to infer phylogenetic placement and timing of major biogeographic, genomic, and morphological changes in the history of the group and provide insights into the diversification of this clade across six continents. Ancestral range estimation supports an out-of-Africa diversification following the Cretaceous-Tertiary extinction event. Chromosomal modeling, with corroboration from the distribution of synonymous substitutions among gene duplicates, provides evidence for as many as 20 genome-wide duplication events before large radiations. Morphological reconstructions support the hypothesis that switches in floral symmetry and anther dehiscence were important in the evolution of secondary pollen presentation mechanisms. This study provides a broad, phylogenetic perspective on the evolution of the Campanulaceae clade. The remarkable habitat diversity and cosmopolitan distribution of this lineage appears to be the result of a complex history of genome duplications and numerous long-distance dispersal events. We failed to find evidence for an ancestral polyploidy event for this clade, and our analyses indicate an ancestral base number of nine for the group. This study will serve as a framework for future studies in diverse areas of research in Campanulaceae. © 2016 Botanical Society of America.
Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
Teisher, J K; McKain, M R; Schaal, B A; Kellogg, E A
2017-11-10
Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
2018-01-01
Trachemys (Testudines: Emydidae) represents one of the most well-known turtle genera today. The evolution of Trachemys, while being heavily documented with fossil representatives, is not well understood. Numerous fossils from the late Hemphillian Gray Fossil Site (GFS) in northeastern Tennessee help to elucidate its evolution. The fossil Trachemys at the GFS represent a new species. The new taxon, Trachemys haugrudi, is described, and currently represents the most thoroughly described fossil emydid species known. A phylogenetic analysis, including 31 species, focusing on the subfamily Deirochelyinae is performed that includes the new fossil species, along with numerous other modern and fossil deirochelyine species, representing the first phylogenetic analysis published that includes several fossil deirochelyines. The phylogenetic analysis, utilizing morphological evidence, provides monophyletic clades of all modern deirochelyines, including Chrysemys, Deirochelys, Pseudemys, Malaclemys, Graptemys, and Trachemys. A strict consensus tree finds the recently described fossil species Graptemys kerneri to be part of a clade of Graptemys + Malaclemys. Three fossil taxa, including one previously referred to Pseudemys (Pseudemys caelata) and two to Deirochelys (Deirochelys carri and Deirochelys floridana) are found to form a clade with modern Deirochelys reticularia reticularia, with D. floridana sister to the other members of the clade. Chrysemys is found to be part of a basal polytomy with Deirochelys in relation to other deirochelyine taxa. Two fossil taxa previously referred to Chrysemys (Chrysemys timida and Chrysemys williamsi) form a paraphyly with the modern Chrysemys picta picta and Deirochelys, and may be referable to distinct genera. Additionally, fossil taxa previously attributed to Trachemys (Trachemys hillii, Trachemys idahoensis, Trachemys inflata, and Trachemys platymarginata) and T. haugrudi are found to form a clade separate from clades of northern and southern Trachemys species, potentially suggesting a distinct lineage of Trachemys with no modern survivors. Hypotheses of phylogenetic relationships mostly agree between the present study and previous ones, although the inclusion of fossil taxa provides further clues to the evolution of parts of the Deirochelyinae. The inclusion of more fossil taxa and characters may help resolve the placement of some taxa, and further elucidate the evolution of these New World turtles. PMID:29456887
Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphins
Cunha, Haydée A.; Moraes, Lucas C.; Medeiros, Bruna V.; Lailson-Brito, José; da Silva, Vera M. F.; Solé-Cava, Antonio M.; Schrago, Carlos G.
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using Bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin. PMID:22163290
Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins.
Cunha, Haydée A; Moraes, Lucas C; Medeiros, Bruna V; Lailson-Brito, José; da Silva, Vera M F; Solé-Cava, Antonio M; Schrago, Carlos G
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin.
Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A
2006-03-01
Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.
The evolution of vertebral formulae in Hominoidea.
Thompson, Nathan E; Almécija, Sergio
2017-09-01
Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.
Iles, William J D; Sass, Chodon; Lagomarsino, Laura; Benson-Martin, Gracie; Driscoll, Heather; Specht, Chelsea D
2017-12-01
Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences. Finally, we note our nearly complete species sampling and dated phylogeny allow for an assessment of taxonomic history in terms of phylogenetic diversity. We find approximately half of the currently recognized species, corresponding to half of the phylogenetic diversity, have been described since 1975, highlighting the continued importance of basic taxonomic research and conservation initiatives to preserve both described and undiscovered species of Heliconia. Copyright © 2016 Elsevier Inc. All rights reserved.
A new lineage of Cretaceous jewel wasps (Chalcidoidea: Diversinitidae).
Haas, Michael; Burks, Roger A; Krogmann, Lars
2018-01-01
Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species, Diversinitus attenboroughi gen. & sp. n. , Burminata caputaeria gen. & sp. n. and Glabiala barbata gen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.
Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information
McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash
2018-01-01
ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869
Detecting regular sound changes in linguistics as events of concerted evolution
Hruschka, Daniel J.; Branford, Simon; Smith, Eric D.; ...
2014-12-18
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less
Detecting regular sound changes in linguistics as events of concerted evolution.
Hruschka, Daniel J; Branford, Simon; Smith, Eric D; Wilkins, Jon; Meade, Andrew; Pagel, Mark; Bhattacharya, Tanmoy
2015-01-05
Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Detecting regular sound changes in linguistics as events of concerted evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hruschka, Daniel J.; Branford, Simon; Smith, Eric D.
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less
Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)
Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.
2016-01-01
Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the ITS phylogeny. Species with large genomes tend to have narrow ranges. Conclusions Betula grossa may have formed via allopolyploidization between parents in subgenus Betula and subgenus Aspera. Betula bomiensis may also be a wide allopolyploid. Betula corylifolia may be a parental species of allopolyploids in the subsection Chinenses. Placements of B. maximowicziana, B. michauxii and B. nigra need further investigation. This analysis, in line with previous studies, suggests that section Apterocaryon is not monophyletic and thus dwarfism has evolved repeatedly in different lineages of Betula. Polyploidization has occurred many times independently in the evolution of Betula. PMID:27072644
Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria
2008-01-01
Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa. PMID:18471296
Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria.
Evans, Nathaniel M; Lindner, Alberto; Raikova, Ekaterina V; Collins, Allen G; Cartwright, Paulyn
2008-05-09
Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.
Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel
2014-08-01
Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling
2017-10-01
Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.
2015-01-01
The exceptionally well-preserved Romanian dinosaur Balaur bondoc is the most complete theropod known to date from the Upper Cretaceous of Europe. Previous studies of this remarkable taxon have included its phylogenetic interpretation as an aberrant dromaeosaurid with velociraptorine affinities. However, Balaur displays a combination of both apparently plesiomorphic and derived bird-like characters. Here, we analyse those features in a phylogenetic revision and show how they challenge its referral to Dromaeosauridae. Our reanalysis of two distinct phylogenetic datasets focusing on basal paravian taxa supports the reinterpretation of Balaur as an avialan more crownward than Archaeopteryx but outside of Pygostylia, and as a flightless taxon within a paraphyletic assemblage of long-tailed birds. Our placement of Balaur within Avialae is not biased by character weighting. The placement among dromaeosaurids resulted in a suboptimal alternative that cannot be rejected based on the data to hand. Interpreted as a dromaeosaurid, Balaur has been assumed to be hypercarnivorous and predatory, exhibiting a peculiar morphology influenced by island endemism. However, a dromaeosaurid-like ecology is contradicted by several details of Balaur’s morphology, including the loss of a third functional manual digit, the non-ginglymoid distal end of metatarsal II, and a non-falciform ungual on the second pedal digit that lacks a prominent flexor tubercle. Conversely, an omnivorous ecology is better supported by Balaur’s morphology and is consistent with its phylogenetic placement within Avialae. Our reinterpretation of Balaur implies that a superficially dromaeosaurid-like taxon represents the enlarged, terrestrialised descendant of smaller and probably volant ancestors. PMID:26157616
Molecular phylogeny and patterns of diversification in syngnathid fishes.
Hamilton, Healy; Saarman, Norah; Short, Graham; Sellas, Anna B; Moore, Beth; Hoang, Tinya; Grace, Christopher L; Gomon, Martin; Crow, Karen; Brian Simison, W
2017-02-01
The family Syngnathidae is a large and diverse clade of morphologically unique bony fishes, with 57 genera and 300 described species of seahorses, pipefishes, pipehorses, and seadragons. They primarily inhabit shallow coastal waters in temperate and tropical oceans, and are characterized by a fused jaw, male brooding, and extraordinary crypsis. Phylogenetic relationships within the Syngnathidae remain poorly resolved due to lack of generic taxon sampling, few diagnostic morphological characters, and limited molecular data. The phylogenetic placement of the threatened, commercially exploited seahorses remains a topic of intense interest, with conflicting topologies based on morphology and predominantly mitochondrial genetic data. In this study, we integrate eight nuclear and mitochondrial markers and 17 morphological characters to investigate the phylogenetic structure of the family Syngnathidae at the generic level. We include 91 syngnathid species representing 48 of the 57 recognized genera, all major ocean basins, and a broad array of temperate and tropical habitats including rocky and coral reefs, sand and silt, mangroves, seagrass beds, estuaries, and rivers. Maximum likelihood and Bayesian analyses of 5160bp from eight loci produced high congruence among alternate topologies, defining well-supported and sometimes novel clades. We present a hypothesis that confirms a deep phylogenetic split between lineages with trunk- or tail-brood pouch placement, and provides significant new insights into the morphological evolution and biogeography of this highly derived fish clade. Based on the fundamental division between lineages - the tail brooding "Urophori" and the trunk brooding "Gastrophori" - we propose a revision of Syngnathidae classification into only two subfamilies: the Nerophinae and the Syngnathinae. We find support for distinct principal clades within the trunk-brooders and tail-brooders, the latter of which include seahorses, seadragons, independent lineages of pipehorses, and clades that originated in southern Australia and the Western Atlantic. We suggest the seahorse genus Hippocampus is of Indo-Pacific origin and its sister clade is an unexpected grouping of several morphologically disparate Indo-Pacific genera, including the Pacific pygmy pipehorses. Taxonomic revision is required for multiple genera, particularly to reflect deep evolutionary splits in nominal lineages from the Atlantic versus the Indo-Pacific. Copyright © 2016 Elsevier Inc. All rights reserved.
Phylogeny of Marsileaceous Ferns and Relationships of the Fossil Hydropteris pinnata Reconsidered.
Pryer
1999-09-01
Recent phylogenetic studies have provided compelling evidence that confirms the once disputed hypothesis of monophyly for heterosporous leptosporangiate ferns (Marsileaceae and Salviniaceae). Hypotheses for relationships among the three genera of Marsileaceae (Marsilea, Regnellidium, and Pilularia), however, have continued to be in conflict. The phylogeny of Marsileaceae is investigated here using information from morphology and rbcL sequence data. In addition, relationships among all heterosporous ferns, including the whole-plant fossil Hydropteris pinnata are reconsidered. Data sets of 71 morphological and 1239 rbcL characters for 23 leptosporangiate ferns, including eight heterosporous ingroup taxa and 15 homosporous outgroup taxa, were subjected to maximum parsimony analysis. Morphological analyses were carried out both with and without the fossil Hydropteris, and it was excluded from all analyses with rbcL data. An annotated list of the 71 morphological characters is provided in the appendix. For comparative purposes, the Rothwell and Stockey (1994) data set was also reanalyzed here. The best estimate of phylogenetic relationships for Marsileaceae in all analyses is that Pilularia and Regnellidium are sister taxa and Marsilea is sister to that clade. Morphological synapomorphies for various nodes are discussed. Analyses that included Hydropteris resulted in two most-parsimonious trees that differ only in the placement of the fossil. One topology is identical to the relationship found by Rothwell and Stockey (1994), placing the fossil sister to the Azolla plus Salvinia clade. The alternative topology places Hydropteris as the most basal member of the heterosporous fern clade. Equivocal interpretations for character evolution in heterosporous ferns are discussed in the context of these two most-parsimonious trees. Because of the observed degree of character ambiguity, the phylogenetic placement of Hydropteris is best viewed as unresolved, and recognition of the suborder Hydropteridineae, as circumscribed by Rothwell and Stockey (1994), is regarded as premature. The two competing hypotheses of relationships for heterosporous ferns are also compared with the known temporal distribution of relevant taxa. Stratigraphic fit of the phylogenetic estimates is measured by using the Stratigraphic Consistency Index and by comparison with minimum divergence times.
Li, Qin-Qin; Zhou, Song-Dong; He, Xing-Jin; Yu, Yan; Zhang, Yu-Cheng; Wei, Xian-Qin
2010-01-01
Background and Aims The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny. Methods Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA). Key Results Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia. Conclusions Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections. PMID:20966186
Delsuc, F; Catzeflis, F M; Stanhope, M J; Douzery, E J
2001-08-07
The mammalian order Xenarthra (armadillos, anteaters and sloths) is one of the four major clades of placentals, but it remains poorly studied from the molecular phylogenetics perspective. We present here a study encompassing most of the order's diversity in order to establish xenarthrans' intra-ordinal relationships, discuss the evolution of their morphological characters, search for their extant sister group and specify the timing of their radiation with special emphasis on the status of the controversial fossil Eurotamandua. Sequences of three genes (nuclear exon 28 of the Von Willebrand factor and mitochondrial 12S and 16S rRNAs) are compared for eight of the 13 living genera. Phylogenetic analyses confirm the order's monophyly and that of its three major lineages: armadillos (Cingulata), anteaters (Vermilingua) and sloths ('Tardigrada', renamed in 'Folivora'), and our results strongly support the grouping of hairy xenarthrans (anteaters and sloths) into Pilosa. Within placentals, Afrotheria might be the first lineage to branch off, followed by Xenarthra. The morphological adaptative convergence between New World xenarthrans and Old World pangolins is confirmed. Molecular datings place the early emergence of armadillos around the Cretaceous/Tertiary boundary, followed by the divergence between anteaters and sloths in the Early Eocene era. These Tertiary dates contradict the concept of a very ancient origin of modern xenarthran lineages. They also question the placement of the purported fossil anteater (Eurotamandua) from the Middle Eocene period of Europe with the Vermilingua and instead suggest the independent and convergent evolution of this enigmatic taxon.
Delsuc, F.; Catzeflis, F. M.; Stanhope, M. J.; Douzery, E. J.
2001-01-01
The mammalian order Xenarthra (armadillos, anteaters and sloths) is one of the four major clades of placentals, but it remains poorly studied from the molecular phylogenetics perspective. We present here a study encompassing most of the order's diversity in order to establish xenarthrans' intra-ordinal relationships, discuss the evolution of their morphological characters, search for their extant sister group and specify the timing of their radiation with special emphasis on the status of the controversial fossil Eurotamandua. Sequences of three genes (nuclear exon 28 of the Von Willebrand factor and mitochondrial 12S and 16S rRNAs) are compared for eight of the 13 living genera. Phylogenetic analyses confirm the order's monophyly and that of its three major lineages: armadillos (Cingulata), anteaters (Vermilingua) and sloths ('Tardigrada', renamed in 'Folivora'), and our results strongly support the grouping of hairy xenarthrans (anteaters and sloths) into Pilosa. Within placentals, Afrotheria might be the first lineage to branch off, followed by Xenarthra. The morphological adaptative convergence between New World xenarthrans and Old World pangolins is confirmed. Molecular datings place the early emergence of armadillos around the Cretaceous/Tertiary boundary, followed by the divergence between anteaters and sloths in the Early Eocene era. These Tertiary dates contradict the concept of a very ancient origin of modern xenarthran lineages. They also question the placement of the purported fossil anteater (Eurotamandua) from the Middle Eocene period of Europe with the Vermilingua and instead suggest the independent and convergent evolution of this enigmatic taxon. PMID:11487408
An overview of the genus Glyphium and its phylogenetic placement in Patellariales
Boehm, Eric W.A.; Marson, Guy; Mathiassen, Geir H.; Gardiennet, Alain; Schoch, Conrad L.
2015-01-01
Glyphium encompasses species with erect, carbonaceous ligulate to dolabrate ascomata that are strongly laterally compressed and dehisce along a longitudinal slit. The five currently recognized members of the genus are separated primarily by whether the ascospores disassociate into part-spores within the ascus. Glyphium has traditionally been placed in Mytilinidiaceae (Mytilinidiales, Pleosporomycetidae, Dothideomycetes). The present study, based on freshly collected material of G. elatum and G. grisonense, was initiated to determine the phylogenetic placement of Glyphium. Phylogenies inferred from the analysis of sequences of six gene regions (nuLSU, nuSSU, mtSSU, TEF1, RPB1, RPB2) derived from six accessions indicate that Glyphium belongs to Patellariales (Pleosporomycetidae, Dothideomycetes) . Our phylogenies also support the phylogenetic relationship of Patellaria and Hysteropatella within this order. The nomenclatural history of Glyphium is summarized and a key to species is provided. PMID:25661715
Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L
2000-11-01
The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous (based on prior modeling, as well as conflict between the results of our analyses of less and more complete data sets) conclusions about phylogenetic relationships and taxonomy. Copyright 2000 Academic Press.
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Cameron Thrash, J; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-01-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes. PMID:23466704
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Thrash, J Cameron; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-07-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1-V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.
Molecular phylogeny of the red panda (Ailurus fulgens).
Slattery, J P; O'Brien, S J
1995-01-01
The phylogenetic placement of the red panda (Ailurus fulgens) and the giant panda (Ailuropoda melanoleuca) has been an evolutionary enigma since their original descriptions in the nineteenth century. A series of recent molecular analyses led to a consensus that the giant panda's ancestors were derived from early bears (Ursidae), but left unsettled the phylogenetic relationship of the red panda. Previous molecular and morphological phylogenies were inconclusive and varied among placement of the red panda within the raccoon family (Procyonidae), within the bear family (Ursidae), or in a separate family of carnivores equidistant between the two. To examine a relatively ancient (circa 20-30 million years before the present, MYBP) phylogenetic divergence, we used two slowly evolving genetic markers: mitochondrial 12S rRNA sequence and 592 fibroblast proteins resolved by two dimensional gel electrophoresis. Four different carnivore outgroup species, including dog (Canidae: Canis familiaris), cat (Felidae: Felis catus), fanaloka (Viverridae: Fossa fossa), and mongoose (Herpestidae: Galidia elegans), were selected to identify the root of the phylogenetic topologies. Phylogenetic reconstruction by distance-based methods, maximum parsimony, and maximum likelihood clearly indicate a distinct bifurcation forming the Ursidae and the Procyonidae. Further, our data consistently place the red panda as an early divergence within the Procyonidae radiation and confirm the inclusion of giant panda in the Ursidae lineage.
A new version of the RDP (Ribosomal Database Project)
NASA Technical Reports Server (NTRS)
Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.;
1999-01-01
The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.
A. Ammarellou; M.E. Smith; M.A. Tajick; J.M. Trappe
2011-01-01
Desert truffles, hypogeous Pezizales (Ascomycota), are difficult to identify due to evolutionary convergence of morphological characters among taxa that share a similar habitat and mode of spore dispersal. In this paper we document the presence of Picoa lefebvrei (Pat.) Maire (=Phaeangium lefebvrei) in Iran and use phylogenetic...
Douady, Christophe J; Dosay, Miné; Shivji, Mahmood S; Stanhope, Michael J
2003-02-01
Early morphological studies regarding the evolutionary history of elasmobranchs suggested sharks and batoids (skates and rays) were respectively monophyletic. More modern morphological cladistic studies, however, have tended to suggest that batoids are derived sharks, closely related to sawsharks and angelsharks, a phylogenetic arrangement known as the Hypnosqualea hypothesis. Very few molecular studies addressing interordinal relationships of elasmobranchs have been published; the few that do exist, are very limited in terms of both taxon representation and/or aligned sequence positions, and are insufficient to answer the question of whether batoids are derived sharks. The purpose of this study was to address this issue with more complete taxon representation, concomitant with a reasonable number of aligned sequence positions. The data set included a 2.4-kb segment of the mitochondrial 12S rRNA-tRNA valine-16S rRNA locus, and in terms of taxa, representatives of two orders of Batoidea, at least one representative of all orders of sharks, and as an outgroup, the widely recognized sister group to elasmobranchs-Holocephali. The results provide the first convincing molecular evidence for shark monophyly and the rejection of the Hypnosqualea hypothesis. Our phylogenetic placement of batoids as a basal elasmobranch lineage means that much of the current thinking regarding the evolution of morphological and life history characteristics in elasmobranchs needs to be re-evaluated.
Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots
Howarth, Dianella G.; Donoghue, Michael J.
2006-01-01
Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid angiosperms suggest that orthologous TCP genes may be important in dorsal identity, but there has been no broad phylogenetic context to determine copy number or orthology. Here, we compare published data from rosids and asterids with newly collected data from ranunculids, caryophyllids, Saxifragales, and Asterales to ascertain the phylogenetic placement of major duplications in the “ECE” (CYC/TB1) clade of TCP transcription factors. Bayesian analyses indicate that there are three major copies of “CYC” in the ECE clade, and that duplications leading to these copies predate the core eudicots. CYC1 contains no subsequent duplications and may not be expressed in floral tissue. CYC3 exhibits similar patterns of duplication to CYC2 in several groups. Using RT-PCR, we show that, in flowers of Lonicera morrowii (Caprifoliaceae), DipsCYC2B is expressed in the four dorsal petals and not in the ventral petal. DipsCYC3B is expressed in flower and petal primordia, possibly most strongly in the ventral petal. PMID:16754863
Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.
2014-01-01
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554
Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.
Kendall, Michelle; Colijn, Caroline
2016-10-01
Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Wang, Ze-Huan; Peng, Hua; Kilian, Norbert
2013-01-01
The first comprehensive molecular phylogenetic reconstruction of the Cichorieae subtribe Lactucinae is provided. Sequences for two datasets, one of the nuclear rDNA ITS region, the other of five concatenated non-coding chloroplast DNA markers including the petD region and the psbA-trnH, 5′trnL(UAA)-trnF, rpl32-trnL(UAG) and trnQ(UUG)-5′rps16 spacers, were, with few exceptions, newly generated for 130 samples of 78 species. The sampling spans the entire subtribe Lactucinae while focusing on its Chinese centre of diversity; more than 3/4 of the Chinese Lactucinae species are represented. The nuclear and plastid phylogenies inferred from the two independent datasets show various hard topological incongruences. They concern the internal topology of major lineages, in one case the placement of taxa in major lineages, the relationships between major lineages and even the circumscription of the subtribe, indicating potential events of ancient as well as of more recent reticulation and chloroplast capture in the evolution of the subtribe. The core of the subtribe is clearly monophyletic, consisting of the six lineages, Cicerbita, Cicerbita II, Lactuca, Melanoseris, Notoseris and Paraprenanthes. The Faberia lineage and the monospecific Prenanthes purpurea lineage are part of a monophyletic subtribe Lactucinae only in the nuclear or plastid phylogeny, respectively. Morphological and karyological support for their placement is considered. In the light of the molecular phylogenetic reconstruction and of additional morphological data, the conflicting taxonomies of the Chinese Lactuca alliance are discussed and it is concluded that the major lineages revealed are best treated at generic rank. An improved species level taxonomy of the Chinese Lactucinae is outlined; new synonymies and some new combinations are provided. PMID:24376566
Smith, Nathan D.
2010-01-01
Background Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group's fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. Methodology/Principal Findings Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed. Conclusions/Significance Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny. PMID:20976229
Brownian model of transcriptome evolution and phylogenetic network visualization between tissues.
Gu, Xun; Ruan, Hang; Su, Zhixi; Zou, Yangyun
2017-09-01
While phylogenetic analysis of transcriptomes of the same tissue is usually congruent with the species tree, the controversy emerges when multiple tissues are included, that is, whether species from the same tissue are clustered together, or different tissues from the same species are clustered together. Recent studies have suggested that phylogenetic network approach may shed some lights on our understanding of multi-tissue transcriptome evolution; yet the underlying evolutionary mechanism remains unclear. In this paper we develop a Brownian-based model of transcriptome evolution under the phylogenetic network that can statistically distinguish between the patterns of species-clustering and tissue-clustering. Our model can be used as a null hypothesis (neutral transcriptome evolution) for testing any correlation in tissue evolution, can be applied to cancer transcriptome evolution to study whether two tumors of an individual appeared independently or via metastasis, and can be useful to detect convergent evolution at the transcriptional level. Copyright © 2017. Published by Elsevier Inc.
Borowiec, Marek L; Lee, Ernest K; Chiu, Joanna C; Plachetzki, David C
2015-11-23
Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. Our study further clarifies relationships among early branching metazoan lineages. Our phylogeny supports the still-controversial position of ctenophores as sister group to all other metazoans. This study also provides a workflow and computational tools for minimizing systematic bias in genome-based phylogenetic analyses. Future studies of metazoan phylogeny will benefit from ongoing efforts to sequence the genomes of additional invertebrate taxa that will continue to inform our view of the relationships among the major lineages of animals.
Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae)
Smith, Neil Adam
2011-01-01
Abstract Although flightless alcids from the Miocene and Pliocene of the eastern Pacific Ocean have been known for over 100 years, there is no detailed evaluation of diversity and systematic placement of these taxa. This is the first combined analysis of morphological and molecular data to include all extant alcids, the recently extinct Great Auk Pinguinus impennis, the mancalline auks, and a large outgroup sampling of 29 additional non-alcid charadriiforms. Based on the systematic placement of Mancallinae outside of crown clade Alcidae, the clade name Pan-Alcidae is proposed to include all known alcids. An extensive review of the Mancallinae fossil record resulted in taxonomic revision of the clade, and identification of three new species. In addition to positing the first hypothesis of inter-relationships between Mancallinae species, phylogenetic results support placement of Mancallinae as the sister taxon to all other Alcidae, indicating that flightlessness evolved at least twice in the alcid lineage. Convergent osteological characteristics of Mancallinae, the flightless Great Auk, and Spheniscidae are summarized, and implications of Mancallinae diversity, radiation, and extinction in the context of paleoclimatic changes are discussed. PMID:21594108
Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution.
Lu-Irving, Patricia; Marx, Hannah E; Dlugosch, Katrina M
2018-05-10
Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zuloaga, Fernando Omar; Salariato, Diego Leonel; Scataglini, Amalia
2018-01-01
Panicum sensu stricto is a genus of grasses (Poaceae) with nearly, according to this study, 163 species distributed worldwide. This genus is included in the subtribe Panicinae together with Louisiella, the latter with 2 species. Panicum and subtribe Panicinae are characterized by including annual or perennial taxa with open and lax panicles, and spikelets with the lower glume reduced; all taxa also share a basic chromosome number of x = 9 and a Kranz leaf blade anatomy typical of the NAD-me subtype photosynthetic pathway. Nevertheless, the phylogenetic placements of many Panicum species, and the circumscription of the genus, remained untested. Therefore, phylogenetic analyses were conducted using sequence data from the ndhF plastid region, in an extensive worldwide sampling of Panicum and related genera, in order to infer evolutionary relationships and to provide a phylogenetic framework to review the classification of the genus. Diversification times, historical biogeography and evolutionary patterns of the life history (annual vs. perennial) in the subtribe and Panicum were also studied. Results obtained provide strong support for a monophyletic Panicum including 71 species and 7 sections, of which sections Arthragrostis and Yakirra are new in the genus; 7 new combinations are made here. Furthermore, 32 species traditionally assigned to Panicum were excluded from the genus, and discussed in other subtribes of Paniceae. Our study suggested that early diversification in subtribe Panicinae and Panicum occurred through the Early-Mid Miocene in the Neotropics, while the subsequent diversification of its sections mainly occurred in the Late Miocene-Pleistocene, involving multiple dispersals to all continents. Our analyses also showed that transition rates and changes between annual and perennial life history in Panicum were quite frequent, suggesting considerable lability of this trait. Changes of the life history, together with C4 photosynthesis, and the multiple dispersal events since the Mid Miocene, seem to have facilitated a widespread distribution of the genus. All these findings contribute to a better understanding of the systematics and evolution of Panicum.
Pyron, R Alexander
2017-01-01
Here, I combine previously underutilized models and priors to perform more biologically realistic phylogenetic inference from morphological data, with an example from squamate reptiles. When coding morphological characters, it is often possible to denote ordered states with explicit reference to observed or hypothetical ancestral conditions. Using this logic, we can integrate across character-state labels and estimate meaningful rates of forward and backward transitions from plesiomorphy to apomorphy. I refer to this approach as MkA, for “asymmetric.” The MkA model incorporates the biological reality of limited reversal for many phylogenetically informative characters, and significantly increases likelihoods in the empirical data sets. Despite this, the phylogeny of Squamata remains contentious. Total-evidence analyses using combined morphological and molecular data and the MkA approach tend toward recent consensus estimates supporting a nested Iguania. However, support for this topology is not unambiguous across data sets or analyses, and no mechanism has been proposed to explain the widespread incongruence between partitions, or the hidden support for various topologies in those partitions. Furthermore, different morphological data sets produced by different authors contain both different characters and different states for the same or similar characters, resulting in drastically different placements for many important fossil lineages. Effort is needed to standardize ontology for morphology, resolve incongruence, and estimate a robust phylogeny. The MkA approach provides a preliminary avenue for investigating morphological evolution while accounting for temporal evidence and asymmetry in character-state changes.
Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu
2014-01-01
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family. PMID:24911363
Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu
2014-01-01
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.
A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data
Hipp, Andrew L.; Eaton, Deren A. R.; Cavender-Bares, Jeannine; Fitzek, Elisabeth; Nipper, Rick; Manos, Paul S.
2014-01-01
Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23–33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43–64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci—due, for example, to reticulate evolution or lineage sorting—are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23–33 million year-old clade. PMID:24705617
USDA-ARS?s Scientific Manuscript database
The new anamorphic yeast Kuraishia piskuri, f.a., sp. nov. is described for three strains that were isolated from insect frass from trees growing in Florida, USA (type strain, NRRL YB-2544, CBS 13714). Species placement was based on phylogenetic analysis of nuclear gene sequences for the D1/D2 domai...
Motani, Ryosuke; Schmitz, Lars
2011-08-01
Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution
Kendall, Michelle; Colijn, Caroline
2016-01-01
Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287
Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W
2010-12-01
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.
Predicting rates of interspecific interaction from phylogenetic trees.
Nuismer, Scott L; Harmon, Luke J
2015-01-01
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.
Klassen, Jonathan L.
2010-01-01
Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification. PMID:20582313
A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).
Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A
2013-05-01
The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.
Wood, Kenneth R.; Appelhans, Marc S.; Wagner, Warren L.
2017-01-01
Abstract Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua‘i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5–)8–30 × (4–)6–11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua‘i. PMID:29033653
Wood, Kenneth R; Appelhans, Marc S; Wagner, Warren L
2017-01-01
Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5-)8-30 × (4-)6-11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km 2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua'i.
Reassignment of Lamanema from Nematodirinae to Molineinae (Nematoda: Trichostronglyloidea).
Rickard, L G; Hoberg, E P
2000-06-01
The monospecific Lamanema historically has been assigned to the Nematodirinae within the Molineidae. Inconsistencies in morphological characters, within a phylogenetic context for Nematodirinae, led to a re-evaluation of the putative relationships and taxonomic placement of Lamanema. Among 7 putative synapomorphies for Nematodirinae, Lamanema possesses only 1, large eggs. Large eggs, sporadically present in phylogenetically disparate taxa of trichostrongyles, are equivocal with respect to placement of Lamanema; it is considered that possession of this single homoplasious character alone is insufficient justification to retain the genus in Nematodirinae. Affinities with the Trichostrongylidae (Cooperiinae or Haemonchinae) have also been proposed; however, Lamanema possess neither of 2 synapomorphies that diagnose monophyly of the family. Lamanema is retained in the Molineidae and transferred to the Molineinae as it possesses all characters of the family as currently defined. The origin of Lamanema represents a secondary colonization of ruminants by molineids and provides no context for elucidating the history of the Nematodirinae and Nematodirus.
Pol, Diego; Garrido, Alberto; Cerda, Ignacio A.
2011-01-01
Background The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic–Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods. Methodology/Principal Findings A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina). The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda. Conclusions/Significance The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually, with a step-wise pattern of character appearance. PMID:21298087
Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François
2017-04-15
High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Phylogenetic position of Leishmania isolates from Khyber Pakhtunkhwa province of Pakistan.
Khan, Nazma Habib; Messenger, Louisa A; Wahid, Sobia; Sutherland, Colin J
2016-08-01
Several species of the genus Leishmania are causative agents of cutaneous leishmaniasis in Pakistan. This study aimed to determine phylogenetic placement of Leishmania species causing cutaneous leishmaniasis in Khyber Pakhtunkhwa province, Pakistan (34 Leishmania tropica, 3 Leishmania infantum), in-relation to species from other geographical areas using gene sequences encoding cytochrome b (cytb) and internal transcribed spacer 2 (its2). Based on cytochrome b sequence analysis, L. tropica strains from Pakistan and other geographical regions were differentiated into two genotype groups, A and B. Within the province, five distinct L. tropica genotypes were recognized; two in group A, three in group B. Two L. infantum isolates from the province were closely associated with both Afro-Eurasian and American species of the Leishmania donovani complex, including Leishmania chagasi, L. infantum and L. donovani from Sudan and Ethiopia; while a third L. infantum isolate could not be differentiated from visceralizing Kenyan and Indian L. donovani. We observed apposite phylogenetic placement of CL-causing L. tropica and L. infantum from Khyber Pakhtunkhwa. Affinities ascribed to Leishmania spp. From the region are valuable in tracing potential importation of leishmaniasis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.
Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T
2017-01-07
Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.
Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H
2014-11-19
Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data.
Sansom, Robert S
2015-03-01
The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.
Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P
2012-12-01
Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].
A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera
Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L.; Rasnitsyn, Alexandr P.
2012-01-01
Abstract Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.] PMID:22723471
Seelan, Jaya Seelan Sathiya; Justo, Alfredo; Nagy, Laszlo G; Grand, Edward A; Redhead, Scott A; Hibbett, David
2015-01-01
The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. Single-gene phylogenies and phylogenies combining ITS and 28S with RPB1 and RPB2 genes all support existence of a Lentinus/Polyporellus clade and a separate Neofavolus clade. Polyporellus (represented by P. arcularius, P. ciliatus, P. brumalis) forms a clade with species representing Lentinus subg. Lentinus sensu Pegler (1983), excluding L. suavissimus. Lentinus tigrinus appears as the sister group of Polyporellus in the four-gene phylogeny, but this placement was weakly supported. All three multigene analyses and the single-gene analysis using ITS strongly supported Polyporus tricholoma as the sister group of the Lentinus/Polyporellus clade; only the 28S rRNA phylogeny failed to support this placement. Under parsimony the ancestral hymenophoral configuration for the Lentinus/Polyporellus clade is estimated to be circular pores, with independent transitions to angular pores and lamellae. The ancestral state for the Neofavolus clade is estimated to be angular pores, with a single transition to lamellae in L. suavissimus. We propose that Lentinus suavissimus (section Pleuroti) should be reclassified as Neofavolus suavissimus comb. nov. © 2015 by The Mycological Society of America.
Phylogenetic comparative methods on phylogenetic networks with reticulations.
Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile
2018-04-25
The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.
The Independent Evolution Method Is Not a Viable Phylogenetic Comparative Method
2015-01-01
Phylogenetic comparative methods (PCMs) use data on species traits and phylogenetic relationships to shed light on evolutionary questions. Recently, Smaers and Vinicius suggested a new PCM, Independent Evolution (IE), which purportedly employs a novel model of evolution based on Felsenstein’s Adaptive Peak Model. The authors found that IE improves upon previous PCMs by producing more accurate estimates of ancestral states, as well as separate estimates of evolutionary rates for each branch of a phylogenetic tree. Here, we document substantial theoretical and computational issues with IE. When data are simulated under a simple Brownian motion model of evolution, IE produces severely biased estimates of ancestral states and changes along individual branches. We show that these branch-specific changes are essentially ancestor-descendant or “directional” contrasts, and draw parallels between IE and previous PCMs such as “minimum evolution”. Additionally, while comparisons of branch-specific changes between variables have been interpreted as reflecting the relative strength of selection on those traits, we demonstrate through simulations that regressing IE estimated branch-specific changes against one another gives a biased estimate of the scaling relationship between these variables, and provides no advantages or insights beyond established PCMs such as phylogenetically independent contrasts. In light of our findings, we discuss the results of previous papers that employed IE. We conclude that Independent Evolution is not a viable PCM, and should not be used in comparative analyses. PMID:26683838
Cachera, Marie; Le Loc'h, François
2017-08-01
The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.
Francis, Andrew; Moulton, Vincent
2018-06-07
Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zoology: Invertebrates that Parasitize Invertebrates.
Giribet, Gonzalo
2016-07-11
The genome of an orthonectid, a group of highly modified parasitic invertebrates, is drastically reduced and compact, yet it shows the bilaterian gene toolkit. Phylogenetic analyses place the enigmatic orthonectids within Spiralia, although their exact placement remains uncertain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extreme Ontogenetic Changes in a Ceratosaurian Theropod.
Wang, Shuo; Stiegler, Josef; Amiot, Romain; Wang, Xu; Du, Guo-Hao; Clark, James M; Xu, Xing
2017-01-09
Ontogenetic variation is documented within many dinosaur species, but extreme ontogenetic changes are rare among dinosaurs, particularly among theropods. Here, we analyze 19 specimens of the Jurassic ceratosaurian theropod Limusaurus inextricabilis, representing six ontogenetic stages based on body size and histological data. Among 78 ontogenetic changes we identify in these specimens, the most unexpected one is the change from fully toothed jaws in the hatchling and juvenile individuals to a completely toothless beaked jaw in the more mature individuals, representing the first fossil record of ontogenetic edentulism among the jawed vertebrates. Jaw morphological data, including those derived from Mi-CT and SR-μCT scanning of Limusaurus specimens, reveal dental alveolar vestiges and indicate that ontogenetic tooth loss in Limusaurus is a gradual, complex process. Our discovery has significant implications for understanding the evolution of the beak, an important feeding structure present in several tetrapod clades, including modern birds. This radical morphological change suggests a dietary shift, probably from omnivory for juvenile Limusaurus to herbivory for adult Limusaurus, which is also supported by additional evidence from gastroliths and stable isotopes. Incorporating new ontogenetic information from Limusaurus into phylogenetic analyses demonstrates surprisingly little effect on its placement when data from different stages are used exclusively, in contrast to previous analyses of tyrannosaurids, but produces subtle differences extending beyond the placement of Limusaurus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salariato, Diego Leonel; Scataglini, Amalia
2018-01-01
Panicum sensu stricto is a genus of grasses (Poaceae) with nearly, according to this study, 163 species distributed worldwide. This genus is included in the subtribe Panicinae together with Louisiella, the latter with 2 species. Panicum and subtribe Panicinae are characterized by including annual or perennial taxa with open and lax panicles, and spikelets with the lower glume reduced; all taxa also share a basic chromosome number of x = 9 and a Kranz leaf blade anatomy typical of the NAD-me subtype photosynthetic pathway. Nevertheless, the phylogenetic placements of many Panicum species, and the circumscription of the genus, remained untested. Therefore, phylogenetic analyses were conducted using sequence data from the ndhF plastid region, in an extensive worldwide sampling of Panicum and related genera, in order to infer evolutionary relationships and to provide a phylogenetic framework to review the classification of the genus. Diversification times, historical biogeography and evolutionary patterns of the life history (annual vs. perennial) in the subtribe and Panicum were also studied. Results obtained provide strong support for a monophyletic Panicum including 71 species and 7 sections, of which sections Arthragrostis and Yakirra are new in the genus; 7 new combinations are made here. Furthermore, 32 species traditionally assigned to Panicum were excluded from the genus, and discussed in other subtribes of Paniceae. Our study suggested that early diversification in subtribe Panicinae and Panicum occurred through the Early-Mid Miocene in the Neotropics, while the subsequent diversification of its sections mainly occurred in the Late Miocene-Pleistocene, involving multiple dispersals to all continents. Our analyses also showed that transition rates and changes between annual and perennial life history in Panicum were quite frequent, suggesting considerable lability of this trait. Changes of the life history, together with C4 photosynthesis, and the multiple dispersal events since the Mid Miocene, seem to have facilitated a widespread distribution of the genus. All these findings contribute to a better understanding of the systematics and evolution of Panicum. PMID:29466405
Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution
2016-08-01
construct evolutionary trees , the characteristics of which will be used to predict whether a tumor will metastasize or not. We established a procedure for...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree . The more diverse a tumor’s phylogenetic tree ...individual tumor cells from the tumors of a training set of patients (half early stage, half late stage). We will reconstruct each tumor’s phylogenetic tree
An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.
Liang, Ying; Liao, Bo; Zhu, Wen
2017-01-01
Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.
Eisenstein, E. M.; Eisenstein, D. L.; Sarma, J. S. M.
2016-01-01
ABSTRACT There are probably few terms in evolutionary studies regarding neuroscience issues that are used more frequently than ‘behavior', ‘learning', ‘memory', and ‘mind'. Yet there are probably as many different meanings of these terms as there are users of them. Further, investigators in such studies, while recognizing the full phylogenetic spectrum of life and the evolution of these phenomena, rarely go beyond mammals and other vertebrates in their investigations; invertebrates are sometimes included. What is rarely taken into consideration, though, is that to fully understand the evolution and significance for survival of these phenomena across phylogeny, it is essential that they be measured and compared in the same units of measurement across the full phylogenetic spectrum from aneural bacteria and protozoa to humans. This paper explores how these terms are generally used as well as how they might be operationally defined and measured to facilitate uniform examination and comparisons across the full phylogenetic spectrum of life. This paper has 2 goals: (1) to provide models for measuring the evolution of ‘behavior' and its changes across the full phylogenetic spectrum, and (2) to explain why ‘mind phenomena' cannot be measured scientifically at the present time. PMID:27489578
Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L.
Mahé, Frédéric; Markova, Dragomira; Pasquet, Rémy; Misset, Marie-Thérèse; Aïnouche, Abdelkader
2011-07-01
SymRK is one of the key genes involved in initial steps of legume symbiotic association with fungi (mycorrhization) and nitrogen-fixing bacteria (nodulation). A large portion of the sequence encoding the extracellular domain of SYMRK was obtained for 38 lupine accessions and 2 outgroups in order to characterize this region, to evaluate its phylogenetic utility, and to examine whether its molecular evolutionary pattern is correlated with rhizobial diversity and specificity in Lupinus. The data suggested that, in Lupinus, SymRK is a single copy gene that shows good phylogenetic potential. Accordingly, SymRK provided additional support to previous molecular phylogenies, and shed additional light on relationships within the Old World group of Lupinus, especially among the African species. Similar to results of other studies, analyses of SymRK sequences were unable to resolve placement of the Florida unifoliolate lineage, whose relationship was weakly supported to either the Old or the New World lupines. Our data are consistent with strong purifying selection operating on SymRK in Lupinus, preserving rather than diversifying its function. Thus, although SymRK was demonstrated to be a vital gene in the early stages of the root-bacterial symbiotic associations, no evidence from present analyses indicate that this gene is involved in changes in rhizobial specificity in Lupinus. Copyright © 2011 Elsevier Inc. All rights reserved.
BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution.
Kiefer, Markus; Schmickl, Roswitha; German, Dmitry A; Mandáková, Terezie; Lysak, Martin A; Al-Shehbaz, Ihsan A; Franzke, Andreas; Mummenhoff, Klaus; Stamatakis, Alexandros; Koch, Marcus A
2014-01-01
The Brassicaceae family (mustards or crucifers) includes Arabidopsis thaliana as one of the most important model species in plant biology and a number of important crop plants such as the various Brassica species (e.g. cabbage, canola and mustard). Moreover, the family comprises an increasing number of species that serve as study systems in many fields of plant science and evolutionary research. However, the systematics and taxonomy of the family are very complex and access to scientifically valuable and reliable information linked to species and genus names and its interpretation are often difficult. BrassiBase is a continuously developing and growing knowledge database (http://brassibase.cos.uni-heidelberg.de) that aims at providing direct access to many different types of information ranging from taxonomy and systematics to phylo- and cytogenetics. Providing critically revised key information, the database intends to optimize comparative evolutionary research in this family and supports the introduction of the Brassicaceae as the model family for evolutionary biology and plant sciences. Some features that should help to accomplish these goals within a comprehensive taxonomic framework have now been implemented in the new version 1.1.9. A 'Phylogenetic Placement Tool' should help to identify critical accessions and germplasm and provide a first visualization of phylogenetic relationships. The 'Cytogenetics Tool' provides in-depth information on genome sizes, chromosome numbers and polyploidy, and sets this information into a Brassicaceae-wide context.
Clouse, Ronald M.; Linchangco, Gregorio V.; Kerr, Alexander M.; Reid, Robert W.; Janies, Daniel A.
2015-01-01
Tissue inhibitors of metalloproteinases (TIMPs) help regulate the extracellular matrix (ECM) in animals, mostly by inhibiting matrix metalloproteinases (MMPs). They are important activators of mutable collagenous tissue (MCT), which have been extensively studied in echinoderms, and the four TIMP copies in humans have been studied for their role in cancer. To understand the evolution of TIMPs, we combined 405 TIMPs from an echinoderm transcriptome dataset built from 41 specimens representing all five classes of echinoderms with variants from protostomes and chordates. We used multiple sequence alignment with various stringencies of alignment quality to cull highly divergent sequences and then conducted phylogenetic analyses using both nucleotide and amino acid sequences. Phylogenetic hypotheses consistently recovered TIMPs as diversifying in the ancestral deuterostome and these early lineages continuing to diversify in echinoderms. The four vertebrate TIMPs diversified from a single copy in the ancestral chordate, all other copies being lost. Consistent with greater MCT needs owing to body wall liquefaction, evisceration, autotomy and reproduction by fission, holothuroids had significantly more TIMPs and higher read depths per contig. Ten cysteine residues, an HPQ binding site and several other residues were conserved in at least 70% of all TIMPs. The conservation of binding sites and the placement of echinoderm TIMPs involved in MCT modification suggest that ECM regulation remains the primary function of TIMP genes, although within this role there are a large number of specialized copies. PMID:27017967
Hoyal Cuthill, Jennifer F.
2015-01-01
Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650
Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.
Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A
2018-01-30
Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Repeated evolution of camouflage in speciose desert rodents.
Boratyński, Zbyszek; Brito, José C; Campos, João C; Cunha, José L; Granjon, Laurent; Mappes, Tapio; Ndiaye, Arame; Rzebik-Kowalska, Barbara; Serén, Nina
2017-06-14
There are two main factors explaining variation among species and the evolution of characters along phylogeny: adaptive change, including phenotypic and genetic responses to selective pressures, and phylogenetic inertia, or the resemblance between species due to shared phylogenetic history. Phenotype-habitat colour match, a classic Darwinian example of the evolution of camouflage (crypsis), offers the opportunity to test the importance of historical versus ecological mechanisms in shaping phenotypes among phylogenetically closely related taxa. To assess it, we investigated fur (phenotypic data) and habitat (remote sensing data) colourations, along with phylogenetic information, in the species-rich Gerbillus genus. Overall, we found a strong phenotype-habitat match, once the phylogenetic signal is taken into account. We found that camouflage has been acquired and lost repeatedly in the course of the evolutionary history of Gerbillus. Our results suggest that fur colouration and its covariation with habitat is a relatively labile character in mammals, potentially responding quickly to selection. Relatively unconstrained and substantial genetic basis, as well as structural and functional independence from other fitness traits of mammalian colouration might be responsible for that observation.
Lessard, B D; Cameron, S L; Bayless, K M; Wiegmann, B M; Yeates, D K
2013-09-01
Phylogenetic relationships within the Tabanidae are largely unknown, despite their considerable medical and ecological importance. The first robust phylogenetic hypothesis for the horse fly tribe Scionini is provided, completing the systematic placement of all tribes in the subfamily Pangoniinae. The Scionini consists of seven mostly southern hemisphere genera distributed in Australia, New Guinea, New Zealand and South America. A 5757 bp alignment of 6 genes, including mitochondrial (COI and COII), ribosomal (28S) and nuclear (AATS and CAD regions 1, 3 and 4) genes, was analysed for 176 taxa using both Bayesian and maximum likelihood approaches. Results indicate the Scionini are strongly monophyletic, with the exclusion of the only northern hemisphere genus Goniops. The South American genera Fidena, Pityocera and Scione were strongly monophyletic, corresponding to current morphology-based classification schemes. The most widespread genus Scaptia was paraphyletic and formed nine strongly supported monophyletic clades, each corresponding to either the current subgenera or several previously synonymised genera that should be formally resurrected. Molecular results also reveal a newly recognised genus endemic to New Zealand, formerly placed within Scaptia. Divergence time estimation was employed to assess the global biogeographical patterns in the Pangoniinae. These analyses demonstrated that the Scionini are a typical Gondwanan group whose diversification was influenced by the fragmentation of that ancient land mass. Furthermore, results indicate that the Scionini most likely originated in Australia and subsequently radiated to New Zealand and South American by both long distance dispersal and vicariance. The phylogenetic framework of the Scionini provided herein will be valuable for taxonomic revisions of the Tabanidae. Copyright © 2013 Elsevier Inc. All rights reserved.
The Phylogenetics and Ecology of the Orthopoxviruses Endemic to North America
Emerson, Ginny L.; Li, Yu; Frace, Michael A.; Olsen-Rasmussen, Melissa A.; Khristova, Marina L.; Govil, Dhwani; Sammons, Scott A.; Regnery, Russell L.; Karem, Kevin L.; Damon, Inger K.; Carroll, Darin S.
2009-01-01
The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America. PMID:19865479
Colletotrichum – current status and future directions
Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S.
2012-01-01
A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment. PMID:23136460
Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria.
Criscuolo, Alexis; Gribaldo, Simonetta
2011-11-01
The emergence of photosynthetic eukaryotes has played a crucial role in evolution and has strongly modified earth's ecology. Several phylogenetic analyses have established that primary plastids arose from a cyanobacterium through endosymbiosis. However, the question of which present-day cyanobacterial lineage is most closely related to primary plastids has been unclear. Here, we have performed an extensive phylogenomic investigation on the origin of primary plastids based on the analysis of up to 191 protein markers and over 30,000 aligned amino acid sites from 22 primary photosynthetic eukaryotes and 61 cyanobacteria representing a wide taxonomic sampling of this phylum. By using a number of solutions to circumvent a large range of systematic errors, we have reconstructed a robust global phylogeny of cyanobacteria and studied the placement of primary plastids within it. Our results strongly support an early emergence of primary plastids within cyanobacteria, prior to the diversification of most present-day cyanobacterial lineages for which genomic data are available.
New Perspectives on Ebola Virus Evolution.
Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty
2016-01-01
Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.
Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.
2003-01-01
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714
Automated fiber placement: Evolution and current demonstrations
NASA Technical Reports Server (NTRS)
Grant, Carroll G.; Benson, Vernon M.
1993-01-01
The automated fiber placement process has been in development at Hercules since 1980. Fiber placement is being developed specifically for aircraft and other high performance structural applications. Several major milestones have been achieved during process development. These milestones are discussed in this paper. The automated fiber placement process is currently being demonstrated on the NASA ACT program. All demonstration projects to date have focused on fiber placement of transport aircraft fuselage structures. Hercules has worked closely with Boeing and Douglas on these demonstration projects. This paper gives a description of demonstration projects and results achieved.
P-type ATPase superfamily: evidence for critical roles for kingdom evolution.
Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio
2003-04-01
The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.
PAL: an object-oriented programming library for molecular evolution and phylogenetics.
Drummond, A; Strimmer, K
2001-07-01
Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B; Zimmermann, Niklaus E; Salamin, Nicolas
2012-09-22
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
Litsios, Glenn; Pellissier, Loïc; Forest, Félix; Lexer, Christian; Pearman, Peter B.; Zimmermann, Niklaus E.; Salamin, Nicolas
2012-01-01
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs. PMID:22719034
Unraveling the processes shaping mammalian gut microbiomes over evolutionary time
Groussin, Mathieu; Mazel, Florent; Sanders, Jon G.; Smillie, Chris S.; Lavergne, Sébastien; Thuiller, Wilfried; Alm, Eric J.
2017-01-01
Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution. PMID:28230052
Dussex, Nicolas; Chuah, Aaron; Waters, Jonathan M
2016-01-01
Insect flight loss is a repeated phenomenon in alpine habitats, where wing reduction is thought to enhance local recruitment and increase fecundity. One predicted consequence of flight loss is reduced dispersal ability, which should lead to population genetic differentiation and perhaps ultimately to speciation. Using a dataset of 15,123 SNP loci, we present comparative analyses of fine-scale population structure in codistributed Zelandoperla stonefly species, across three parallel altitudinal transects in New Zealand's Rock and Pillar mountain range. We find that winged populations (altitude 200-500 m; Zelandoperla decorata) show no genetic structuring within or among streams, suggesting substantial dispersal mediated by flight. By contrast, wingless populations (Zelandoperla fenestrata; altitude 200-1100 m) exhibit distinct genetic clusters associated with each stream, and additional evidence of isolation by distance within streams. Our data support the hypothesis that wing-loss can initiate diversification in alpine insect populations over small spatial scales. The often deep phylogenetic placement of lowland Z. fenestrata within their stream-specific clades suggests the possibility of independent alpine colonization events for each stream. Additionally, the detection of winged, interspecific hybrid individuals raises the intriguing possibility that a previously flightless lineage could reacquire flight via introgression. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Rodríguez, Ariel; Burgon, James D; Lyra, Mariana; Irisarri, Iker; Baurain, Denis; Blaustein, Leon; Göçmen, Bayram; Künzel, Sven; Mable, Barbara K; Nolte, Arne W; Veith, Michael; Steinfartz, Sebastian; Elmer, Kathryn R; Philippe, Hervé; Vences, Miguel
2017-10-01
The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a compelling example of how classical node support metrics such as bootstrap and Bayesian posterior probability can provide high confidence values in a phylogenomic topology even if the phylogenetic signal for some nodes is spurious, highlighting the importance of complementary approaches such as gene jackknifing. Yet, the general congruence among the topologies recovered from the RNAseq and RADseq data sets increases our confidence in the results, and validates the use of phylotranscriptomic approaches for reconstructing shallow relationships among closely related taxa. We hypothesize that the evolution of Salamandra has been characterized by episodes of introgressive hybridization, which would explain the difficulties of fully reconstructing their evolutionary relationships. Copyright © 2017. Published by Elsevier Inc.
Phylogenetic patterns and the adaptive evolution of osmoregulation in fiddler crabs (Brachyura, Uca)
Faria, Samuel Coelho; Provete, Diogo Borges; Thurman, Carl Leo
2017-01-01
Salinity is the primary driver of osmoregulatory evolution in decapods, and may have influenced their diversification into different osmotic niches. In semi-terrestrial crabs, hyper-osmoregulatory ability favors sojourns into burrows and dilute media, and provides a safeguard against hemolymph dilution; hypo-osmoregulatory ability underlies emersion capability and a life more removed from water sources. However, most comparative studies have neglected the roles of the phylogenetic and environmental components of inter-specific physiological variation, hindering evaluation of phylogenetic patterns and the adaptive nature of osmoregulatory evolution. Semi-terrestrial fiddler crabs (Uca) inhabit fresh to hyper-saline waters, with species from the Americas occupying higher intertidal habitats than Indo-west Pacific species mainly found in the low intertidal zone. Here, we characterize numerous osmoregulatory traits in all ten fiddler crabs found along the Atlantic coast of Brazil, and we employ phylogenetic comparative methods using 24 species to test for: (i) similarities of osmoregulatory ability among closely related species; (ii) salinity as a driver of osmoregulatory evolution; (iii) correlation between salt uptake and secretion; and (iv) adaptive peaks in osmoregulatory ability in the high intertidal American lineages. Our findings reveal that osmoregulation in Uca exhibits strong phylogenetic patterns in salt uptake traits. Salinity does not correlate with hyper/hypo-regulatory abilities, but drives hemolymph osmolality at ambient salinities. Osmoregulatory traits have evolved towards three adaptive peaks, revealing a significant contribution of hyper/hypo-regulatory ability in the American clades. Thus, during the evolutionary history of fiddler crabs, salinity has driven some of the osmoregulatory transformations that underpin habitat diversification, although others are apparently constrained phylogenetically. PMID:28182764
Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka
2013-03-01
Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan
2007-11-01
For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.
Comparison of conservation metrics in a case study of lemurs.
Gudde, Renske; Venditti, Chris
2016-12-01
Conservation planning is important to protect species from going extinct now that natural habitats are decreasing owing to human activity and climate change. However, there is considerable controversy in choosing appropriate metrics to weigh the value of species and geographic regions. For example, the added value of phylogenetic conservation-selection criteria remains disputed because high correlations between them and the nonphylogenetic criteria of species richness have been reported. We evaluated the commonly used conservation metrics species richness, endemism, phylogenetic diversity (PD), and phylogenetic endemism (PE) in a case study on lemurs of Madagascar. This enabled us to identify the conservation target of each metric and consider how they may be used in future conservation planning. We also devised a novel metric that uses a phylogeny scaled according to the rate of phenotypic evolution as a proxy for a species' ability to adapt to change. High rates of evolution may indicate generalization or specialization. Both specialization and low rates of evolution may result in an inability to adapt to changing environments. We examined conservation priorities by using the inverse of the rate of body mass evolution to account for species with low rates of evolution. In line with previous work, we found high correlations among species richness and PD (r = 0.96), and endemism and PE (r = 0.82) in Malagasy lemurs. Phylogenetic endemism in combination with rates of evolution and their inverse prioritized grid cells containing highly endemic and specialized lemurs at risk of extinction, such as Avahi occidentalis and Lepilemur edwardsi, 2 endangered lemurs with high rates of phenotypic evolution and low-quality diets, and Hapalemur aureus, a critically endangered species with a low rate of body mass evolution and a diet consisting of very high doses of cyanide. © 2016 Society for Conservation Biology.
Anzaldo, Salvatore S.
2017-01-01
Abstract The thirty-nine extant genera of Conoderinae known to occur in North America, Central America, and the Caribbean are reviewed based on external morphology. An identification key is provided along with diagnoses, distributions, species counts, and natural history information, when known, for each genus. Morphological character systems of importance for weevil classification are surveyed, potential relationships among the tribes and genera are discussed, and groups most in need of taxonomic and phylogenetic attention are identified. The following genera are transferred to new tribes: Acoptus LeConte, 1876 from the Lechriopini to the Othippiini (new placement) and the South American genus Hedycera Pascoe, 1870 from the Lechriopini to the Piazurini (new placement). Philides Champion, 1906 and Philinna Champion, 1906 are transferred from the Lechriopini to Conoderinae incertae sedis (new placement) although their placement as conoderines is uncertain. The species Copturomimus cinereus Heller, 1895 is designated as the type species of the genus Copturomimus Heller, 1895. PMID:28769729
Miao, Wei; Simpson, Alastair G B; Fu, Chengjie; Lobban, Christopher S
2005-01-01
The small subunit rDNA sequence of Maristentor dinoferus (Lobban, Schefter, Simpson, Pochon, Pawlowski, and Foissner, 2002) was determined and compared with sequences from other Heterotrichea and Karyorelictea. Maristentor resembles Stentor in basic morphology and had been provisionally assigned to Stentoridae. However, our phylogenetic analyses show that Maristentor is more closely related to Folliculinidae. Our results support the creation of a separate family for Maristentor, Maristentoridae n. fam., and also confirm the phylogenetic grouping of Folliculindae, Stentoridae, Blepharismidae, and Maristentoridae, which we informally call 'stentorids'. Maristentor, rather than Stentor itself, appears to be most significant in understanding the origins of folliculinids from their aloricate ancestors. Our analyses suggest continued uncertainty in the exact placement of the root of heterotrichs with this phylogenetic marker.
Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.
Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W
2002-01-01
The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction. PMID:11886621
Smith, Geoff M.; Hutson, Jarod M.; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine
2017-01-01
Background Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus. Methods ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus, subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Results Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus. The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros, opposed to forming a clade with the black and white rhinoceros species. Discussion The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus. This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies. PMID:28316883
Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine
2017-01-01
Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus . The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros , opposed to forming a clade with the black and white rhinoceros species. The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus . This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies.
Inlet Geomorphology Evolution Work Unit
2015-10-30
Research Facility in Duck , North Carolina in coming years. In collaboration with the CMS work unit, an analysis of long-term inlet morphology...the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical
Reclassification of Theileria annae as Babesia vulpes sp. nov.
Baneth, Gad; Florin-Christensen, Monica; Cardoso, Luís; Schnittger, Leonhard
2015-04-08
Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite's natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.
Brown, Jeremy M; Thomson, Robert C
2017-07-01
As the application of genomic data in phylogenetics has become routine, a number of cases have arisen where alternative data sets strongly support conflicting conclusions. This sensitivity to analytical decisions has prevented firm resolution of some of the most recalcitrant nodes in the tree of life. To better understand the causes and nature of this sensitivity, we analyzed several phylogenomic data sets using an alternative measure of topological support (the Bayes factor) that both demonstrates and averts several limitations of more frequently employed support measures (such as Markov chain Monte Carlo estimates of posterior probabilities). Bayes factors reveal important, previously hidden, differences across six "phylogenomic" data sets collected to resolve the phylogenetic placement of turtles within Amniota. These data sets vary substantially in their support for well-established amniote relationships, particularly in the proportion of genes that contain extreme amounts of information as well as the proportion that strongly reject these uncontroversial relationships. All six data sets contain little information to resolve the phylogenetic placement of turtles relative to other amniotes. Bayes factors also reveal that a very small number of extremely influential genes (less than 1% of genes in a data set) can fundamentally change significant phylogenetic conclusions. In one example, these genes are shown to contain previously unrecognized paralogs. This study demonstrates both that the resolution of difficult phylogenomic problems remains sensitive to seemingly minor analysis details and that Bayes factors are a valuable tool for identifying and solving these challenges. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chloroplast Phylogenomics Indicates that Ginkgo biloba Is Sister to Cycads
Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi
2013-01-01
Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo–cycad sister-group hypothesis. PMID:23315384
Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes.
Cui, Rongfeng; Schumer, Molly; Kruesi, Karla; Walter, Ronald; Andolfatto, Peter; Rosenthal, Gil G
2013-08-01
Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Coiro, Mario; Pott, Christian
2017-04-07
Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.
Mulder, Willem H; Crawford, Forrest W
2015-01-07
Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.
Breinholt, Jesse W.; Porter, Megan L.; Crandall, Keith A.
2012-01-01
Background The genus Cambarus is one of three most species rich crayfish genera in the Northern Hemisphere. The genus has its center of diversity in the Southern Appalachians of the United States and has been divided into 12 subgenera. Using Cambarus we test the correspondence of subgeneric designations based on morphology used in traditional crayfish taxonomy to the underlying evolutionary history for these crayfish. We further test for significant correlation and explanatory power of geographic distance, taxonomic model, and a habitat model to estimated phylogenetic distance with multiple variable regression. Methodology/Principal Findings We use three mitochondrial and one nuclear gene regions to estimate the phylogenetic relationships for species within the genus Cambarus and test evolutionary hypotheses of relationships and associated morphological and biogeographical hypotheses. Our resulting phylogeny indicates that the genus Cambarus is polyphyletic, however we fail to reject the monophyly of Cambarus with a topology test. The majority of the Cambarus subgenera are rejected as monophyletic, suggesting the morphological characters used to define those taxa are subject to convergent evolution. While we found incongruence between taxonomy and estimated phylogenetic relationships, a multiple model regression analysis indicates that taxonomy had more explanatory power of genetic relationships than either habitat or geographic distance. Conclusions We find convergent evolution has impacted the morphological features used to delimit Cambarus subgenera. Studies of the crayfish genus Orconectes have shown gonopod morphology used to delimit subgenera is also affected by convergent evolution. This suggests that morphological diagnoses based on traditional crayfish taxonomy might be confounded by convergent evolution across the cambarids and has little utility in diagnosing relationships or defining natural groups. We further suggest that convergent morphological evolution appears to be a common occurrence in invertebrates suggesting the need for careful phylogenetically based interpretations of morphological evolution in invertebrate systematics. PMID:23049950
2008-01-01
Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have played an important role in facilitating habitat shifts by birds expanding up the mountains along streams and adapting to newly emerging montane forest habitat. PMID:18601752
Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2017-01-01
Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking. PMID:28690608
Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca
2017-04-01
The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.
Evolution of niche preference in Sphagnum peat mosses.
Johnson, Matthew G; Granath, Gustaf; Tahvanainen, Teemu; Pouliot, Remy; Stenøien, Hans K; Rochefort, Line; Rydin, Håkan; Shaw, A Jonathan
2015-01-01
Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation.
Agrawal, Anurag A; Salminen, Juha-Pekka; Fishbein, Mark
2009-03-01
Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.
Interpreting the universal phylogenetic tree
NASA Technical Reports Server (NTRS)
Woese, C. R.
2000-01-01
The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
2012-01-01
Background Vetulicolians are a group of Cambrian metazoans whose distinctive bodyplan continues to present a major phylogenetic challenge. Thus, we see vetulicolians assigned to groups as disparate as deuterostomes and ecdysozoans. This divergence of opinions revolves around a strikingly arthropod-like body, but one that also bears complex lateral structures on its anterior section interpreted as pharyngeal openings. Establishing the homology of these structures is central to resolving where vetulicolians sit in metazoan phylogeny. Results New material from the Chengjiang Lagerstätte helps to resolve this issue. Here, we demonstrate that these controversial structures comprise grooves with a series of openings. The latter are oval in shape and associated with a complex anatomy consistent with control of their opening and closure. Remains of what we interpret to be a musculature, combined with the capacity for the grooves to contract, indicate vetulicolians possessed a pumping mechanism that could process considerable volumes of seawater. Our observations suggest that food captured in the anterior cavity was transported to dorsal and ventral gutters, which then channeled material to the intestine. This arrangement appears to find no counterpart in any known fossil or extant arthropod (or any other ecdysozoan). Anterior lateral perforations, however, are diagnostic of deuterostomes. Conclusions If the evidence is against vetulicolians belonging to one or other group of ecdysozoan, then two phylogenetic options seem to remain. The first is that such features as vetulicolians possess are indicative of either a position among the bilaterians or deuterostomes but apart from the observation that they themselves form a distinctive and recognizable clade current evidence can permit no greater precision as to their phylogenetic placement. We argue that this is too pessimistic a view, and conclude that evidence points towards vetulicolians being members of the stem-group deuterostomes; a group best known as the chordates (amphioxus, tunicates, vertebrates), but also including the ambulacrarians (echinoderms, hemichordates), and xenoturbellids. If the latter, first they demonstrate that these members of the stem group show few similarities to the descendant crown group representatives. Second, of the key innovations that underpinned deuterostome success, the earliest and arguably most seminal was the evolution of openings that define the pharyngeal gill slits of hemichordates (and some extinct echinoderms) and chordates. PMID:23031545
Corneroboletus, a new genus to accommodate the southeastern Asian Boletus indecorus.
Zeng, Nian-Kai; Cai, Qing; Yang, Zhu L
2012-01-01
Corneroboletus was erected in the Boletaceae to accommodate Boletus indecorus originally described from southeastern Asia. The mucilaginous surface of the basidioma, the ixohyphoepithelium pileipellis and the irregularly warty to irregularly bacillate ornamentation of basidiospores distinguish this fungus from other described species in Boletaceae. Phylogenetic placement of this fungus was investigated further with molecular data including LSU rRNA and concatenated alignment of nrLSU, 5.8S rRNA and rpb2 genes, and an independent lineage among existing genera of Boletaceae was suggested by our phylogenetic results. Consequently a description, illustrations and a comparison of Corneroboletus with allied taxa are presented.
McCann, Jamie; Stuessy, Tod F.; Villaseñor, Jose L.; Weiss-Schneeweiss, Hanna
2016-01-01
Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction. PMID:27611687
McCann, Jamie; Schneeweiss, Gerald M; Stuessy, Tod F; Villaseñor, Jose L; Weiss-Schneeweiss, Hanna
2016-01-01
Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction.
USDA-ARS?s Scientific Manuscript database
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation...
Minnis, Andrew M; Lindner, Daniel L
2013-09-01
White-nose syndrome (WNS) of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species. Communication about these species has been hindered by the lack of a modern taxonomic evaluation, and a phylogenetic framework of the group is needed to understand the origin of G. destructans and to target closely related species and their genomes for the purposes of understanding mechanisms of pathogenicity. We addressed these issues by generating DNA sequence data for the internal transcribed spacer (ITS) region, nuclear large subunit (LSU) rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies that included isolates recovered from bat hibernacula as well as those that represent important type species. Phylogenetic analyses indicate Geomyces and allies should be classified in the family Pseudeurotiaceae, and the genera Geomyces, Gymnostellatospora, and Pseudogymnoascus should be recognized as distinct. True Geomyces are restricted to a basal lineage based on phylogenetic placement of the type species, Geomyces auratus. Thus, G. destructans is placed in genus Pseudogymnoascus. The closest relatives of Pseudogymnoascus destructans are members of the Pseudogymnoascus roseus species complex, however, the isolated and long branch of P. destructans indicates that none of the species included in this study are closely related, thus providing further support to the hypothesis that this pathogen is non-native and invasive in eastern North America. Several conidia-producing isolates from bat hibernacula previously identified as members of Pseudeurotium are determined to belong to the genus Leuconeurospora, which is widespread, especially in colder regions. Teberdinia hygrophila is transferred to Pseudeurotium as Pseudeurotium hygrophilum, comb. nov., in accordance with the one name per fungus system of classification, and two additional combinations are made in Pseudogymnoascus including Pseudogymnoascus carnis and Pseudogymnoascus pannorum. Additional sampling from other regions of the world is needed to better understand the evolution and biogeography of this important and diverse group of fungi. Published by Elsevier Ltd.
A Model of Desired Performance in Phylogenetic Tree Construction for Teaching Evolution.
ERIC Educational Resources Information Center
Brewer, Steven D.
This research paper examines phylogenetic tree construction-a form of problem solving in biology-by studying the strategies and heuristics used by experts. One result of the research is the development of a model of desired performance for phylogenetic tree construction. A detailed description of the model and the sample problems which illustrate…
Ord, Terry J.; Garcia-Porta, Joan
2012-01-01
Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820
Improved Maximum Parsimony Models for Phylogenetic Networks.
Van Iersel, Leo; Jones, Mark; Scornavacca, Celine
2018-05-01
Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.
Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific
Price, Mark T.; Fullerton, Heather; Moyer, Craig L.
2015-01-01
Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, making biogeographic patterns and evolutionary relationships apparent. Isolates were differentiated into regionally endemic populations however there was also evidence in some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus isolates and presence of distinct lineages within the same vent site suggests the utilization of varying ecological niches in this genus. In addition to resolving biogeographic patterns in Thermococcus, this study has raised new questions about the closely related Pyrococcus genus. The phylogenetic placement of Pyrococcus type strains shows the close relationship between Thermococcus and Pyrococcus and the unresolved divergence of these two genera. PMID:26441901
The first iguanian lizard from the Mesozoic of Africa
NASA Astrophysics Data System (ADS)
Apesteguía, Sebastián; Daza, Juan D.; Simões, Tiago R.; Rage, Jean Claude
2016-09-01
The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based on a partial lower jaw. The new taxon presents a number of features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically. In a combined evidence phylogenetic dataset comprehensive of all major acrodontan lineages using multiple tree inference methods (traditional and implied weighting maximum-parsimony, and Bayesian inference), we found support for the placement of the new species within uromastycines, along with Gueragama sulamericana (Late Cretaceous of Brazil). The new fossil supports the previously hypothesized widespread geographical distribution of acrodontans in Gondwana during the Mesozoic. Additionally, it provides the first fossil evidence of uromastycines in the Cretaceous, and the ancestry of acrodontan iguanians in Africa.
Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.
Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.
Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees
Rios, Rodrigo S.; Salgado-Luarte, Cristian; Gianoli, Ernesto
2014-01-01
The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [Amax], dark respiration rate [Rd], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that Rd evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for Rd, while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. Rd followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for Amax. Rd may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades. PMID:24914958
Pfeiler, Edward; Vergara-Quintanar, Joel E; Castrezana, Sergio; Caterino, Michael S; Markow, Therese A
2010-07-01
Nucleotide sequences from 16S rRNA and cytochrome c oxidase subunit I (COI) were used to examine phylogenetic relationships and evolution of beetles from the tribe Hololeptini (Coleoptera: Histeridae: Histerinae) that inhabit necrotic tissue of columnar cacti in the Sonoran Desert. Phylogenetic and morphological analyses revealed the presence of seven separate lineages, three representing species in the genus Iliotona, including I. beyeri stat. nov., and four species belonging to the genus Hololepta (sensu lato). The possible roles of historical vicariance and host plant associations on the evolution of the Hololeptini from the Sonoran Desert are discussed. Copyright 2010 Elsevier Inc. All rights reserved.
Cities and Urban Land Use in Advanced Placement Human Geography.
ERIC Educational Resources Information Center
Ford, Larry R.
2000-01-01
Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)
NASA Astrophysics Data System (ADS)
Naegle, Erin
Evolution education is a critical yet challenging component of teaching and learning biology. There is frequently an emphasis on natural selection when teaching about evolution and conducting educational research. A full understanding of evolution, however, integrates evolutionary processes, such as natural selection, with the resulting evolutionary patterns, such as species divergence. Phylogenetic trees are models of evolutionary patterns. The perspective gained from understanding biology through phylogenetic analyses is referred to as tree thinking. Due to the increasing prevalence of tree thinking in biology, understanding how to read phylogenetic trees is an important skill for students to learn. Interpreting graphics is not an intuitive process, as graphical representations are semiotic objects. This is certainly true concerning phylogenetic tree interpretation. Previous research and anecdotal evidence report that students struggle to correctly interpret trees. The objective of this research was to describe and investigate the rationale underpinning the prior knowledge of introductory biology students' tree thinking Understanding prior knowledge is valuable as prior knowledge influences future learning. In Chapter 1, qualitative methods such as semi-structured interviews were used to explore patterns of student rationale in regard to tree thinking. Seven common tree thinking misconceptions are described: (1) Equating the degree of trait similarity with the extent of relatedness, (2) Environmental change is a necessary prerequisite to evolution, (3) Essentialism of species, (4) Evolution is inherently progressive, (5) Evolution is a linear process, (6) Not all species are related, and (7) Trees portray evolution through the hybridization of species. These misconceptions are based in students' incomplete or incorrect understanding of evolution. These misconceptions are often reinforced by the misapplication of cultural conventions to make sense of trees. Chapter 2 explores the construction, validity, and reliability of a tree thinking concept inventory. Concept inventories are research based instruments that diagnose faulty reasoning among students. Such inventories are tools for improving teaching and learning of concepts. Test scores indicate that tree thinking misconceptions are held by novice and intermediate biology students. Finally, Chapter 3 presents a tree thinking rubric. The rubric aids teachers in selecting and improving introductory tree thinking learning exercises that address students' tree thinking misconceptions.
Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution
2017-08-01
SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project is to sequence the exomes of single tumor cells from tumors in order to construct evolutionary trees...dissociation, tumor cell isolation, whole genome amplification, and exome sequencing. We have begun to sequence the exomes of single cells and to...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree. The more diverse a tumor’s phylogenetic tree
The Prosodic Evolution of West Slavic in the Context of the Neo-Acute Stress
ERIC Educational Resources Information Center
Feldstein, Ronald F.
1975-01-01
Because of neo-acute stress--or transferred acute stress--long vowel prosody in West Slavic had a special evolution. Two kinds of long vowel evolution are examined. The nature of transitionality across Slavic territory from tonal opposition to distinctive stress placement is pointed out. (SC)
Effects of rooting via out-groups on in-group topology in phylogeny.
Ackerman, Margareta; Brown, Daniel G; Loker, David
2014-01-01
Users of phylogenetic methods require rooted trees, because the direction of time depends on the placement of the root. While phylogenetic trees are typically rooted by using an out-group, this mechanism is inappropriate when the addition of an out-group changes the in-group topology. We perform a formal analysis of phylogenetic algorithms under the inclusion of distant out-groups. It turns out that linkage-based algorithms (including UPGMA) and a class of bisecting methods do not modify the topology of the in-group when an out-group is included. By contrast, the popular neighbour joining algorithm fails this property in a strong sense: every data set can have its structure destroyed by some arbitrarily distant outlier. Furthermore, including multiple outliers can lead to an arbitrary topology on the in-group. The standard rooting approach that uses out-groups may be fundamentally unsuited for neighbour joining.
Molecular phylogeny and a new Iranian species of Caudospora (Sydowiellaceae, Diaporthales).
Voglmayr, Hermann; Mehrabi, Mehdi
2018-05-02
For the first time, molecular phylogenetic data on the peculiar diaporthalean genus Caudospora are available. Macro- and microscopic morphology and phylogenetic multilocus analyses of partial nuc SSU-ITS-LSU rDNA, cal , ms204 , rpb1 , rpb2 , tef1 and tub2 sequences revealed two distinct species of Caudospora , which are described and illustrated by light and scanning electron microscopy. Caudospora iranica is described as a new species from corticated dead twigs of Quercus sp. collected in Iran. It differs from the generic type, C. taleola , mainly by coarsely verrucose ascospores. The asexual morph of C. taleola on natural substrate is described and illustrated. Caudospora taleola is neotypified, and it is recorded from Iran for the first time. Phylogenetic analyses of a multigene matrix containing a representative selection of Diaporthales from four loci (ITS, LSU rDNA, rpb2 and tef1 ) revealed a placement of Caudospora within Sydowiellaceae.
Complete mitogenome of Asiatic lion resolves phylogenetic status within Panthera.
Bagatharia, Snehal B; Joshi, Madhvi N; Pandya, Rohan V; Pandit, Aanal S; Patel, Riddhi P; Desai, Shivangi M; Sharma, Anu; Panchal, Omkar; Jasmani, Falguni P; Saxena, Akshay K
2013-08-23
The origin, evolution and speciation of the lion, has been subject of interest, debate and study. The present surviving lions of the genus Panthera comprise of eight sub-species inclusive of Asiatic lion Panthera leo persica of India's Gir forest. Except for the Asiatic lion, the other seven subspecies are found in different parts of Africa. There have been different opinions regarding the phylogenetic status of Panthera leo, as well as classifying lions of different geographic regions into subspecies and races. In the present study, mitogenome sequence of P. leo persica deduced, using Ion Torrent PGM to assess phylogeny and evolution which may play an increasingly important role in conservation biology. The mtDNA sequence of P. leo persica is 17,057 bp in length with 40.8% GC content. Annotation of mitogenome revealed total 37 genes, including 13 protein coding, 2 rRNA and 22 tRNA. Phylogenetic analysis based on whole mitogenome, suggests Panthera pardus as a neighbouring species to P. leo with species divergence at ~2.96 mya. This work presents first report on complete mitogenome of Panthera leo persica. It sheds light on the phylogenetic and evolutionary status within and across Felidae members. The result compared and evaluated with earlier reports of Felidae shows alteration of phylogenetic status and species evolution. This study may provide information on genetic diversity and population stability.
Complete mitogenome of asiatic lion resolves phylogenetic status within Panthera
2013-01-01
Background The origin, evolution and speciation of the lion, has been subject of interest, debate and study. The present surviving lions of the genus Panthera comprise of eight sub-species inclusive of Asiatic lion Panthera leo persica of India's Gir forest. Except for the Asiatic lion, the other seven subspecies are found in different parts of Africa. There have been different opinions regarding the phylogenetic status of Panthera leo, as well as classifying lions of different geographic regions into subspecies and races. In the present study, mitogenome sequence of P. leo persica deduced, using Ion Torrent PGM to assess phylogeny and evolution which may play an increasingly important role in conservation biology. Results The mtDNA sequence of P. leo persica is 17,057 bp in length with 40.8% GC content. Annotation of mitogenome revealed total 37 genes, including 13 protein coding, 2 rRNA and 22 tRNA. Phylogenetic analysis based on whole mitogenome, suggests Panthera pardus as a neighbouring species to P. leo with species divergence at ~2.96 mya. Conclusion This work presents first report on complete mitogenome of Panthera leo persica. It sheds light on the phylogenetic and evolutionary status within and across Felidae members. The result compared and evaluated with earlier reports of Felidae shows alteration of phylogenetic status and species evolution. This study may provide information on genetic diversity and population stability. PMID:23968279
Disentangling the phylogenetic and ecological components of spider phenotypic variation.
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.
Disentangling the Phylogenetic and Ecological Components of Spider Phenotypic Variation
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure. PMID:24651264
Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution.
Sankoff; Blanchette
1998-01-01
The method of phylogenetic invariants was developed to apply to aligned sequence data generated, according to a stochastic substitution model, for N species related through an unknown phylogenetic tree. The invariants are functions of the probabilities of the observable N-tuples, which are identically zero, over all choices of branch length, for some trees. Evaluating the invariants associated with all possible trees, using observed N-tuple frequencies over all sequence positions, enables us to rapidly infer the generating tree. An aspect of evolution at the genomic level much studied recently is the rearrangements of gene order along the chromosome from one species to another. Instead of the substitutions responsible for sequence evolution, we examine the non-local processes responsible for genome rearrangements such as inversion of arbitrarily long segments of chromosomes. By treating the potential adjacency of each possible pair of genes as a position", an appropriate substitution" model can be recognized as governing the rearrangement process, and a probabilistically principled phylogenetic inference can be set up. We calculate the invariants for this process for N=5, and apply them to mitochondrial genome data from coelomate metazoans, showing how they resolve key aspects of branching order.
Costa, Wilson J. E. M.
2016-01-01
Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense pressure from loss of habitat. PMID:27428070
Costa, Wilson J E M
2016-01-01
Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense pressure from loss of habitat.
Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A
2014-07-01
Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.
2007-12-01
Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.
Yael Ferdman; Sharon Aviram; Nurit Roth-Bejerano; James M. Trappe; Varda. Kagan-Zur
2005-01-01
The ITS region including the 5.8S rRNA gene as well as the 5' end of the 28S rRNA gene of hypogeous Pezizaceae and Tuberaceae were studied to clarify the generic placement of two southern African desert truffles, Terfezia pfeilii and Choiromyces echinulatus. The results show that...
Wood, Kennetah R.; Appelhans, Marc S.; Wagner, Warren L.
2016-01-01
Abstract Melicope oppenheimeri K.R. Wood, Appelhans & W.L. Wagner (section Pelea (A. Gray) Hook. f., Rutaceae), a rare endemic tree from West Maui, Hawaiian Islands, is described and illustrated with notes on its ecology, conservation, and phylogenetic placement. The new species differs from Hawaiian congeners by its carpels basally connate 1/5, narrowed into a strongly reflexed beak 10–15 mm long. It also differs in a combination of leaves with 7–10 pair of secondary veins; cymes to 3 cm long; peduncles 5–6.5 mm long; flowers perfect; capsules 4–9 × 40–52 mm; and a densely appressed short-sericeous ovary. Melicope oppenheimeri is known only from an isolated cliff-base plateau in upper Waihe‘e Valley, West Maui. Its discovery brings the number of recognized Melicope J.R. Forst. & G. Forst. species in the Hawaiian Islands to 49. A table is included indicating the conservation status of Hawaiian Melicope and Platydesma H. Mann., which is nested within Melicope sect. Pelea. Melicope oppenheimeri falls into the IUCN Critically Endangered (CR) Red List category. PMID:27698584
McDade, Lucinda A; Daniel, Thomas F; Kiel, Carrie A
2008-09-01
Acanthaceae (Asteridae; Lamiales) include ∼4000 species and encompass a range of morphological diversity, habitats, and biogeographic patterns. Although they are important components of tropical and subtropical habitats worldwide, inadequate knowledge of the family's phylogenetic framework has impeded comparative research. In this study, we sampled all known lineages of Acanthaceae including Andrographideae. Also included were eight of 13 genera whose relationships remain enigmatic. We used sequence data from nrITS and four chloroplast noncoding regions, and parsimony and Bayesian methods of analysis. Results strongly support most aspects of relationships including inclusion of Avicennia in Acanthaceae. Excepting Neuracanthus, newly sampled taxa are placed with strong support; Kudoacanthus is in Justicieae, Tetramerium lineage, and the remaining enigmatic genera are in Whitfieldieae or Barlerieae, and Andrographideae are sister to Barlerieae. This last result is unanticipated, but placement of Andrographideae based on structural characters has been elusive. Neuracanthus is monophyletic but placement relative to (Whitfieldieae (Andrographideae + Barlerieae)) is weakly supported. Many clades have clear morphological synapomorphies, but nonmolecular evidence for some remains elusive. Results suggest an Old World origin with multiple dispersal events to the New World. This study informs future work by clarifying sampling strategy and identifying aspects of relationships that require further study.
Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu
2017-12-21
Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.
ERIC Educational Resources Information Center
Dang, Thi Kim Anh
2013-01-01
This paper examines the evolution of the professional identities of student teachers (STs) in a paired-placement teaching practicum in Vietnam. The study draws on activity theory, its notion of contradiction, and Vygotsky's concepts of ZPD and "perezhivanie", to identify the factors driving the intricate learning process. Opportunities…
Chromosomal evolution in Rodentia
Romanenko, S A; Perelman, P L; Trifonov, V A; Graphodatsky, A S
2012-01-01
Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution. PMID:22086076
Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K
2015-07-01
Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Daniel L. Lindner; Mark T. Banik
2011-01-01
Regions of rDNA are commonly used to infer phylogenetic relationships among fungal species and as DNA barcodes for identification. These regions occur in large tandem arrays, and concerted evolution is believed to reduce intragenomic variation among copies within these arrays, although some variation still might exist. Phylogenetic studies typically use consensus...
Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent
2016-01-01
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Klingler, Jeremy J.
2016-01-01
This research examines the evolution and phylogenetic distribution of a peculiar and often overlooked character seen in birds, herein called tracheal and esophageal displacement. Tracheal and esophageal displacement refers to an asymmetrically situated trachea and/or esophagus along the length of the neck. This contrasts with what would be perceived as the “normal” (midsagittal) placement of these organs, wherein the two organs are situated along the ventral midline of the neck with no deviation. A total of forty-two bird species were examined (thirty-six of which came from dissections whereas six came from comments from previous literature or personal observations), as well as turtles, lizards, crocodylians, and mammals. This study found that essentially all birds have a laterally displaced trachea and/or esophagus. Lizards and mammals were seen to have normal, midsagittally placed tracheae and esophagi. Crocodylians were interesting in that alligators were defined by a normally situated trachea and esophagus whereas some crocodiles were characterized by displacement. In birds, the displacement may occur gradually along the neck, or it may happen immediately upon exiting the oropharynx. Displacement of these organs in birds is the result of a heavily modified neck wherein muscles that restrict mobility of the trachea and esophagus in lizards, alligators, and mammals (e.g., m. episternocleidomastoideus, m. omohyoideus, and m. sternohyoideus) no longer substantially restrict positions of the trachea and esophagus in birds. Rather, these muscles are modified in ways which may assist with making tracheal movements. The implications of this study may provide interesting insights for future comparisons in extinct taxa. PMID:27648952
Phylogenomics and barcoding of Panax: toward the identification of ginseng species.
Manzanilla, V; Kool, A; Nguyen Nhat, L; Nong Van, H; Le Thi Thu, H; de Boer, H J
2018-04-03
The economic value of ginseng in the global medicinal plant trade is estimated to be in excess of US$2.1 billion. At the same time, the evolutionary placement of ginseng (Panax ginseng) and the complex evolutionary history of the genus is poorly understood despite several molecular phylogenetic studies. In this study, we use a full plastome phylogenomic framework to resolve relationships in Panax and to identify molecular markers for species discrimination. We used high-throughput sequencing of MBD2-Fc fractionated Panax DNA to supplement publicly available plastid genomes to create a phylogeny based on fully assembled and annotated plastid genomes from 60 accessions of 8 species. The plastome phylogeny based on a 163 kbp matrix resolves the sister relationship of Panax ginseng with P. quinquefolius. The closely related species P. vietnamensis is supported as sister of P. japonicus. The plastome matrix also shows that the markers trnC-rps16, trnS-trnG, and trnE-trnM could be used for unambiguous molecular identification of all the represented species in the genus. MBD2 depletion reduces the cost of plastome sequencing, which makes it a cost-effective alternative to Sanger sequencing based DNA barcoding for molecular identification. The plastome phylogeny provides a robust framework that can be used to study the evolution of morphological characters and biosynthesis pathways of ginsengosides for phylogenetic bioprospecting. Molecular identification of ginseng species is essential for authenticating ginseng in international trade and it provides an incentive for manufacturers to create authentic products with verified ingredients.
Konowalik, Kamil
2017-01-01
In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids (Campylocentrum and Dendrophylax) and their closest relatives in the Old World (Angraecum) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied. PMID:28533976
Kolanowska, Marta; Grochocka, Elżbieta; Konowalik, Kamil
2017-01-01
In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids ( Campylocentrum and Dendrophylax ) and their closest relatives in the Old World ( Angraecum ) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied.
Evolution: Understanding Life on Earth.
ERIC Educational Resources Information Center
Dybas, Cheryl Lyn
2002-01-01
Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…
Evolution of heteromorphic sex chromosomes in the order Aulopiformes.
Ota, K; Kobayashi, T; Ueno, K; Gojobori, T
2000-12-23
The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.
Patterns of co-speciation and host switching in primate malaria parasites.
Garamszegi, László Zsolt
2009-05-22
The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.
Rajter, Ľubomír; Vďačný, Peter
2018-05-12
The class Litostomatea represents a highly diverse but monophyletic group, uniting both free-living and endosymbiotic ciliates. Ribosomal RNA genes and ITS-region sequences helped to recognize and define the main litostomatean lineages, but did not provide enough phylogenetic signal to unambiguously resolve their interrelationships. In this study, we attempted to improve the resolution among main free-living predatory lineages by adding the gene coding for alpha-tubulin. However, our phylogenetic analyses challenged the performance of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans. We identified several mutually interconnected problems associated with the ciliate alpha-tubulin gene: the paucity of phylogenetic signal, molecular homoplasies and non-neutral evolution. Positive selection may generate molecular homoplasies (parallel evolution), while negative selection may cause a small number of changes and hence little phylogenetic informativness. Both problems were encountered in nucleotide and amino acid alpha-tubulin alignments, indicating an action of various selective pressures. Taking into account the involvement of alpha-tubulin in many essential biological processes, this protein could be so strongly affected by purifying selection that it even might have become an inappropriate molecular marker for reconstruction of phylogenetic relationships. Therefore, a great caution should be paid when tubulin genes are included in phylogenetic and/or phylogenomic analyses. Copyright © 2018 Elsevier Inc. All rights reserved.
Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R
2016-09-01
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.
Mongiardino Koch, N; Ceccarelli, F S; Ojanguren-Affilastro, A A; Ramírez, M J
2017-04-01
Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character-taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time-calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an 'early burst' scenario whereas morphometric traits suggest species-specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution.
Thacker, Robert W; Hill, April L; Hill, Malcolm S; Redmond, Niamh E; Collins, Allen G; Morrow, Christine C; Spicer, Lori; Carmack, Cheryl A; Zappe, Megan E; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C; Bangalore, Purushotham V
2013-09-01
The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges.
Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution
Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.
2013-01-01
The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742
Phylogenetic ecology at world scale, a new fusion between ecology and evolution.
Westoby, Mark
2006-07-01
One fusion between ecology and evolution is well established, under the title of population biology. The years 2006-2020 will see a new fusion, likely to prove equally creative. Inputs from ecology to this second fusion will be worldwide data sets for ecological traits across many species. Inputs from evolution will be phylogenetic trees with well-resolved topology and with increasingly tight geological dates for each branch point. There will be unification of two aims: first to explain the spread of different ways of making a living, across the range of present-day species; and second, to narrate the evolutionary history that has led up to present-day ecology.
Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis
2016-09-02
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Visualizing Clonal Evolution in Cancer.
Krzywinski, Martin
2016-06-02
Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer instability and evolution. Krzywinski discusses how to present clone evolution plots in order to visualize temporal, phylogenetic, and spatial aspects of a tumor in a single static image. Copyright © 2016 Elsevier Inc. All rights reserved.
Olsson, Sanna; Kaasalainen, Ulla; Rikkinen, Jouko
2012-02-01
In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem-loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.
Ecological interactions are evolutionarily conserved across the entire tree of life.
Gómez, José M; Verdú, Miguel; Perfectti, Francisco
2010-06-17
Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.
Molecular Epidemiology of PRRSV: A Phylogenetic Perspective
USDA-ARS?s Scientific Manuscript database
Since its first discovery two decades ago, porcine reproductive and respiratory syndrome virus (PRRSV) has been the subject of intensive research due to its huge impact on the worldwide swine industry. Thanks to phylogenetic analyses, much has been learned about the genetic diversity and evolution h...
Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W
2012-10-01
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.
Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano
2007-01-01
Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612
Rostral horn evolution among agamid lizards of the genus ceratophora endemic to Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte II, James A.; Macey, J. Robert; Pethiyagoda, Rohan
2001-07-10
The first phylogenetic hypothesis for the Sri Lankan agamid lizard genus Ceratophora is presented based on 1670 aligned base positions (472 parsimony informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Phylogenetic analysis reveals multiple origins and possibly losses of rostral horns in the evolutionary history of Ceratophora. Our data suggest a middle Miocene origin of Ceratophora with the most recent branching of recognized species occurring at the Pliocene/Pleistocene boundary. Haplotype divergence suggests that an outgroup species, Lyriocephalus scutatus, dates at least to the Pliocene. These phylogenetic results provide a frameworkmore » for comparative studies of the behavioral ecological importance of horn evolution in this group.« less
Atkinson, Quentin D; Gray, Russell D
2005-08-01
In The Descent of Man (1871), Darwin observed "curious parallels" between the processes of biological and linguistic evolution. These parallels mean that evolutionary biologists and historical linguists seek answers to similar questions and face similar problems. As a result, the theory and methodology of the two disciplines have evolved in remarkably similar ways. In addition to Darwin's curious parallels of process, there are a number of equally curious parallels and connections between the development of methods in biology and historical linguistics. Here we briefly review the parallels between biological and linguistic evolution and contrast the historical development of phylogenetic methods in the two disciplines. We then look at a number of recent studies that have applied phylogenetic methods to language data and outline some current problems shared by the two fields.
Rabi, Márton; Zhou, Chang-Fu; Wings, Oliver; Ge, Sun; Joyce, Walter G
2013-09-22
Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.
2013-01-01
Background Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. PMID:24053145
Fungal partner shifts during the evolution of mycoheterotrophy in Neottia.
Yagame, Takahiro; Ogura-Tsujita, Yuki; Kinoshita, Akihiko; Iwase, Koji; Yukawa, Tomohisa
2016-09-01
Few previous studies have examined how mycobionts change during the evolution from autotrophy to mycoheterotrophy based on phylogenetic hypotheses. Neottia (Orchidaceae) comprises leafy species that are autotrophic and related leafless mycoheterotrophic species, and the phylogenetic relationships among them have been clarified. Accordingly, Neottia is a suitable taxon for investigating the question above. Here we clarified the diversity of mycobionts in Neottia plants and elucidated changes in the character of symbiotic associations during the evolution of mycoheterotrophy. We sequenced the internal transcribed spacer (ITS) regions of nuclear ribosomal (nr) DNA for mycobionts of Neottia plants. Furthermore, we selected one representative DNA sample from each fungal operational taxonomic unit (OTU) and used it to amplify the large subunit (LSU) nrDNA sequences. Phylogenetic analyses of Sebacinales (basidiomycetes), the dominant mycobiont of Neottia, were conducted and sample-based rarefaction curves generated for the observed mycobiont richness on each OTU. Leafy and leafless species in Neottia were associated with Sebacinales Group B and Sebacinales Group A, respectively. The composition and specificity level of fungal partners varied among Neottia species. Fungal partner composition and specificity level changed with speciation in both leafy and leafless Neottia species. In particular, mycorrhizal associations likely shifted from Sebacinales Group B to Group A during the evolution from autotrophy to mycoheterotrophy. Partner shifts to Sebacinales Group A have also been reported in the evolution of mycoheterotrophy of other plant groups, suggesting that convergence to this fungal group occurs in association with the evolution of mycoheterotrophy. © 2016 Botanical Society of America.
Damerau, M; Freese, M; Hanel, R
2018-01-01
In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae. © 2017 The Fisheries Society of the British Isles.
Using hybridization networks to retrace the evolution of Indo-European languages.
Willems, Matthieu; Lord, Etienne; Laforest, Louise; Labelle, Gilbert; Lapointe, François-Joseph; Di Sciullo, Anna Maria; Makarenkov, Vladimir
2016-09-06
Curious parallels between the processes of species and language evolution have been observed by many researchers. Retracing the evolution of Indo-European (IE) languages remains one of the most intriguing intellectual challenges in historical linguistics. Most of the IE language studies use the traditional phylogenetic tree model to represent the evolution of natural languages, thus not taking into account reticulate evolutionary events, such as language hybridization and word borrowing which can be associated with species hybridization and horizontal gene transfer, respectively. More recently, implicit evolutionary networks, such as split graphs and minimal lateral networks, have been used to account for reticulate evolution in linguistics. Striking parallels existing between the evolution of species and natural languages allowed us to apply three computational biology methods for reconstruction of phylogenetic networks to model the evolution of IE languages. We show how the transfer of methods between the two disciplines can be achieved, making necessary methodological adaptations. Considering basic vocabulary data from the well-known Dyen's lexical database, which contains word forms in 84 IE languages for the meanings of a 200-meaning Swadesh list, we adapt a recently developed computational biology algorithm for building explicit hybridization networks to study the evolution of IE languages and compare our findings to the results provided by the split graph and galled network methods. We conclude that explicit phylogenetic networks can be successfully used to identify donors and recipients of lexical material as well as the degree of influence of each donor language on the corresponding recipient languages. We show that our algorithm is well suited to detect reticulate relationships among languages, and present some historical and linguistic justification for the results obtained. Our findings could be further refined if relevant syntactic, phonological and morphological data could be analyzed along with the available lexical data.
NASA Technical Reports Server (NTRS)
Buchanan, B. B.
1991-01-01
Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.
Palmer, A. Richard
1996-01-01
Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation. PMID:8962039
Transforming phylogenetic networks: Moving beyond tree space.
Huber, Katharina T; Moulton, Vincent; Wu, Taoyang
2016-09-07
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gamboa-Tuz, Samuel D; Pereira-Santana, Alejandro; Zhao, Tao; Schranz, M Eric; Castano, Enrique; Rodriguez-Zapata, Luis C
2018-04-25
The Transmembrane BAX Inhibitor Motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. However, no research has focused on the evolution of this superfamily in plants. We identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. Then, we used orthology and synteny network analyses to further investigate the evolution and expansion of the BI and LFG families in 48 plants from diverse taxa. Plant BI family forms a single monophyletic group; however, monocot BI sequences transposed to another genomic context during evolution. Plant LFG family, which expanded trough whole genome and tandem duplications, is subdivided in LFG I, LFG IIA, and LFG IIB major phylogenetic groups, and retains synteny in angiosperms. Moreover, two orthologous groups (OGs) are shared between bryophytes and seed plants. Other several lineage-specific OGs are present in plants. This work clarifies the phylogenetic classification of the TMBIM superfamily across the three domains of life. Furthermore, it sheds new light on the evolution of the BI and LFG families in plants providing a benchmark for future research. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Review of evolution of tunnel position in anterior cruciate ligament reconstruction.
Rayan, Faizal; Nanjayan, Shashi Kumar; Quah, Conal; Ramoutar, Darryl; Konan, Sujith; Haddad, Fares S
2015-03-18
Anterior cruciate ligament (ACL) rupture is one of the commonest knee sport injuries. The annual incidence of the ACL injury is between 100000-200000 in the United States. Worldwide around 400000 ACL reconstructions are performed in a year. The goal of ACL reconstruction is to restore the normal knee anatomy and kinesiology. The tibial and femoral tunnel placements are of primordial importance in achieving this outcome. Other factors that influence successful reconstruction are types of grafts, surgical techniques and rehabilitation programmes. A comprehensive understanding of ACL anatomy has led to the development of newer techniques supplemented by more robust biological and mechanical concepts. In this review we are mainly focussing on the evolution of tunnel placement in ACL reconstruction, focusing on three main categories, i.e., anatomical, biological and clinical outcomes. The importance of tunnel placement in the success of ACL reconstruction is well researched. Definite clinical and functional data is lacking to establish the superiority of the single or double bundle reconstruction technique. While there is a trend towards the use of anteromedial portals for femoral tunnel placement, their clinical superiority over trans-tibial tunnels is yet to be established.
Review of evolution of tunnel position in anterior cruciate ligament reconstruction
Rayan, Faizal; Nanjayan, Shashi Kumar; Quah, Conal; Ramoutar, Darryl; Konan, Sujith; Haddad, Fares S
2015-01-01
Anterior cruciate ligament (ACL) rupture is one of the commonest knee sport injuries. The annual incidence of the ACL injury is between 100000-200000 in the United States. Worldwide around 400000 ACL reconstructions are performed in a year. The goal of ACL reconstruction is to restore the normal knee anatomy and kinesiology. The tibial and femoral tunnel placements are of primordial importance in achieving this outcome. Other factors that influence successful reconstruction are types of grafts, surgical techniques and rehabilitation programmes. A comprehensive understanding of ACL anatomy has led to the development of newer techniques supplemented by more robust biological and mechanical concepts. In this review we are mainly focussing on the evolution of tunnel placement in ACL reconstruction, focusing on three main categories, i.e., anatomical, biological and clinical outcomes. The importance of tunnel placement in the success of ACL reconstruction is well researched. Definite clinical and functional data is lacking to establish the superiority of the single or double bundle reconstruction technique. While there is a trend towards the use of anteromedial portals for femoral tunnel placement, their clinical superiority over trans-tibial tunnels is yet to be established. PMID:25793165
Molecular Phylogenetics: Concepts for a Newcomer.
Ajawatanawong, Pravech
Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.
Maruyama, Munetoshi; Steiner, Florian M; Stauffer, Christian; Akino, Toshiharu; Crozier, Ross H; Schlick-Steiner, Birgit C
2008-08-19
Ants of the genus Lasius are ecologically important and an important system for evolutionary research. Progress in evolutionary research has been hindered by the lack of a well-founded phylogeny of the subgenera, with three previous attempts disagreeing. Here we employed two mitochondrial genes (cytochrome c oxidase subunit I, 16S ribosomal RNA), comprising 1,265 bp, together with 64 morphological characters, to recover the phylogeny of Lasius by Bayesian and Maximum Parsimony inference after exploration of potential causes of phylogenetic distortion. We use the resulting framework to infer evolutionary pathways for social parasitism and fungiculture. We recovered two well supported major lineages. One includes Acanthomyops, Austrolasius, Chthonolasius, and Lasius pallitarsis, which we confirm to represent a seventh subgenus, the other clade contains Dendrolasius, and Lasius sensu stricto. The subgenus Cautolasius, displaying neither social parasitism nor fungiculture, probably belongs to the second clade, but its phylogenetic position is not resolved at the cutoff values of node support we apply. Possible causes for previous problems with reconstructing the Lasius phylogeny include use of other reconstruction techniques, possibly more prone to instabilities in some instances, and the inclusion of phylogenetically distorting characters. By establishing an updated phylogenetic framework, our study provides the basis for a later formal taxonomic revision of subgenera and for studying the evolution of various ecologically and sociobiologically relevant traits of Lasius, although there is need for future studies to include nuclear genes and additional samples from the Nearctic. Both social parasitism and fungiculture evolved twice in Lasius, once in each major lineage, which opens up new opportunities for comparative analyses. The repeated evolution of social parasitism has been established for other groups of ants, though not for temporary social parasitism as found in Lasius. For fungiculture, the independent emergence twice in a monophyletic group marks a novel scenario in ants. We present alternative hypotheses for the evolution of both traits, with one of each involving loss of the trait. Though less likely for both traits than later evolution without reversal, we consider reversal as sufficiently plausible to merit independent testing.
Inda, Luis A.; Pimentel, Manuel; Chase, Mark W.
2012-01-01
Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. Methods The analyses included 118 samples, belonging to 103 species and 25 genera, for three DNA regions (nrITS, mitochondrial cox1 intron and plastid rpl16 intron). Bayesian and maximum-parsimony methods were used to construct a well-supported and dated tree. Evolutionary trends in the subtribe were analysed using Bayesian and maximum-likelihood methods of character evolution. Key Results The dated phylogenetic tree strongly supported the recently recircumscribed generic concepts of Bateman and collaborators. Moreover, it was found that Orchidinae have diversified in the Mediterranean basin during the last 15 million years, and one potential example of reticulate evolution in the subtribe was identified. In Orchidinae, pollination systems have shifted on numerous occasions during the last 23 million years. Conclusions The results indicate that ancestral Orchidinae were hymenopteran-pollinated, food-deceptive plants and that these traits have been dominant throughout the evolutionary history of the subtribe in the Mediterranean. Evidence was also obtained that the onset of sexual deception might be linked to an increase in labellum size, and the possibility is discussed that diversification in Orchidinae developed in parallel with diversification of bees and wasps from the Miocene onwards. PMID:22539542
Bryn T.M. Dentinger; D.Jean Lodge; Andrew B. Munkacsi; Dennis E. Desjardin; David J. McLaughlin
2009-01-01
The ~50 million-year-old fungus-farming ant mutualism is a classic example of coevolution, involving ants that subsist on asexual, fungal biomass, in turn propagating the fungus clonally through nest-to-nest transmission. Most mutualistic ants cultivate two closely related groups of gilled mushrooms, whereas one small group of ants in the genus ...
Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J
2015-09-28
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.
Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.
2015-01-01
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391
A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies.
Ramos, Vitor; Morais, João; Vasconcelos, Vitor M
2017-04-25
The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.
A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies
Ramos, Vitor; Morais, João; Vasconcelos, Vitor M.
2017-01-01
The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies. PMID:28440791
Maba, Dao Lamèga; Guelly, Atsu K; Yorou, Nourou S; Verbeken, Annemieke; Agerer, Reinhard
2015-06-01
Despite the crucial ecological role of lactarioid taxa (Lactifluus, Lactarius) as common ectomycorrhiza formers in tropical African seasonal forests, their current diversity is not yet adequately assessed. During the last few years, numerous lactarioid specimens have been sampled in various ecosystems from Togo (West Africa). We generated 48 ITS sequences and aligned them against lactarioid taxa from other tropical African ecozones (Guineo-Congolean evergreen forests, Zambezian miombo). A Maximum Likelihood phylogenetic tree was inferred from a dataset of 109 sequences. The phylogenetic placement of the specimens, combined with morpho-anatomical data, supported the description of four new species from Togo within the monophyletic genus Lactifluus: within subgen. Lactifluus (L. flavellus), subgen. Russulopsis (L. longibasidius and L. pectinatus), and subgen. Edules (L. melleus). This demonstrates that the current species richness of the genus is considerably higher than hitherto estimated for African species and, in addition, a need to redefine the subgenera and sections within it.
Biological intuition in alignment-free methods: response to Posada.
Ragan, Mark A; Chan, Cheong Xin
2013-08-01
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.
Ecology and evolution of rabies virus in Europe.
Bourhy, H; Kissi, B; Audry, L; Smreczak, M; Sadkowska-Todys, M; Kulonen, K; Tordo, N; Zmudzinski, J F; Holmes, E C
1999-10-01
The evolution of rabies viruses of predominantly European origin was studied by comparing nucleotide sequences of the nucleoprotein and glycoprotein genes, and by typing isolates using RFLP. Phylogenetic analysis of the gene sequence data revealed a number of distinct groups, each associated with a particular geographical area. Such a pattern suggests that rabies virus has spread westwards and southwards across Europe during this century, but that physical barriers such as the Vistula river in Poland have enabled localized evolution. During this dispersal process, two species jumps took place - one into red foxes and another into raccoon dogs, although it is unclear whether virus strains are preferentially adapted to particular animal species or whether ecological forces explain the occurrence of the phylogenetic groups.
Constructing Student Problems in Phylogenetic Tree Construction.
ERIC Educational Resources Information Center
Brewer, Steven D.
Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…
ERIC Educational Resources Information Center
Franklin, Wilfred A.
2010-01-01
In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.
Phylotranscriptomic analysis of the origin and early diversification of land plants
Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon; Gitzendanner, Matthew A.; Ruhfel, Brad R.; Wafula, Eric; Graham, Sean W.; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E.; Soltis, Pamela S.; Miles, Nicholas W.; Rothfels, Carl J.; Pokorny, Lisa; Shaw, A. Jonathan; DeGironimo, Lisa; Stevenson, Dennis W.; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W.; Chen, Tao; Deyholos, Michael K.; Baucom, Regina S.; Kutchan, Toni M.; Augustin, Megan M.; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James
2014-01-01
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905
García-Navas, Vicente; Westerman, Michael
2018-05-28
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
The mysterious Spotted Green Pigeon and its relation to the Dodo and its kindred.
Heupink, Tim H; van Grouw, Hein; Lambert, David M
2014-07-16
The closely related and extinct Dodo (Raphus cucullatus) and Rodrigues Solitaire (Pezophaps solitaria), both in the subfamily Raphinae, are members of a clade of morphologically very diverse pigeons. Genetic analyses have revealed that the Nicobar Pigeon (Caloenas nicobarica) is the closest living relative of these birds, thereby highlighting their ancestors' remarkable migration and morphological evolution. The Spotted Green Pigeon (Caloenas maculata) was described in 1783 and showed some similarities to the Nicobar Pigeon. Soon however the taxon fell into obscurity, as it was regarded as simply an abnormal form of the Nicobar Pigeon. The relationship between both taxa has occasionally been questioned, leading some ornithologists to suggest that the two may in fact be different taxa. Today only one of the original two specimens survives and nothing is known about the origin of the taxon. Due to its potential close relationship, the Spotted Green Pigeon may hold clues to the historical migration, isolation and morphological evolution of the Dodo and its kindred. We use ancient DNA methodologies to investigate the phylogeny and authenticity of the Spotted Green Pigeon. A novel extraction method with the ability to retain and purify heavily fragmented DNA is used to investigate two feathers from the sole surviving specimen. Maximum Likelihood phylogenetic analyses reveal that the Spotted Green Pigeon is a unique lineage and together with the Nicobar Pigeon, is basal to the Dodo and Rodrigues Solitaire. The distance observed for the Spotted Green Pigeon and Nicobar Pigeon is larger than that observed within other Pigeon species, indicating that the Spotted Green pigeon is a unique taxon, thereby also indicating it is a genuine addition to the list of extinct species. The phylogenetic placement of the Spotted Green Pigeon indicates that the ancestors of both Caloenas and therefore Raphinae displayed and shared the following traits: ability of flight, semi-terrestrial habits and an affinity towards islands. This set of traits supports the stepping stone hypothesis, which states that the Raphinae got to their respective localities by island hopping from India or Southeast Asia.
The mysterious Spotted Green Pigeon and its relation to the Dodo and its kindred
2014-01-01
Background The closely related and extinct Dodo (Raphus cucullatus) and Rodrigues Solitaire (Pezophaps solitaria), both in the subfamily Raphinae, are members of a clade of morphologically very diverse pigeons. Genetic analyses have revealed that the Nicobar Pigeon (Caloenas nicobarica) is the closest living relative of these birds, thereby highlighting their ancestors’ remarkable migration and morphological evolution. The Spotted Green Pigeon (Caloenas maculata) was described in 1783 and showed some similarities to the Nicobar Pigeon. Soon however the taxon fell into obscurity, as it was regarded as simply an abnormal form of the Nicobar Pigeon. The relationship between both taxa has occasionally been questioned, leading some ornithologists to suggest that the two may in fact be different taxa. Today only one of the original two specimens survives and nothing is known about the origin of the taxon. Due to its potential close relationship, the Spotted Green Pigeon may hold clues to the historical migration, isolation and morphological evolution of the Dodo and its kindred. Results We use ancient DNA methodologies to investigate the phylogeny and authenticity of the Spotted Green Pigeon. A novel extraction method with the ability to retain and purify heavily fragmented DNA is used to investigate two feathers from the sole surviving specimen. Maximum Likelihood phylogenetic analyses reveal that the Spotted Green Pigeon is a unique lineage and together with the Nicobar Pigeon, is basal to the Dodo and Rodrigues Solitaire. Conclusions The distance observed for the Spotted Green Pigeon and Nicobar Pigeon is larger than that observed within other Pigeon species, indicating that the Spotted Green pigeon is a unique taxon, thereby also indicating it is a genuine addition to the list of extinct species. The phylogenetic placement of the Spotted Green Pigeon indicates that the ancestors of both Caloenas and therefore Raphinae displayed and shared the following traits: ability of flight, semi-terrestrial habits and an affinity towards islands. This set of traits supports the stepping stone hypothesis, which states that the Raphinae got to their respective localities by island hopping from India or Southeast Asia. PMID:25027719
The tempo and mode of evolution: body sizes of island mammals.
Raia, Pasquale; Meiri, Shai
2011-07-01
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.
Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu
2013-09-15
Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.
Retzlaff, Nancy; Stadler, Peter F
2018-06-21
Evolutionary processes have been described not only in biology but also for a wide range of human cultural activities including languages and law. In contrast to the evolution of DNA or protein sequences, the detailed mechanisms giving rise to the observed evolution-like processes are not or only partially known. The absence of a mechanistic model of evolution implies that it remains unknown how the distances between different taxa have to be quantified. Considering distortions of metric distances, we first show that poor choices of the distance measure can lead to incorrect phylogenetic trees. Based on the well-known fact that phylogenetic inference requires additive metrics, we then show that the correct phylogeny can be computed from a distance matrix [Formula: see text] if there is a monotonic, subadditive function [Formula: see text] such that [Formula: see text] is additive. The required metric-preserving transformation [Formula: see text] can be computed as the solution of an optimization problem. This result shows that the problem of phylogeny reconstruction is well defined even if a detailed mechanistic model of the evolutionary process remains elusive.
Chauveau, Olivier; Eggers, Lilian; Raquin, Christian; Silvério, Adriano; Brown, Spencer; Couloux, Arnaud; Cruaud, Corine; Kaltchuk-Santos, Eliane; Yockteng, Roxana; Souza-Chies, Tatiana T.; Nadot, Sophie
2011-01-01
Background and Aims Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined. Methods Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species. Key Results and Conclusions Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing. PMID:21527419
González-Alvarez, Rafael; Garza-Rodríguez, María de Lourdes; Delgado-Enciso, Iván; Treviño-Alvarado, Víctor Manuel; Canales-Del-Castillo, Ricardo; Martínez-De-Villarreal, Laura Elia; Lugo-Trampe, Ángel; Tejero, María Elizabeth; Schlabritz-Loutsevitch, Natalia E; Rocha-Pizaña, María Del Refugio; Cole, Shelley A; Reséndez-Pérez, Diana; Moises-Alvarez, Mario; Comuzzie, Anthony G; Barrera-Saldaña, Hugo Alberto; Garza-Guajardo, Raquel; Barboza-Quintana, Oralia; Rodríguez-Sánchez, Irám Pablo
2015-06-12
Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related.
Ament-Velásquez, Sandra L; Breedy, Odalisca; Cortés, Jorge; Guzman, Hector M; Wörheide, Gert; Vargas, Sergio
2016-05-01
Octocorals are a diverse and ecologically important group of cnidarians. However, the phylogenetic relationships of many octocoral groups are not well understood and are based mostly on mitochondrial sequence data. In addition, the discovery and description of new gorgonian species displaying unusual or intermediate morphologies and uncertain phylogenetic affinities further complicates the study of octocoral systematics and raises questions about the role played by processes such as plasticity, crypsis, and convergence in the evolution of this group of organisms. Here, we use nuclear (i.e. 28S rDNA) and mitochondrial (mtMutS) markers and a sample of Eastern Pacific gorgonians thought to be remarkable from a morphological point of view to shed light on the morphological diversification among these organisms. Our study reveals the loss of the anastomosed colony morphology in two unrelated lineages of the seafan genus Pacifigorgia and offers strong evidence for the independent evolution of a whip-like morphology in two lineages of Eastern Pacific Leptogorgia. Additionally, our data revealed one instance of mito-nuclear discordance in the genera Leptogorgia and Eugorgia, which may be the results of incomplete lineage sorting or ancient hybridization-introgression events. Our study stresses the importance of comprehensive taxonomic sampling and the use of independent sources of evidence to address the phylogenetic relationships and clarifying the evolution of octocorals. Copyright © 2016 Elsevier Inc. All rights reserved.
Speciation and Neutral Molecular Evolution in One-Dimensional Closed Population
NASA Astrophysics Data System (ADS)
Semovski, Sergei V.; Bukin, Yuri S.; Sherbakov, Dmitry Yu.
Models are presented suitable for a description of speciation processes arising due to reproductive isolation depending on genetic distance. The main attention is paid to the model of a one-dimensional closed population, which describes the evolution of littoral benthic organisms. In order to correspond the modeling results to the results obtained in the course of experimental phylogenetic studies, all individual-based models described here involve neutrally evolving and maternally inherited DNA sequence. Sub-samples of the resulting sequences were used for a posteriori phylogenetic inferences which then were compared to the "true" evolutionary histories.
Phylogeny of courtship and male-male combat behavior in snakes.
Senter, Phil; Harris, Shannon M; Kent, Danielle L
2014-01-01
Behaviors involved in courtship and male-male combat have been recorded in a taxonomically broad sample (76 species in five families) of snakes in the clade Boidae + Colubroidea, but before now no one has attempted to find phylogenetic patterns in such behaviors. Here, we present a study of phylogenetic patterns in such behaviors in snakes. From the literature on courtship and male-male combat in snakes we chose 33 behaviors to analyze. We plotted the 33 behaviors onto a phylogenetic tree to determine whether phylogenetic patterns were discernible. We found that phylogenetic patterns are discernible for some behaviors but not for others. For behaviors with discernible phylogenetic patterns, we used the fossil record to determine minimum ages for the addition of each behavior to the courtship and combat behavioral repertoire of each snake clade. The phylogenetic patterns of behavior reveal that male-male combat in the Late Cretaceous common ancestors of Boidae and Colubridae involved combatants raising the head and neck and attempting to topple each other. Poking with spurs was added in Boidae. In Lampropeltini the toppling behavior was replaced by coiling without neck-raising, and body-bridging was added. Phylogenetic patterns reveal that courtship ancestrally involved rubbing with spurs in Boidae. In Colubroidea, courtship ancestrally involved chin-rubbing and head- or body-jerking. Various colubroid clades subsequently added other behaviors, e.g. moving undulations in Natricinae and Lampropeltini, coital neck biting in the Eurasian ratsnake clade, and tail quivering in Pantherophis. The appearance of each group in the fossil record provides a minimum age of the addition of each behavior to combat and courtship repertoires. Although many gaps in the story of the evolution of courtship and combat in snakes remain, this study is an important first step in the reconstruction of the evolution of these behaviors in snakes.
Rewriting evolution--"been there, done that".
Penny, David
2013-01-01
A recent paper by a science journalist in Nature shows major errors in understanding phylogenies, in this case of placental mammals. The underlying unrooted tree is probably correct, but the placement of the root just reflects a well-known error from the acceleration in the rate of evolution among some myomorph rodents.
Origin, evolution, and biogeography of Juglans: a phylogenetic perspective
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of extant Juglans (Juglandaceae) using five cpDNA intergenic spacer (IGS) sequences (trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM) were performed to elucidate the origin, diversification, historical biogeography, and evolutionary relationships within the genus...
Phylogeny and Haplotype Analysis of Fungi Within the Fusarium incarnatum-equiseti Species Complex.
Ramdial, H; Latchoo, R K; Hosein, F N; Rampersad, S N
2017-01-01
Fusarium spp. are ranked among the top 10 most economically and scientifically important plant-pathogenic fungi in the world and are associated with plant diseases that include fruit decay of a number of crops. Fusarium isolates infecting bell pepper in Trinidad were identified based on sequence comparisons of the translation elongation factor gene (EF-1a) with sequences of Fusarium incarnatum-equiseti species complex (FIESC) verified in the FUSARIUM-ID database. Eighty-two isolates were identified as belonging to one of four phylogenetic species within the subclades FIESC-1, FIESC-15, FIESC-16, and FIESC-26, with the majority of isolates belonging to FIESC-15. A comparison of the level of DNA polymorphism and phylogenetic inference for sequences of the internal transcribed spacer region (ITS1-5.8S-ITS2) and EF-1a sequences for Trinidad and FUSARIUM-ID type species was carried out. The ITS sequences were less informative, had lower haplotype diversity and restricted haplotype distribution, and resulted in poor resolution and taxa placement in the consensus maximum-likelihood tree. EF-1a sequences enabled strongly supported phylogenetic inference with highly resolved branching patterns of the 30 phylogenetic species within the FIESC and placement of representative Trinidad isolates. Therefore, global phylogeny was inferred from EF-1a sequences representing 11 countries, and separation into distinct Incarnatum and Equiseti clades was again evident. In total, 42 haplotypes were identified: 12 were shared and the remaining were unique haplotypes. The most diverse haplotype was represented by sequences from China, Indonesia, Malaysia, and Trinidad and consisted exclusively of F. incarnatum isolates. Spain had the highest haplotype diversity, perhaps because both F. equiseti and F. incarnatum sequences were represented; followed by the United States, which contributed both F. equiseti and F. incarnatum sequences to the data set; then by countries representing Southeast Asia (China, Indonesia, Malaysia, Thailand, and Philippines) and Trinidad; both of these regions were represented by only F. incarnatum sequences. Trinidad shared two haplotypes with China and one haplotype with the United States for only F. incarnatum isolates. The findings of this study are important for devising disease management strategies and for understanding the phylogenetic relationships among members of the FIESC.
Phylogenetic analysis reveals a scattered distribution of autumn colours
Archetti, Marco
2009-01-01
Background and Aims Leaf colour in autumn is rarely considered informative for taxonomy, but there is now growing interest in the evolution of autumn colours and different hypotheses are debated. Research efforts are hindered by the lack of basic information: the phylogenetic distribution of autumn colours. It is not known when and how autumn colours evolved. Methods Data are reported on the autumn colours of 2368 tree species belonging to 400 genera of the temperate regions of the world, and an analysis is made of their phylogenetic relationships in order to reconstruct the evolutionary origin of red and yellow in autumn leaves. Key Results Red autumn colours are present in at least 290 species (70 genera), and evolved independently at least 25 times. Yellow is present independently from red in at least 378 species (97 genera) and evolved at least 28 times. Conclusions The phylogenetic reconstruction suggests that autumn colours have been acquired and lost many times during evolution. This scattered distribution could be explained by hypotheses involving some kind of coevolutionary interaction or by hypotheses that rely on the need for photoprotection. PMID:19126636
A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species
NASA Technical Reports Server (NTRS)
Holmquist, R.
1978-01-01
An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.
Rautian, Maria S; Wackerow-Kouzova, Natalia D
2013-05-01
'Holospora acuminata' infects micronuclei of Paramecium bursaria (Protozoa, Ciliophora), whereas 'Holospora curviuscula' infects the macronucleus in other clones of the same host species. Because these micro-organisms have not been cultivated, their description has been based only on some morphological properties and host and nuclear specificities. One16S rRNA gene sequence of 'H. curviuscula' is present in databases. The systematic position of the representative strain of 'H. curviuscula', strain MC-3, was determined in this study. Moreover, for the first time, two strains of 'H. acuminata', KBN10-1 and AC61-10, were investigated. Phylogenetic analysis indicated that all three strains belonged to the genus Holospora, family Holosporaceae, order Rickettsiales within the Alphaproteobacteria.
Contextualising primate origins--an ecomorphological framework.
Soligo, Christophe; Smaers, Jeroen B
2016-04-01
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins. © 2016 Anatomical Society.
Natural Constraints to Species Diversification.
Lewitus, Eric; Morlon, Hélène
2016-08-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity.
Tempo and mode of climatic niche evolution in Primates.
Duran, Andressa; Pie, Marcio R
2015-09-01
Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant-rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Phylogeny and species traits predict bird detectability
Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.
2018-01-01
Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.
Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact
Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.
2014-01-01
The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300
Phylogenetic signal, feeding behaviour and brain volume in Neotropical bats.
Rojas, D; Mancina, C A; Flores-Martínez, J J; Navarro, L
2013-09-01
Comparative correlational studies of brain size and ecological traits (e.g. feeding habits and habitat complexity) have increased our knowledge about the selective pressures on brain evolution. Studies conducted in bats as a model system assume that shared evolutionary history has a maximum effect on the traits. However, this effect has not been quantified. In addition, the effect of levels of diet specialization on brain size remains unclear. We examined the role of diet on the evolution of brain size in Mormoopidae and Phyllostomidae using two comparative methods. Body mass explained 89% of the variance in brain volume. The effect of feeding behaviour (either characterized as feeding habits, as levels of specialization on a type of item or as handling behaviour) on brain volume was also significant albeit not consistent after controlling for body mass and the strength of the phylogenetic signal (λ). Although the strength of the phylogenetic signal of brain volume and body mass was high when tested individually, λ values in phylogenetic generalized least squares models were significantly different from 1. This suggests that phylogenetic independent contrasts models are not always the best approach for the study of ecological correlates of brain size in New World bats. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Jiao, Yu-Liang; Wang, Shu-Jun; Lv, Ming-Sheng; Fang, Yao-Wei; Liu, Shu
2013-03-01
Thermostable amylopullulanase (TAPU) is valuable in starch saccharification industry for its capability to catalyze both α-1,4 and α-1,6 glucosidic bonds under the industrial starch liquefication condition. The majority of TAPUs belong to glycoside hydrolase family 57 (GH57). In this study, we performed a phylogenetic analysis of GH57 amylopullulanase (APU) based on the highly conserved DOMON_glucodextranase_like (DDL) domain and classified APUs according to their multidomain architectures, phylogenetic analysis and enzymatic characters. This study revealed that amylopullulanase, pullulanase, andα-amylase had passed through a long joint evolution process, in which DDL played an important role. The phylogenetic analysis of DDL domain showed that the GH57 APU is directly sharing a common ancestor with pullulanase, and the DDL domains in some species undergo evolution scenarios such as domain duplication and recombination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extensive diversity and evolution of hepadnaviruses in bats in China.
Nie, Fang-Yuan; Lin, Xian-Dan; Hao, Zong-Yu; Chen, Xiao-Nan; Wang, Zhao-Xiao; Wang, Miao-Ruo; Wu, Jun; Wang, Hong-Wei; Zhao, Guoqiang; Ma, Runlin Z; Holmes, Edward C; Zhang, Yong-Zhen
2018-01-15
To better understand the evolution of hepadnaviruses, we sampled bats from Guizhou, Henan and Zhejiang provinces, China, and rodents from Zhejiang province. Genetically diverse hepadnaviruses were identified in a broad range of bat species, with an overall prevalence of 13.3%. In contrast, no rodent hepadnaviruses were identified. The newly discovered bat hepadnaviruses fell into two distinct phylogenetic groups. The viruses within the first group exhibited high diversity, with some closely related to viruses previously identified in Yunnan province. Strikingly, the newly discovered viruses sampled from Jiyuan city in the second phylogenetic group were most closely related to those found in bats from West Africa, suggestive of a long-term association between bats and hepadnaviruses. A co-phylogenetic analysis revealed frequent cross-species transmission among bats from different species, genera, and families. Overall, these data suggest that there are likely few barriers to the cross-species transmission of bat hepadnaviruses. Copyright © 2017. Published by Elsevier Inc.
Pincheira-Donoso, Daniel; Hodgson, David J; Tregenza, Tom
2008-02-27
The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat rapidly are under strong positive selection to allow optimal feeding, mating and predator avoidance. Therefore, evolution of larger body size in colder environments appears to be a disadvantageous thermoregulatory strategy. The repeated lack of support for Bergmann's rule in ectotherms suggests that this model should be recognized as a valid rule exclusively for endotherms.
2008-01-01
Background The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Results Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Conclusion Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat rapidly are under strong positive selection to allow optimal feeding, mating and predator avoidance. Therefore, evolution of larger body size in colder environments appears to be a disadvantageous thermoregulatory strategy. The repeated lack of support for Bergmann's rule in ectotherms suggests that this model should be recognized as a valid rule exclusively for endotherms. PMID:18304333
Evolution of prokaryote and eukaryote lines inferred from sequence evidence
NASA Technical Reports Server (NTRS)
Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.
1984-01-01
This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.
Transcriptome sequences resolve deep relationships of the grape family.
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.
2011-01-01
Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead to a complex structure of Adh outparalogs and inparalogs in Pyrus and Malus, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, LFY2int2-N is the best nuclear marker for phylogenetic reconstruction of Pyrus due to suitable sequence divergence and the absence of lineage sorting. PMID:21917170
Phylogenetic inference under varying proportions of indel-induced alignment gaps
Dwivedi, Bhakti; Gadagkar, Sudhindra R
2009-01-01
Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong – almost deterministic – relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "MLε, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data – presence/absence, or as in the MLε method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the phylogenetic signal in indels are developed for distance methods too. When the true homology is known and the amount of gaps is 20 percent of the alignment length or less, the methods used in this study are likely to yield trees with 90–100 percent accuracy. PMID:19698168
Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics
van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW
2006-01-01
Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620
Dornburg, Alex; Friedman, Matt; Near, Thomas J
2015-08-01
Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods. Copyright © 2015 Elsevier Inc. All rights reserved.
Correlated evolution of body and fin morphology in the cichlid fishes.
Feilich, Kara L
2016-10-01
Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body-fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well-studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Cheng, Ren-Chung; Kuntner, Matjaž
2014-10-01
Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Slater, Graham J; Harmon, Luke J; Wegmann, Daniel; Joyce, Paul; Revell, Liam J; Alfaro, Michael E
2012-03-01
In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Eder, Wolfgang; Ives Torres-Silva, Ana; Hohenegger, Johann
2017-04-01
Phylogenetic analysis and trees based on molecular data are broadly applied and used to infer genetical and biogeographic relationship in recent larger foraminifera. Molecular phylogenetic is intensively used within recent nummulitids, however for fossil representatives these trees are only of minor informational value. Hence, within paleontological studies a phylogenetic approach through morphometric analysis is of much higher value. To tackle phylogenetic relationships within the nummulitid family, a much higher number of morphological character must be measured than are commonly used in biometric studies, where mostly parameters describing embryonic size (e.g., proloculus diameter, deuteroloculus diameter) and/or the marginal spiral (e.g., spiral diagrams, spiral indices) are studied. For this purpose 11 growth-independent and/or growth-invariant characters have been used to describe the morphological variability of equatorial thin sections of seven Carribbean nummulitid taxa (Nummulites striatoreticulatus, N. macgillavry, Palaeonummulites willcoxi, P.floridensis, P. soldadensis, P.trinitatensis and P.ocalanus) and one outgroup taxon (Ranikothalia bermudezi). Using these characters, phylogenetic trees were calculated using a restricted maximum likelihood algorithm (REML), and results are cross-checked by ordination and cluster analysis. Square-change parsimony method has been run to reconstruct ancestral states, as well as to simulate the evolution of the chosen characters along the calculated phylogenetic tree and, independent - contrast analysis was used to estimate confidence intervals. Based on these simulations, phylogenetic tendencies of certain characters proposed for nummulitids (e.g., Cope's rule or nepionic acceleration) can be tested, whether these tendencies are valid for the whole family or only for certain clades. At least, within the Carribean nummulitids, phylogenetic trends along some growth-independent characters of the embryo (e.g., first chamber length and P/D ratio) and some growth-invariant characters of the chamber sequence (e.g., backbend angle, initial chamber base length and chamber length increase) are evident.
Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees
Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés
2009-01-01
Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. Reviewers This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan) PMID:19883502
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.
Repeated evolution and reversibility of self-fertilization in the volvocine green algae.
Hanschen, Erik R; Herron, Matthew D; Wiens, John J; Nozaki, Hisayoshi; Michod, Richard E
2018-02-01
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Broad-scale phylogenomics provides insights into retrovirus–host evolution
Hayward, Alexander; Grabherr, Manfred; Jern, Patric
2013-01-01
Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications. PMID:24277832
Broad-scale phylogenomics provides insights into retrovirus-host evolution.
Hayward, Alexander; Grabherr, Manfred; Jern, Patric
2013-12-10
Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications.
Zúñiga-Reinoso, Álvaro; Méndez, Marco A
2018-04-24
The origin of cryptic species has traditionally been associated with events of recent speciation, genetic constraints, selection of an adaptive character, sexual selection and/or convergent evolution. Species of the genus Callyntra inhabit coastal terraces, mountain slopes, and peaks; their elytral designs are associated with each of these habitats. However, cryptic species have been described within each of these habitats; the taxonomy of this group has been problematic, thus establishing the phylogenetic relationships in this group is fundamental to clarify the systematics and evolutionary patterns of Callyntra. We reconstructed the phylogeny of this group using two mitochondrial genes (COI, 16S) and one nuclear gene (Mp20). We also performed species delimitation using PTP based methods (PTP, mlPTP, bPTP) and GMYC, and evaluated the evolution of the elytral design related to habitat preference. The results showed a tree with five clades, that together with the different methods of species delimitation recovered the described species and suggested at least five new species. The elytral design and habitat preference showed phylogenetic signals. We propose a new classification based on monophyletic groups recovered by phylogenetic analyses. We also suggest that parallel evolution in different habitats and later stasis in the elytral design would be the cause of the origin of cryptic species in this group from central Chile. Copyright © 2018 Elsevier Inc. All rights reserved.
Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato
Margos, Gabriele; Vollmer, Stephanie A.; Ogden, Nicholas H.; Fish, Durland
2011-01-01
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria. PMID:21843658
Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae).
Rojas-Aréchiga, Mariana; Mandujano, María C; Golubov, Jordan K
2013-05-01
The response of seed germination towards light and the relationship to seed traits has been studied particularly well in tropical forests. Several authors have shown a clear adaptive response of seed size and photoblastism, however, the evolutionary significance of this relationship for species inhabiting arid environments has not been fully understood and only some studies have considered the response in a phylogenetic context. We collected seeds from 54 cacti species spread throughout the tribe Cacteae to test whether there was correlated evolution of photoblastism, seed traits and germination using a reconstructed phylogeny of the tribe. For each species we determined the photoblastic response under controlled conditions, and seed traits, and analyzed the results using phylogenetically independent contrasts. All studied species were positive photoblastic contrasting with the basal Pereskia suggesting an early evolution of this trait. Seeds from basal species were mostly medium-sized, diverging into two groups. Seeds tend to get smaller and lighter suggesting an evolution to smaller sizes. No evidence exists of a relationship between seed size and photoblastic response suggesting that the photoblastic response within members of this tribe is not adaptive though it is phylogenetically fixed and that is coupled with environmental cues that fine tune the germination response.
Yang, Chien-Hui; Bracken-Grissom, Heather; Kim, Dohyup; Crandall, Keith A; Chan, Tin-Yam
2012-01-01
The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification. Copyright © 2011 Elsevier Inc. All rights reserved.
Divergent morphological and acoustic traits in sympatric communities of Asian barbets
Tamma, Krishnapriya
2016-01-01
The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589
Evidence for Widespread Reticulate Evolution within Human Duplicons
Jackson, Michael S. ; Oliver, Karen ; Loveland, Jane ; Humphray, Sean ; Dunham, Ian ; Rocchi, Mariano ; Viggiano, Luigi ; Park, Jonathan P. ; Hurles, Matthew E. ; Santibanez-Koref, Mauro
2005-01-01
Approximately 5% of the human genome consists of segmental duplications that can cause genomic mutations and may play a role in gene innovation. Reticulate evolutionary processes, such as unequal crossing-over and gene conversion, are known to occur within specific duplicon families, but the broader contribution of these processes to the evolution of human duplications remains poorly characterized. Here, we use phylogenetic profiling to analyze multiple alignments of 24 human duplicon families that span >8 Mb of DNA. Our results indicate that none of them are evolving independently, with all alignments showing sharp discontinuities in phylogenetic signal consistent with reticulation. To analyze these results in more detail, we have developed a quartet method that estimates the relative contribution of nucleotide substitution and reticulate processes to sequence evolution. Our data indicate that most of the duplications show a highly significant excess of sites consistent with reticulate evolution, compared with the number expected by nucleotide substitution alone, with 15 of 30 alignments showing a >20-fold excess over that expected. Using permutation tests, we also show that at least 5% of the total sequence shares 100% sequence identity because of reticulation, a figure that includes 74 independent tracts of perfect identity >2 kb in length. Furthermore, analysis of a subset of alignments indicates that the density of reticulation events is as high as 1 every 4 kb. These results indicate that phylogenetic relationships within recently duplicated human DNA can be rapidly disrupted by reticulate evolution. This finding has important implications for efforts to finish the human genome sequence, complicates comparative sequence analysis of duplicon families, and could profoundly influence the tempo of gene-family evolution. PMID:16252241
Xiang, Kun-Li; Wu, Sheng-Dan; Yu, Sheng-Xian; Liu, Yang; Jabbour, Florian; Erst, Andrey S.; Zhao, Liang; Wang, Wei; Chen, Zhi-Duan
2016-01-01
Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility. PMID:27044035
Thompson, F Christian; Skevington, Jeffrey H
2014-08-06
A new genus and species of flower flies (Diptera: Syrphidae: Syrphinae: Syrphini) are described from central Africa (Kenya & Uganda), Afrostoma quadripunctatum. A key to the Afrotropical genera of the subfamily Syrphinae is given. A review of the melanostomine [Bacchini] genera and subgenera is provided along with a key to them. Phylogenetic placement of Afrostoma is included based on mitochondrial cytochrome c oxidase subunit I (COI) data.
Woodyard, Ethan T; Rosser, Thomas G; Griffin, Matt J
2017-08-01
Neodiplostomum americanum Chandler and Rausch, 1947 has been reported from six species of owls in North America. At present, there are no molecular data for this species and gene sequence data from Neodiplostomum Railliet, 1919 are limited. A freshly deceased specimen of the Great Horned Owl Bubo virginianus Gmelin, 1788 and a freshly deceased specimen of the Eastern Screech Owl Megascops asio Linnaeus, 1758 were collected in Oktibbeha County, Mississippi in 2014 and 2016, respectively. Neodiplostomum americanum were recovered from both hosts. Herein, updated morphological descriptions are supplemented with gene sequence data from conserved (18S, ITS1-5.8S, ITS2, and 28S rRNA) and fast-evolving (cytochrome c oxidase subunit 1 mtDNA) regions. Preliminary phylogenetic analysis of the genus based on cytochrome c oxidase subunit 1 gene sequence data supports the placement of N. americanum within a discrete phylogroup of the family Diplostomidae. The life history of N. americanum is unknown and currently limited to the description of the adult stage in avian hosts. The molecular data generated in this study offer insight into the phylogenetic placement of N. americanum within the Diplostomatidae and will aid in identifying different life stages in putative intermediate hosts.
Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel
2014-01-01
Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145
Busey, Hannah A; Zattara, Eduardo E; Moczek, Armin P
2016-07-01
The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution. © 2016 Wiley Periodicals, Inc.
Studying Biological Responses to Global Change in Atmospheric Oxygen
Powell, Frank L.
2010-01-01
A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257
The Evolution of Haploid Chromosome Numbers in the Sunflower Family
Mota, Lucie; Torices, Rubén; Loureiro, João
2016-01-01
Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering plants, the Asteraceae. Specifically, a phylogenetic supertree of this family was used to reconstruct the ancestral chromosome number and infer genomic events. Our approach inferred that the ancestral chromosome number of the family is n = 9. Also, according to the model that best explained our data, the evolution of haploid chromosome numbers in Asteraceae was a very dynamic process, with genome duplications and descending dysploidy being the most frequent genomic events in the evolution of this family. This model inferred more than one hundred whole genome duplication events; however, it did not find evidence for a paleopolyploidization at the base of this family, which has previously been hypothesized on the basis of sequence data from a limited number of species. The obtained results and potential causes of these discrepancies are discussed. PMID:27797951
Huang, Shengfeng; Yuan, Shaochun; Dong, Meiling; Su, Jing; Yu, Cuiling; Shen, Yang; Xie, Xiaojin; Yu, Yanhong; Yu, Xuesong; Chen, Shangwu; Zhang, Shicui; Pontarotti, Pierre; Xu, Anlong
2005-12-01
In animals, the tetraspanins are a large superfamily of membrane proteins that play important roles in organizing various cell-cell and matrix-cell interactions and signal pathways based on such interactions. However, their origin and evolution largely remain elusive and most of the family's members are functionally unknown or less known due to difficulties of study, such as functional redundancy. In this study, we rebuilt the family's phylogeny with sequences retrieved from online databases and our cDNA library of amphioxus. We reveal that, in addition to in metazoans, various tetraspanins are extensively expressed in protozoan amoebae, fungi, and plants. We also discuss the structural evolution of tetraspanin's major extracellular domain and the relation between tetraspanin's duplication and functional redundancy. Finally, we elucidate the coevolution of tetraspanins and eukaryotes and suggest that tetraspanins play important roles in the unicell-to-multicell transition. In short, the study of tetraspanin in a phylogenetic context helps us understand the evolution of intercellular interactions.
Phylogenetics of modern birds in the era of genomics
Edwards, Scott V; Bryan Jennings, W; Shedlock, Andrew M
2005-01-01
In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a ‘community genomics’ approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era—with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters—will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics. PMID:16024355
Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar
2015-10-01
Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Natural Constraints to Species Diversification
Lewitus, Eric; Morlon, Hélène
2016-01-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity. PMID:27505866
Garamszegi, László Zsolt
2011-02-01
Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A
2012-01-01
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.
Ayres, Daniel L.; Darling, Aaron; Zwickl, Derrick J.; Beerli, Peter; Holder, Mark T.; Lewis, Paul O.; Huelsenbeck, John P.; Ronquist, Fredrik; Swofford, David L.; Cummings, Michael P.; Rambaut, Andrew; Suchard, Marc A.
2012-01-01
Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software. PMID:21963610
Letunic, Ivica; Bork, Peer
2016-07-08
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data.
Kores, P J; Molvray, M; Weston, P H; Hopper, S D; Brown, A P; Cameron, K M; Chase, M W
2001-10-01
DNA sequence data from plastid matK and trnL-F regions were used in phylogenetic analyses of Diurideae, which indicate that Diurideae are not monophyletic as currently delimited. However, if Chloraeinae and Pterostylidinae are excluded from Diurideae, the remaining subtribes form a well-supported, monophyletic group that is sister to a "spiranthid" clade. Chloraea, Gavilea, and Megastylis pro parte (Chloraeinae) are all placed among the spiranthid orchids and form a grade with Pterostylis leading to a monophyletic Cranichideae. Codonorchis, previously included among Chloraeinae, is sister to Orchideae. Within the more narrowly delimited Diurideae two major lineages are apparent. One includes Diuridinae, Cryptostylidinae, Thelymitrinae, and an expanded Drakaeinae; the other includes Caladeniinae s.s., Prasophyllinae, and Acianthinae. The achlorophyllous subtribe Rhizanthellinae is a member of Diurideae, but its placement is otherwise uncertain. The sequence-based trees indicate that some morphological characters used in previous classifications, such as subterranean storage organs, anther position, growth habit, fungal symbionts, and pollination syndromes have more complex evolutionary histories than previously hypothesized. Treatments based upon these characters have produced conflicting classifications, and molecular data offer a tool for reevaluating these phylogenetic hypotheses.
Phylogenetic diversity and biodiversity indices on phylogenetic networks.
Wicke, Kristina; Fischer, Mareike
2018-04-01
In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.
Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods
Aris-Brosou, Stéphane; Xia, Xuhua
2008-01-01
The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574
Dimensional Reduction for the General Markov Model on Phylogenetic Trees.
Sumner, Jeremy G
2017-03-01
We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.
Phylogenetic system and zoogeography of the Plecoptera.
Zwick, P
2000-01-01
Information about the phylogenetic relationships of Plecoptera is summarized. The few characters supporting monophyly of the order are outlined. Several characters of possible significance for the search for the closest relatives of the stoneflies are discussed, but the sister-group of the order remains unknown. Numerous characters supporting the presently recognized phylogenetic system of Plecoptera are presented, alternative classifications are discussed, and suggestions for future studies are made. Notes on zoogeography are appended. The order as such is old (Permian fossils), but phylogenetic relationships and global distribution patterns suggest that evolution of the extant suborders started with the breakup of Pangaea. There is evidence of extensive recent speciation in all parts of the world.
Transcriptome Sequences Resolve Deep Relationships of the Grape Family
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M.; Gerrath, Jean; Zimmer, Elizabeth A.; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated. PMID:24069307
Ultrastructure and phylogeny of Ustilago coicis *
Zhang, Jing-ze; Guan, Pei-gang; Tao, Gang; Ojaghian, Mohammad Reza; Hyde, Kevin David
2013-01-01
Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town, Jinyun County, Zhejiang Province of China. In this paper, ultrastructural assessments on fungus-host interactions and teliospore development are presented, and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon. Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction, and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane. Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium. In addition, internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U. coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae). PMID:23549851
Harlin-Cognato, April D; Honeycutt, Rodney L
2006-01-01
Background Dolphins of the genus Lagenorhynchus are anti-tropically distributed in temperate to cool waters. Phylogenetic analyses of cytochrome b sequences have suggested that the genus is polyphyletic; however, many relationships were poorly resolved. In this study, we present a combined-analysis phylogenetic hypothesis for Lagenorhynchus and members of the subfamily Lissodelphininae, which is derived from two nuclear and two mitochondrial data sets and the addition of 34 individuals representing 9 species. In addition, we characterize with parsimony and Bayesian analyses the phylogenetic utility and interaction of characters with statistical measures, including the utility of highly consistent (non-homoplasious) characters as a conservative measure of phylogenetic robustness. We also explore the effects of removing sources of character conflict on phylogenetic resolution. Results Overall, our study provides strong support for the monophyly of the subfamily Lissodelphininae and the polyphyly of the genus Lagenorhynchus. In addition, the simultaneous parsimony analysis resolved and/or improved resolution for 12 nodes including: (1) L. albirostris, L. acutus; (2) L. obscurus and L. obliquidens; and (3) L. cruciger and L. australis. In addition, the Bayesian analysis supported the monophyly of the Cephalorhynchus, and resolved ambiguities regarding the relationship of L. australis/L. cruciger to other members of the genus Lagenorhynchus. The frequency of highly consistent characters varied among data partitions, but the rate of evolution was consistent within data partitions. Although the control region was the greatest source of character conflict, removal of this data partition impeded phylogenetic resolution. Conclusion The simultaneous analysis approach produced a more robust phylogenetic hypothesis for Lagenorhynchus than previous studies, thus supporting a phylogenetic approach employing multiple data partitions that vary in overall rate of evolution. Even in cases where there was apparent conflict among characters, our data suggest a synergistic interaction in the simultaneous analysis, and speak against a priori exclusion of data because of potential conflicts, primarily because phylogenetic results can be less robust. For example, the removal of the control region, the putative source of character conflict, produced spurious results with inconsistencies among and within topologies from parsimony and Bayesian analyses. PMID:17078887
NASA Astrophysics Data System (ADS)
Cucchi, T.; Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.
2017-04-01
The Plio-Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys.
Nagy, L G; Kocsubé, S; Papp, T; Vágvölgyi, C
2009-06-01
Phylogenetic relationships, species concepts and morphological evolution of the coprinoid mushroom genus Parasola were studied. A combined dataset of nuclear ribosomal ITS and LSU sequences was used to infer phylogenetic relationships of Parasola species and several outgroup taxa. Clades recovered in the phylogenetic analyses corresponded well to morphologically discernable species, although in the case of P. leiocephala, P. lilatincta and P. plicatilis amended concepts proved necessary. Parasola galericuliformis and P. hemerobia are shown to be synonymous with P. leiocephala and P. plicatilis, respectively. By mapping morphological characters on the phylogeny, it is shown that the emergence of deliquescent Parasola taxa was accompanied by the development of pleurocystidia, brachybasidia and a plicate pileus. Spore shape and the position of the germ pore on the spores showed definite evolutionary trends within the group: from ellipsoid the former becomes more voluminous and heart-shaped, the latter evolves from central to eccentric in taxa referred to as 'crown' Parasola species. The results are discussed and compared to other Coprinus s.l. and Psathyrella taxa. Homoplasy and phylogenetic significance of various morphological characters, as well as indels in ITS and LSU sequences, are also evaluated.
Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.
2017-01-01
The Plio–Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys. PMID:28484618
On the relationship between phylogenetic diversity and trait diversity.
Tucker, Caroline M; Davies, T Jonathan; Cadotte, Marc W; Pearse, William D
2018-05-21
Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima. © 2018 by the Ecological Society of America.
Deragon, Jean-Marc; Zhang, Xiaoyu
2006-12-01
Short interspersed elements (SINEs) are a class of dispersed mobile sequences that use RNA as an intermediate in an amplification process called retroposition. The presence-absence of a SINE at a given locus has been used as a meaningful classification criterion to evaluate phylogenetic relations among species. We review here recent developments in the characterisation of plant SINEs and their use as molecular makers to retrace phylogenetic relations among wild and cultivated Oryza and Brassica species. In Brassicaceae, further use of SINE markers is limited by our partial knowledge of endogenous SINE families (their origin and evolution histories) and by the absence of a clear classification. To solve this problem, phylogenetic relations among all known Brassicaceae SINEs were analyzed and a new classification, grouping SINEs in 15 different families, is proposed. The relative age and size of each Brassicaceae SINE family was evaluated and new phylogenetically supported subfamilies were described. We also present evidence suggesting that new potentially active SINEs recently emerged in Brassica oleracea from the shuffling of preexisting SINE portions. Finally, the comparative evolution history of SINE families present in Arabidopsis thaliana and Brassica oleracea revealed that SINEs were in general more active in the Brassica lineage. The importance of these new data for the use of Brassicaceae SINEs as molecular markers in future applications is discussed.
Lyu, Ming-Ju Amy; Gowik, Udo; Kelly, Steve; Covshoff, Sarah; Mallmann, Julia; Westhoff, Peter; Hibberd, Julian M; Stata, Matt; Sage, Rowan F; Lu, Haorong; Wei, Xiaofeng; Wong, Gane Ka-Shu; Zhu, Xin-Guang
2015-06-18
The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.
Sherratt, Emma; Alejandrino, Alvin; Kraemer, Andrew C; Serb, Jeanne M; Adams, Dean C
2016-09-01
Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).
Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T
2014-10-01
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Evolution of Venomous Cartilaginous and Ray-Finned Fishes.
Smith, W Leo; Stern, Jennifer H; Girard, Matthew G; Davis, Matthew P
2016-11-01
Venom and its associated delivery systems have evolved in numerous animal groups ranging from jellyfishes to spiders, lizards, shrews, and the male platypus. Building off new data and previously published anatomical and molecular studies, we explore the evolution of and variation within venomous fishes. We show the results of the first multi-locus, ordinal-level phylogenetic analysis of cartilaginous (Chondrichthyes) and ray-finned (Actinopterygii) fishes that hypothesizes 18 independent evolutions of this specialization. Ancestral-states reconstruction indicates that among the 2386-2962 extant venomous fishes, envenomed structures have evolved four times in cartilaginous fishes, once in eels (Anguilliformes), once in catfishes (Siluriformes), and 12 times in spiny-rayed fishes (Acanthomorpha). From our anatomical studies and phylogenetic reconstruction, we show that dorsal spines are the most common envenomed structures (∼95% of venomous fish species and 15 independent evolutions). In addition to envenomed spines, fishes have also evolved venomous fangs (2% of venomous fish species, two independent evolutions), cleithral spines (2% of venomous fish species, one independent evolution), and opercular or subopercular spines (1% of venomous fish species, three independent evolutions). © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Phylogenetic study of recombinant strains of Potato virus Y
USDA-ARS?s Scientific Manuscript database
Potato virus Y (PVY) exists as a complex of strains, including a growing number of recombinants. Evolution of PVY proceeds through accumulation of mutations and more rapidly through recombination. Here, the role of recombination in PVY evolution and the origin of common PVY recombinants were studied...
Comparing Common Origins: Using Biotechnology To Teach Evolution.
ERIC Educational Resources Information Center
McLaughlin, John; Glasson, George
2001-01-01
Presents an innovative, inquiry-oriented lesson plan for using biotechnology to teach evolution. Using acrylamide gel electrophoresis, students learn how to isolate and compare different proteins from the muscle tissue of readily available seafood specimens to determine phylogenetic relationships. Uses a 5E (engagement, exploration, explanation,…
Evolution of tuf genes: ancient duplication, differential loss and gene conversion.
Lathe, W C; Bork, P
2001-08-03
The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.
Eukaryotic organisms in Proterozoic oceans
Knoll, A.H; Javaux, E.J; Hewitt, D; Cohen, P
2006-01-01
The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800–1300 Myr old rocks. 1300–720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran–Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms. PMID:16754612
Flatfish monophyly refereed by the relationship of Psettodes in Carangimorphariae.
Shi, Wei; Chen, Shixi; Kong, Xiaoyu; Si, Lizhen; Gong, Li; Zhang, Yanchun; Yu, Hui
2018-05-25
The monophyly of flatfishes has not been supported in many molecular phylogenetic studies. The monophyly of Pleuronectoidei, which comprises all but one family of flatfishes, is broadly supported. However, the Psettodoidei, comprising the single family Psettodidae, is often found to be most closely related to other carangimorphs based on substantial sequencing efforts and diversely analytical methods. In this study, we examined why this particular result is often obtained. The mitogenomes of five flatfishes were determined. Select mitogenomes of representative carangimorph species were further employed for phylogenetic and molecular clock analyses. Our phylogenetic results do not fully support Psettodes as a sister group to pleuronectoids or other carangimorphs. And results also supported the evidence of long-branch attraction between Psettodes and the adjacent clades. Two chronograms, derived from Bayesian relaxed-clock methods, suggest that over a short period in the early Paleocene, a series of important evolutionary events occurred in carangimorphs. Based on insights provided by the molecular clock, we propose the following evolutionary explanation for the difficulty in determining the phylogenetic position of Psettodes: The initial diversification of Psettodes was very close in time to the initial diversification of carangimorphs, and the primary diversification time of pleuronectoids, the other suborder of flatfishes, occurred later than that of some percomorph taxa. Additionally, the clade of Psettodes is long and naked branch, which supports the uncertainty of its phylogenetic placement. Finally, we confirmed the monophyly of flatfishes, which was accepted by most ichthyologists.
Phylogenetic classification of bony fishes.
Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo
2017-07-06
Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.
2011-01-01
Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083
LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae
Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel
2014-01-01
ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321
Phylogeny of Courtship and Male-Male Combat Behavior in Snakes
Senter, Phil; Harris, Shannon M.; Kent, Danielle L.
2014-01-01
Background Behaviors involved in courtship and male-male combat have been recorded in a taxonomically broad sample (76 species in five families) of snakes in the clade Boidae + Colubroidea, but before now no one has attempted to find phylogenetic patterns in such behaviors. Here, we present a study of phylogenetic patterns in such behaviors in snakes. Methodology/Principal Findings From the literature on courtship and male-male combat in snakes we chose 33 behaviors to analyze. We plotted the 33 behaviors onto a phylogenetic tree to determine whether phylogenetic patterns were discernible. We found that phylogenetic patterns are discernible for some behaviors but not for others. For behaviors with discernible phylogenetic patterns, we used the fossil record to determine minimum ages for the addition of each behavior to the courtship and combat behavioral repertoire of each snake clade. Conclusions/Significance The phylogenetic patterns of behavior reveal that male-male combat in the Late Cretaceous common ancestors of Boidae and Colubridae involved combatants raising the head and neck and attempting to topple each other. Poking with spurs was added in Boidae. In Lampropeltini the toppling behavior was replaced by coiling without neck-raising, and body-bridging was added. Phylogenetic patterns reveal that courtship ancestrally involved rubbing with spurs in Boidae. In Colubroidea, courtship ancestrally involved chin-rubbing and head- or body-jerking. Various colubroid clades subsequently added other behaviors, e.g. moving undulations in Natricinae and Lampropeltini, coital neck biting in the Eurasian ratsnake clade, and tail quivering in Pantherophis. The appearance of each group in the fossil record provides a minimum age of the addition of each behavior to combat and courtship repertoires. Although many gaps in the story of the evolution of courtship and combat in snakes remain, this study is an important first step in the reconstruction of the evolution of these behaviors in snakes. PMID:25250782
Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.
Morrison, Erin S; Badyaev, Alexander V
2018-05-01
Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Barman, Lalita Rani; Nooruzzaman, Mohammed; Sarker, Rahul Deb; Rahman, Md Tazinur; Saife, Md Rajib Bin; Giasuddin, Mohammad; Das, Bidhan Chandra; Das, Priya Mohan; Chowdhury, Emdadul Haque; Islam, Mohammad Rafiqul
2017-10-01
A total of 23 Newcastle disease virus (NDV) isolates from Bangladesh taken between 2010 and 2012 were characterized on the basis of partial F gene sequences. All the isolates belonged to genotype XIII of class II NDV but segregated into three sub-clusters. One sub-cluster with 17 isolates aligned with sub-genotype XIIIc. The other two sub-clusters were phylogenetically distinct from the previously described sub-genotypes XIIIa, XIIIb and XIIIc and could be candidates of new sub-genotypes; however, that needs to be validated through full-length F gene sequence data. The results of the present study suggest that genotype XIII NDVs are under continuing evolution in Bangladesh.
How long ago did smallpox virus emerge?
Shchelkunov, Sergei N
2009-01-01
Unlike vertebrates, for which paleontological data are available, and RNA viruses, which display a high rate of genetic variation, an objective estimate of time parameters for the molecular evolution of DNA viruses, which display a low rate of accumulation of mutations, is a complex problem. Genomic studies of a set of smallpox (variola) virus (VARV) isolates demonstrated the patterns of phylogenetic relationships between geographic variants of this virus. Using archival data on smallpox outbreaks and the results of phylogenetic analyses of poxvirus genomes, different research teams have obtained contradictory data on the possible time point of VARV origin. I discuss the approaches used for dating of VARV evolution and adduce the arguments favoring its historically recent origin.
Aarestrup, F M
2001-07-01
A total of 41 Staphylococcus intermedius isolates were isolated from skin of healthy members of six phylogenetic groups within the Canoidea (the dog family, skunk subfamily, weasel subfamily, racoon family, red panda and bear family) of different geographical origin and compared by EcoRI ribotyping and cluster analysis. The S. intermedius isolates from the different families and subfamilies clustered together in separate groups, almost completely following the phylogenetic relationship of the animal hosts. These ribotype data indicate host-specificity of different types of S. intermedius and suggest co-evolution between the animal hosts within the Canoidea and S. intermedius.
Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E
2013-01-01
Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.
Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Douzet, Rolland; Aubert, Serge; Alvarez, Nadir; Lavergne, Sébastien
2014-01-01
Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats. PMID:22486702
Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku
2006-08-01
The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.
Castel, Guillaume; Tordo, Noël; Plyusnin, Alexander
2017-04-02
Because of the great variability of their reservoir hosts, hantaviruses are excellent models to evaluate the dynamics of virus-host co-evolution. Intriguing questions remain about the timescale of the diversification events that influenced this evolution. In this paper we attempted to estimate the first ever timing of hantavirus diversification based on thirty five available complete genomes representing five major groups of hantaviruses and the assumption of co-speciation of hantaviruses with their respective mammal hosts. Phylogenetic analyses were used to estimate the main diversification points during hantavirus evolution in mammals while host diversification was mostly estimated from independent calibrators taken from fossil records. Our results support an earlier developed hypothesis of co-speciation of known hantaviruses with their respective mammal hosts and hence a common ancestor for all hantaviruses carried by placental mammals. Copyright © 2017 Elsevier B.V. All rights reserved.
Rise and fall of political complexity in island South-East Asia and the Pacific.
Currie, Thomas E; Greenhill, Simon J; Gray, Russell D; Hasegawa, Toshikazu; Mace, Ruth
2010-10-14
There is disagreement about whether human political evolution has proceeded through a sequence of incremental increases in complexity, or whether larger, non-sequential increases have occurred. The extent to which societies have decreased in complexity is also unclear. These debates have continued largely in the absence of rigorous, quantitative tests. We evaluated six competing models of political evolution in Austronesian-speaking societies using phylogenetic methods. Here we show that in the best-fitting model political complexity rises and falls in a sequence of small steps. This is closely followed by another model in which increases are sequential but decreases can be either sequential or in bigger drops. The results indicate that large, non-sequential jumps in political complexity have not occurred during the evolutionary history of these societies. This suggests that, despite the numerous contingent pathways of human history, there are regularities in cultural evolution that can be detected using computational phylogenetic methods.
The Use of Weighted Graphs for Large-Scale Genome Analysis
Zhou, Fang; Toivonen, Hannu; King, Ross D.
2014-01-01
There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061
Narwani, Anita; Alexandrou, Markos A; Oakley, Todd H; Carroll, Ian T; Cardinale, Bradley J
2013-11-01
The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co-occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae. © 2013 John Wiley & Sons Ltd/CNRS.
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting
Ferguson-Smith, Malcolm A.
2018-01-01
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds. PMID:29584697
Banerjee, Srijoni; Deshpande, Parag A
2016-04-01
Genetic evolution of carbonic anhydrase enzyme provides an interesting instance of functional similarity in spite of structural diversity of the members of a given family of enzymes. Phylogenetic analysis of α-, β- and γ-carbonic anhydrase was carried out to determine the evolutionary relationships among various members of the family with the enzyme marking its presence in a wide range of cellular and chromosomal locations. The presence of more than one class of enzymes in a particular organism was revealed by phylogenetic time tree. The evolutionary relationships among the members of animal, plant and microbial kingdom were developed. The study revises a long-established notion of kingdom-specificity of the different classes of carbonic anhydrases and provides a new version of the presence of multiple classes of carbonic anhydrases in a single organism and the presence of a given class of carbonic anhydrase across different kingdoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phylogenetic ctDNA analysis depicts early stage lung cancer evolution
Abbosh, Christopher; Birkbak, Nicolai J.; Wilson, Gareth A.; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M.; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D.; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Quinn, Anne Marie; Crosbie, Phil; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-sellers, Melanie; Prakash, Vineet; Lester, Jason; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S.; Van Loo, Peter; Dive, Caroline; Lin, Jimmy; Rabinowitz, Matthew; Aerts, Hugo JWL; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G.; Swanton, Charles
2017-01-01
Summary The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA driven therapeutic studies PMID:28445469
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting.
Kretschmer, Rafael; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Correa
2018-03-27
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus , which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.
Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).
Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas
2013-01-01
Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship.
Homologization of the Flight Musculature of Zygoptera (Insecta: Odonata) and Neoptera (Insecta)
Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas
2013-01-01
Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship. PMID:23457479
Vasconcelos, Thais N C; Proença, Carol E B; Ahmad, Berhaman; Aguilar, Daniel S; Aguilar, Reinaldo; Amorim, Bruno S; Campbell, Keron; Costa, Itayguara R; De-Carvalho, Plauto S; Faria, Jair E Q; Giaretta, Augusto; Kooij, Pepijn W; Lima, Duane F; Mazine, Fiorella F; Peguero, Brigido; Prenner, Gerhard; Santos, Matheus F; Soewarto, Julia; Wingler, Astrid; Lucas, Eve J
2017-04-01
Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. Copyright © 2017 Elsevier Inc. All rights reserved.
The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.
Gifalli-Iughetti, C; Koiffmann, C P
2009-01-01
In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.
Aspergillus asper sp. nov. and Aspergillus collinsii sp. nov., from Aspergillus section Usti.
Jurjevic, Zeljko; Peterson, Stephen W
2016-07-01
In sampling fungi from the built environment, two isolates that could not confidently be placed in described species were encountered. Phenotypic analysis suggested that they belonged in Aspergillus sect. Usti. In order to verify the sectional placement and to assure that they were undescribed rather than phenotypically aberrant isolates, DNA was isolated and sequenced at the beta-tubulin, calmodulin, internal transcribed spacer and RNA polymerase II loci and sequences compared with those from other species in the genus Aspergillus. At each locus, each new isolate was distant from existing species. Phylogenetic trees calculated from these data and GenBank data for species of the section Usti excluded the placement of these isolates in existing species, with statistical support. Because they were excluded from existing taxa, the distinct species Aspergillus asper (type strain NRRL 35910 T ) and Aspergillus collinsii (type strain NRRL 66196 T ) in sect. Usti are proposed to accommodate these strains.
Bapst, D W; Wright, A M; Matzke, N J; Lloyd, G T
2016-07-01
Dated phylogenies of fossil taxa allow palaeobiologists to estimate the timing of major divergences and placement of extinct lineages, and to test macroevolutionary hypotheses. Recently developed Bayesian 'tip-dating' methods simultaneously infer and date the branching relationships among fossil taxa, and infer putative ancestral relationships. Using a previously published dataset for extinct theropod dinosaurs, we contrast the dated relationships inferred by several tip-dating approaches and evaluate potential downstream effects on phylogenetic comparative methods. We also compare tip-dating analyses to maximum-parsimony trees time-scaled via alternative a posteriori approaches including via the probabilistic cal3 method. Among tip-dating analyses, we find opposing but strongly supported relationships, despite similarity in inferred ancestors. Overall, tip-dating methods infer divergence dates often millions (or tens of millions) of years older than the earliest stratigraphic appearance of that clade. Model-comparison analyses of the pattern of body-size evolution found that the support for evolutionary mode can vary across and between tree samples from cal3 and tip-dating approaches. These differences suggest that model and software choice in dating analyses can have a substantial impact on the dated phylogenies obtained and broader evolutionary inferences. © 2016 The Author(s).
Bellefroid, Elke; Rambe, S. Khadijah; Leroux, Olivier; Viane, Ronald L. L.
2010-01-01
Background and Aims ‘Loxoscaphoid’ Asplenium species are morphologically a remarkably distinct group of Aspleniaceae. Except for two preliminary chromosome counts of Asplenium theciferum, the cytology of this group of species has, however, been largely unstudied. Methods Chromosome counts were obtained by acetocarmine squash preparations of one mitotic cell and several meiotic cells. Relative DNA content of gametophytic and sporophytic cells was determined by flow cytometry. The phylogenetic placement of A. loxoscaphoides, A. rutifolium s.l. and A. theciferum s.l. was investigated through an analysis of rbcL sequences. Key Results The dysploid base number is reported to be x = 35 in Asplenium centrafricanum, A. loxoscaphoides, A. sertularioides and A. theciferum. Analysis of rbcL sequences confirms that ‘loxoscaphoids’ nest robustly within Asplenium. Several high ploidy levels exceeding the tetraploid level were found in A. theciferum s.l. and A. rutifolium s.l. All taxa proved to be sexual. Conclusions Four base numbers are known at present for Aspleniaceae: x = 39, 38, 36 and 35. The dysploid base number x = 35 found in the ‘loxoscaphoid’ Asplenium spp. sheds a novel light on the cytoevolution of the whole family. We postulate a recurrent descending dysploid evolution within Aspleniaceae, leading to speciation at the (sub)generic and species/group level. PMID:20498038
Evolutionary History of the Nesophontidae, the Last Unplaced Recent Mammal Family.
Brace, Selina; Thomas, Jessica A; Dalén, Love; Burger, Joachim; MacPhee, Ross D E; Barnes, Ian; Turvey, Samuel T
2016-12-01
The mammalian evolutionary tree has lost several major clades through recent human-caused extinctions. This process of historical biodiversity loss has particularly affected tropical island regions such as the Caribbean, an area of great evolutionary diversification but poor molecular preservation. The most enigmatic of the recently extinct endemic Caribbean mammals are the Nesophontidae, a family of morphologically plesiomorphic lipotyphlan insectivores with no consensus on their evolutionary affinities, and which constitute the only major recent mammal clade to lack any molecular information on their phylogenetic placement. Here, we use a palaeogenomic approach to place Nesophontidae within the phylogeny of recent Lipotyphla. We recovered the near-complete mitochondrial genome and sequences for 17 nuclear genes from a ∼750-year-old Hispaniolan Nesophontes specimen, and identify a divergence from their closest living relatives, the Solenodontidae, more than 40 million years ago. Nesophontidae is thus an older distinct lineage than many extant mammalian orders, highlighting not only the role of island systems as "museums" of diversity that preserve ancient lineages, but also the major human-caused loss of evolutionary history. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Jud, Nathan A; Hickey, Leo J
2013-12-01
Eudicots diverged early in the evolution of flowering plants and now comprise more than 70% of angiosperm species. In spite of the importance of eudicots, our understanding of the early evolution of this clade is limited by a poor fossil record and uncertainty about the order of early phylogenetic branching. The study of Lower Cretaceous fossils can reveal much about the evolution, morphology, and ecology of the eudicots. Fossils described here were collected from Aptian sediments of the Potomac Group exposed at the Dutch Gap locality in Virginia, USA. Specimens were prepared by degaging, then described and compared with leaves of relevant extant and fossil plants. We conducted a phylogenetic analysis of morphological characters using parsimony while constraining the tree search with the topology found through molecular phylogenetic analyses. The new species is closely related to ranunculalean eudicots and has leaf architecture remarkably similar to some living Fumarioideae (Papaveraceae). These are the oldest eudicot megafossils from North America, and they show complex leaf architecture reflecting developmental pathways unique to extant eudicots. The morphology and small size of the fossils suggest that they were herbaceous plants, as is seen in other putative early eudicots. The absence of co-occurring tricolpate pollen at Dutch Gap either (1) reflects low preservation probability for pollen of entomophilous herbs or (2) indicates that some leaf features of extant eudicots appeared before the origin of tricolpate pollen.
Huttenlocker, Adam K
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.
2017-09-01
with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved evolution of PCa...combined with both clinical and experimental genetic data produced by this study may empower patients and doctors to make personalized treatment decisions...sequencing, paired with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved
Hawkins, Jennifer S.; Ramachandran, Dhanushya; Henderson, Ashley; Freeman, Jasmine; Carlise, Michael; Harris, Alex; Willison-Headley, Zachary
2015-01-01
Background and Aims Sorghum is an essential grain crop whose evolutionary placement within the Andropogoneae has been the subject of scrutiny for decades. Early studies using cytogenetic and morphological data point to a poly- or paraphyletic origin of the genus; however, acceptance of poly- or paraphyly has been met with resistance. This study aimed to address the species relationships within Sorghum, in addition to the placement of Sorghum within the tribe, using a phylogenetic approach and employing broad taxon sampling. Methods From 16 diverse Sorghum species, eight low-copy nuclear loci were sequenced that are known to play a role in morphological diversity and have been previously used to study evolutionary relationships in grasses. Further, the data for four of these loci were combined with those from 57 members of the Andropogoneae in order to determine the placement of Sorghum within the tribe. Both maximum likelihood and Bayesian analyses were performed on multilocus concatenated data matrices. Key Results The Sorghum-specific topology provides strong support for two major lineages, in alignment with earlier studies employing chloroplast and internal transcribed spacer (ITS) markers. Clade I is composed of the Eu-, Chaeto- and Heterosorghum, while clade II contains the Stipo- and Parasorghum. When combined with data from the Andropogoneae, Clade II resolves as sister to a clade containing Miscanthus and Saccharum with high posterior probability and bootstrap support, and to the exclusion of Clade I. Conclusions The results provide compelling evidence for a two-lineage polyphyletic ancestry of Sorghum within the larger Andropogoneae, i.e. the derivation of the two major Sorghum clades from a unique common ancestor. Rejection of monophyly in previous molecular studies is probably due to limited taxon sampling outside of the genus. The clade consisting of Para- and Stiposorghum resolves as sister to Miscanthus and Saccharum with strong node support. PMID:26141132
The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot.
Holman, Devin B; Timsit, Edouard; Amat, Samat; Abbott, D Wade; Buret, Andre G; Alexander, Trevor W
2017-03-22
The nasopharyngeal (NP) microbiota plays an important role in bovine health, comprising a rich and diverse microbial community. The nasopharynx is also the niche for potentially pathogenic agents which are associated with bovine respiratory disease (BRD), a serious and costly illness in feedlot cattle. We used 14 beef heifers from a closed and disease-free herd to assess the dynamics of the NP microbiota of cattle that are transported to a feedlot. Cattle were sampled prior to transport to the feedlot (day 0) and at days 2, 7, and 14. The structure of the NP microbiota changed significantly over the course of the study, with the largest shift occurring between day 0 (prior to transport) and day 2 (P < 0.001). Phylogenetic diversity and richness increased following feedlot placement (day 2; P < 0.05). The genera Pasteurella, Bacillus, and Proteus were enriched at day 0, Streptococcus and Acinetobacter at day 2, Bifidobacterium at day 7, and Mycoplasma at day 14. The functional potential of the NP microbiota was assessed using PICRUSt, revealing that replication and repair, as well as translation pathways, were more relatively abundant in day 14 samples. These differences were driven mostly by Mycoplasma. Although eight cattle were culture-positive for the BRD-associated bacterium Pasteurella multocida at one or more sampling times, none were culture-positive for Mannheimia haemolytica or Histophilus somni. This study investigated the effect that feedlot placement has on the NP microbiota of beef cattle over a 14-d period. Within two days of transport to the feedlot, the NP microbiota changed significantly, increasing in both phylogenetic diversity and richness. These results demonstrate that there is an abrupt shift in the NP microbiota of cattle after transportation to a feedlot. This may have importance for understanding why cattle are most susceptible to BRD after feedlot placement.
Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes.
Sanders, Jon G; Powell, Scott; Kronauer, Daniel J C; Vasconcelos, Heraldo L; Frederickson, Megan E; Pierce, Naomi E
2014-03-01
Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities. © 2014 John Wiley & Sons Ltd.
Hertwig, Stefan T; Schweizer, Manuel; Das, Indraneil; Haas, Alexander
2013-09-01
The tree-frog family Rhacophoridae is a major group contributing to the high pecies richness and reproductive diversity among vertebrates of Sundaland. Nonetheless, rhacophorid evolution, specially on Borneo, has not been studied within a phylogenetic context. In this study, we examine the phylogenetic relationships of 38 (out of 41) Bornean species of Rhacophoridae, in combination with data from previous phylogenetic studies. In the final super matrix of 91 species, we analyse sequence data from two mitochondrial and three nuclear genes. The resulting trees show the genus Rhacophorus as a paraphyletic assemblage. As a consequence, we transfer Rhacophorus appendiculatus and R. kajau to two other genera and propose the new phylogeny-based combinations--Kurixalus appendiculatus and Feihyla kajau, respectively. Furthermore, we use our phylogenetic hypotheses to reconstruct the evolution of reproductive modes in rhacophorid tree frogs. Direct development to the exclusion of a free larval stage evolved twice independently, once in an ancestor of the Pseudophilautus+Raorchestes clade in India and Sri Lanka, and once within Philautus in Southeast Asia. The deposition of egg clutches covered by a layer of jelly in Feihyla is also present in F. kajau and thus confirms our generic reassignment. The remarkably high diversity of rhacophorid tree frogs on Borneo is the outcome of a complex pattern of repeated vicariance and dispersal events caused by past changes in the climatic and geological history of the Sunda shelf. We identified geographic clades of closely related endemic species within Rhacophorus and Philautus, which result from local island radiations on Borneo. Copyright © 2013 Elsevier Inc. All rights reserved.
Phylomemetics—Evolutionary Analysis beyond the Gene
Howe, Christopher J.; Windram, Heather F.
2011-01-01
Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311
Inferring explicit weighted consensus networks to represent alternative evolutionary histories
2013-01-01
Background The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes. Methods To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny. Results We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species. Conclusions Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks. PMID:24359207
Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.
Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong
2015-08-01
Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.
An adaptive radiation of frogs in a southeast Asian island archipelago.
Blackburn, David C; Siler, Cameron D; Diesmos, Arvin C; McGuire, Jimmy A; Cannatella, David C; Brown, Rafe M
2013-09-01
Living amphibians exhibit a diversity of ecologies, life histories, and species-rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species-level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well-supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae
Sun, Mei; Zhang, Juan-Juan; Cao, Kun-Fang; Hu, Hong
2012-01-01
Background Both leaf attributes and stomatal traits are linked to water economy in land plants. However, it is unclear whether these two components are associated evolutionarily. Methodology/Principal Findings In characterizing the possible effect of phylogeny on leaf attributes and stomatal traits, we hypothesized that a correlated evolution exists between the two. Using a phylogenetic comparative method, we analyzed 14 leaf attributes and stomatal traits for 17 species in Paphiopedilum. Stomatal length (SL), stomatal area (SA), upper cuticular thickness (UCT), and total cuticular thickness (TCT) showed strong phylogenetic conservatism whereas stomatal density (SD) and stomatal index (SI) were significantly convergent. Leaf vein density was correlated with SL and SD whether or not phylogeny was considered. The lower epidermal thickness (LET) was correlated positively with SL, SA, and stomatal width but negatively with SD when phylogeny was not considered. When this phylogenetic influence was factored in, only the significant correlation between SL and LET remained. Conclusion/Significance Our results support the hypothesis for correlated evolution between stomatal traits and vein density in Paphiopedilum. However, they do not provide evidence for an evolutionary association between stomata and leaf thickness. These findings lend insight into the evolution of traits related to water economy for orchids under natural selection. PMID:22768224
Kaufman, Jim
2010-08-01
This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems.
Kaufman, Jim
2010-01-01
This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems. PMID:20465576
2010-01-01
Background Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally) associated with control region duplication and/or major changes in ecology and anatomy. Results The near-complete mitochondrial (mt) genomes of three henophidian snakes were sequenced: Anilius scytale, Rhinophis philippinus, and Charina trivirgata. All three genomes share a duplicated control region and translocated tRNALEU, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before Anilius diverged from other alethinophidians. Conclusions Mitochondrial gene sequence data alone may not be able to robustly resolve basal divergences among alethinophidian snakes. Taxon sampling plays an important role in identifying mitogenomic evolutionary events within snakes, and in testing hypotheses explaining their origin. Dramatic rate shifts in mitogenomic evolution occur within Scolecophidia as well as Alethinophidia, thus falsifying the hypothesis that these shifts in snakes are associated exclusively with evolution of a non-burrowing lifestyle, macrostomatan feeding ecology and/or duplication of the control region, both restricted to alethinophidians among living snakes. PMID:20055998
Janssen, Toon; Vizoso, Dita B; Schulte, Gregor; Littlewood, D Timothy J; Waeschenbach, Andrea; Schärer, Lukas
2015-11-01
The Macrostomorpha-an early branching and species-rich clade of free-living flatworms-is attracting interest because it contains Macrostomum lignano, a versatile model organism increasingly used in evolutionary, developmental, and molecular biology. We elucidate the macrostomorphan molecular phylogeny inferred from both nuclear (18S and 28S rDNA) and mitochondrial (16S rDNA and COI) marker genes from 40 representatives. Although our phylogeny does not recover the Macrostomorpha as a statistically supported monophyletic grouping, it (i) confirms many taxa previously proposed based on morphological evidence, (ii) permits the first placement of many families and genera, and (iii) reveals a number of unexpected placements. Specifically, Myozona and Bradynectes are outside the three classic families (Macrostomidae, Microstomidae and Dolichomacrostomidae) and the asexually fissioning Myomacrostomum belongs to a new subfamily, the Myozonariinae nov. subfam. (Dolichomacrostomidae), rather than diverging early. While this represents the first evidence for asexuality among the Dolichomacrostomidae, we show that fissioning also occurs in another Myozonariinae, Myozonaria fissipara nov. sp. Together with the placement of the (also fissioning) Microstomidae, namely as the sister taxon of Dolichomacrostomidae, this suggests that fissioning is not basal within the Macrostomorpha, but rather restricted to the new taxon Dolichomicrostomida (Dolichomacrostomidae+Microstomidae). Furthermore, our phylogeny allows new insights into the evolution of the reproductive system, as ancestral state reconstructions reveal convergent evolution of gonads, and male and female genitalia. Finally, the convergent evolution of sperm storage organs in the female genitalia appears to be linked to the widespread occurrence of hypodermic insemination among the Macrostomorpha. Copyright © 2015 Elsevier Inc. All rights reserved.
Derkarabetian, Shahan; Steinmann, David B.; Hedin, Marshal
2010-01-01
Background Many cave-dwelling animal species display similar morphologies (troglomorphism) that have evolved convergent within and among lineages under the similar selective pressures imposed by cave habitats. Here we study such ecomorphological evolution in cave-dwelling Sclerobuninae harvestmen (Opiliones) from the western United States, providing general insights into morphological homoplasy, rates of morphological change, and the temporal context of cave evolution. Methodology/Principal Findings We gathered DNA sequence data from three independent gene regions, and combined these data with Bayesian hypothesis testing, morphometrics analysis, study of penis morphology, and relaxed molecular clock analyses. Using multivariate morphometric analysis, we find that phylogenetically unrelated taxa have convergently evolved troglomorphism; alternative phylogenetic hypotheses involving less morphological convergence are not supported by Bayesian hypothesis testing. In one instance, this morphology is found in specimens from a high-elevation stony debris habitat, suggesting that troglomorphism can evolve in non-cave habitats. We discovered a strong positive relationship between troglomorphy index and relative divergence time, making it possible to predict taxon age from morphology. Most of our time estimates for the origin of highly-troglomorphic cave forms predate the Pleistocene. Conclusions/Significance While several regions in the eastern and central United States are well-known hotspots for cave evolution, few modern phylogenetic studies have addressed the evolution of cave-obligate species in the western United States. Our integrative studies reveal the recurrent evolution of troglomorphism in a perhaps unexpected geographic region, at surprisingly deep time depths, and in sometimes surprising habitats. Because some newly discovered troglomorphic populations represent undescribed species, our findings stress the need for further biological exploration, integrative systematic research, and conservation efforts in western US cave habitats. PMID:20479884
Temporal and phylogenetic evolution of the sauropod dinosaur body plan
NASA Astrophysics Data System (ADS)
Bates, Karl T.; Mannion, Philip D.; Falkingham, Peter L.; Brusatte, Stephen L.; Hutchinson, John R.; Otero, Alejandro; Sellers, William I.; Sullivan, Corwin; Stevens, Kent A.; Allen, Vivian
2016-03-01
The colossal size and body plan of sauropod dinosaurs are unparalleled in terrestrial vertebrates. However, to date, there have been only limited attempts to examine temporal and phylogenetic patterns in the sauropod bauplan. Here, we combine three-dimensional computational models with phylogenetic reconstructions to quantify the evolution of whole-body shape and body segment properties across the sauropod radiation. Limitations associated with the absence of soft tissue preservation in fossils result in large error bars about mean absolute body shape predictions. However, applying any consistent skeleton : body volume ratio to all taxa does yield changes in body shape that appear concurrent with major macroevolutionary events in sauropod history. A caudad shift in centre-of-mass (CoM) in Middle Triassic Saurischia, associated with the evolution of bipedalism in various dinosaur lineages, was reversed in Late Triassic sauropodomorphs. A craniad CoM shift coincided with the evolution of quadrupedalism in the Late Triassic, followed by a more striking craniad shift in Late Jurassic-Cretaceous titanosauriforms, which included the largest sauropods. These craniad CoM shifts are strongly correlated with neck enlargement, a key innovation in sauropod evolution and pivotal to their gigantism. By creating a much larger feeding envelope, neck elongation is thought to have increased feeding efficiency and opened up trophic niches that were inaccessible to other herbivores. However, we find that relative neck size and CoM position are not strongly correlated with inferred feeding habits. Instead the craniad CoM positions of titanosauriforms appear closely linked with locomotion and environmental distributions, potentially contributing to the continued success of this group until the end-Cretaceous, with all other sauropods having gone extinct by the early Late Cretaceous.
Chang, Dan; Duda, Thomas F
2014-06-05
Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
Temporal and phylogenetic evolution of the sauropod dinosaur body plan
Bates, Karl T.; Mannion, Philip D.; Falkingham, Peter L.; Brusatte, Stephen L.; Hutchinson, John R.; Otero, Alejandro; Sellers, William I.; Sullivan, Corwin; Stevens, Kent A.; Allen, Vivian
2016-01-01
The colossal size and body plan of sauropod dinosaurs are unparalleled in terrestrial vertebrates. However, to date, there have been only limited attempts to examine temporal and phylogenetic patterns in the sauropod bauplan. Here, we combine three-dimensional computational models with phylogenetic reconstructions to quantify the evolution of whole-body shape and body segment properties across the sauropod radiation. Limitations associated with the absence of soft tissue preservation in fossils result in large error bars about mean absolute body shape predictions. However, applying any consistent skeleton : body volume ratio to all taxa does yield changes in body shape that appear concurrent with major macroevolutionary events in sauropod history. A caudad shift in centre-of-mass (CoM) in Middle Triassic Saurischia, associated with the evolution of bipedalism in various dinosaur lineages, was reversed in Late Triassic sauropodomorphs. A craniad CoM shift coincided with the evolution of quadrupedalism in the Late Triassic, followed by a more striking craniad shift in Late Jurassic–Cretaceous titanosauriforms, which included the largest sauropods. These craniad CoM shifts are strongly correlated with neck enlargement, a key innovation in sauropod evolution and pivotal to their gigantism. By creating a much larger feeding envelope, neck elongation is thought to have increased feeding efficiency and opened up trophic niches that were inaccessible to other herbivores. However, we find that relative neck size and CoM position are not strongly correlated with inferred feeding habits. Instead the craniad CoM positions of titanosauriforms appear closely linked with locomotion and environmental distributions, potentially contributing to the continued success of this group until the end-Cretaceous, with all other sauropods having gone extinct by the early Late Cretaceous. PMID:27069652
Evolution of gastropod mitochondrial genome arrangements
2008-01-01
Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata (polyphyletic) nor Opisthobranchia (because of the inclusion S. pectinata) were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia. PMID:18302768
Wanke, S; Vanderschaeve, L; Mathieu, G; Neinhuis, C; Goetghebeur, P; Samain, M S
2007-06-01
The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states. The genus Peperomia is generally considered to have the most reduced flowers in Piperales but this study shows that this is only partially true. Verhuellia, with almost equally reduced flowers, is not part of or sister to Peperomia as expected, but is revealed as sister to all other Piperaceae in all analyses, putting character evolution in this family and in the perianthless Piperales in a different light. A robust phylogenetic analysis including all relevant taxa is presented as a framework for inferring patterns and processes of evolution in Piperales and Piperaceae. Verhuellia is a further example of how a molecular phylogenetic study can elucidate the relationships of an unplaced taxon. When more material becomes available, it will be possible to investigate character evolution in Piperales more thoroughly and to answer some evolutionary questions concerning Piperaceae.
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-01-01
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702
Genomic Repeat Abundances Contain Phylogenetic Signal
Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.
2015-01-01
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464
Tree-Based Unrooted Phylogenetic Networks.
Francis, A; Huber, K T; Moulton, V
2018-02-01
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.
Phylogenomic Analyses Support Traditional Relationships within Cnidaria
Zapata, Felipe; Goetz, Freya E.; Smith, Stephen A.; Howison, Mark; Siebert, Stefan; Church, Samuel H.; Sanders, Steven M.; Ames, Cheryl Lewis; McFadden, Catherine S.; France, Scott C.; Daly, Marymegan; Collins, Allen G.; Haddock, Steven H. D.; Dunn, Casey W.; Cartwright, Paulyn
2015-01-01
Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations. PMID:26465609
Phylogenomic Analyses Support Traditional Relationships within Cnidaria.
Zapata, Felipe; Goetz, Freya E; Smith, Stephen A; Howison, Mark; Siebert, Stefan; Church, Samuel H; Sanders, Steven M; Ames, Cheryl Lewis; McFadden, Catherine S; France, Scott C; Daly, Marymegan; Collins, Allen G; Haddock, Steven H D; Dunn, Casey W; Cartwright, Paulyn
2015-01-01
Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.
Kriebel, Ricardo; Khabbazian, Mohammad; Sytsma, Kenneth J
2017-01-01
The study of pollen morphology has historically allowed evolutionary biologists to assess phylogenetic relationships among Angiosperms, as well as to better understand the fossil record. During this process, pollen has mainly been studied by discretizing some of its main characteristics such as size, shape, and exine ornamentation. One large plant clade in which pollen has been used this way for phylogenetic inference and character mapping is the order Myrtales, composed by the small families Alzateaceae, Crypteroniaceae, and Penaeaceae (collectively the "CAP clade"), as well as the large families Combretaceae, Lythraceae, Melastomataceae, Myrtaceae, Onagraceae and Vochysiaceae. In this study, we present a novel way to study pollen evolution by using quantitative size and shape variables. We use morphometric and morphospace methods to evaluate pollen change in the order Myrtales using a time-calibrated, supermatrix phylogeny. We then test for conservatism, divergence, and morphological convergence of pollen and for correlation between the latitudinal gradient and pollen size and shape. To obtain an estimate of shape, Myrtales pollen images were extracted from the literature, and their outlines analyzed using elliptic Fourier methods. Shape and size variables were then analyzed in a phylogenetic framework under an Ornstein-Uhlenbeck process to test for shifts in size and shape during the evolutionary history of Myrtales. Few shifts in Myrtales pollen morphology were found which indicates morphological conservatism. Heterocolpate, small pollen is ancestral with largest pollen in Onagraceae. Convergent shifts in shape but not size occurred in Myrtaceae and Onagraceae and are correlated to shifts in latitude and biogeography. A quantitative approach was applied for the first time to examine pollen evolution across a large time scale. Using phylogenetic based morphometrics and an OU process, hypotheses of pollen size and shape were tested across Myrtales. Convergent pollen shifts and position in the latitudinal gradient support the selective role of harmomegathy, the mechanism by which pollen grains accommodate their volume in response to water loss.
Khabbazian, Mohammad; Sytsma, Kenneth J.
2017-01-01
The study of pollen morphology has historically allowed evolutionary biologists to assess phylogenetic relationships among Angiosperms, as well as to better understand the fossil record. During this process, pollen has mainly been studied by discretizing some of its main characteristics such as size, shape, and exine ornamentation. One large plant clade in which pollen has been used this way for phylogenetic inference and character mapping is the order Myrtales, composed by the small families Alzateaceae, Crypteroniaceae, and Penaeaceae (collectively the “CAP clade”), as well as the large families Combretaceae, Lythraceae, Melastomataceae, Myrtaceae, Onagraceae and Vochysiaceae. In this study, we present a novel way to study pollen evolution by using quantitative size and shape variables. We use morphometric and morphospace methods to evaluate pollen change in the order Myrtales using a time-calibrated, supermatrix phylogeny. We then test for conservatism, divergence, and morphological convergence of pollen and for correlation between the latitudinal gradient and pollen size and shape. To obtain an estimate of shape, Myrtales pollen images were extracted from the literature, and their outlines analyzed using elliptic Fourier methods. Shape and size variables were then analyzed in a phylogenetic framework under an Ornstein-Uhlenbeck process to test for shifts in size and shape during the evolutionary history of Myrtales. Few shifts in Myrtales pollen morphology were found which indicates morphological conservatism. Heterocolpate, small pollen is ancestral with largest pollen in Onagraceae. Convergent shifts in shape but not size occurred in Myrtaceae and Onagraceae and are correlated to shifts in latitude and biogeography. A quantitative approach was applied for the first time to examine pollen evolution across a large time scale. Using phylogenetic based morphometrics and an OU process, hypotheses of pollen size and shape were tested across Myrtales. Convergent pollen shifts and position in the latitudinal gradient support the selective role of harmomegathy, the mechanism by which pollen grains accommodate their volume in response to water loss. PMID:29211730
Sato, Mitsuharu; Miyazaki, Kentaro
2017-01-01
Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992
Phylogenetic context determines the role of competition in adaptive radiation
Tan, Jiaqi; Slattery, Matthew R.; Yang, Xian; Jiang, Lin
2016-01-01
Understanding ecological mechanisms regulating the evolution of biodiversity is of much interest to ecologists and evolutionary biologists. Adaptive radiation constitutes an important evolutionary process that generates biodiversity. Competition has long been thought to influence adaptive radiation, but the directionality of its effect and associated mechanisms remain ambiguous. Here, we report a rigorous experimental test of the role of competition on adaptive radiation using the rapidly evolving bacterium Pseudomonas fluorescens SBW25 interacting with multiple bacterial species that differed in their phylogenetic distance to the diversifying bacterium. We showed that the inhibitive effect of competitors on the adaptive radiation of P. fluorescens decreased as their phylogenetic distance increased. To explain this phylogenetic dependency of adaptive radiation, we linked the phylogenetic distance between P. fluorescens and its competitors to their niche and competitive fitness differences. Competitive fitness differences, which showed weak phylogenetic signal, reduced P. fluorescens abundance and thus diversification, whereas phylogenetically conserved niche differences promoted diversification. These results demonstrate the context dependency of competitive effects on adaptive radiation, and highlight the importance of past evolutionary history for ongoing evolutionary processes. PMID:27335414
Hofman, Sebastian; Pabijan, Maciej; Osikowski, Artur; Litvinchuk, Spartak N; Szymura, Jacek M
2016-09-01
We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01-0.13). Most divergent was the P. shqipericus mitogenome, clustering with the "P. lessonae" group, in contrast to the other three new Pelophylax mitogenomes related to the "P. bedriagae/ridibundus" lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.
Robène-Soustrade, Isabelle; Jouen, Emmanuel; Pastou, Didier; Payet-Hoarau, Magali; Goble, Tarryn; Linderme, Daphné; Lefeuvre, Pierre; Calmès, Cédric; Reynaud, Bernard; Nibouche, Samuel; Costet, Laurent
2015-01-01
On Reunion Island successful biological control of the sugarcane white grub Hoplochelus marginalis Fairmaire (Coleoptera: Melolonthidae) has been conducted for decades with strains from the entomopathogenic fungal genus Beauveria (Ascomycota: Hypocreales). A study based on morphological characters combined with a multisequence phylogenetic analysis of genes that encode the translation elongation factor 1-alpha (TEF1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2) and the Bloc nuc intergenic region was carried out on Beauveria strains isolated on Reunion and Madagascar from H. marginalis. This study revealed that these strains, previously identified as Beauveria brongniartii, did not match that species and are closely related to but still distinct from B. malawiensis strains. Therefore we describe the Reunion Island fungus as the new species B. hoplocheli. © 2015 by The Mycological Society of America.
New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil
NASA Astrophysics Data System (ADS)
Cabreira, Sergio F.; Schultz, Cesar L.; Bittencourt, Jonathas S.; Soares, Marina B.; Fortier, Daniel C.; Silva, Lúcio R.; Langer, Max C.
2011-12-01
Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.
Do molecules matter more than morphology? Promises and pitfalls in parasites.
Perkins, S L; Martinsen, E S; Falk, B G
2011-11-01
Systematics involves resolving both the taxonomy and phylogenetic placement of organisms. We review the advantages and disadvantages of the two kinds of information commonly used for such inferences--morphological and molecular data--as applied to the systematics of metazoan parasites generally, with special attention to the malaria parasites. The problems that potentially confound the use of morphology in parasites include challenges to consistent specimen preservation, plasticity of features depending on hosts or other environmental factors, and morphological convergence. Molecular characters such as DNA sequences present an alternative data source and are particularly useful when not all the parasite's life stages are present or when parasitaemia is low. Nonetheless, molecular data can bring challenges that include troublesome DNA isolation, paralogous gene copies, difficulty in developing molecular markers, and preferential amplification in mixed species infections. Given the differential benefits and shortcomings of both molecular and morphological characters, both should be implemented in parasite taxonomy and phylogenetics.
A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0
Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.
2014-01-01
We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072
Spatial patterns of phylogenetic diversity.
Morlon, Hélène; Schwilk, Dylan W; Bryant, Jessica A; Marquet, Pablo A; Rebelo, Anthony G; Tauss, Catherine; Bohannan, Brendan J M; Green, Jessica L
2011-02-01
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas. © 2010 Blackwell Publishing Ltd/CNRS.
Karl, Robert; Koch, Marcus A.
2013-01-01
Background and Aims Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene. Methods Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time. Key Results A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world. Conclusions Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups. PMID:23904444
Student Interpretations of Phylogenetic Trees in an Introductory Biology Course
Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489
Portik, Daniel M; Blackburn, David C
2016-09-01
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co-evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Evolution of saproxylic and mycophagous coleoptera in New Zeland
Rochard A.B. Leschen
2006-01-01
Beetles are an old holometabolous group dating back to the early Permian and associated with sediments containing conifers, ginkgos, and cycads. To determine the antiquity of dead wood beetles the evolution of gondwanan saproxylic and mycophagous beetles was examined in the context of available phylogenies that include New Zealand taxa. Phylogenetic position and branch...
The evolution of development of vascular cambia and secondary growth
Andrew Groover; Rachel Spicer
2010-01-01
Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...
Ord, Terry J; Cooke, Georgina M
2016-08-01
We know little about on how frequently transitions into new habitats occur, especially the colonization of novel environments that are the most likely to instigate adaptive evolution. One of the most extreme ecological transitions has been the shift in habitat associated with the move from water to land by amphibious fish. We provide the first phylogenetic investigation of these transitions for living fish. Thirty-three families have species reported to be amphibious and these are likely independent evolutionary origins of fish emerging onto land. Phylogenetic reconstructions of closely related taxa within one of these families, the Blenniidae, inferred as many as seven convergences on a highly amphibious lifestyle. Taken together, there appear to be few constraints on fish emerging onto land given amphibious behavior has evolved repeatedly many times across ecologically diverse families. The colonization of novel habitats by other taxa resulting in less dramatic changes in environment should be equally, if not, more frequent in nature, providing an important prerequisite for subsequent adaptive differentiation. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Koelle, Katia; Rasmussen, David A
2015-01-01
Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556
NASA Astrophysics Data System (ADS)
McCarville, Douglas A.
2009-12-01
As the commercial aircraft industry attempts to improve airplane fuel efficiency by shifting from aluminum to composites (reinforced plastics), there is a concern that composite processing equipment is not mature enough to meet increasing demand and that delivery delays and loss of high tech jobs could result. The research questions focused on the evolution of composite placement machines, improvement of machine functionality by equipment vendors, and the probability of new inventions helping to avoid production shortfalls. An extensive review of the literature found no studies that addressed these issues. Since the early twentieth century, exploratory case study of pivotal technological advances has been an accepted means of performing historic analysis and furthering understanding of rapidly changing marketplaces and industries. This qualitative case study investigated evolution of automated placement equipment by (a) codifying and mapping patent data (e.g., claims and functionality descriptions), (b) triangulating archival data (i.e., trade literature, vender Web sites, and scholarly texts), and (c) interviewing expert witnesses. An industry-level sensitivity model developed by the author showed that expanding the vendor base and increasing the number of performance enhancing inventions will most likely allow the industry to make the transition from aluminum to composites without schedule delays. This study will promote social change by (a) advancing individual and community knowledge (e.g., teaching modules for students, practitioners, and professional society members) and (b) providing an empirical model that will help in the understanding and projection of next generation composite processing equipment demand and productivity output.
Computational biomechanics changes our view on insect head evolution.
Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J
2017-02-08
Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).
Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda
2015-01-01
The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species - Echinochasmus sp., Echinochasmuscoaxatus Dietz, 1909, Stephanoprorapseudoechinata (Olsson, 1876) and Echinoparyphiummordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmusbeleocephalus (von Linstow, 1893), 2n=14, and Episthmiumbursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprorapseudoechinata clustered with one well-supported clade together with Echinochasmusjaponicus Tanabe, 1926 (data only for 28S) and Echinochasmuscoaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails.
Phylogenetic Properties of RNA Viruses
Pompei, Simone; Loreto, Vittorio; Tria, Francesca
2012-01-01
A new word, phylodynamics, was coined to emphasize the interconnection between phylogenetic properties, as observed for instance in a phylogenetic tree, and the epidemic dynamics of viruses, where selection, mediated by the host immune response, and transmission play a crucial role. The challenges faced when investigating the evolution of RNA viruses call for a virtuous loop of data collection, data analysis and modeling. This already resulted both in the collection of massive sequences databases and in the formulation of hypotheses on the main mechanisms driving qualitative differences observed in the (reconstructed) evolutionary patterns of different RNA viruses. Qualitatively, it has been observed that selection driven by the host immune response induces an uneven survival ability among co-existing strains. As a consequence, the imbalance level of the phylogenetic tree is manifestly more pronounced if compared to the case when the interaction with the host immune system does not play a central role in the evolutive dynamics. While many imbalance metrics have been introduced, reliable methods to discriminate in a quantitative way different level of imbalance are still lacking. In our work, we reconstruct and analyze the phylogenetic trees of six RNA viruses, with a special emphasis on the human Influenza A virus, due to its relevance for vaccine preparation as well as for the theoretical challenges it poses due to its peculiar evolutionary dynamics. We focus in particular on topological properties. We point out the limitation featured by standard imbalance metrics, and we introduce a new methodology with which we assign the correct imbalance level of the phylogenetic trees, in agreement with the phylodynamics of the viruses. Our thorough quantitative analysis allows for a deeper understanding of the evolutionary dynamics of the considered RNA viruses, which is crucial in order to provide a valuable framework for a quantitative assessment of theoretical predictions. PMID:23028645
On the quirks of maximum parsimony and likelihood on phylogenetic networks.
Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles
2017-03-21
Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Bian Na; Wei, Luan Luan; Shen, He Ding; Wu, Hong Xi; Wang, Dong Feng
2016-09-01
We generated complete mitochondrial genome sequences data for 4 genera (Onchidium, Platevindex, Paraoncidium and Peronia) in Onchidiidae to construct a phylogenetic tree in conjunction with other 9 existing data among gastropods. The topology showed that the taxa clustered into two main groups of four species, one of which included Onchidium struma and the Platevindex mortoni, the other Paraoncidium reevesii and Peronia verruculata. The process in Pulmonata from sea to land in accordance with the evolution of respiratory organs from branchial gills to pulmonary cavity has been shown. This will also constitute a framework for phylogeny evolution analysis, systematic classfication of Onchidiidae and other euthyneurans (pulmonates and opisthobranchs).
A basal dromaeosaurid and size evolution preceding avian flight.
Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A
2007-09-07
Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.
Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution
2017-01-01
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929
Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.
Mesoudi, Alex
2017-07-24
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.
Innovative Design for Composite Spacecraft Structure Thanks to Automatic Fiber Placement Technology
NASA Astrophysics Data System (ADS)
Brindeau, Aymeric; Khalfi, Thomas
2014-06-01
The innovative design for composite spacecraft structure thanks to automatic fiber placement technology takes place in the frame of the development of a new launcher. A heavy loaded spacecraft carrying structure is developed in order to allow performance and big payload volumes.This kind of structure already exists on a current launcher, but performances are not compatible with the new requirements. Indeed, in spite of a sandwich design made of carbon and aluminium honeycomb, mass and stiffness requirements are not fulfilled.Consequently, for the new structure, an innovative design has been set-up. The materials are still sandwich made of carbon and aluminium honeycomb in order to obtain the best ratio mass / stiffness, but major evolutions have been implemented of the geometry of the structure in order to increase the performance of the product. These evolutions are allowed thanks to the use of the fiber placement technology, which allows manufacturing geometries that are not reachable with standard lay-up by hands. The main progress deals with the manufacturing of revolution sub-structures, in one shot, with double curvature areas. Moreover, beyond the technical performance of the new product and the gains in terms of manufacturing time and quality, the integration of sub-structures is extremely simplified compared to the existing process. As a result, the technology of fiber placement is the opportunity to imagine new designs which allows increasing the performances, to reduce manufacturing cycles, and to simplify integration operations.
Guillerme, Thomas; Cooper, Natalie
2016-05-01
Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies. © 2016 The Authors.
Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa
Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.
2011-01-01
Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.
Matsen IV, Frederick A.; Evans, Steven N.
2013-01-01
Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415
Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.
Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid
2017-11-01
In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-12-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-01-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862
Trunz, V; Packer, L; Vieu, J; Arrigo, N; Praz, C J
2016-10-01
Classification and evolutionary studies of particularly speciose clades pose important challenges, as phylogenetic analyses typically sample a small proportion of the existing diversity. We examine here one of the largest bee genera, the genus Megachile - the dauber and leafcutting bees. Besides presenting a phylogeny based on five nuclear genes (5480 aligned nucleotide positions), we attempt to use the phylogenetic signal of mitochondrial DNA barcodes, which are rapidly accumulating and already include a substantial proportion of the known species diversity in the genus. We used barcodes in two ways: first, to identify particularly divergent lineages and thus to guide taxon sampling in our nuclear phylogeny; second, to augment taxon sampling by combining nuclear markers (as backbone for ancient divergences) with DNA barcodes. Our results indicate that DNA barcodes bear phylogenetic signal limited to very recent divergences (3-4 my before present). Sampling within clades of very closely related species may be augmented using this technique, but our results also suggest statistically supported, but incongruent placements of some taxa. However, the addition of one single nuclear gene (LW-rhodopsin) to the DNA barcode data was enough to recover meaningful placement with high clade support values for nodes up to 15 million years old. We discuss different proposals for the generic classification of the tribe Megachilini. Finding a classification that is both in agreement with our phylogenetic hypotheses and practical in terms of diagnosability is particularly challenging as our analyses recover several well-supported clades that include morphologically heterogeneous lineages. We favour a classification that recognizes seven morphologically well-delimited genera in Megachilini: Coelioxys, Gronoceras, Heriadopsis, Matangapis, Megachile, Noteriades and Radoszkowskiana. Our results also lead to the following classification changes: the groups known as Dinavis, Neglectella, Eurymella and Phaenosarus are reestablished as valid subgenera of the genus Megachile, while the subgenus Alocanthedon is placed in synonymy with M. (Callomegachile), the subgenera Parachalicodoma and Largella with M. (Pseudomegachile), Anodonteutricharaea with M. (Paracella), Platysta with M. (Eurymella), and Grosapis and Eumegachile with M. (Megachile) (new synonymies). In addition, we use maximum likelihood reconstructions of ancestral geographic ranges to infer the origin of the tribe and reconstruct the main dispersal routes explaining the current, cosmopolitan distribution of this genus. Copyright © 2016 Elsevier Inc. All rights reserved.
Unrealistic phylogenetic trees may improve phylogenetic footprinting.
Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo
2017-06-01
The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications.
Kan, Xian-Zhao; Wang, Shan-Shan; Ding, Xin; Wang, Xiao-Quan
2007-08-01
Nuclear ribosomal DNA (nrDNA) has been considered as an important tool for inferring phylogenetic relationships at many taxonomic levels. In comparison with its fast concerted evolution in angiosperms, nrDNA is symbolized by slow concerted evolution and substantial ITS region length variation in gymnosperms, particularly in Pinaceae. Here we studied structure characteristics, including subrepeat composition, size, GC content and secondary structure, of nrDNA ITS regions of all Pinaceae genera. The results showed that the ITS regions of all taxa studied contained subrepeat units, ranging from 2 to 9 in number, and these units could be divided into two types, longer subrepeat (LSR) without the motif (5'-GGCCACCCTAGTC) and shorter subrepeat (SSR) with the motif. Phylogenetic analyses indicate that the homology of some SSRs still can be recognized, providing important informations for the evolutionary history of nrDNA ITS and phylogeny of Pinaceae. In particular, the adjacent tandem SSRs are not more closely related to one another than they are to remote SSRs in some genera, which may imply that multiple structure variations such as recombination have occurred in the ITS1 region of these groups. This study also found that GC content in the ITS1 region is relevant to its sequence length and subrepeat number, and could provide some phylogenetic information, especially supporting the close relationships among Picea, Pinus, and Cathaya. Moreover, several characteristics of the secondary structure of Pinaceae ITS1 were found as follows: (1) the structure is dominated by several extended hairpins; (2) the configuration complexity is positively correlated with subrepeat number; (3) paired subrepeats often partially overlap at the conserved motif (5'-GGCCACCCTAGTC), and form a long stem, while other subrepeats fold onto itself, leaving part of the conserved motif exposed in hairpin loops.
A Practical Guide to Estimating the Heritability of Pathogen Traits.
Mitov, Venelin; Stadler, Tanja
2018-01-09
Pathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This is quantified by the trait's broad-sense heritability, H2. A recent discrepancy between estimates of the heritability of HIV-virulence has opened a debate on the estimators' accuracy. Here, we show that the discrepancy originates from model limitations and important lifecycle differences between sexually reproducing organisms and transmittable pathogens. In particular, current quantitative genetics methods, such as donor-recipient regression (DR) of surveyed serodiscordant couples and the phylogenetic mixed model (PMM), are prone to underestimate H2, because they neglect or do not fit to the loss of resemblance between transmission partners caused by within-host evolution. In a phylogenetic analysis of 8,483 HIV patients from the UK, we show that the phenotypic correlation between transmission partners decays with the amount of within-host evolution of the virus. We reproduce this pattern in toy-model simulations and show that a phylogenetic Ornstein-Uhlenbeck model (POUMM) outperforms the PMM in capturing this correlation pattern and in quantifying H2. In particular, we show that POUMM outperforms PMM even in simulations without selection - as it captures the mentioned correlation pattern - which has not been appreciated until now. By cross-validating the POUMM estimates with ANOVA on closest phylogenetic pairs (ANOVA-CPP), we obtain H2≈0.2, meaning about 20% of the variation in HIV-virulence is explained by the virus genome both for European and African data. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The origin and evolution of tRNA inferred from phylogenetic analysis of structure.
Sun, Feng-Jie; Caetano-Anollés, Gustavo
2008-01-01
The evolutionary history of the two structural and functional domains of tRNA is controversial but harbors the secrets of early translation and the genetic code. To explore the origin and evolution of tRNA, we reconstructed phylogenetic trees directly from molecular structure. Forty-two structural characters describing the geometry of 571 tRNAs and three statistical parameters describing thermodynamic and mechanical features of molecules quantitatively were used to derive phylogenetic trees of molecules and molecular substructures. Trees of molecules failed to group tRNA according to amino acid specificity and did not reveal the tripartite nature of life, probably due to loss of phylogenetic signal or because tRNA diversification predated organismal diversification. Trees of substructures derived from both structural and statistical characters support the origin of tRNA in the acceptor arm and the hypothesis that the top half domain composed of acceptor and pseudouridine (TPsiC) arms is more ancient than the bottom half domain composed of dihydrouridine (DHU) and anticodon arms. This constitutes the cornerstone of the genomic tag hypothesis that postulates tRNAs were ancient telomeres in the RNA world. The trees of substructures suggest a model for the evolution of the major functional and structural components of tRNA. In this model, short RNA hairpins with stems homologous to the acceptor arm of present day tRNAs were extended with regions homologous to TPsiC and anticodon arms. The DHU arm was then incorporated into the resulting three-stemmed structure to form a proto-cloverleaf structure. The variable region was the last structural addition to the molecular repertoire of evolving tRNA substructures.
2013-01-01
Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117
Mühlhausen, Stefanie; Kollmar, Martin
2013-09-22
The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.
Phylogenetic Analysis Supports the Aerobic-Capacity Model for the Evolution of Endothermy.
Nespolo, Roberto F; Solano-Iguaran, Jaiber J; Bozinovic, Francisco
2017-01-01
The evolution of endothermy is a controversial topic in evolutionary biology, although several hypotheses have been proposed to explain it. To a great extent, the debate has centered on the aerobic-capacity model (AC model), an adaptive hypothesis involving maximum and resting rates of metabolism (MMR and RMR, respectively; hereafter "metabolic traits"). The AC model posits that MMR, a proxy of aerobic capacity and sustained activity, is the target of directional selection and that RMR is also influenced as a correlated response. Associated with this reasoning are the assumptions that (1) factorial aerobic scope (FAS; MMR/RMR) and net aerobic scope (NAS; MMR - RMR), two commonly used indexes of aerobic capacity, show different evolutionary optima and (2) the functional link between MMR and RMR is a basic design feature of vertebrates. To test these assumptions, we performed a comparative phylogenetic analysis in 176 vertebrate species, ranging from fish and amphibians to birds and mammals. Using disparity-through-time analysis, we also explored trait diversification and fitted different evolutionary models to study the evolution of metabolic traits. As predicted, we found (1) a positive phylogenetic correlation between RMR and MMR, (2) diversification of metabolic traits exceeding that of random-walk expectations, (3) that a model assuming selection fits the data better than alternative models, and (4) that a single evolutionary optimum best fits FAS data, whereas a model involving two optima (one for ectotherms and another for endotherms) is the best explanatory model for NAS. These results support the AC model and give novel information concerning the mode and tempo of physiological evolution of vertebrates.
Huttenlocker, Adam K.
2014-01-01
The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the ‘Lilliput effect,’ a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns. PMID:24498335
Evolution of Mhc-DRB introns: implications for the origin of primates.
Kupfermann, H; Satta, Y; Takahata, N; Tichy, H; Klein, J
1999-06-01
Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders-Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera.
Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin
Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192
On the thermodynamics of multilevel evolution.
Tessera, Marc; Hoelzer, Guy A
2013-09-01
Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wiens, John J
2009-01-01
Squamates (lizards and snakes) offer an exciting model system for research on the evolution of body form. A new phylogenetic study in BMC Evolutionary Biology of Australian lizards shows remarkable evolutionary lability in digit numbers among closely related species, but also highlights important challenges in this area. PMID:19291259
NASA Technical Reports Server (NTRS)
Margulis, L.
1972-01-01
Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.
Meshram, Naresh M; Shashank, Pathour R; Sinha, Twinkle
2017-01-01
A new leafhopper genus Chandra and species Chandra dehradunensis gen. nov., sp. nov. are described, illustrated from India and placed in the subtribe Paraboloponina (Cidadellidae: Deltocephalinae: Drabescini). This genus is closely associated with the genus Parabolopona Webb but differs in shape of the head, placement of antennae, male genitalia and molecular analysis using Histone H3 and COI genes confirmed the difference. The taxonomic and phylogenetic position of Chandra is discussed using morphological characters and preliminary molecular evidence of the new genus and related genus Parabolopona.
Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro
2014-01-01
The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631
Lawing, A Michelle; Polly, P David; Hews, Diana K; Martins, Emília P
2016-08-01
Fossils and other paleontological information can improve phylogenetic comparative method estimates of phenotypic evolution and generate hypotheses related to species diversification. Here, we use fossil information to calibrate ancestral reconstructions of suitable climate for Sceloporus lizards in North America. Integrating data from the fossil record, general circulation models of paleoclimate during the Miocene, climate envelope modeling, and phylogenetic comparative methods provides a geographically and temporally explicit species distribution model of Sceloporus-suitable habitat through time. We provide evidence to support the historic biogeographic hypothesis of Sceloporus diversification in warm North American deserts and suggest a relatively recent Sceloporus invasion into Mexico around 6 Ma. We use a physiological model to map extinction risk. We suggest that the number of hours of restriction to a thermal refuge limited Sceloporus from inhabiting Mexico until the climate cooled enough to provide suitable habitat at approximately 6 Ma. If the future climate returns to the hotter climates of the past, Mexico, the place of highest modern Sceloporus richness, will no longer provide suitable habitats for Sceloporus to survive and reproduce.
Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
Abbosh, Christopher; Birkbak, Nicolai J; Wilson, Gareth A; Jamal-Hanjani, Mariam; Constantin, Tudor; Salari, Raheleh; Le Quesne, John; Moore, David A; Veeriah, Selvaraju; Rosenthal, Rachel; Marafioti, Teresa; Kirkizlar, Eser; Watkins, Thomas B K; McGranahan, Nicholas; Ward, Sophia; Martinson, Luke; Riley, Joan; Fraioli, Francesco; Al Bakir, Maise; Grönroos, Eva; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M; Sponer, Nicole; Johnson, Diana; Laycock, Joanne; Shafi, Seema; Czyzewska-Khan, Justyna; Rowan, Andrew; Chambers, Tim; Matthews, Nik; Turajlic, Samra; Hiley, Crispin; Lee, Siow Ming; Forster, Martin D; Ahmad, Tanya; Falzon, Mary; Borg, Elaine; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Hafez, Dina; Naik, Ashwini; Ganguly, Apratim; Kareht, Stephanie; Shah, Rajesh; Joseph, Leena; Marie Quinn, Anne; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Oukrif, Dahmane; Akarca, Ayse U; Hartley, John A; Lowe, Helen L; Lock, Sara; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Elgar, Greg; Szallasi, Zoltan; Schwarz, Roland F; Herrero, Javier; Stewart, Aengus; Quezada, Sergio A; Peggs, Karl S; Van Loo, Peter; Dive, Caroline; Lin, C Jimmy; Rabinowitz, Matthew; Aerts, Hugo J W L; Hackshaw, Allan; Shaw, Jacqui A; Zimmermann, Bernhard G; Swanton, Charles
2017-04-26
The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.
Xavier, Raquel; Santos, Joana L; Veríssimo, Ana
2018-05-01
Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.
Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia).
Datzmann, Thomas; von Helversen, Otto; Mayer, Frieder
2010-06-04
Bats of the family Phyllostomidae show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioural adaptations. Several attempts were made to resolve the phylogenetic relationships within this family in order to reconstruct the evolutionary transitions accompanied by nutritional specialization. Nevertheless, the evolution of nectarivory remained equivocal. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of nectarivorous phyllostomid bats. Our phylogenetic reconstructions indicate that the nectarivorous genera Lonchophylla and Lionycteris are closer related to mainly frugivorous phyllostomids of the subfamilies Rhinophyllinae, Stenodermatinae, Carolliinae, and the insectivorous Glyphonycterinae rather than to nectarivorous bats of the Glossophaginae. This suggests an independent origin of morphological adaptations to a nectarivorous lifestyle within Lonchophyllinae and Glossophaginae. Molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of subfamilies. Our study provides strong support for diphyly of nectarivorous phyllostomids. This is remarkable, since their morphological adaptations to nutrition, like elongated rostrums and tongues, reduced teeth and the ability to use hovering flight while ingestion, closely resemble each other. However, more precise examinations of their tongues (e.g. type and structure of papillae and muscular innervation) revealed levels of difference in line with an independent evolution of nectarivory in these bats.
Macroevolution of plant defenses against herbivores in the evening primroses.
Johnson, Marc T J; Ives, Anthony R; Ahern, Jeffrey; Salminen, Juha-Pekka
2014-07-01
Plant species vary greatly in defenses against herbivores, but existing theory has struggled to explain this variation. Here, we test how phylogenetic relatedness, tradeoffs, trait syndromes, and sexual reproduction affect the macroevolution of defense. To examine the macroevolution of defenses, we studied 26 Oenothera (Onagraceae) species, combining chemistry, comparative phylogenetics and experimental assays of resistance against generalist and specialist herbivores. We detected dozens of phenolic metabolites within leaves, including ellagitannins (ETs), flavonoids, and caffeic acid derivatives (CAs). The concentration and composition of phenolics exhibited low to moderate phylogenetic signal. There were clear negative correlations between multiple traits, supporting the prediction of allocation tradeoffs. There were also positively covarying suites of traits, but these suites did not strongly predict resistance to herbivores and thus did not act as defensive syndromes. By contrast, specific metabolites did correlate with the performance of generalist and specialist herbivores. Finally, that repeated losses of sex in Oenothera was associated with the evolution of increased flavonoid diversity and altered phenolic composition. These results show that secondary chemistry has evolved rapidly during the diversification of Oenothera. This evolution has been marked by allocation tradeoffs between traits, some of which are related to herbivore performance. The repeated loss of sex appears also to have constrained the evolution of plant secondary chemistry, which may help to explain variation in defense among plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.
Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro
2016-06-01
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. Copyright © 2016 the American Physiological Society.
Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing
Gökirmak, Tufan; Campanale, Joseph P.; Reitzel, Adam M.; Shipp, Lauren E.; Moy, Gary W.
2016-01-01
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522
Yang, Guan-Dong; Agapow, Paul-Michael
2017-01-01
The kind and duration of phylogenetic topological “signatures” left in the wake of macroevolutionary events remain poorly understood. To this end, we examined a broad range of simulated phylogenies generated using trait-biased, heritable speciation probabilities and mass extinction that could be either random or selective on trait value, but also using background extinction and diversity-dependence to constrain clade sizes. In keeping with prior results, random mass extinction increased imbalance of clades that recovered to pre-extinction size, but was a relatively weak effect. Mass extinction that was selective on trait values tended to produce clades of similar or greater balance compared to random extinction or controls. Allowing evolution to continue past the point of clade-size recovery resulted in erosion and eventual erasure of this signal, with all treatments converging on similar values of imbalance, except for very intense extinction regimes targeted at taxa with high speciation rates. Return to a more balanced state with extended post-extinction evolution was also associated with loss of the previous phylogenetic root in most treatments. These results further demonstrate that while a mass extinction event can produce a recognizable phylogenetic signal, its effects become increasingly obscured the further an evolving clade gets from that event, with any sharp imbalance due to unrelated evolutionary factors. PMID:28644846
Evolution of Karyotypes in Chameleons
Rovatsos, Michail; Altmanová, Marie; Johnson Pokorná, Martina; Velenský, Petr; Kratochvíl, Lukáš
2017-01-01
The reconstruction of the evolutionary dynamics of karyotypes and sex determining systems in squamate reptiles is precluded by the lack of data in many groups including most chameleons (Squamata: Acrodonta: Chamaeleonidae). We performed cytogenetic analysis in 16 species of chameleons from 8 genera covering the phylogenetic diversity of the family and also phylogenetic reconstruction of karyotype evolution in this group. In comparison to other squamates, chameleons demonstrate rather variable karyotypes, differing in chromosome number, morphology and presence of interstitial telomeric signal (ITS). On the other hand, the location of rDNA is quite conserved among chameleon species. Phylogenetic analysis combining our new results and previously published data tentatively suggests that the ancestral chromosome number for chameleons is 2n = 36, which is the same as assumed for other lineages of the clade Iguania, i.e., agamids and iguanas. In general, we observed a tendency for the reduction of chromosome number during the evolution of chameleons, however, in Rieppeleon brevicaudatus, we uncovered a chromosome number of 2n = 62, very unusual among squamates, originating from a number of chromosome splits. Despite the presence of the highly differentiated ZZ/ZW sex chromosomes in the genus Furcifer, we did not detect any unequivocal sexual differences in the karyotypes of any other studied species of chameleons tested using differential staining and comparative genomic hybridization, suggesting that sex chromosomes in most chameleons are only poorly differentiated. PMID:29231849
Competition for hummingbird pollination shapes flower color variation in Andean solanaceae.
Muchhala, Nathan; Johnsen, Sönke; Smith, Stacey Dewitt
2014-08-01
One classic explanation for the remarkable diversity of flower colors across angiosperms involves evolutionary shifts among different types of pollinators with different color preferences. However, the pollinator shift model fails to account for the many examples of color variation within clades that share the same pollination system. An alternate explanation is the competition model, which suggests that color divergence evolves in response to interspecific competition for pollinators, as a means to decrease interspecific pollinator movements. This model predicts color overdispersion within communities relative to null assemblages. Here, we combine morphometric analyses, field surveys, and models of pollinator vision with a species-level phylogeny to test the competition model in the primarily hummingbird-pollinated clade Iochrominae (Solanaceae). Results show that flower color as perceived by pollinators is significantly overdispersed within sites. This pattern is not simply due to phylogenetic history: phylogenetic community structure does not deviate from random expectations, and flower color lacks phylogenetic signal. Moreover, taxa that occur in sympatry occupy a significantly larger volume of color space than those in allopatry, supporting the hypothesis that competition in sympatry drove the evolution of novel colors. We suggest that competition among close relatives may commonly underlie floral divergence, especially in species-rich habitats where congeners frequently co-occur. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Novel scenarios of early animal evolution--is it time to rewrite textbooks?
Dohrmann, Martin; Wörheide, Gert
2013-09-01
Understanding how important phenotypic, developmental, and genomic features of animals originated and evolved is essential for many fields of biological research, but such understanding depends on robust hypotheses about the phylogenetic interrelationships of the higher taxa to which the studied species belong. Molecular approaches to phylogenetics have proven able to revolutionize our knowledge of organismal evolution. However, with respect to the deepest splits in the metazoan Tree of Life-the relationships between Bilateria and the four non-bilaterian phyla (Porifera, Placozoa, Ctenophora, and Cnidaria)-no consensus has been reached yet, since a number of different, often contradictory, hypotheses with sometimes spectacular implications have been proposed in recent years. Here, we review the recent literature on the topic and contrast it with more classical perceptions based on analyses of morphological characters. We conclude that the time is not yet ripe to rewrite zoological textbooks and advocate a conservative approach when it comes to developing scenarios of the early evolution of animals.
The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman
2013-11-01
In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.
Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces
McDonald, Bradon R.
2017-01-01
ABSTRACT Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. PMID:28588130
2013-01-01
Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes and support the involvement of NAT1 in endogenous metabolic pathways. Conclusions This study provides unequivocal evidence that the NAT gene family has evolved under a dynamic process of birth-and-death evolution in vertebrates, consistent with previous observations made in fungi. PMID:23497148
Sramkó, Gábor; Paun, Ovidiu
2018-01-01
Abstract Background and Aims Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. Methods At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. Key Results RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. Conclusions The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. PMID:29325077
Bateman, Richard M; Sramkó, Gábor; Paun, Ovidiu
2018-01-25
Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.
The evolution of image-guided lumbosacral spine surgery.
Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C
2015-04-01
Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.
How does cognition evolve? Phylogenetic comparative psychology
Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria
2014-01-01
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850
A Phylogenetic Perspective on Biogeographical Divergence of the Flora in Yunnan, Southwestern China.
Liu, Shuiyin; Zhu, Hua; Yang, Jie
2017-02-21
In recent years, an increasing number of studies incorporated biogeography with phylogenetic analyses to reveal the origin and evolutionary history of specific floras. In this study, we constructed the mega-phylogeny of the floras of three representative regions across Yunnan, southwestern China. We analyzed the phylogenetic structure and beta diversity based on the presence/absence of species (genus or family) data to investigate the phylogenetic patterns of regional floras. We found conspicuous divergence at the genus and species level in the pattern of phylogenetic structures, which most likely related to historical biogeography. The flora of southern Yunnan was shaped by the strike-slip extrusion of Indochina and the regional climatic stability, while the flora of northwestern Yunnan was shaped by the uplift of the Himalaya-Tibetan Plateau and the oscillations of the glacial-interglacial periods. The flora of central Yunnan had nearly equal proportions of the northern and southern floras that may be derived from a common Tertiary tropical or subtropical flora. Geological events fit well with the floristic and phylogenetic patterns across Yunnan. This study highlighted the importance of linking phylogenetic analyses to biogeographic interpretations to improve our understanding of the origin, evolution and divergence of regional floras.
How does cognition evolve? Phylogenetic comparative psychology.
MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria
2012-03-01
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.
Salvato, Paola; Simonato, Mauro; Battisti, Andrea; Negrisolo, Enrico
2008-01-01
Background Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling. In present work we describe the mitochondrial genome of the moth Ochrogaster lunifer. Results The mitochondrial genome of O. lunifer is a circular molecule 15593 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. It contains also 7 intergenic spacers. The gene order of the newly sequenced genome is that typical for Lepidoptera and differs from the insect ancestral type for the placement of trnM. The 77.84% A+T content of its α strand is the lowest among known lepidopteran genomes. The mitochondrial genome of O. lunifer exhibits one of the most marked C-skew among available insect Pterygota genomes. The protein-coding genes have typical mitochondrial start codons except for cox1 that present an unusual CGA. The O. lunifer genome exhibits the less biased synonymous codon usage among lepidopterans. Comparative genomics analysis study identified atp6, cox1, cox2 as cox3, cob, nad1, nad2, nad4, and nad5 as potential markers for population genetics/phylogenetics studies. A peculiar feature of O. lunifer mitochondrial genome it that the intergenic spacers are mostly made by repetitive sequences. Conclusion The mitochondrial genome of O. lunifer is the first representative of superfamily Noctuoidea that account for about 40% of all described Lepidoptera. New genome shares many features with other known lepidopteran genomes. It differs however for its low A+T content and marked C-skew. Compared to other lepidopteran genomes it is less biased in synonymous codon usage. Comparative evolutionary analysis of lepidopteran mitochondrial genomes allowed the identification of previously neglected coding genes as potential phylogenetic markers. Presence of repetitive elements in intergenic spacers of O. lunifer genome supports the role of DNA slippage as possible mechanism to produce spacers during replication. PMID:18627592
Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal
Pant, Ganesh R.; Lavenir, Rachel; Wong, Frank Y. K.; Certoma, Andrea; Larrous, Florence; Bhatta, Dwij R.; Bourhy, Hervé
2013-01-01
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal. PMID:24278494
Riser, James P; Cardinal-McTeague, Warren M; Hall, Jocelyn C; Hahn, William J; Sytsma, Kenneth J; Roalson, Eric H
2013-10-01
A monophyletic group composed of five genera of the Cleomaceae represents an intriguing lineage with outstanding taxonomic and evolutionary questions. Generic boundaries are poorly defined, and historical hypotheses regarding the evolution of fruit type and phylogenetic relationships provide testable questions. This is the first detailed phylogenetic investigation of all 22 species in this group. We use this phylogenetic framework to assess generic monophyly and test Iltis's evolutionary "reduction series" hypothesis regarding phylogeny and fruit type/seed number. • Maximum likelihood and Bayesian analyses of four plastid intergenic spacer region sequences (rpl32-trnL, trnQ-rps16, ycf1-rps15, and psbA-trnH) and one nuclear (ITS) region were used to reconstruct phylogenetic relationships among the NA cleomoid species. Stochastic mapping and ancestral-state reconstruction were used to study the evolution of fruit type. • Both analyses recovered nearly identical phylogenies. Three of the currently recognized genera (Wislizenia, Carsonia, and Oxystylis) are monophyletic while two (Cleomella and Peritoma) are para- or polyphyletic. There was a single origin of the two-seeded schizocarp in the ancestor of the Oxystylis-Wislizenia clade and a secondary derivation of elongated capsule-type fruits in Peritoma from a truncated capsule state in Cleomella. • Our well-resolved phylogeny supports most of the current species circumscriptions but not current generic circumscriptions. Additionally, our results are inconsistent with Iltis's hypothesis of species with elongated many-seed fruits giving rise to species with truncated few-seeded fruits. Instead, we find support for the reversion to elongated multiseeded fruits from a truncate few-seeded ancestor in Peritoma.
Swanson, David L; Garland, Theodore
2009-01-01
Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.
Bartlett, Madelaine E; Specht, Chelsea D
2010-07-01
*The MADS box transcription factor family has long been identified as an important contributor to the control of floral development. It is often hypothesized that the evolution of floral development across angiosperms and within specific lineages may occur as a result of duplication, functional diversification, and changes in regulation of MADS box genes. Here we examine the role of Globosa (GLO)-like genes, members of the B-class MADS box gene lineage, in the evolution of floral development within the monocot order Zingiberales. *We assessed changes in perianth and stamen whorl morphology in a phylogenetic framework. We identified GLO homologs (ZinGLO1-4) from 50 Zingiberales species and investigated the evolution of this gene lineage. Expression of two GLO homologs was assessed in Costus spicatus and Musa basjoo. *Based on the phylogenetic data and expression results, we propose several family-specific losses and gains of GLO homologs that appear to be associated with key morphological changes. The GLO-like gene lineage has diversified concomitant with the evolution of the dimorphic perianth and the staminodial labellum. *Duplications and expression divergence within the GLO-like gene lineage may have played a role in floral diversification in the Zingiberales.
Yarkhunova, Yulia; Edwards, Christine E; Ewers, Brent E; Baker, Robert L; Aston, Timothy Llewellyn; McClung, C Robertson; Lou, Ping; Weinig, Cynthia
2016-04-01
Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds
Wylie, Douglas R.; Gutiérrez-Ibáñez, Cristian; Iwaniuk, Andrew N.
2015-01-01
The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” whereby one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size. PMID:26321905
Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B
2015-10-01
A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. © 2015 The Author(s).
Portik, Daniel M.; Blackburn, David C.
2016-01-01
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co‐evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. PMID:27402182
Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter
2014-08-19
Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Folding and unfolding phylogenetic trees and networks.
Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang
2016-12-01
Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.
Kay, Richard F
2015-01-01
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ. Copyright © 2013 Elsevier Inc. All rights reserved.
Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz
2009-12-07
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
Isolation and characterization of major histocompatibility complex class II B genes in cranes.
Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi
2015-11-01
In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.
Karyotypic Diversity and Evolution in a Sympatric Assemblage of Neotropical Electric Knifefish.
Cardoso, Adauto L; Pieczarka, Julio C; Crampton, William G R; Ready, Jonathan S; de Figueiredo Ready, Wilsea M B; Waddell, Joseph C; de Oliveira, Jonas A; Nagamachi, Cleusa Y
2018-01-01
Chromosome changes can perform an important role in speciation by acting as post-zygotic reproductive barriers. The Neotropical electric fish genus Brachyhypopomus (Gymnotiformes, Hypopomidae) has 28 described species, but cytogenetic data are hitherto available only for four of them. To understand karyotype evolution and investigate the possible role of chromosome changes in the diversification of this genus, we describe here the karyotype of eight species of Brachyhypopomus from a sympatric assemblage in the central Amazon basin. We analyzed cytogenetic data in the context of a phylogenetic reconstruction of the genus and known patterns of geographical distribution. We found a strong phylogenetic signal for chromosome number and noted that sympatric species have exclusive karyotypes. Additional insights into the role of chromosome changes in the diversification of Brachyhypopomus are discussed.
Karyotypic Diversity and Evolution in a Sympatric Assemblage of Neotropical Electric Knifefish
Cardoso, Adauto L.; Pieczarka, Julio C.; Crampton, William G. R.; Ready, Jonathan S.; de Figueiredo Ready, Wilsea M. B.; Waddell, Joseph C.; de Oliveira, Jonas A.; Nagamachi, Cleusa Y.
2018-01-01
Chromosome changes can perform an important role in speciation by acting as post-zygotic reproductive barriers. The Neotropical electric fish genus Brachyhypopomus (Gymnotiformes, Hypopomidae) has 28 described species, but cytogenetic data are hitherto available only for four of them. To understand karyotype evolution and investigate the possible role of chromosome changes in the diversification of this genus, we describe here the karyotype of eight species of Brachyhypopomus from a sympatric assemblage in the central Amazon basin. We analyzed cytogenetic data in the context of a phylogenetic reconstruction of the genus and known patterns of geographical distribution. We found a strong phylogenetic signal for chromosome number and noted that sympatric species have exclusive karyotypes. Additional insights into the role of chromosome changes in the diversification of Brachyhypopomus are discussed. PMID:29616077
TreeScaper: Visualizing and Extracting Phylogenetic Signal from Sets of Trees.
Huang, Wen; Zhou, Guifang; Marchand, Melissa; Ash, Jeremy R; Morris, David; Van Dooren, Paul; Brown, Jeremy M; Gallivan, Kyle A; Wilgenbusch, Jim C
2016-12-01
Modern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in individual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals. GUI and command-line versions of TreeScaper and a manual with tutorials can be downloaded from https://github.com/whuang08/TreeScaper/releases TreeScaper is distributed under the GNU General Public License. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Understanding phylogenetic incongruence: lessons from phyllostomid bats
Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B
2012-01-01
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats. PMID:22891620
2010-01-01
Background The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life. Results Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other, indicating a single transformation of craniofacial morphology. Conclusion The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and developmental mechanisms responsible for those patterns were established early in the evolutionary history of Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new phylogenetic framework. PMID:20100320
Enhanced use of phylogenetic data to inform public health approaches to HIV among MSM
German, Danielle; Grabowski, Mary Kate; Beyrer, Chris
2017-01-01
The multi-dimensional nature and continued evolution of HIV epidemics among men who have sex with men (MSM) requires innovative intervention approaches. Strategies are needed that recognize the individual, social, and structural factors driving HIV transmission; that can pinpoint networks with heightened transmission risk; and that can help target intervention in real-time. HIV phylogenetics is a rapidly evolving field with strong promise for informing innovative responses to the HIV epidemic among MSM. Currently, HIV phylogenetic insights are providing new understandings of characteristics of HIV epidemics involving MSM, social networks influencing transmission, characteristics of HIV transmission clusters involving MSM, targets for antiretroviral and other prevention strategies, and dynamics of emergent epidemics. Maximizing the potential of HIV phylogenetics for HIV responses among MSM will require attention to key methodological challenges and ethical considerations, as well as resolving key implementation and scientific questions. Enhanced and integrated use of HIV surveillance, socio-behavioral, and phylogenetic data resources are becoming increasingly critical for informing public health approaches to HIV among MSM. PMID:27584826
Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate.
Lin, Jiannan; Chen, Guangfeng; Gu, Liang; Shen, Yuefeng; Zheng, Meizhu; Zheng, Weisheng; Hu, Xinjie; Zhang, Xiaobai; Qiu, Yu; Liu, Xiaoqing; Jiang, Cizhong
2014-02-01
Previous phylogenetic analyses have led to incongruent evolutionary relationships between tree shrews and other suborders of Euarchontoglires. What caused the incongruence remains elusive. In this study, we identified 6845 orthologous genes between seventeen placental mammals. Tree shrews and Primates were monophyletic in the phylogenetic trees derived from the first or/and second codon positions whereas tree shrews and Glires formed a monophyly in the trees derived from the third or all codon positions. The same topology was obtained in the phylogeny inference using the slowly and fast evolving genes, respectively. This incongruence was likely attributed to the fast substitution rate in tree shrews and Glires. Notably, sequence GC content only was not informative to resolve the controversial phylogenetic relationships between tree shrews, Glires, and Primates. Finally, estimation in the confidence of the tree selection strongly supported the phylogenetic affiliation of tree shrews to Primates as a monophyly. Copyright © 2013 Elsevier Inc. All rights reserved.
Phylogeny, host-parasite relationship and zoogeography
1999-01-01
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036
Evidence for adaptive radiation from a phylogenetic study of plant defenses
Agrawal, Anurag A.; Fishbein, Mark; Halitschke, Rayko; Hastings, Amy P.; Rabosky, Daniel L.; Rasmann, Sergio
2009-01-01
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586–608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds. PMID:19805160
Current Perspectives in Distributive Education.
ERIC Educational Resources Information Center
Klaurens, Mary K., Ed.; Trapnell, Gail, Ed.
The volume on current perspectives in distributive education contains 29 individually authored articles organized into three sections. The first section on program conceptualization deals with the following subjects: the evolution of distributive education, program planning, advisory committees, placement services, postsecondary distributive…
Castel, Guillaume; Razzauti, Maria; Jousselin, Emmanuelle; Kergoat, Gael J.; Cosson, Jean-François
2014-01-01
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space. PMID:24618811
Analyzing endocrine system conservation and evolution.
Bonett, Ronald M
2016-08-01
Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Wagner, Andreas
2014-07-07
Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Does aquatic foraging impact head shape evolution in snakes?
Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony
2016-01-01
Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887
Historic and recent nesting records of Turkey Vultures in South Dakota
Igl, Lawrence D.; Chepulis, Brian J.; McLean, Kyle E.
2014-01-01
Present-day vultures are generally classified into two distinct groups: Old World vultures and new World vultures. The two groups share morphological and behavioral characters (e.g. scavenger diet, energy-efficient soaring, mostly featherless head), but historically the two groups were considered phylogenetically distant with long and independent histories (Rich 198., Wink 1995, Zhang et al. 2012). Old World vultures occur in the family Accipitridae and are closely related to hawks and eagles. New World Vultures occur in the family Cathartidae but their taxonomic placement has been controversial. New World vultures were previously allied with storks (Ciconiidae) but were usually placed within the order Falconiformes. Recent phylogenomic analyses using DNA sequencing suggest that new World vultures show no affinity with storks and support placement of New World vultures with other landbirds (in the order Accipitriformes, near Accipitridae) rather than with waterbirds (Hackett et al. 2008). Old World vultures presently are confined to Europe, Asia, and Africa, and New World vultures presently occur in North and South America.
Phylogeny of the Genus Drosophila
O’Grady, Patrick M.; DeSalle, Rob
2018-01-01
Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983
geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.
Kidd, David M; Liu, Xianhua
2008-01-01
Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.
Evolution of early life inferred from protein and ribonucleic acid sequences
NASA Technical Reports Server (NTRS)
Dayhoff, M. O.; Schwartz, R. M.
1978-01-01
The chemical structures of ferredoxin, 5S ribosomal RNA, and c-type cytochrome sequences have been employed to construct a phylogenetic tree which connects all major photosynthesizing organisms: the three types of bacteria, blue-green algae, and chloroplasts. Anaerobic and aerobic bacteria, eukaryotic cytoplasmic components and mitochondria are also included in the phylogenetic tree. Anaerobic nonphotosynthesizing bacteria similar to Clostridium were the earliest organisms, arising more than 3.2 billion years ago. Bacterial photosynthesis evolved nearly 3.0 billion years ago, while oxygen-evolving photosynthesis, originating in the blue-green algal line, came into being about 2.0 billion years ago. The phylogenetic tree supports the symbiotic theory of the origin of eukaryotes.
The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown
2013-01-01
Background Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. Results The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. Conclusions The primary homology of the character “sutured pelvis” is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic. PMID:24314094
Horvath, Julie E.; Weisrock, David W.; Embry, Stephanie L.; Fiorentino, Isabella; Balhoff, James P.; Kappeler, Peter; Wray, Gregory A.; Willard, Huntington F.; Yoder, Anne D.
2008-01-01
Lemurs and the other strepsirrhine primates are of great interest to the primate genomics community due to their phylogenetic placement as the sister lineage to all other primates. Previous attempts to resolve the phylogeny of lemurs employed limited mitochondrial or small nuclear data sets, with many relationships poorly supported or entirely unresolved. We used genomic resources to develop 11 novel markers from nine chromosomes, representing ∼9 kb of nuclear sequence data. In combination with previously published nuclear and mitochondrial loci, this yields a data set of more than 16 kb and adds ∼275 kb of DNA sequence to current databases. Our phylogenetic analyses confirm hypotheses of lemuriform monophyly and provide robust resolution of the phylogenetic relationships among the five lemuriform families. We verify that the genus Daubentonia is the sister lineage to all other lemurs. The Cheirogaleidae and Lepilemuridae are sister taxa and together form the sister lineage to the Indriidae; this clade is the sister lineage to the Lemuridae. Divergence time estimates indicate that lemurs are an ancient group, with their initial diversification occurring around the Cretaceous-Tertiary boundary. Given the power of this data set to resolve branches in a notoriously problematic area of primate phylogeny, we anticipate that our phylogenomic toolkit will be of value to other studies of primate phylogeny and diversification. Moreover, the methods applied will be broadly applicable to other taxonomic groups where phylogenetic relationships have been notoriously difficult to resolve. PMID:18245770
Tripp, Erin A; Fatimah, Siti
2012-06-01
Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.
Wilcox, Thomas P; Zwickl, Derrick J; Heath, Tracy A; Hillis, David M
2002-11-01
Four New World genera of dwarf boas (Exiliboa, Trachyboa, Tropidophis, and Ungaliophis) have been placed by many systematists in a single group (traditionally called Tropidophiidae). However, the monophyly of this group has been questioned in several studies. Moreover, the overall relationships among basal snake lineages, including the placement of the dwarf boas, are poorly understood. We obtained mtDNA sequence data for 12S, 16S, and intervening tRNA-val genes from 23 species of snakes representing most major snake lineages, including all four genera of New World dwarf boas. We then examined the phylogenetic position of these species by estimating the phylogeny of the basal snakes. Our phylogenetic analysis suggests that New World dwarf boas are not monophyletic. Instead, we find Exiliboa and Ungaliophis to be most closely related to sand boas (Erycinae), boas (Boinae), and advanced snakes (Caenophidea), whereas Tropidophis and Trachyboa form an independent clade that separated relatively early in snake radiation. Our estimate of snake phylogeny differs significantly in other ways from some previous estimates of snake phylogeny. For instance, pythons do not cluster with boas and sand boas, but instead show a strong relationship with Loxocemus and Xenopeltis. Additionally, uropeltids cluster strongly with Cylindrophis, and together are embedded in what has previously been considered the macrostomatan radiation. These relationships are supported by both bootstrapping (parametric and nonparametric approaches) and Bayesian analysis, although Bayesian support values are consistently higher than those obtained from nonparametric bootstrapping. Simulations show that Bayesian support values represent much better estimates of phylogenetic accuracy than do nonparametric bootstrap support values, at least under the conditions of our study. Copyright 2002 Elsevier Science (USA)
Nabholz, Benoit; Lartillot, Nicolas
2013-01-01
The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more comprehensive phylogenetic reconstruction of the evolution of life-history and of the population-genetics environment. PMID:23711670
The paradox of HBV evolution as revealed from a 16th century mummy
Duggan, Ana T.; Poinar, Debi; Poinar, Hendrik N.
2018-01-01
Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen. PMID:29300782
Hamon, Perla; Grover, Corrinne E; Davis, Aaron P; Rakotomalala, Jean-Jacques; Raharimalala, Nathalie E; Albert, Victor A; Sreenath, Hosahalli L; Stoffelen, Piet; Mitchell, Sharon E; Couturon, Emmanuel; Hamon, Serge; de Kochko, Alexandre; Crouzillat, Dominique; Rigoreau, Michel; Sumirat, Ucu; Akaffou, Sélastique; Guyot, Romain
2017-04-01
A comprehensive and meaningful phylogenetic hypothesis for the commercially important coffee genus (Coffea) has long been a key objective for coffee researchers. For molecular studies, progress has been limited by low levels of sequence divergence, leading to insufficient topological resolution and statistical support in phylogenetic trees, particularly for the major lineages and for the numerous species occurring in Madagascar. We report here the first almost fully resolved, broadly sampled phylogenetic hypothesis for coffee, the result of combining genotyping-by-sequencing (GBS) technology with a newly developed, lab-based workflow to integrate short read next-generation sequencing for low numbers of additional samples. Biogeographic patterns indicate either Africa or Asia (or possibly the Arabian Peninsula) as the most likely ancestral locality for the origin of the coffee genus, with independent radiations across Africa, Asia, and the Western Indian Ocean Islands (including Madagascar and Mauritius). The evolution of caffeine, an important trait for commerce and society, was evaluated in light of our phylogeny. High and consistent caffeine content is found only in species from the equatorial, fully humid environments of West and Central Africa, possibly as an adaptive response to increased levels of pest predation. Moderate caffeine production, however, evolved at least one additional time recently (between 2 and 4Mya) in a Madagascan lineage, which suggests that either the biosynthetic pathway was already in place during the early evolutionary history of coffee, or that caffeine synthesis within the genus is subject to convergent evolution, as is also the case for caffeine synthesis in coffee versus tea and chocolate. Copyright © 2017 Elsevier Inc. All rights reserved.
Galián, José A; Rosato, Marcela; Rosselló, Josep A
2014-03-01
Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.
Has pollination mode shaped the evolution of ficus pollen?
Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong
2014-01-01
The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism.
Has Pollination Mode Shaped the Evolution of Ficus Pollen?
Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong
2014-01-01
Background The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Methods and Main Findings Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Conclusions Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism. PMID:24465976
Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J
2013-01-01
The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger Batrachuperus and Hynobius clades. While the relationships identified in this study do much to clarify the phylogenetic history of the Hynobiidae, the poor resolution among major hynobiid clades, and the contrast of mtDNA-derived relationships with recent phylogenetic results from a small number of nuclear genes, highlights the need for continued phylogenetic study with larger numbers of nuclear loci.
Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas
2015-11-10
Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
Defense mutualisms enhance plant diversification
Weber, Marjorie G.; Agrawal, Anurag A.
2014-01-01
The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity. PMID:25349406
A functional phylogenomic view of the seed plants.
Lee, Ernest K; Cibrian-Jaramillo, Angelica; Kolokotronis, Sergios-Orestis; Katari, Manpreet S; Stamatakis, Alexandros; Ott, Michael; Chiu, Joanna C; Little, Damon P; Stevenson, Dennis Wm; McCombie, W Richard; Martienssen, Robert A; Coruzzi, Gloria; Desalle, Rob
2011-12-01
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.
A Functional Phylogenomic View of the Seed Plants
Katari, Manpreet S.; Stamatakis, Alexandros; Ott, Michael; Chiu, Joanna C.; Little, Damon P.; Stevenson, Dennis Wm.; McCombie, W. Richard; Martienssen, Robert A.; Coruzzi, Gloria; DeSalle, Rob
2011-01-01
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification. PMID:22194700
Early Cretaceous greenhouse pumped higher taxa diversification in spiders.
Shao, Lili; Li, Shuqiang
2018-05-24
The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.
Defense mutualisms enhance plant diversification.
Weber, Marjorie G; Agrawal, Anurag A
2014-11-18
The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity.
Zaĭtseva, O V
2000-08-01
The invasion of land by gastropods independent and repeated in the course of their evolution, was shown to be accompanied by appearance of organisationally similar olfactory tentacular organs and special integrative centres. The majority of primary and secondary water gastropods in different phylogenetic groups had a different, more primitive organisation of the tentacular sensory system as compared to the terrestrial species. Regularities of the phylogenetic adaptations of mollusks to the habitat media and lifestyle are discussed.
Thuillard, Marc; Fraix-Burnet, Didier
2015-01-01
This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.
Live phylogeny with polytomies: Finding the most compact parsimonious trees.
Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G
2017-08-01
Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda
2015-01-01
Abstract The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species – Echinochasmus sp., Echinochasmus coaxatus Dietz, 1909, Stephanoprora pseudoechinata (Olsson, 1876) and Echinoparyphium mordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmus beleocephalus (von Linstow, 1893), 2n=14, and Episthmium bursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprora pseudoechinata clustered with one well-supported clade together with Echinochasmus japonicus Tanabe, 1926 (data only for 28S) and Echinochasmus coaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails. PMID:26140167
Cnidarian phylogenetic relationships as revealed by mitogenomics
2013-01-01
Background Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria. PMID:23302374
Cnidarian phylogenetic relationships as revealed by mitogenomics.
Kayal, Ehsan; Roure, Béatrice; Philippe, Hervé; Collins, Allen G; Lavrov, Dennis V
2013-01-09
Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) - cnidarians with a reproductive polyp and the absence of a medusa stage - and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) - cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.
Kurtzman, Cletus P; Robnett, Christie J
2014-11-01
The new anamorphic yeast Kuraishia piskuri, f.a., sp. nov. is described for three strains that were isolated from insect frass from trees growing in Florida, USA (type strain, NRRL YB-2544, CBS 13714). Species placement was based on phylogenetic analysis of nuclear gene sequences for the D1/D2 domains of large subunit rRNA, small subunit rRNA, translation elongation factor-1α, and subunits B1 and B2 of RNA polymerase II B. From this analysis, the anamorphic species Candida borneana, Candida cidri, Candida floccosa, Candida hungarica, and Candida ogatae were transferred to the genus Kuraishia as new combinations and Candida anatomiae, Candida ernobii, Candida ishiwadae, Candida laoshanensis, Candida molendini-olei, Candida peltata, Candida pomicola, Candida populi, Candida wickerhamii, and Candida wyomingensis were transferred to the genus Nakazawaea. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Frankixalus, a New Rhacophorid Genus of Tree Hole Breeding Frogs with Oophagous Tadpoles
Biju, S. D.; Mahony, Stephen; Kamei, Rachunliu G.; Thomas, Ashish; Shouche, Yogesh; Raxworthy, Christopher J.; Meegaskumbura, Madhava; Bocxlaer, Ines Van
2016-01-01
Despite renewed interest in the biogeography and evolutionary history of Old World tree frogs (Rhacophoridae), this family still includes enigmatic frogs with ambiguous phylogenetic placement. During fieldwork in four northeastern states of India, we discovered several populations of tree hole breeding frogs with oophagous tadpoles. We used molecular data, consisting of two nuclear and three mitochondrial gene fragments for all known rhacophorid genera, to investigate the phylogenetic position of these new frogs. Our analyses identify a previously overlooked, yet distinct evolutionary lineage of frogs that warrants recognition as a new genus and is here described as Frankixalus gen. nov. This genus, which contains the enigmatic ‘Polypedates’ jerdonii described by Günther in 1876, forms the sister group of a clade containing Kurixalus, Pseudophilautus, Raorchestes, Mercurana and Beddomixalus. The distinctiveness of this evolutionary lineage is also corroborated by the external morphology of adults and tadpoles, adult osteology, breeding ecology, and life history features. PMID:26790105
Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.
Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua
2004-01-01
In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae. Copyright 2004 WILEY-VCH Verlag GmbH & Co.
Canedo, Clarissa; Haddad, Célio F B
2012-11-01
We present a phylogenetic hypothesis of the anuran clade Terrarana based on partial sequences of nuclear (Tyr and RAG1) and mitochondrial (12S, tRNA-Val, and 16S) genes, testing the monophyly of Ischnocnema and its species series. We performed maximum parsimony, maximum likelihood, and Bayesian inference analyses on 364 terminals: 11 outgroup terminals and 353 ingroup Terrarana terminals, including 139 Ischnocnema terminals (accounting for 29 of the 35 named Ischnocnema species) and 214 other Terrarana terminals within the families Brachycephalidae, Ceuthomantidae, Craugastoridae, and Eleutherodactylidae. Different optimality criteria produced similar results and mostly recovered the currently accepted families and genera. According to these topologies, Ischnocnema is not a monophyletic group. We propose new combinations for three species, relocating them to Pristimantis, and render Eleutherodactylus bilineatus Bokermann, 1975 incertae sedis status within Holoadeninae. The rearrangements in Ischnocnema place it outside the northernmost Brazilian Atlantic rainforest, where the fauna of Terrarana comprises typical Amazonian genera. Copyright © 2012 Elsevier Inc. All rights reserved.
Detecting and Analyzing Genetic Recombination Using RDP4.
Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev
2017-01-01
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.
Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea
Chia, Nicholas; Cann, Isaac; Olsen, Gary J.
2010-01-01
Background The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. Methodology/Principal Findings While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. Conclusion/Significance This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota. PMID:20532250
Evolution of climatic niche specialization: a phylogenetic analysis in amphibians
Bonetti, Maria Fernanda; Wiens, John J.
2014-01-01
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369
Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.
Bonetti, Maria Fernanda; Wiens, John J
2014-11-22
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Salzman, Shayla; Driscoll, Heather E.; Renner, Tanya; André, Thiago; Shen, Stacy; Specht, Chelsea D.
2015-01-01
Rapid radiations are notoriously difficult to resolve, yet understanding phylogenetic patterns in such lineages can be useful for investigating evolutionary processes associated with bursts of speciation and morphological diversification. Here we present an expansive molecular phylogeny of Costus L. (Costaceae Nakai) with a focus on the Neotropical species within the clade, sampling 47 of the known 51 Neotropical species and including five molecular markers for phylogenetic analysis (ITS, ETS, rps16, trnL-F, and CaM). We use the phylogenetic results to investigate shifts in pollination syndrome, with the intention of addressing potential mechanisms leading to the rapid radiation documented for this clade. Our ancestral reconstruction of pollination syndrome presents the first evidence in this genus of an evolutionary toggle in pollination morphologies, demonstrating both the multiple independent evolutions of ornithophily (bird pollination) as well as reversals to melittophily (bee pollination). We show that the ornithophilous morphology has evolved at least eight times independently with four potential reversals to melittophilous morphology, and confirm prior work showing that neither pollination syndrome defines a monophyletic lineage. Based on the current distribution for the Neotropical and African species, we reconstruct the ancestral distribution of the Neotropical clade as the Pacific Coast of Mexico and Central America. Our results indicate an historic dispersal of a bee-pollinated taxon from Africa to the Pacific Coast of Mexico/Central America, with subsequent diversification leading to the evolution of a bird-pollinated floral morphology in multiple derived lineages. PMID:26146450
Plastic body, permanent body: Czech representations of corporeality in the early twentieth century.
Sleigh, Charlotte
2009-12-01
In the early twentieth century, the body was seen as both an ontogenetic and a phylogenetic entity. In the former case, its individual development, it was manifestly changeable, developing from embryo to maturity and thence to a state of decay. But in the latter case, concerning its development as a species, the question was an open one. Was its phylogenetic nature a stationary snapshot of the slow process of evolution, or was this too mutable? Historians have emphasised that the question of acquired inheritance remained open into the twentieth century; this paper explores how various constructions of the individual as a phylogenetic episode--a stage in the race's evolution--related to representations of the body in the same period. A discussion of the work of the brothers Josef and Karel Capek offers a contextualised answer to the question of bodily representation. Karel Capek (1890-1938) explored the nature of the 'average man' through two different organisms, the robot and the amphibian, epitomes respectively of corporeal permanence and plasticity. Josef Capek (1887-1945), along with other members of the Group of Plastic Artists, explored visual representations of the body that challenged cubist Bergsonian norms. In so doing, he affirmed what his brother also held: that despite the constrictions imposed by the oppressive political conditions in which the Czechs found themselves, the individual body was a fragile but fluid entity, capable of effecting change upon the future evolution of humankind.
Braga, J; Loubes, J-M; Descouens, D; Dumoncel, J; Thackeray, J F; Kahn, J-L; de Beer, F; Riberon, A; Hoffman, K; Balaresque, P; Gilissen, E
2015-01-01
Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species' sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the "hypertrophied" cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.
Braga, J.; Loubes, J-M.; Descouens, D.; Dumoncel, J.; Thackeray, J. F.; Kahn, J-L.; de Beer, F.; Riberon, A.; Hoffman, K.; Balaresque, P.; Gilissen, E.
2015-01-01
Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species’ sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the “hypertrophied” cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record. PMID:26083484
Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.
Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J
2018-04-16
Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.
Maheux, Andrée F; Sellam, Adnane; Piché, Yves; Boissinot, Maurice; Pelletier, René; Boudreau, Dominique K; Picard, François J; Trépanier, Hélène; Boily, Marie-Josée; Ouellette, Marc; Roy, Paul H; Bergeron, Michel G
2016-12-01
Successful treatment of a Candida infection relies on 1) an accurate identification of the pathogenic fungus and 2) on its susceptibility to antifungal drugs. In the present study we investigated the level of correlation between phylogenetical evolution and susceptibility of pathogenic Candida spp. to antifungal drugs. For this, we compared a phylogenetic tree, assembled with the concatenated sequences (2475-bp) of the ATP2, TEF1, and TUF1 genes from 20 representative Candida species, with published minimal inhibitory concentrations (MIC) of the four principal antifungal drug classes commonly used in the treatment of candidiasis: polyenes, triazoles, nucleoside analogues, and echinocandins. The phylogenetic tree revealed three distinct phylogenetic clusters among Candida species. Species within a given phylogenetic cluster have generally similar susceptibility profiles to antifungal drugs and species within Clusters II and III were less sensitive to antifungal drugs than Cluster I species. These results showed that phylogenetical relationship between clusters and susceptibility to several antifungal drugs could be used to guide therapy when only species identification is available prior to information pertaining to its resistance profile. An extended study comprising a large panel of clinical samples should be conducted to confirm the efficiency of this approach in the treatment of candidiasis. Copyright © 2016. Published by Elsevier B.V.
Mingli Zhang; Xiaoli Hao; Stewart C. Sanderson; Byalt V. Vyacheslav; Alexander P. Sukhorukov; Xia Zhang
2014-01-01
Reaumuria is an arid adapted genus with a distribution center in Central Asia; its evolution and dispersal is investigated in this paper. Eighteen species of Reaumuria and nine species of two other genera in the Tamaricaceae, Tamarix and Myricaria, were sampled, and four markers ITS, rps16, psbB-psbH, and trnL-trnF were sequenced. The reconstructed phylogenetic tree is...
Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming
2017-12-08
The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.