Sample records for evolution reaction oer

  1. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  2. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  3. The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions.

    PubMed

    Al-Mamun, Mohammad; Zhu, Zhengju; Yin, Huajie; Su, Xintai; Zhang, Haimin; Liu, Porun; Yang, Huagui; Wang, Dan; Tang, Zhiyong; Wang, Yun; Zhao, Huijun

    2016-08-04

    A novel surface sulfur (S) doped cobalt (Co) catalyst for the oxygen evolution reaction (OER) is theoretically designed through the optimisation of the electronic structure of highly reactive surface atoms which is also validated by electrocatalytic OER experiments.

  4. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  5. Oxygen evolution reaction in nanoconfined carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing

    2018-05-01

    Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.

  6. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO 2 (110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Yuan; Nielsen, Robert J.; Goddard, William A.

    How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less

  7. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO 2 (110) surface

    DOE PAGES

    Ping, Yuan; Nielsen, Robert J.; Goddard, William A.

    2016-12-09

    How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less

  8. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.

    PubMed

    Ghosh, Srabanti; Basu, Rajendra N

    2018-06-21

    Electrocatalytic oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) have attracted widespread attention because of their important role in the application of various energy storage and conversion devices, such as fuel cells, metal-air batteries and water splitting devices. However, the sluggish kinetics of the HER/OER/ORR and their dependency on expensive noble metal catalysts (e.g., Pt) obstruct their large-scale application. Hence, the development of efficient and robust bifunctional or trifunctional electrocatalysts in nanodimension for both oxygen reduction/evolution and hydrogen evolution reactions is highly desired and challenging for their commercialization in renewable energy technologies. This review describes some recent developments in the discovery of bifunctional or trifunctional nanostructured catalysts with improved performances for application in rechargeable metal-air batteries and fuel cells. The role of the electronic structure and surface redox chemistry of nanocatalysts in the improvement of their performance for the ORR/OER/HER under an alkaline medium is highlighted and the associated reaction mechanisms developed in the recent literature are also summarized.

  10. Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media

    DOE PAGES

    Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...

    2015-10-22

    Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less

  11. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  12. In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction

    DOE PAGES

    Chen, Dawei; Dong, Chung-Li; Zou, Yuqin; ...

    2017-07-24

    Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less

  13. In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dawei; Dong, Chung-Li; Zou, Yuqin

    Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less

  14. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    PubMed

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance.

    PubMed

    Song, Fang; Bai, Lichen; Moysiadou, Aliki; Lee, Seunghwa; Hu, Chao; Liardet, Laurent; Hu, Xile

    2018-06-27

    Water splitting is the essential chemical reaction to enable the storage of intermittent energies such as solar and wind in the form of hydrogen fuel. The oxygen evolution reaction (OER) is often considered as the bottleneck in water splitting. Though metal oxides had been reported as OER electrocatalysts more than half a century ago, the recent interest in renewable energy storage has spurred a renaissance of the studies of transition metal oxides as Earth-abundant and nonprecious OER catalysts. This Perspective presents major progress in several key areas of the field such as theoretical understanding, activity trend, in situ and operando characterization, active site determination, and novel materials. A personal overview of the past achievements and future challenges is also provided.

  16. Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting.

    PubMed

    Xiong, Qizhong; Wang, Yun; Liu, Peng-Fei; Zheng, Li-Rong; Wang, Guozhong; Yang, Hua-Gui; Wong, Po-Keung; Zhang, Haimin; Zhao, Huijun

    2018-05-28

    The layer-structured MoS 2 is a typical hydrogen evolution reaction (HER) electrocatalyst but it possesses poor activity for the oxygen evolution reaction (OER). In this work, a cobalt covalent doping approach capable of inducing HER and OER bifunctionality into MoS 2 for efficient overall water splitting is reported. The results demonstrate that covalently doping cobalt into MoS 2 can lead to dramatically enhanced HER activity while simultaneously inducing remarkable OER activity. The catalyst with optimal cobalt doping density can readily achieve HER and OER onset potentials of -0.02 and 1.45 V (vs reversible hydrogen electrode (RHE)) in 1.0 m KOH. Importantly, it can deliver high current densities of 10, 100, and 200 mA cm -2 at low HER and OER overpotentials of 48, 132, 165 mV and 260, 350, 390 mV, respectively. The reported catalyst activation approach can be adapted for bifunctionalization of other transition metal dichalcogenides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Jingke; Kang, Zhenye; Yang, Gaoqiang

    We present that the oxygen evolution reaction (OER) is a half reaction in electrochemical devices, including low-temperature water electrolysis, which is considered as one of the most promising methods to generate hydrogen/oxygen for the storage of energy. It is affected by many factors, and its mechanism is still not completely understood. A proton exchange membrane electrolyzer cell (PEMEC) with optical access to the surface of anode catalyst layer (CL) coupled with a distinguished high-speed and micro-scale visualization system (HMVS) was developed to in situ investigate OERs. It was revealed in real time that OERs only occur on the anode CLmore » adjacent to liquid/gas diffusion layer (LGDL). The CL electrical conductivity plays a crucial role in OERs on CLs. The large in-plane electrical resistance of CLs becomes a threshold of OERs over the entire CL, and causes a lot of catalyst waste in the middle of LGDL pores. Moreover, the oxygen bubble nucleation, growth, and detachment and the effect of current density on those processes were also characterized. Here, this study proposes a new approach for better understanding the mechanisms of OERs and optimizing the design and fabrication of membrane electrode assemblies.« less

  18. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells

    DOE PAGES

    Mo, Jingke; Kang, Zhenye; Yang, Gaoqiang; ...

    2017-08-25

    We present that the oxygen evolution reaction (OER) is a half reaction in electrochemical devices, including low-temperature water electrolysis, which is considered as one of the most promising methods to generate hydrogen/oxygen for the storage of energy. It is affected by many factors, and its mechanism is still not completely understood. A proton exchange membrane electrolyzer cell (PEMEC) with optical access to the surface of anode catalyst layer (CL) coupled with a distinguished high-speed and micro-scale visualization system (HMVS) was developed to in situ investigate OERs. It was revealed in real time that OERs only occur on the anode CLmore » adjacent to liquid/gas diffusion layer (LGDL). The CL electrical conductivity plays a crucial role in OERs on CLs. The large in-plane electrical resistance of CLs becomes a threshold of OERs over the entire CL, and causes a lot of catalyst waste in the middle of LGDL pores. Moreover, the oxygen bubble nucleation, growth, and detachment and the effect of current density on those processes were also characterized. Here, this study proposes a new approach for better understanding the mechanisms of OERs and optimizing the design and fabrication of membrane electrode assemblies.« less

  19. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    PubMed

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  20. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Lanlan; Zhang, Jian; Jiang, Weitao; Zhao, Hong; Liu, Hongzhong

    2018-03-01

    The oxidation of water into molecular oxygen (oxygen evolution reaction, OER) is a pivotal reaction in many energy conversion devices. The high cost of IrO2, however, seriously hinder its large-scale applications in water oxidation. Here, we have at first reported a free-standing and flexible film electrode consisting of 2D β-Ni(OH)2/electrochemically-exfoliated graphene hybrid nanosheets (NiG-2), which is synthesized by a solvothermal reaction and an assembly process. The as-obtained NiG-2 film electrode exhibited an excellent electrocatalytic OER activity with an extremely low OER onset overpotential of ∼250 mV in a 1 M KOH aqueous solution, which is lower than these of the commercial Ir/C (370 mV at 10 mA cm-2) catalyst.

  1. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media.

    PubMed

    McBean, Coray L; Liu, Haiqing; Scofield, Megan E; Li, Luyao; Wang, Lei; Bernstein, Ashley; Wong, Stanislaus S

    2017-07-26

    The oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating "high aspect ratio" LaNiO 3 and LaMnO 3 nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO 3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. We observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO 3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO 2 .

  2. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  3. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Biaohua; He, Xiaobo; Yin, Fengxiang

    A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-xmore » and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.« less

  4. Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam

    Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less

  5. Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores

    DOE PAGES

    Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam; ...

    2018-02-16

    Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less

  6. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Wang, Yanyong; Qiao, Man; Li, Yafei; Wang, Shuangyin

    2018-04-01

    Intrinsically inferior electrocatalytic activity of NiFe layered double hydroxides (LDHs) nanosheets is considered as a limiting factor to inhibit the electrocatalytic properties for oxygen evolution reaction (OER). Proper defect engineering to tune the surface electronic configuration of electrocatalysts may significantly improve the intrinsic activity. In this work, the selective formation of cation vacancies in NiFe LDHs nanosheets is successfully realized. The as-synthesized NiFe LDHs-V Fe and NiFe LDHs-V Ni electrocatalysts show excellent activity for OER, mainly attributed to the introduction of rich iron or nickel vacancies in NiFe LDHs nanosheets, which efficiently tune the surface electronic structure increasing the adsorbing capacity of OER intermediates. Density functional theory (DFT) computational results also further indicate that the OER catalytic performance of NiFe LDHs can be pronouncedly improved by introducing Fe or Ni vacancies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO 3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media

    DOE PAGES

    McBean, Coray L.; Liu, Haiqing; Scofield, Megan E.; ...

    2017-07-17

    We present that the oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating “high aspect ratio” LaNiO 3 and LaMnO 3more » nanostructures. As the main focus of our demonstration of principle, we prepared as-synthesized LaNiO 3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. In addition, we observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO 3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO 2.« less

  8. The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Rao, Reshma R.; Wang, Xiao Renshaw

    Rutile RuO 2 is known to exhibit high catalytic activity for the oxygen evolution reaction (OER) and large pseudocapacitance associated with redox of surface Ru, however the mechanistic link between these properties and the role of pH is yet to be understood. Here we report that the OER activities of the (101), (001) and (111) RuO 2 surfaces were found to increase while the potential of a pseudocapacitive feature just prior to OER shifted to lower potentials (“super-Nernstian” shift) with increasing pH on the reversible hydrogen electrode (RHE) scale. This behavior is in contrast to the (100) and (110) surfacesmore » that have pH-independent Ru redox and OER activity. The link in catalytic and pseudocapacitive behavior illustrates the importance of this redox feature in generating active sites, building new mechanistic understanding of the OER.« less

  9. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    PubMed

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  10. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE. Electronic supplementary information (ESI) available: Supporting figures, with additional SEM images, EDS spectra, N2 sorption isotherms, charge-discharge curves, cycling performance, Ragone plot, Nyquist plots and linear scan voltammogram plots. See DOI: 10.1039/c5nr04603c

  11. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGES

    Wang, Jie; Han, Lili; Lin, Ruoqian; ...

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo 2O 4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo 2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo 2O 4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo 2O 4/C nanoparticles exhibit superior long-term stability for both themore » ORR and OER compared to commercial Pt/C. The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  12. Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides.

    PubMed

    Saveleva, Viktoriia A; Wang, Li; Teschner, Detre; Jones, Travis; Gago, Aldo S; Friedrich, K Andreas; Zafeiratos, Spyridon; Schlögl, Robert; Savinova, Elena R

    2018-06-07

    Progress in the development of proton exchange membrane (PEM) water electrolysis technology requires decreasing the anode overpotential, where the sluggish multistep oxygen evolution reaction (OER) occurs. This calls for an understanding of the nature of the active OER sites and reaction intermediates, which are still being debated. In this work, we apply synchrotron radiation-based near-ambient pressure X-ray photoelectron and absorption spectroscopies under operando conditions in order to unveil the nature of the reaction intermediates and shed light on the OER mechanism on electrocatalysts most widely used in PEM electrolyzers-electrochemical and thermal iridium oxides. Analysis of the O K-edge and Ir 4f spectra backed by density functional calculations reveals a universal oxygen anion red-ox mechanism regardless of the nature (electrochemical or thermal) of the iridium oxide. The formation of molecular oxygen is considered to occur through a chemical step from the electrophilic O I- species, which itself is formed in an electrochemical step.

  13. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05033j

    PubMed Central

    Xu, Junyuan; Li, Junjie; Xiong, Dehua; Zhang, Bingsen; Liu, Yuefeng; Wu, Kuang-Hsu; Amorim, Isilda; Li, Wei

    2018-01-01

    Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi- and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH– groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm–2 and showing a high turnover frequency (TOF) of ≥0.94 s–1 at the overpotential of 350 mV. PMID:29780476

  14. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm-2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  15. Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER)

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobing; Chen, Juan; Chen, Yuqing; Feng, Pingjing; Lai, Huixian; Li, Jintang; Luo, Xuetao

    2018-03-01

    Herein, Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co3O4/NPC composites. When applied as catalysts for the oxygen evolution reaction (OER), the M-Co3O4/NPC composites derived from the flower-like ZIF-67 showed superior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co3O4/NPC composite displayed a small over-potential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 mV dec-1, and a desirable stability. (94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co3O4/NPC composite in the OER was attributed to its favorable structure. [Figure not available: see fulltext.

  16. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    PubMed Central

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  17. Brownmillerite-type Ca2 FeCoO5 as a Practicable Oxygen Evolution Reaction Catalyst.

    PubMed

    Tsuji, Etsushi; Motohashi, Teruki; Noda, Hiroyuki; Kowalski, Damian; Aoki, Yoshitaka; Tanida, Hajime; Niikura, Junji; Koyama, Yukinori; Mori, Masahiro; Arai, Hajime; Ioroi, Tsutomu; Fujiwara, Naoko; Uchimoto, Yoshiharu; Ogumi, Zempachi; Habazaki, Hiroki

    2017-07-21

    Here, we report remarkable oxygen evolution reaction (OER) catalytic activity of brownmillerite (BM)-type Ca 2 FeCoO 5 . The OER activity of this oxide is comparable to or beyond those of the state-of-the-art perovskite (PV)-catalyst Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (BSCF) and a precious-metal catalyst RuO 2 , emphasizing the importance of the characteristic BM structure with multiple coordination environments of transition metal (TM) species. Also, Ca 2 FeCoO 5 is clearly advantageous in terms of expense/laboriousness of the material synthesis. These facts make this oxide a promising OER catalyst used in many energy conversion technologies such as metal-air secondary batteries and hydrogen production from electrochemical/photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less

  19. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  20. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    PubMed

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  1. Ni xWO 2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction

    DOE PAGES

    Xi, Zheng; Mendoza-Garcia, Adriana; Zhu, Huiyuan; ...

    2017-01-13

    Ni xWO 2.72 nanorods (NRs) are synthesized by a one-pot reaction of Ni(acac) 2 and WCl 4. In the rod structure, Ni(II) intercalates in the defective perovskite-type WO 2.72 and is stabilized. The Ni xWO 2.72 NRs show the x-dependent electrocatalysis for the oxygen evolution reaction (OER) in 0.1M KOH with Ni 0.78WO 2.72 being the most efficient, even outperforming the commercial Ir-catalyst. Lastly, the synthesis is not limited to Ni xWO 2.72 but can be extended to M xWO 2.72 (M = Co, Fe) as well, providing a new class of oxide-based catalysts for efficient OER and other energymore » conversion reactions.« less

  2. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  3. Ultrafine and highly disordered Ni 2 Fe 1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Song, Junhua; Zhu, Chengzhou

    Nickel iron hydroxides are the most promising non-noble electrocatalysts for oxygen evolution reaction (OER) in alkaline media. By in situ reduction of metal precursors, compositionally controlled three-dimensional (3D) NixFeyB nanofoams (NFs) are synthesized with high surface area and uniformly distributed bimetallic networks. The resultant ultrafine amorphous Ni2Fe1B NFs exhibit extraordinary electrocatalytic performance toward OER and overall water splitting in alkaline media. At a potential as low as 1.42 V (vs. RHE), Ni2Fe1B NFs can deliver a current density of 10 mA/cm2 and show negligible activity loss after 12 hours’ stability test. Even at large current flux of 100 mA/cm2, anmore » ultralow overpotential of 0.27 V is achieved, which is about 0.18 V more negative than benchmark RuO2. Both ex-situ Mӧssbauer spectroscopy and X-ray Absorption Spectroscopy (XAS) reveal a phase separation and transformation for the Ni2Fe1B catalyst during OER process. The evolution of oxidation state and disordered structure of Ni2Fe1B might be a key to the high catalytic performance for OER.« less

  4. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less

  5. First-principles study of oxygen evolution reaction on Co doped NiFe-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Perdew, John; Yan, Qimin

    The conversion of solar energy to renewable fuels is a grand challenge. One of the crucial steps for this energy conversion process is the discovery of efficient catalysts with lower overpotential for the oxygen evolution reaction (OER). Layered double hydroxides (LDH) with earth abundant elements such as Ni and Fe have been found as promising OER catalysts and shown to be active for water oxidation. Doping is one of the feasible ways to even lower the overpotential of host materials and breaks the linear scaling law. In this talk we'll present our study on the reaction mechanism of OER on pure and Co-doped NiFe-LDH systems in alkaline solution. We study the absorption energetics of reaction intermediate states and calculate the thermodynamic reaction energy using density functional theory with the PBE +U and the newly developed SCAN functionals. It is shown that the NiFe-LDH system with Co dopants has lower overpotential and higher activity compared with the undoped system. The improvement in activity is related to the presence of Co states in the electronic structure. The work provides a clear clue for the further improvement of the OER activity of LDH systems by chemical doping. The work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  6. Identifying the Active Surfaces of Electrochemically Tuned LiCoO 2 for Oxygen Evolution Reaction

    DOE PAGES

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; ...

    2017-04-18

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

  7. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution

    NASA Astrophysics Data System (ADS)

    Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao

    2018-06-01

    Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.

  8. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  9. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE PAGES

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    2017-04-07

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  10. CuCo 2O 4 ORR/OER Bi-functional catalyst: Influence of synthetic approach on performance

    DOE PAGES

    Serov, Alexey; Andersen, Nalin I.; Roy, Aaron J.; ...

    2015-02-07

    A series of CuCo 2O 4 catalysts were synthesized by pore forming, sol-gel, spray pyrolysis and sacrificial support methods. Catalysts were characterized by XRD, SEM, XPS and BET techniques. The electrochemical activity for the oxygen reduction and oxygen evolution reactions (ORR and OER) was evaluated in alkaline media by RRDE. Density Functional Theory was used to identify two different types of active sites responsible for ORR/OER activity of CuCo 2O 4 and it was found that CuCo 2O 4 can activate the O-O bond by binding molecular oxygen in bridging positions between Co or Co and Cu atoms. It wasmore » found that the sacrificial support method (SSM) catalyst has the highest performance in both ORR and OER and has the highest content of phase-pure CuCo 2O 4. It was shown that the presence of CuO significantly decreases the activity in oxygen reduction and oxygen evolution reactions. As a result, the half-wave potential (E 1/2) of CuCo 2O 4-SSM was found as 0.8 V, making this material a state-of-the-art, unsupported oxide catalyst.« less

  11. Ultrafast and large scale preparation of superior catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Tian, Xianqing; Liu, Yunhua; Xiao, Dan; Sun, Jie

    2017-10-01

    The development of efficient and earth abundant catalyst for the oxygen evolution reaction (OER) is a key challenge for the renewable energy research community. Here, we report a facile and ultrafast route to immobilize nickel-iron layered double hydroxide (NiFe-LDH) nanoparticles on nickel foam (NF) via soaking the direct electroless deposited prussian blue analogue (PBA) on NF in 1 M KOH. This NiFe-LDH/NF electrode can be prepared in a few seconds without further treatments. It has three-dimensional interpenetrating network originated from its PBA precursor which facilitate the diffusion and ad/desorption of the reactants and producing for OER. And further characterization of the Faradaic efficiency and forced convection tests show direct evidence to demonstrate the formation of free intermediate(s) in the OER process. This electrode (typically NiFe-LDH-20s/NF) exhibits outstanding electrocatalytic activity with low overpotential of ∼0.240 V at 10 mA cm-2, low Tafel slope of 38 mV dec-1, and great stability. This feasible strategy affords a new strategy for the large scale manufacture of low-cost, effective and robust OER electrodes.

  12. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  13. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  14. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  15. NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues.

    PubMed

    Wang, Tanyuan; Nam, Gyutae; Jin, Yue; Wang, Xingyu; Ren, Pengju; Kim, Min Gyu; Liang, Jiashun; Wen, Xiaodong; Jang, Haeseong; Han, Jiantao; Huang, Yunhui; Li, Qing; Cho, Jaephil

    2018-05-21

    A facile H 2 O 2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm -2 after coupling with carbon nanotubes, and outstanding performance in Zn-air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high-performance and cost-efficient OER catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.

    PubMed

    Pu, Zonghua; Zhang, Chengtian; Amiinu, Ibrahim Saana; Li, Wenqiang; Wu, Lin; Mu, Shichun

    2017-05-17

    Transition metal phosphides (TMPs) have been identified as promising nonprecious metal electrocatalyst for hydrogen evolution reaction (HER) and other energy conversion reactions. Herein, we reported a general strategy for synthesis of a series of TMPs (Fe 2 P, FeP, Co 2 P, CoP, Ni 2 P, and Ni 12 P 5 ) nanoparticles (NPs) with different metal phases embedded in a N-doped carbon (NC) matrix using metal salt, ammonium dihydrogen phosphate, and melamine as precursor with varying molar ratios and thermolysis temperatures. The resultant TMPs can serve as highly active and durable bifunctional electrocatalyst toward HER and oxygen evolution reaction (OER). In particular, the Ni 2 P@NC phase only requires an overpotential of ∼138 mV to derive HER in 0.5 M H 2 SO 4, and ∼320 mV for OER in 1.0 M KOH at the current density of 10 mA cm -2 . Because of the encapsulation of NC that can effectively prevent corrosion of embedded TMP NPs, Ni 2 P@NC exhibits almost unfading catalytic performance even after 10 h under both acidic and alkaline solutions. This synthesis strategy provides a new avenue to exploring TMPs as highly active and stable electrocatalyst for the HER, OER, and other electrochemical applications.

  17. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction

    DOE PAGES

    Chang, Seo Hyoung; Connell, Justin G.; Danilovic, Nemanja; ...

    2014-07-25

    Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity–stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO 3 thin films in alkaline solutions. We propose that the electrochemical transformation of either watermore » (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state ( n) of Ru: from stable but inactive Ru 4+ to unstable but active Ru n>4+. We conclude that if the oxide is stable then it is completely inactive for the OER. As a result, a practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.« less

  18. Role of LiCoO 2 Surface Terminations in Oxygen Reduction and Evolution Kinetics

    DOE PAGES

    Han, Binghong; Qian, Danna; Risch, Marcel; ...

    2015-03-22

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities of LiCoO 2 nanorods with sizes in the range from 9 to 40 nm were studied in alkaline solution. The sides of these nanorods were terminated with low-index surfaces such as (003) while the tips were terminated largely with high-index surfaces such as (104) as revealed by high-resolution transmission electron microscopy. Electron energy loss spectroscopy demonstrated that low-spin Co 3+ prevailed on the sides, while the tips exhibited predominantly high- or intermediate-spin Co 3+. We correlated the electronic and atomic structure to higher specific ORR and OER activities at themore » tips as compared to the sides, which was accompanied by more facile redox of Co 2+/3+ and higher charge transferred per unit area. These findings highlight the critical role of surface terminations and electronic structures of transition metal oxides on the ORR and OER activity.« less

  19. Asymmetric 3d Electronic Structure for Enhanced Oxygen Evolution Catalysis.

    PubMed

    Liu, Yang; Yin, Shibin; Shen, Pei Kang

    2018-06-27

    The oxygen evolution reaction (OER) is an essential process for renewable energy, and designing a bifunctional oxygen electrocatalyst with high catalytic performance plays a significant role. In this work, FeS, Ni 3 S 2 , Fe 5 Ni 4 S 8 , and N, O, S-doped meshy carbon base were successfully synthesized. The sample containing Fe 5 Ni 4 S 8 exhibited excellent OER performance. The density functional theory calculations indicate that the partial density of states for 3d electrons (3d-PDOS) of Fe and Ni atoms are changed from monometallic sulfide to bimetallic sulfide at the sulfur vacancy. The asymmetric 3d electronic structure optimizes the 3d-PDOS of Fe and Ni atoms, and leads to an enhanced OER activity. This work provides a new strategy to prepare a low-cost electrocatalyst for oxygen evolution with high-efficiency.

  20. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  1. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-02

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).

  2. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  3. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation.

    PubMed

    Masud, Jahangir; Ioannou, Polydoros-Chrysovalantis; Levesanos, Nikolaos; Kyritsis, Panayotis; Nath, Manashi

    2016-11-23

    We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SeP i Pr 2 ) 2 N} 2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm -2 for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g -1 ) and a much higher TOF value (0.26 s -1 ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Free-standing ternary NiWP film for efficient water oxidation reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng; Zhou, Kuo; Ma, Lili; Liang, Yanqin; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Li, Zhaoyang

    2018-03-01

    High-efficient catalysts for oxygen evolution reaction (OER) is of great concern in improving energy efficiency for water splitting. Here we report a high-performance OER electrocatalyst of nickel-tungsten-phosphorus (NiWP) film prepared by template method. This free-standing ternary electrocatalyst exhibits a remarkable electrocatalytic activity of OER in alkaline medium due to the synergetic effect among these elements and the good electrical conductivity. The reported NiWP composite catalyst has an overpotential of as low as 0.4 V (vs. RHE) at 30 mA cm-2, better than that of the commercial RuO2 catalyst. Moreover, a small charge transfer resistance of 4.06 Ω and a Tafel slope of 68 mV dec-1 demonstrate the outstanding catalytic activity.

  5. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential atmore » 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.« less

  6. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.

  7. Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Xie, Xulan; Liu, Yuanjun; Li, Xiaoyun; Xu, Keqiang; Shen, Xiaoping; Yao, Yinjie; Shah, Sayyar Ali

    2018-06-01

    The sluggish oxygen evolution kinetics involved in water splitting and various metal-air batteries makes the effective and inexpensive electrocatalysts be highly desirable for oxygen evolution reaction (OER). Herein, an effective and facile two-step route is developed to construct Fe3O4@NiSx composite loaded on reduced graphene oxide (rGO). The morphology and microstructure of the composites were characterized by different characterization techniques. The obtained composites show amounts of heterointerfaces. The shift of binding energy in X-ray photoelectron spectrum demonstrates the existence of interfacial charge transfer effect between Fe3O4 and NiSx. The optimized Fe3O4@NiSx/rGO sample exhibits excellent electrocatalytic performance toward OER in alkaline media, showing 10 mA·cm-2 at η = 330 mV, lower Tafel slope (35.5 mV·dec-1), and good durability, demonstrating a great perspective. The excellent OER performance can be ascribed to the synergetic effect between Fe and Ni species. It is believed that the heterointerfaces between Fe3O4 and NiSx perform as active centers for OER.

  8. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE PAGES

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh; ...

    2017-07-27

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  9. A highly active and stable IrO x/SrIrO 3 catalyst for the oxygen evolution reaction

    DOE PAGES

    Seitz, Linsey C.; Dickens, Colin F.; Nishio, Kazunori; ...

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x/SrIrO 3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3. This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidicmore » electrolyte. Here, density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x/SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.« less

  10. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap betweenmore » Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.« less

  11. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  12. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.

    PubMed

    Yoon, Ki Ro; Kim, Dae Sik; Ryu, Won-Hee; Song, Sung Ho; Youn, Doo-Young; Jung, Ji-Won; Jeon, Seokwoo; Park, Yong Joon; Kim, Il-Doo

    2016-08-23

    The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists ofmore » NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  14. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.

    PubMed

    Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Copyright © 2016, American Association for the Advancement of Science.

  15. Water Splitting by Thin Film Metal-Oxo Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Daniel

    2013-03-15

    The dropping price of silicon photovoltaics in the United States is causing load defection to solar supply at an accelerated pace. This conversion to solar and, more generally, other renewable energy sources has accordingly turned the energy research focus from generation to one of storage. Truly disruptive improvements in energy storage technologies are limited by energy density. This limitation, however, does not apply to fuels, which possess the energy density needed for large-scale energy storage. The first step of the basic science needed to drive such historic restructuring of the U.S. energy infrastructure begins with the solar-driven generation of hydrogenmore » and oxygen from water. The solar-produced hydrogen may then be combined with carbon dioxide to deliver any number of fuels. Obviously, light does not directly act on water to engender its splitting into its elemental components. Hence, catalysts are needed to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Of these two reactions, the four-electron, four-proton oxidation of OER is the more kinetically challenging reaction, and therefore the development of energy efficient solar fuels processes demands that OER be accomplished at a minimal overpotential. The research completed in this program developed catalysts that drive OER and at the same time meet the important criteria of (1) using non-critical materials that (2) are easy to assemble and (3) accomplish OER under simple conditions. Research was designed to uncover the chemical principles that underlie the self-assembly of metal oxide oxygen evolving catalysts (M-OEC) from the metals of M = Mn, Co, and Ni. For example, a dogma of heterogeneous catalysis of any sort is that “edges” matter in promoting catalytic transformations. We provided a rationale for such dogma by showing that the OER in Co-OEC occurred at a dimensionally reduced dicobalt edge site. Edge site reactivity was clearly revealed analyzing 18O labeled OER with differential electrochemical mass spectrometry (DEMS) of Co-OEC. The OER mechanism of M-OECs was examined with complementary studies of model dicobalt compounds that captured the critical steps of the OER reaction. Additionally, the role of activating M-OECS with metal ion dopants was defined by developing structure–function relationships, guided by the principles of inorganic chemistry. We found that the M(IV) oxidation state in oxidic OER frameworks was correlated to the presence of the dopant metal, as assessed by coulometric titration and ICP-MS analysis. To investigate why greater M(IV) valence is beneficial to greater catalytic OER activity, we probed the influence of formal M valence on the electronic structure of oxygen ions in M-OECs by undertaking O and Ni K-edge spectroscopy, which revealed greater M-O covalency and hence M-oxyl radical character with M(IV) formation. Such oxyl radical character is consistent with increasing evidence for the role of oxygen radicals in O–O bond formation by a proton-coupled electron transfer mechanism involving water, to generate a hydroperoxide intermediate from which oxygen is generate. In accomplishing this science, the DOE program leveraged its expertise in spectroscopy and structural methods, inorganic and materials synthesis, and electrochemical characterization. The knowledge garnered from this proposed program enables the design of next generation catalysts with improved OER kinetics that operate over a wide range of conditions and environments.« less

  16. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  17. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    PubMed

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  18. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    PubMed Central

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  19. Regulating the active species of Ni(OH)2 using CeO2: 3D CeO2/Ni(OH)2/carbon foam as an efficient electrode for the oxygen evolution reaction.

    PubMed

    Liu, Zhengqing; Li, Na; Zhao, Hongyang; Zhang, Yi; Huang, Yunhui; Yin, Zongyou; Du, Yaping

    2017-04-01

    Three dimensional (3D) N, O and S doped carbon foam (NOSCF) is prepared as a substrate for in situ vertically grown Ni(OH) 2 nanosheets. As designed Ni(OH) 2 /NOSCF possesses strong electrostatic interactions with OH - ions due to many C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O groups existing in NOSCF, which can facilitate the formation of crucial NiOOH intermediates during the OER process. CeO 2 nanoparticles (NPs) of ∼3.3 nm in size are decorated on Ni(OH) 2 nanosheets to design a highly efficient CeO 2 /Ni(OH) 2 /NOSCF electrocatalyst for the oxygen evolution reaction (OER). The CeO 2 NP decorated Ni(OH) 2 /NOSCF not only exhibits a remarkably improved OER performance with an onset potential of 240 mV, outperforming most reported non-noble metal based OER electrocatalysts, but also possesses a small Tafel slope of 57 mV dec -1 and excellent stability under different overpotentials. The synergistic effect of producing more active species of Ni III/IV and accelerating the charge transfer for Ni(OH) 2 /NOSCF by the introduction of CeO 2 NPs is also investigated. These results demonstrate the possibility of designing energy efficient OER catalysts with the assistance of earth abundant CeO 2 -based catalysts.

  20. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.

    PubMed

    Yeo, Boon Siang; Bell, Alexis T

    2011-04-13

    Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society

  1. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting

    NASA Astrophysics Data System (ADS)

    Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng

    2018-05-01

    Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.

  2. Impact of IrRu Oxygen Evolution Reaction Catalysts on Pt Nanostructured Thin Films under Start-Up/Shutdown Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, David A; More, Karren Leslie; Atanasoska, Liliana

    Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopymore » were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.« less

  3. Gold-supported cerium-doped NiO x catalysts for water oxidation

    DOE PAGES

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; ...

    2016-04-29

    Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiO x films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeO x–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highlymore » active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeO x–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.« less

  4. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  5. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Chao; Feng, Zhenxing; Scherer, Günther G.

    2017-04-10

    Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal–air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3-xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7,more » 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.« less

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  7. Uniquely confining Cu2S nanoparticles in graphitized carbon fibers for enhanced oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqian; Liu, Li; Zhang, Yan; Zhang, Huijuan; Wang, Yu

    2017-08-01

    Up to now, the literature on Cu2S with specific morphology applied to oxygen evolution reaction (OER) in the electrocatalytic field has been limited. In this work, unique peapod-like Cu2S/C exhibiting superb electrocatalytic performance toward OER is successfully synthesized, by employing Cu(OH)2 nanorods as the template and nontoxic glucose as the carbon source and then annealing with sublimed sulfur. It can be seen that this work explores a new application area for Cu2S. More precisely, the novel morphology contributes to increasing the electrochemical active surface area effectively and promoting contact between the Cu2S nanoparticles and the electrolyte. During electrochemical measurements, the peapod-like Cu2S/C shows enhanced electrocatalytic activity with a low overpotential of 401 mV at the current density of 10 mA cm-2 and a Tafel slope of 52 mV dec-1. More importantly, our material is able to maintain stability for at least 8 h at constant potential and the current loss is negligible after 2000 cycles. Obviously, these striking properties fully demonstrate that the peapod-like Cu2S/C as an efficient catalyst shows great promise for OER.

  8. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  9. Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions

    DOE PAGES

    Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.; ...

    2016-11-29

    Here, iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reac-tion (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron-nickel nanoparticles were synthesized using a multi-step procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe-Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm 2, the overpotential for monometallic iron and nickel nanoparticles was 421 mV and 476 mV, respectively, while the bimetallic Fe-Nimore » nanoparticles had a greatly reduced overpotential of 256 mV. At 10 mA/cm 2, bimetallic Fe-Ni nanoparticles had an overpotential of 311 mV. Spec-troscopy characterization suggests that the primary phase of nickel in Fe-Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.« less

  10. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.

  11. A self-assembled Ni(cyclam)-BTC network on ITO for an oxygen evolution catalyst in alkaline solution.

    PubMed

    Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho

    2017-03-25

    A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.

  12. Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries.

    PubMed

    Liu, Xiao; Gong, Hao; Wang, Tao; Guo, Hu; Song, Li; Xia, Wei; Gao, Bin; Jiang, Zhongyi; Feng, Linfei; He, Jianping

    2018-03-02

    Perovskite-type oxides based on rare-earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite-type LaMnO 3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO 3 , the element cobalt is doped into perovskite-type LaMnO 3 through a sol-gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn 1-x Co x O 3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn 1-x Co x O 3 . If x=0.3, LaMn 0.7 Co 0.3 O 3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO 3 . Furthermore, the results demonstrate that LaMn 0.7 Co 0.3 O 3 is a promising cost-effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction.

    PubMed

    Luan, Chenglong; Liu, Guangli; Liu, Yujie; Yu, Lei; Wang, Yao; Xiao, Yun; Qiao, Hongyan; Dai, Xiaoping; Zhang, Xin

    2018-04-24

    To engineer low-cost, high-efficiency, and stable oxygen evolution reaction (OER) catalysts, structure effects should be primarily understood. Focusing on this, we systematically investigated the relationship between structures of materials and their OER performances by taking four 2D α-Ni(OH) 2 as model materials, including layer-stacked bud-like Ni(OH) 2 -NB, flower-like Ni(OH) 2 -NF, and petal-like Ni(OH) 2 -NP as well as the ultralarge sheet-like Ni(OH) 2 -NS. For the first three (layer-stacking) catalysts, with the decrease of stacked layers, their accessible surface areas, abilities to adsorb OH - , diffusion properties, and the intrinsic activities of active sites increase, which accounts for their steadily enhanced activity. As expected, Ni(OH) 2 -NP shows the lowest overpotential (260 mV at 10 mA cm -2 ) and Tafel slope (78.6 mV dec -1 ) with a robust stability over 10 h among the samples, which also outperforms the benchmark IrO 2 (360 mV and 115.8 mV dec -1 ) catalyst. Interestingly, Ni(OH) 2 -NS relative to Ni(OH) 2 -NP exhibits even faster substance diffusion due to the sheet-like structure, but shows inferior OER activity, which is mainly because the Ni(OH) 2 -NP with a smaller size possesses more active boundary sites (higher reactivity of active sites) than Ni(OH) 2 -NS, considering the adsorption properties and accessible surface areas of the two samples are quite similar. By comparing the different structures and their OER behaviors of four α-Ni(OH) 2 samples, our work may shed some light on the structure effect of 2D materials and accelerate the development of efficient OER catalysts.

  14. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting.

    PubMed

    Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2018-05-29

    In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

  15. Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sakita, Alan M. P.; Noce, Rodrigo Della; Vallés, Elisa; Benedetti, Assis V.

    2018-03-01

    A novel, ultra-fast, and one-step method for obtaining an effective catalyst for oxygen evolution reaction is proposed. The procedure consists in direct electrodeposition, in a free-nitrate bath, of CoFe alloy films covered with layered double hydroxides (LDH), by potentiostatic mode, in continuous or pulsed regime. The catalyst is directly formed on glassy carbon substrates. The best-prepared catalyst material reveals a mixed morphology with granular and dendritic CoFe alloy covered with a sponge of CoFe-LDH containing a Cl interlayer. An overpotential of η10 mA = 286 mV, with a Tafel slope of 48 mV dec-1, is obtained for the OER which displays the enhanced properties of the catalyst. These improved results demonstrate the competitiveness and efficacy of our proposal for the production of OER catalysts.

  16. Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis

    DOE PAGES

    Thenuwara, Akila C.; Shumlas, Samantha L.; Attanayake, Nuwan H.; ...

    2016-10-10

    Here we show that the activity of cobalt for the oxygen evolution reaction (OER) can be enhanced by confining it in the interlayer region of birnessite (layered manganese oxide). The cobalt intercalation was verified by employing state-of-the-art characterization techniques such as XRD, Raman and electron microscopy. It is demonstrated that the Co 2+/birnessite electrocatalyst can reach 10 mA cm -2 at an overpotential of 360 mV with near unity Faradaic efficiency. This overpotential is lower than that which can be achieved by using a pure cobalt hydroxide electrocatalyst for the OER. Furthermore, the Co 2+/birnessite catalyst shows no degradation aftermore » 1000 electrochemical cycles.« less

  17. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    PubMed

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatman, Shawn ME; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-01-28

    Hematite (α-Fe2O3) persists as a promising candidate for photoelectrochemical water splitting but a slow oxygen evolution reaction (OER) at its surfaces remains a limitation. Here we extend a series of studies that examine pH-dependent surface potentials and electron transfer properties of effectively perfect low-index crystal faces of hematite in contact with simple electrolyte. Zero resistance amperometry was performed in a two electrode configuration to quantify spontaneous dark current between hematite crystal face pairs (001)/(012), (001)/(113), and (012)/(113) at pH 3. Exponentially decaying currents initially of up to 200 nA were reported between faces over four minute experiments. Fourth order ZRAmore » kinetics indicated rate limitation by the OER for current that flows between (001)/(012) and (001)/(113) face pairs, with the (012) and (113) faces serving as the anodes when paired with (001). The cathodic partner reaction is reductive dissolution of the (001) face, converting surface Fe3+ to solubilized aqueous Fe2+, at a rate maintained by the OER at the anode. In contrast, OER rate limitation does not manifest for the (012)/(113) pair. The uniqueness of the (001) face is established in terms of a faster intrinsic ability to accept the protons required for the reductive dissolution reaction. OER rate limitation inversely may thus arise from sluggish kinetics of hematite surfaces to dispense with the protons that accompany the four-electron OER. The results are explained in terms of semi-quantitative energy band diagrams. The finding may be useful as a consideration for tailoring the design of polycrystalline hematite photoanodes that present multiple terminations to the interface with electrolyte.« less

  19. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhong; Zhang, Yu; Liu, Shizhong

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  20. Reaction mechanism for oxygen evolution on RuO 2, IrO 2, and RuO 2@IrO 2 core-shell nanocatalysts

    DOE PAGES

    Ma, Zhong; Zhang, Yu; Liu, Shizhong; ...

    2017-10-28

    Iridium dioxide, IrO 2, is second to the most active RuO 2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. In order to improve the activity of IrO 2-based catalysts, we prepared RuO 2@IrO 2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO 2@IrO 2 is threefold that of IrO 2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps ofmore » most active catalysts is important for further activity enhancement. Here, we verified theory-proposed sequential water dissociation pathway in which the O—O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO 2 and RuO 2@IrO 2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO 2.« less

  1. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction.

    PubMed

    Ni, Yuanman; Yao, Lihua; Wang, Yin; Liu, Bing; Cao, Minhua; Hu, Changwen

    2017-08-17

    The oxygen evolution reaction (OER) is a vital half-reaction in water splitting and metal-air batteries. Developing earth-abundant, highly efficient and durable OER catalysts has faced huge challenges until now, because OER is a strict kinetic sluggish process. Herein, we report the construction of hierarchically porous graphitized carbon (HPGC) supported NiFe layered double hydroxides (LDHs) with a core-shell structure (denoted as HPGC@NiFe) by a facile strategy. The HPGC was first obtained by pyrolysing phenolic resin nanospheres with FeCl 3 and ZnCl 2 as the catalyst and the activator, respectively. Then the NiFe LDH arrays were directly grown on the HPGC by a one-step hydrothermal method. The as-synthesized HPGC@NiFe reveals excellent OER properties with a low onset potential, a lower overpotential of 265 mV (corresponding to the current density at 10 mA cm -2 ) and a small Tafel slope (56 mV per decade). And its catalytic activity is even superior to that of the start-of-the-art noble-metal catalyst IrO 2 /C. Notably, the HPGC@NiFe electrode shows admirable stability measured by performing 2000 cycle CVs and long-term electrolysis for 50 h. The prominent performance can be attributed to the synergistic effect between the NiFe-LDHs and the hierarchically porous graphitized carbon, in which the former can increase the exposure of the active sites, while the latter can increase the charge transfer efficiency. Our research implies the possibility for the development of low-cost layered double hydroxides as a promising candidate in electrochemical energy storage and conversion equipment.

  2. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  3. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  4. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

    DOE PAGES

    Zhou, Daojin; Cai, Zhao; Bi, Yongmin; ...

    2018-02-02

    Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotentialmore » of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. Finally, this increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.« less

  5. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    PubMed Central

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-01-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found. PMID:28287134

  6. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    NASA Astrophysics Data System (ADS)

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-03-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found.

  7. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    PubMed Central

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.

    2017-01-01

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid. PMID:28137835

  8. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.

    2017-01-30

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

  9. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.

    PubMed

    Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike; Bernsmeier, Denis; Dresp, Sören; Gliech, Manuel; Jusys, Zenonas; Chernev, Petko; Kraehnert, Ralph; Dau, Holger; Strasser, Peter

    2017-02-08

    Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity. Analysis of DEMS-based faradaic oxygen efficiency and electrochemical UV-vis traces consistently confirmed our voltammetric observations, evidencing both a more cathodic O 2 release and a more cathodic onset of Ni oxidation at higher pH. Using UV-vis, which can monitor the amount of oxidized Ni +3/+4 in situ, confirmed an earlier onset of the redox process at high electrolyte pH and further provided evidence of a smaller fraction of Ni +3/+4 in mixed Ni-Fe centers, confirming the unresolved paradox of a reduced metal redox activity with increasing Fe content. A nonmonotonic super-Nernstian pH dependence of the redox peaks with increasing Fe content-displaying Pourbaix slopes as steep as -120 mV/pH-suggested a two proton-one electron transfer. We explain and discuss the experimental pH effects using refined coupled (PCET) and decoupled proton transfer-electron transfer (PT/ET) schemes involving negatively charged oxygenate ligands generated at Fe centers. Together, we offer new insight into the catalytic reaction dynamics and associated catalyst redox chemistry of the most important class of alkaline OER catalysts.

  10. Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst

    NASA Astrophysics Data System (ADS)

    Fang, Yiyun; Li, Xinzhe; Li, Feng; Lin, Xiaoqing; Tian, Min; Long, Xuefeng; An, Xingcai; Fu, Yan; Jin, Jun; Ma, Jiantai

    2016-09-01

    Metal organic frameworks (MOF) derived carbonaceous materials have emerged as promising bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts for electrochemical energy conversion and storage. But previous attempts to overcome the poor electrical conductivity of MOFs hybrids involve a harsh high-template pyrolytic process to in situ form carbon, which suffer from extremely complex operation and inevitable carbon corrosion at high positive potentials when OER is operated. Herein, a self-assembly approach is presented to synthesize a non-precious metal-based, high active and strong durable Co-MOF@CNTs bifunctional catalyst for OER and ORR. CNTs not only improve the transportation of the electrons but also can sustain the harsh oxidative environment of OER without carbon corrosion. Meanwhile, the unique 3D hierarchical structure offers a large surface area and stable anchoring sites for active centers and CNTs, which enables the superior durability of hybrid. Moreover, a synergistic catalysis of Co(II), organic ligands and CNTs will enhance the bifunctional electrocatalytic performance. Impressively, the hybrid exhibits comparable OER and ORR catalytic activity to RuO2 and 20 wt% Pt/C catalysts and superior stability. This facile and versatile strategy to fabricating MOF-based hybrids may be extended to other electrode materials for fuel cell and water splitting applications.

  11. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Shetty, Sandhya; Hegde, A. Chitharanjan

    2017-02-01

    In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

  12. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    PubMed

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction

    DOE PAGES

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei; ...

    2018-03-21

    Exploring low-cost and highly efficient electrocatalysts toward the oxygen evolution reaction (OER) is of significant importance, although facing great challenges for sustainable energy systems. In this study, amorphous NiFe-based porous nanocubes (Ni–Fe–O–P, Ni–Fe–O–B, and Ni–Fe–O–S) are successfully synthesized via simple and cost-effective one-step calcination of Ni–Fe based metal–organic frameworks (MOFs) and heteroatom containing molecules. The resulting three materials maintain a well-defined porous nanocube morphology with heteroatoms uniformly distributed in the structure. The unique porous structure can effectively provide more active sites and shorten the mass transport distance. Additionally, the introduction of P, B or S can tune the electronic structure,more » which is favorable for accelerating the charge transfer, and may lead to the formation of the higher average oxidative valence of Ni species during the OER process. Benefiting from the above desirable properties, all three materials exhibit excellent OER electrocatalytic activities and outstanding long-term stability in a home-made zinc air battery. Lastly, this work not only provides a general approach for the synthesis of highly efficient electrocatalysts based on earth-abundant elements but also highlights the potential prospects of MOFs in energy conversion and storage devices.« less

  14. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  15. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei

    Exploring low-cost and highly efficient electrocatalysts toward the oxygen evolution reaction (OER) is of significant importance, although facing great challenges for sustainable energy systems. In this study, amorphous NiFe-based porous nanocubes (Ni–Fe–O–P, Ni–Fe–O–B, and Ni–Fe–O–S) are successfully synthesized via simple and cost-effective one-step calcination of Ni–Fe based metal–organic frameworks (MOFs) and heteroatom containing molecules. The resulting three materials maintain a well-defined porous nanocube morphology with heteroatoms uniformly distributed in the structure. The unique porous structure can effectively provide more active sites and shorten the mass transport distance. Additionally, the introduction of P, B or S can tune the electronic structure,more » which is favorable for accelerating the charge transfer, and may lead to the formation of the higher average oxidative valence of Ni species during the OER process. Benefiting from the above desirable properties, all three materials exhibit excellent OER electrocatalytic activities and outstanding long-term stability in a home-made zinc air battery. Lastly, this work not only provides a general approach for the synthesis of highly efficient electrocatalysts based on earth-abundant elements but also highlights the potential prospects of MOFs in energy conversion and storage devices.« less

  16. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  17. Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong

    Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm thatmore » increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm -2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm -2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.« less

  18. Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis

    DOE PAGES

    El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong; ...

    2015-12-03

    Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm thatmore » increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm -2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm -2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.« less

  19. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2017-03-01

    We present a new concept for homogeneous spinel nanocrystal-coating on high crystalline pristine-carbon nanotubes (CNTs) for efficient and durable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Oxidized CNTs have widely been used to functionalize with metal or metal oxides since the defect sites act as anchoring for metal oxide binding. However, such defects on the tubes cause the decrease in electrical conductivity and stability, leading to lower catalyst performance. In the present study, at first, pristine multi-walled carbon nanotubes (MWNTs) were wrapped by pyridine-based polybenzimidazole (PyPBI) to which uniform NixCo3-xO4 nanocrystals were homogeneously deposited by the solvothermal method without damaging the MWNTs, in which PyPBI acted as efficient anchoring sites for the deposition of spinel oxide nanocrystals with ~5 nm size. The obtained catalyst (MWNT-PyPBI-NixCo3-xO4) outperformed most state-of-the-art non-precious metal-based bifunctional catalysts; namely, for OER, the potential at 10 mA cm-2 and Tafel slope in 1 M KOH solution were 1.54 V vs. RHE and 42 mV dec-1, respectively. For ORR, the onset and half-wave potentials are 0.918 V and 0.811 V vs. RHE, respectively. Moreover, the MWNT-PyPBI-NixCo3-xO4 demonstrates an excellent durability for both ORR and OER.

  20. One‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts

    PubMed Central

    Li, Jun

    2016-01-01

    Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth‐abundant materials and cost‐effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one‐dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth‐abundant materials including metal‐based and metal‐free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:28331791

  1. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  2. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  3. Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Shao, Zongping

    2017-03-01

    Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.

    PubMed

    Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping

    2018-05-11

    Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.

  5. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias; Cheng, Xi; Kim, Bae-Jung; Durst, Julien; Bozza, Francesco; Graule, Thomas; Schäublin, Robin; Wiles, Luke; Pertoso, Morgan; Danilovic, Nemanja; Ayers, Katherine E.; Schmidt, Thomas J.

    2017-09-01

    The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material’s surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

  6. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts.

    PubMed

    Cheng, Fangyi; Shen, Jian; Peng, Bo; Pan, Yuede; Tao, Zhanliang; Chen, Jun

    2011-01-01

    Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline M(x)Mn(3-x)O(4) (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic M(x)Mn(3-x)O(4) from the reduction of amorphous MnO(2) in aqueous M(2+) solution. The prepared Co(x)Mn(3-x)O(4) nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.

  7. Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites.

    PubMed

    Wang, Jiong; Ge, Xiaoming; Liu, Zhaolin; Thia, Larissa; Yan, Ya; Xiao, Wei; Wang, Xin

    2017-02-08

    Molecular Co 2+ ions were grafted onto doped graphene in a coordination environment, resulting in the formation of molecularly well-defined, highly active electrocatalytic sites at a heterogeneous interface for the oxygen evolution reaction (OER). The S dopants of graphene are suggested to be one of the binding sites and to be responsible for improving the intrinsic activity of the Co sites. The turnover frequency of such Co sites is greater than that of many Co-based nanostructures and IrO 2 catalysts. Through a series of carefully designed experiments, the pathway for the evolution of the Co cation-based molecular catalyst for the OER was further demonstrated on such a single Co-ion site for the first time. The Co 2+ ions were successively oxidized to Co 3+ and Co 4+ states prior to the OER. The sequential oxidation was coupled with the transfer of different numbers of protons/hydroxides and generated an active Co 4+ ═O fragment. A side-on hydroperoxo ligand of the Co 4+ site is proposed as a key intermediate for the formation of dioxygen.

  8. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity.

    PubMed

    Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia

    2018-03-19

    By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE PAGES

    Du, Lei; Luo, Langli; Feng, Zhenxing; ...

    2017-07-05

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  10. A lyophilized and thermal two step synthesis of CoFe alloy nanoparticles embedded in N-doped carbon nanosheets/carbon nanotubes for highly-efficient oxygen evolution reaction.

    PubMed

    Liu, Yang; Li, Feng; Yang, Haidong; Li, Jing; Ma, Ping; Zhu, Yan; Ma, Jiantai

    2018-05-22

    There is a vital need to explore highly-efficient and stable nonprecious-metal catalysts for oxygen evolution reaction (OER) to reduce the overpotential and further improve the energy conversion efficiency. Herein, we report a unique and cost-effective lyophilized and thermal two step procedure to synthesize high-performance CoFe alloy nanoparticles embedded in N-doped carbon nanosheets interspersed with carbon nanotubes (CoFe-N-CN/CNTs) hybrid. The lyophilization step during catalysts preparation is beneficial to uniform the dispersion of carbon-like precursors and avoid the agglomeration of metal particles. Meanwhile, the inserted CNTs and doped N in this hybrid provide better electrical conductivity, more chemically active sites, improved mass transport capability and effective gas adsorption/release channels. And all these lead to a high specific surface area of 240.67 m2 g-1, favorable stability and remarkable OER activities with an overpotential of only 285 mV at the current density of 10 mA cm-2 and a Tafel slope of 51.09 mV dec-1 in 1.0 M KOH electrolyte, which is even superior to commercial IrO2 catalysts. The CoFe-N-CN/CNTs hybrid thus exhibits great potential as a highly efficient and earth-abundant anode OER electrocatalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction.

    PubMed

    Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin

    2014-06-28

    Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

  12. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H 2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm -2 was 0.81 V RHE and the OER potential at a current density of 10 mA cm -2 was 1.595 V RHE , resulting in a ΔE of only 0.785 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  14. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Dewen; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2018-01-24

    The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS 2 nanosheet array on carbon cloth (NiO@Ni/WS 2 /CC) composite. This composite serves as a unique three-dimensional (3D) synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS 2 , but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS 2 . This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO 2 , as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm -2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS 2 . Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.

  15. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wamore » Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.« less

  16. 3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions.

    PubMed

    Huang, Xiaobo; Wang, Jianqiang; Bao, Hongliang; Zhang, Xiangkun; Huang, Yongmin

    2018-02-28

    The extensive research and developments of highly efficient oxygen electrode electrocatalysts to get rid of the kinetic barriers for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are very important in energy conversion and storage devices. Especially, exploring nonprecious metal alternatives to replace traditional noble metal catalysts with high cost and poor durability is the paramount mission. In this paper, we utilize property-flexible ZIF-67 and sulfur-functionalized graphene oxide to obtain a cobalt, nitrogen, and sulfur codoped nanomaterial with 3D hierarchical porous structures, owing to their rich dopant species and good conductivity. The crosslinked structures of polyhedron particles throughout the whole carbon framework speeds up the mass transportation and charge-delivery processes during oxygen-evolving reactions. Also, by exploring the location and coordination type of sulfur dopants, we emphasize the effects of sulfone and sulfide functional groups anchored into the graphitic structure on enhancing the catalytic abilities for ORR and OER. To note, compared to the noble metal electrocatalysts, the best-performing CoO@Co 3 O 4 /NSG-650 (0.79 V) is 40 mV less active than the commercial Pt/C catalyst (0.83 V) for ORR and merely 10 mV behind IrO 2 (1.68 V) for OER. Besides, the metric between ORR and OER difference for CoO@Co 3 O 4 /NSG-650 to evaluate its overall electrocatalytic activity is 0.90 V, surpassing 290 and 430 mV over Pt/C (1.19 V) and IrO 2 (1.33 V). Comprehensively, the as-prepared CoO@Co 3 O 4 /NSG-650 indicates excellent bifunctional catalytic activities for ORR and OER, which shows great potential for replacing noble metal catalysts in the application of fuel cells and metal-air batteries.

  17. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  18. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGES

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; ...

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  19. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    DOE PAGES

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...

    2016-11-30

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less

  20. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less

  1. Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

    PubMed

    He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L

    2017-12-13

    We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.

  2. Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst.

    PubMed

    Xu, Huajie; Wang, Bingkai; Shan, Changfu; Xi, Pinxian; Liu, Weisheng; Tang, Yu

    2018-02-21

    Developing convenient doping to build highly active oxygen evolution reaction (OER) electrocatalysts is a practical process for solving the energy crisis. Herein, a facile and low-cost in situ self-assembly strategy for preparing a Ce-doped NiFe-LDH nanosheets/nanocarbon (denoted as NiFeCe-LDH/CNT, LDH = layered double hydroxide and CNT = carbon nanotube) hierarchical nanocomposite is established for enhanced OER, in which the novel material provides its overall advantageous structural features, including high intrinsic catalytic activity, rich redox properties, high, flexible coordination number of Ce 3+ , and strongly coupled interface. Further experimental results indicate that doped Ce into NiFe-LDH/CNT nanoarrays brings about the reinforced specific surface area, electrochemical surface area, lattice defects, and the electron transport between the LDH nanolayered structure and the framework of CNTs. The effective synergy prompts the NiFeCe-LDH/CNT nanocomposite to possess superior OER electrocatalytic activity with a low onset potential (227 mV) and Tafel slope (33 mV dec -1 ), better than the most non-noble metal-based OER electrocatalysts reported. Therefore, the combination of the remarkable catalytic ability and the facile normal temperature synthesis conditions endows the Ce-doped LDH nanocomposite as a promising catalyst to expand the field of lanthanide-doped layered materials for efficient water-splitting electrocatalysis with scale-up potential.

  3. Metal-Organic-Framework-Derived Yolk-Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution.

    PubMed

    Yu, Zhou; Bai, Yu; Liu, Yuxuan; Zhang, Shimin; Chen, Dandan; Zhang, Naiqing; Sun, Kening

    2017-09-20

    The development of inexpensive, efficient, and environmentally friendly catalysts for oxygen evolution reaction (OER) is of great significant for green energy utilization. Herein, binary metal oxides (M x Co 3-x O 4 , M = Zn, Ni, and Cu) with yolk-shell polyhedron (YSP) structure were fabricated by facile pyrolysis of bimetallic zeolitic imidazolate frameworks (MCo-ZIFs). Benefiting from the synergistic effects of metal ions and the unique yolk-shell structure, M x Co 3-x O 4 YSP displays good OER catalytic activity in alkaline media. Impressively, Zn x Co 3-x O 4 YSP shows a comparable overpotential of 337 mV at 10 mA cm -2 to commercial RuO 2 and exhibits superior long-term durability. The high activity and good stability reveals its promising application.

  4. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    DOE PAGES

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; ...

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computationalmore » studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.« less

  5. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  6. Homogeneously dispersed multimetal oxygen-evolving catalysts.

    PubMed

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; García-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; García de Arquer, F Pelayo; Dinh, Cao Thang; Fan, Fengjia; Yuan, Mingjian; Yassitepe, Emre; Chen, Ning; Regier, Tom; Liu, Pengfei; Li, Yuhang; De Luna, Phil; Janmohamed, Alyf; Xin, Huolin L; Yang, Huagui; Vojvodic, Aleksandra; Sargent, Edward H

    2016-04-15

    Earth-abundant first-row (3d) transition metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER. Copyright © 2016, American Association for the Advancement of Science.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

  8. α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Hang, Yang; Zhang, Chaofeng; Luo, Xiaoman; Xie, Yingshen; Xin, Sen; Li, Yutao; Zhang, Dawei; Goodenough, John B.

    2018-07-01

    Synthesis of α-MnO2 nanorods grown on porous graphitic carbon nitride (g-C3N4) sheets via a facile hydrothermal treatment gives a porous composite exhibiting higher activity for an air cathode than the individual component of α-MnO2 or porous g-C3N4 for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The porous g-C3N4/α-MnO2 composite also exhibits better performance in a Li-air battery than pure α-MnO2 or XC-72 carbon catalysts, which includes superior discharge capacity, low voltage gap and high cycle stability. The α-MnO2 nanorods catalyze the OER and the porous g-C3N4 sheets catalyze the ORR.

  9. Scanning Tunneling Spectroscope Use in Electrocatalysis Testing

    PubMed Central

    Knutsen, Turid

    2010-01-01

    The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.

  10. A new preparation of a bifunctional crystalline heterogeneous copper electrocatalyst by electrodeposition using a Robson-type macrocyclic dinuclear copper complex for efficient hydrogen and oxygen evolution from water.

    PubMed

    Majumder, Samit; Abdel Haleem, Ashraf; Nagaraju, Perumandla; Naruta, Yoshinori

    2017-07-18

    The development of low-cost, stable bifunctional electrocatalysts, which operate in the same electrolyte with a low overpotential for water splitting, including the oxygen evolution reaction and the hydrogen evolution reaction, remains an attractive prospect and a great challenge. In this study, a water soluble Robson-type macrocyclic dicopper(ii) complex has been used for the first time as a catalyst precursor for the generation of a copper-based bifunctional heterogeneous catalyst film, which can be used for both HER and OER at a near neutral pH. In sodium borate buffer at pH 9.20, this complex decomposed to give a Cu(OH) 2 /Cu 2 O-based thin film on FTO that catalyzes both hydrogen production and water oxidation. The morphology, nature and composition of the thin film were fully characterized by scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron, and energy dispersive X-ray spectroscopies. The catalyst film showed high stability during the course of electrolysis in either the cathodic or the anodic direction for more than 4 h. Faradaic efficiencies of ∼92% for HER and ∼96% for OER were achieved. The switch between the two half-reactions of catalytic water splitting was fully reversible in nature.

  11. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting.

    PubMed

    Feng, Liang-Liang; Yu, Guangtao; Wu, Yuanyuan; Li, Guo-Dong; Li, Hui; Sun, Yuanhui; Asefa, Tewodros; Chen, Wei; Zou, Xiaoxin

    2015-11-11

    Elaborate design of highly active and stable catalysts from Earth-abundant elements has great potential to produce materials that can replace the noble-metal-based catalysts commonly used in a range of useful (electro)chemical processes. Here we report, for the first time, a synthetic method that leads to in situ growth of {2̅10} high-index faceted Ni3S2 nanosheet arrays on nickel foam (NF). We show that the resulting material, denoted Ni3S2/NF, can serve as a highly active, binder-free, bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Ni3S2/NF is found to give ∼100% Faradaic yield toward both HER and OER and to show remarkable catalytic stability (for >200 h). Experimental results and theoretical calculations indicate that Ni3S2/NF's excellent catalytic activity is mainly due to the synergistic catalytic effects produced in it by its nanosheet arrays and exposed {2̅10} high-index facets.

  12. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting.

    PubMed

    Xin, Yanmei; Kan, Xiang; Gan, Li-Yong; Zhang, Zhonghai

    2017-10-24

    Solar-driven overall water splitting is highly desirable for hydrogen generation with sustainable energy sources, which need efficient, earth-abundant, robust, and bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we propose a heterogeneous bimetallic phosphide/sulfide nanocomposite electrocatalyst of NiFeSP on nickel foam (NiFeSP/NF), which shows superior electrocatalytic activity of low overpotentials of 91 mV at -10 mA cm -2 for HER and of 240 mV at 50 mA cm -2 for OER in 1 M KOH solution. In addition, the NiFeSP/NF presents excellent overall water splitting performance with a cell voltage as low as 1.58 V at a current density of 10 mA cm -2 . Combining with a photovoltaic device of a Si solar cell or integrating into photoelectrochemical (PEC) systems, the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven water splitting with a solar-to-hydrogen conversion efficiency of ∼9.2% and significantly enhanced PEC performance, respectively.

  13. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.

    PubMed

    Wang, Jian; Ciucci, Francesco

    2017-04-01

    The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan

    2017-05-01

    The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.

  15. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts.

    PubMed

    Morgan Chan, Zamyla; Kitchaev, Daniil A; Nelson Weker, Johanna; Schnedermann, Christoph; Lim, Kipil; Ceder, Gerbrand; Tumas, William; Toney, Michael F; Nocera, Daniel G

    2018-06-05

    Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn 3+ We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn 3+ may be introduced into MnO 2 by an electrochemically induced comproportionation reaction with Mn 2+ and that Mn 3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn 3+ -activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies show that Mn 3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn 3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn 3+ (T d ) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the δ-MnO 2 polymorph incorporating Mn 3+ ions.

  16. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction.

    PubMed

    Lee, Eunjik; Park, Ah-Hyeon; Park, Hyun-Uk; Kwon, Young-Uk

    2018-01-01

    In this work, we present facile synthesis of amorphous Ni/Fe mixed (oxy)hydroxide (NiFe(H)) nanoparticles (NPs) and their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline media. a-NiFe(H) NPs have received lots of attention as OER electrocatalysts with many desirable properties. By using a simple sonochemical route, we prepared amorphous Ni and Fe-alkoxide (NiFe(A)) NPs whose composition can be controlled in the entire composition range (Ni 100-x Fe x , 0≤x≤1). These samples are composed of extremely small NiFe(A) NPs with Ni and Fe atoms homogeneously distributed. NiFe(A) NPs are readily converted into corresponding electrocatalytically active NiFe(H) NP by a simple electrochemical treatment. Electrochemical analysis data show that the OER activity of amorphous NiFe(H) samples follows the volcano-type trend when plotted against the Fe content. Ni 70 Fe 30 (H) sample showed the lowest overpotential of 292mV at 10mAcm -2 geo and the lowest Tafel slope of 30.4mVdec -1 , outperforming IrO x /C (326mV, 41.7mVdec -1 ). Our samples are highly durable based on the chronopotentiometry data at the current density of 10mAcm -2 geo for 2h which show that Ni 70 Fe 30 sample maintains the steady-state potential, contrary to the time-varying IrO x /C. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrochemical Trapping of Metastable Mn3+ Ions for Activation of MnO2 Oxygen Evolution Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumas, William; Chan, Zamyla Morgan; Kitchaev, Daniil A.

    Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn3+. We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn3+ may be introduced into MnO2 by an electrochemically induced comproportionation reaction with Mn2+ and that Mn3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn3+-activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies showmore » that Mn3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn3+(Td) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the d-MnO2 polymorph incorporating Mn3+ ions.« less

  18. Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction.

    PubMed

    Li, Qun; Wang, Xianfu; Tang, Kai; Wang, Mengfan; Wang, Chao; Yan, Chenglin

    2017-12-26

    Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu 7 S 4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu 7 S 4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu 7 S 4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm -2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu 7 S 4 . This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.

  19. Controlling the Interfacial Environment in the Electrosynthesis of MnOx Nanostructures for High-Performance Oxygen Reduction/Evolution Electrocatalysis.

    PubMed

    Hosseini-Benhangi, Pooya; Kung, Chun Haow; Alfantazi, Akram; Gyenge, Elöd L

    2017-08-16

    High-performance, nonprecious metal bifunctional electrocatalysts for the oxygen reduction and evolution reactions (ORR and OER, respectively) are of great importance for rechargeable metal-air batteries and regenerative fuel cells. A comprehensive study based on statistical design of experiments is presented to investigate and optimize the surfactant-assisted structure and the resultant bifunctional ORR/OER activity of anodically deposited manganese oxide (MnO x ) catalysts. Three classes of surfactants are studied: anionic (sodium dodecyl sulfate, SDS), non-ionic (t-octylphenoxypolyethoxyethanol, Triton X-100), and cationic (cetyltrimethylammonium bromide, CTAB). The adsorption of surfactants has two main effects: increased deposition current density due to higher Mn 2+ and Mn 3+ concentrations at the outer Helmholtz plane (Frumkin effect on the electrodeposition kinetics) and templating of the MnO x nanostructure. CTAB produces MnO x with nanoneedle (1D) morphology, whereas nanospherical- and nanopetal-like morphologies are obtained with SDS and Triton, respectively. The bifunctional performance is assessed based on three criteria: OER/ORR onset potential window (defined at 2 and -2 mA cm -2 ) and separately the ORR and OER mass activities. The best compromise among these three criteria is obtained either with Triton X-100 deposited catalyst composed of MnOOH and Mn 3 O 4 or SDS deposited catalyst containing a combination of α- and β-MnO 2 , MnOOH, and Mn 3 O 4 .The interaction effects among the deposition variables (surfactant type and concentration, anode potential, Mn 2+ concentration, and temperature) reveal the optimal strategy for high-activity bifunctional MnO x catalyst synthesis. Mass activities for OER and ORR up to 49 A g -1 (at 1556 mV RHE ) and -1.36 A g -1 (at 656 mV RHE ) are obtained, respectively.

  20. Functional Independent Scaling Relation for ORR/OER Catalysts

    DOE PAGES

    Christensen, Rune; Hansen, Heine A.; Dickens, Colin F.; ...

    2016-10-11

    A widely used adsorption energy scaling relation between OH* and OOH* intermediates in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), has previously been determined using density functional theory and shown to dictate a minimum thermodynamic overpotential for both reactions. Here, we show that the oxygen–oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largelymore » cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange–correlation functional, is obtained and found to differ by 0.1 eV from the original. Lastly, this largely confirms that, although obtained with a method suffering from systematic errors, the previously obtained scaling relation is applicable for predictions of catalytic activity.« less

  1. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    PubMed

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.

  2. One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries.

    PubMed

    Yoon, Ki Ro; Lee, Gil Yong; Jung, Ji-Won; Kim, Nam-Hoon; Kim, Sang Ouk; Kim, Il-Doo

    2016-03-09

    Rational design and massive production of bifunctional catalysts with fast oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics are critical to the realization of highly efficient lithium-oxygen (Li-O2) batteries. Here, we first exploit two types of double-walled RuO2 and Mn2O3 composite fibers, i.e., (i) phase separated RuO2/Mn2O3 fiber-in-tube (RM-FIT) and (ii) multicomposite RuO2/Mn2O3 tube-in-tube (RM-TIT), by controlling ramping rate during electrospinning process. Both RM-FIT and RM-TIT exhibited excellent bifunctional electrocatalytic activities in alkaline media. The air electrodes using RM-FIT and RM-TIT showed enhanced overpotential characteristics and stable cyclability over 100 cycles in the Li-O2 cells, demonstrating high potential as efficient OER and ORR catalysts.

  3. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc–Air Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Qi; Wen, Peng

    Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less

  4. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc–Air Battery

    DOE PAGES

    Li, Hui; Li, Qi; Wen, Peng; ...

    2018-01-15

    Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less

  5. Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid† †Electronic supplementary information (ESI) available: CVs for unary metal oxides deposition, electrochemical stability at higher current densities for unary metal oxides at pH 2.5, EDS maps for CoMnOx and CoPbOx, STEM images and PXRD of CoMnOx and CoFePbOx, high-resolution XPS of Fe 2p for CoFePbOx, Pourbaix diagrams (of Mn, Co, Pb, and Fe), and elemental analysis. See DOI: 10.1039/c7sc01239j Click here for additional data file.

    PubMed Central

    Huynh, Michael; Ozel, Tuncay; Liu, Chong; Lau, Eric C.

    2017-01-01

    Oxygen evolution reaction (OER) catalysts that are earth-abundant and are active and stable in acid are unknown. Active catalysts derived from Co and Ni oxides dissolve at low pH, whereas acid stable systems such as Mn oxides (MnOx) display poor OER activity. We now demonstrate a rational approach for the design of earth-abundant catalysts that are stable and active in acid by treating activity and stability as decoupled elements of mixed metal oxides. Manganese serves as a stabilizing structural element for catalytically active Co centers in CoMnOx films. In acidic solutions (pH 2.5), CoMnOx exhibits the OER activity of electrodeposited Co oxide (CoOx) with a Tafel slope of 70–80 mV per decade while also retaining the long-term acid stability of MnOx films for OER at 0.1 mA cm–2. Driving OER at greater current densities in this system is not viable because at high anodic potentials, Mn oxides convert to and dissolve as permanganate. However, by exploiting the decoupled design of the catalyst, the stabilizing structural element may be optimized independently of the Co active sites. By screening potential–pH diagrams, we replaced Mn with Pb to prepare CoFePbOx films that maintained the high OER activity of CoOx at pH 2.5 while exhibiting long-term acid stability at higher current densities (at 1 mA cm–2 for over 50 h at pH 2.0). Under these acidic conditions, CoFePbOx exhibits OER activity that approaches noble metal oxides, thus establishing the viability of decoupling functionality in mixed metal catalysts for designing active, acid-stable, and earth-abundant OER catalysts. PMID:29163926

  6. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Strasser, Peter; Driess, Matthias

    2015-01-01

    Recently, there has been much interest in the design and development of affordable and highly efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts that can resolve the pivotal issues that concern solar fuels, fuel cells, and rechargeable metal-air batteries. Here we present the synthesis and application of porous CoMn2 O4 and MnCo2 O4 spinel microspheres as highly efficient multifunctional catalysts that unify the electrochemical OER with oxidant-driven and photocatalytic water oxidation as well as the ORR. The porous materials were prepared by the thermal degradation of the respective carbonate precursors at 400 °C. The as-prepared spinels display excellent performances in electrochemical OER for the cubic MnCo2 O4 phase in comparison to the tetragonal CoMn2 O4 material in an alkaline medium. Moreover, the oxidant-driven and photocatalytic water oxidations were performed and they exhibited a similar trend in activity to that of the electrochemical OER. Remarkably, the situation is reversed in ORR catalysis, that is, the oxygen reduction activity and stability of the tetragonal CoMn2 O4 catalyst outperformed that of cubic MnCo2 O4 and rivals that of benchmark Pt catalysts. The superior catalytic performance and the remarkable stability of the unifying materials are attributed to their unique porous and robust microspherical morphology and the intrinsic structural features of the spinels. Moreover, the facile access to these high-performance materials enables a reliable and cost-effective production on a large scale for industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  8. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE PAGES

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...

    2017-03-20

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  9. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  10. Synthetic control and empirical prediction of redox potentials for Co 4O 4 cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Andy I.; Wang, Jianing; Levine, Daniel S.

    The oxo-cobalt cubane unit [Co 4O 4] is of interest as a homogeneous oxygen-evolution reaction (OER) catalyst, and as a functional mimic of heterogeneous cobalt oxide OER catalysts. The synthesis of several new cubanes allows evaluation of redox potentials for the [Co 4O 4] cluster, which are highly sensitive to the ligand environment and span a remarkable range of 1.42 V. The [Co III 4O 4] 4+/[Co III 3Co IVO 4 ]5+ and [Co III 3Co IVO 4] 5+/[Co III 2Co IV 2O 4] 6+ redox potentials are reliably predicted by the pKas of the ligands. Hydrogen bonding is alsomore » shown to significantly raise the redox potentials, by ~500 mV. The potential-p K a correlation is used to evaluate the feasibility of various proposed OER catalytic intermediates, including high-valent Co-oxo species. The synthetic methods and structure–reactivity relationships developed by these studies should better guide the design of new cubane-based OER catalysts.« less

  11. Synthetic control and empirical prediction of redox potentials for Co 4O 4 cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation

    DOE PAGES

    Nguyen, Andy I.; Wang, Jianing; Levine, Daniel S.; ...

    2017-04-07

    The oxo-cobalt cubane unit [Co 4O 4] is of interest as a homogeneous oxygen-evolution reaction (OER) catalyst, and as a functional mimic of heterogeneous cobalt oxide OER catalysts. The synthesis of several new cubanes allows evaluation of redox potentials for the [Co 4O 4] cluster, which are highly sensitive to the ligand environment and span a remarkable range of 1.42 V. The [Co III 4O 4] 4+/[Co III 3Co IVO 4 ]5+ and [Co III 3Co IVO 4] 5+/[Co III 2Co IV 2O 4] 6+ redox potentials are reliably predicted by the pKas of the ligands. Hydrogen bonding is alsomore » shown to significantly raise the redox potentials, by ~500 mV. The potential-p K a correlation is used to evaluate the feasibility of various proposed OER catalytic intermediates, including high-valent Co-oxo species. The synthetic methods and structure–reactivity relationships developed by these studies should better guide the design of new cubane-based OER catalysts.« less

  12. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    DOE PAGES

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less

  13. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Thomas F.

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo 3S 13] 2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamentalmore » studies of water electrolysis at high current densities, approximately 1 A/cm 2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔG H, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe 0.5Co 0.5P, should have a near-optimal ΔG H. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe 0.5Co 0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H 2 production. OER: We have developed a SrIrO 3/IrO x catalyst for acidic conditions (submitted, 2016). The SrIrO 3/IrO x catalyst significantly outperforms rutile IrO 2 and RuO 2, the only other OER catalysts to have reasonable stability and activity in acidic electrolyte, and in fact demonstrates the best activity for any known OER catalyst measured in either acidic or in alkaline electrolyte. For alkaline conditions we have demonstrated that the combined effect of cerium as a dopant and gold as a metal support, significantly enhances the OER activity of electrodeposited NiO x films. This NiCeO x-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts reported to date (Nature Energy, accepted 2016). These studies of new catalysts for the OER, both in acid and in base, are fundamental to enabling new technologies of interest for the DOE, including the production of sustainable fuels and chemicals. ORR: One method to significantly reduce the Pt loading in fuel cell devices is to increase the ORR activity of Pt based systems. To this end we have synthesized a high surface area supported meso-structured Pt xNi alloy thin film with a double gyroid morphology that both exhibits high activity and stability for the ORR (submitted, 2016). We have furthermore developed a Ru-core, Pt-shell system that improves the per Pt site activity by more than a factor of 2 (ChemElectroChem, 2014). Further refinement, optimizing Pt-shell thickness and reducing particle sintering during processing, enabled us to obtain a mass activity that is 2 times higher than commercial Pt/C from TKK. These are important contributions to the DOE goal of reducing Pt loading since an improved understanding of how to increase mass activity and stability helps enable low Pt content fuel cells.« less

  14. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    PubMed

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  16. Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity.

    PubMed

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; Bak, Seongmin; Wu, Yueshen; Wu, Zishan; Tian, Yang; Xiong, Xuya; Li, Yaping; Liu, Wen; Siahrostami, Samira; Kuang, Yun; Yang, Xiao-Qing; Duan, Haohong; Feng, Zhenxing; Wang, Hailiang; Sun, Xiaoming

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+-containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm2, which is among the best OER catalytic performance reported to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE PAGES

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; ...

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  18. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    NASA Astrophysics Data System (ADS)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  19. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    NASA Astrophysics Data System (ADS)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  20. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCOmore » catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire« less

  1. DFT simulations of water adsorption and activation on low-index α-Ga2O3 surfaces.

    PubMed

    Zhou, Xin; Hensen, Emiel J M; van Santen, Rutger A; Li, Can

    2014-06-02

    Density functional theory (DFT) calculations are used to explore water adsorption and activation on different α-Ga2O3 surfaces, namely (001), (100), (110), and (012). The geometries and binding energies of molecular and dissociative adsorption are studied as a function of coverage. The simulations reveal that dissociative water adsorption on all the studied low-index surfaces are thermodynamically favorable. Analysis of surface energies suggests that the most preferentially exposed surface is (012). The contribution of surface relaxation to the respective surface energies is significant. Calculations of electron local density of states indicate that the electron-energy band gaps for the four investigated surfaces appears to be less related to the difference in coordinative unsaturation of the surface atoms, but rather to changes in the ionicity of the surface chemical bonds. The electrochemical computation is used to investigate the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) on α-Ga2O3 surfaces. Our results indicate that the (100) and (110) surfaces, which have low stability, are the most favorable ones for HER and OER, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting† †Electronic supplementary information (ESI) available: Experimental and computational details and additional data. See DOI: 10.1039/c7sc04569g

    PubMed Central

    Zhang, Fang-Shuai; Wang, Jia-Wei; Luo, Jun; Liu, Rui-Rui

    2017-01-01

    The development of highly efficient, low-cost and stable electrocatalysts for overall water splitting is highly desirable for the storage of intermittent solar energy and wind energy sources. Herein, we show for the first time that nickel can be extracted from NiFe-layered double hydroxide (NiFe-LDH) to generate an Ni2P@FePOx heterostructure. The Ni2P@FePOx heterostructure was converted to an Ni2P@NiFe hydroxide heterostructure (P-NiFe) during water splitting, which displays high electrocatalytic performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with an overpotential of 75 mV at 10 mA cm–2 for HER, and overpotentials of 205, 230 and 430 mV at 10, 100 and 1000 mA cm–2 for OER, respectively. Moreover, it could afford a stable current density of 10 mA cm–2 for overall water splitting at 1.51 V in 1.0 M KOH with long-term durability (100 h). This cell voltage is among the best reported values for bifunctional electrocatalysts. The results of theoretical calculations demonstrate that P-NiFe displays optimized adsorption energies for both HER and OER intermediates at the nickel active sites, thus dramatically enhancing its electrocatalytic activity. PMID:29675186

  3. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE PAGES

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    2017-09-25

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  4. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickler, Alaina L.; Escudero-Escribano, Marı́a; Jaramillo, Thomas F.

    Enhanced catalysis for electrochemical oxygen evolution is essential for the efficacy of many renewable energy technologies, including water electrolyzers and metal–air batteries. Recently, Au supports have been shown to enhance the activity of many 3d transition metal-oxide thin films for the oxygen evolution reaction (OER) in alkaline media. In this paper, we translate the beneficial impact of Au supports to high surface area, device-ready core–shell nanoparticles consisting of a Au-core and a metal-oxide shell (Au@M xO y where M = Ni, Co, Fe, and CoFe). Through a systematic evaluation, we establish trends in performance and illustrate the universal activity enhancementmore » when employing the Au-core in the 3d transition metal-oxide nanoparticles. Finally, the highest activity particles, Au@CoFeO x, demonstrate an overpotential of 328 ± 3 mV over a 2 h stability test at 10 mA cm –2, illustrating that strategically coupling Au support and mixed metal-oxide effects in a core–shell nanoparticle morphology is a promising avenue to achieve device-ready, high-performance OER catalysts.« less

  5. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  6. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation.

    PubMed

    You, Bo; Han, Guanqun; Sun, Yujie

    2018-06-08

    Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O2 is ironically not of high value. In fact, the co-production of H2 and O2 in conventional water electrolysis may result in the formation of explosive H2/O2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H2 evolution from water and avoid the generation of H2/O2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed.

  7. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte.

    PubMed

    Wang, Nan; Li, Ligui; Zhao, Dengke; Kang, Xiongwu; Tang, Zhenghua; Chen, Shaowei

    2017-09-01

    Nitrogen and sulfur-codoped graphene composites with Co 9 S 8 (NS/rGO-Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO 2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only -0.193 V to reach 10 mA cm -2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half-wave potential in ORR and the potential to reach 10 mA cm -2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm -2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S-codoped rGO, and Co 9 S 8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo

    2016-11-01

    Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.

  9. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments.

    DOE PAGES

    Danilovic, N.; Subbaraman, R.; Chang, K-C.; ...

    2014-10-08

    The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity ofmore » surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.« less

  10. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts.

    PubMed

    Wurster, Benjamin; Grumelli, Doris; Hötger, Diana; Gutzler, Rico; Kern, Klaus

    2016-03-23

    Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.

  11. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  12. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  13. Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting.

    PubMed

    Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong

    2018-06-06

    NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.

  14. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkalinemore » solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.« less

  15. Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films

    DOE PAGES

    Stoerzinger, Kelsey; Choi, Woo Seok; Jeen, Hyoung Jeen; ...

    2015-01-19

    The slow kinetics of the oxygen reduction and evolution reactions (ORR, OER) hinder energy conversion and storage in alkaline fuel cells and electrolyzers employing abundant transition metal oxide catalysts. Systematic studies linking material properties to catalytic activity are lacking, in part due to the heterogeneous nature of powder-based electrodes. We demonstrate, for the first time, that epitaxial strain can tune the activity of oxygen electrocatalysis in alkaline solutions, focusing on the model chemistry of LaCoO 3, where moderate tensile strain can further induce changes in the electronic structure via spin state to increase activity. The resultant decrease in charge transfermore » resistance to the electrolyte reduces the overpotential in the ORR more notably than the OER and suggests a different dependence of the respective rate-limiting steps on electron transfer. This provides new insight into the reaction mechanism applicable to a range of perovskite chemistries, key to the rational design of highly active catalysts.« less

  16. Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries

    PubMed Central

    Wu, Yixin; Wang, Taohuan; Zhang, Yidie; Xin, Sen; He, Xiaojun; Zhang, Dawei; Shui, Jianglan

    2016-01-01

    A low cost and non-precious metal composite material g-C3N4-LaNiO3 (CNL) was synthesized as a bifunctional electrocatalyst for the air electrode of lithium-oxygen (Li-O2) batteries. The composition strategy changed the electron structure of LaNiO3 and g-C3N4, ensures high Ni3+/Ni2+ ratio and more absorbed hydroxyl on the surface of CNL that can promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The composite catalyst presents higher activities than the individual components g-C3N4 and LaNiO3 for both ORR and OER. In non-aqueous Li-O2 batteries, CNL shows higher capacity, lower overpotentials and better cycling stability than XC-72 carbon and LaNiO3 catalysts. Our results suggest that CNL composite is a promising cathode catalyst for Li-O2 batteries. PMID:27074882

  17. Understanding Learners' Motivation and Learning Strategies in MOOCs

    ERIC Educational Resources Information Center

    Alario-Hoyos, Carlos; Estévez-Ayres, Iria; Pérez-Sanagustín, Mar; Delgado Kloos, Carlos; Fernández-Panadero, Carmen

    2017-01-01

    MOOCs (Massive Open Online Courses) have changed the way in which OER (Open Educational Resources) are bundled by teachers and consumed by learners. MOOCs represent an evolution towards the production and offering of structured quality OER. Many institutions that were initially reluctant to providing OER have, however, joined the MOOC wave.…

  18. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon

    DOE PAGES

    Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia; ...

    2017-10-31

    The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less

  19. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia

    The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less

  20. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    PubMed Central

    Li, Hong; Ke, Fei; Zhu, Junfa

    2018-01-01

    The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test. PMID:29414838

  1. Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting.

    PubMed

    Ho, Thi Anh; Bae, Changdeuck; Nam, Hochul; Kim, Eunsoo; Lee, Seung Yong; Park, Jong Hyeok; Shin, Hyunjung

    2018-04-18

    We describe the direct preparation of crystalline Ni 3 S 2 thin films via atomic layer deposition (ALD) techniques at temperatures as low as 250 °C without postthermal treatments. A new ALD chemistry is proposed using bis(1-dimethylamino-2-methyl-2-butoxy) nickel(II) [Ni(dmamb) 2 ] and H 2 S as precursors. Homogeneous and conformal depositions of Ni 3 S 2 films were achieved on 4 in. wafers (both metal and oxide substrates, including Au and SiO 2 ). The resulting crystalline Ni 3 S 2 layers exhibited highly efficient and stable performance as electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solutions, with a low overpotential of 300 mV and a high turnover frequency for HER and an overpotential of 400 mV for OER (at a current density of 10 mA/cm 2 ). Using our Ni 3 S 2 films as both the cathode and the anode, two-electrode full-cell electrolyzers were constructed, which showed stable operation for 100 h at a current density of 10 mA/cm 2 . The proposed ALD electrocatalysts on planar surfaces exhibited the best performance among Ni 3 S 2 materials for overall water splitting recorded to date.

  2. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  3. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun

    2017-09-22

    High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo 2 C nanoparticles supported on carbon sheets (Mo 2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo 2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm -2 for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm -2 and maintains the activity for more than 100 h when employing the Mo 2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo 2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation

    DOE PAGES

    Hong, Wesley T.; Welsch, Roy E.; Shao-Horn, Yang

    2015-12-16

    Catalysts for oxygen electrochemical processes are critical for the commercial viability of renewable energy storage and conversion devices such as fuel cells, artificial photosynthesis, and metal-air batteries. Transition metal oxides are an excellent system for developing scalable, non-noble-metal-based catalysts, especially for the oxygen evolution reaction (OER). Central to the rational design of novel catalysts is the development of quantitative structure-activity relation-ships, which correlate the desired catalytic behavior to structural and/or elemental descriptors of materials. The ultimate goal is to use these relationships to guide materials design. In this study, 101 intrinsic OER activities of 51 perovskites were compiled from fivemore » studies in literature and additional measurements made for this work. We explored the behavior and performance of 14 descriptors of the metal-oxygen bond strength using a number of statistical approaches, including factor analysis and linear regression models. We found that these descriptors can be classified into five descriptor families and identify electron occupancy and metal-oxygen covalency as the dominant influences on the OER activity. However, multiple descriptors still need to be considered in order to develop strong predictive relationships, largely outperforming the use of only one or two descriptors (as conventionally done in the field). Here, we confirmed that the number of d electrons, charge-transfer energy (covalency), and optimality of eg occupancy play the important roles, but found that structural factors such as M-O-M bond angle and tolerance factor are relevant as well. With these tools, we demonstrate how statistical learning can be used to draw novel physical insights and combined with data mining to rapidly screen OER electrocatalysts across a wide chemical space.« less

  5. Iron carbide encapsulated by porous carbon nitride as bifunctional electrocatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Wei, Liangqin; Sun, Hongdi; Yang, Tiantian; Deng, Shenzhen; Wu, Mingbo; Li, Zhongtao

    2018-05-01

    Herein, the study reports a facile and scale-up able strategy to synthesize metal organic frameworks (MOFs) Fe-7,7,8,8-Tetracyanoquinodimethane (Fe-TCNQ) as precursors to develop non-precious metal bifunctional electrocatalysts through a one-step hydrothermal route. Then, Fe3C/carbon nitride (Fe3C@CNx) core-shell structure composites are readily available through pyrolyzing Fe-TCNQ at reasonable temperature, during which hierarchical porous structures with multimodal porosity formed. Nitrogen doped porosity carbon layers can facilitate mass access to active sites and accelerate reaction. Consequently, the optimized catalyst exhibits superior oxygen reduction reaction (ORR) electrocatalytic activity and better catalytic activity for oxygen evolution reaction (OER) in alkaline medium than that of Pt/C, which can be attributed to the synergistic effect of strong coupling between Fe3C and nitrogen doped carbon shells, active sites Fe-NX, optimal level of nitrogen doping, and appropriate multimodal porosity.

  6. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co, thus promoting structural integrity with enhanced electrical conductivity and catalytic properties.« less

  7. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE PAGES

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros; ...

    2017-12-06

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co, thus promoting structural integrity with enhanced electrical conductivity and catalytic properties.« less

  8. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  9. A Splash to Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach.

    PubMed

    Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried

    2018-05-07

    The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

    PubMed Central

    T. Weller, Mark

    2018-01-01

    Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV−Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions. PMID:29346306

  11. An Operando Investigation of (Ni–Fe–Co–Ce)O x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    DOE PAGES

    Favaro, Marco; Drisdell, Walter S.; Marcus, Matthew A.; ...

    2016-12-27

    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the development of a renewable energy field for generation a solar fuels by providing both the protons and electrons needed to generate fuels such as H 2 or reduced hydrocarbons from CO 2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of electrocatalysts with high activity and durability. In this context, performing experimental investigations of themore » electrocatalysts under realistic working regimes (i.e., under operando conditions) is of crucial importance. In this paper, we study a highly active quinary transition-metal-oxide-based OER electrocatalyst by means of operando ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe, and Co oxyhydroxides comprising the active catalytic species. Finally, while CeO 2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of high-performance materials.« less

  12. FeS2 /CoS2 Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Li, Yuxuan; Yin, Jie; An, Li; Lu, Min; Sun, Ke; Zhao, Yong-Qin; Gao, Daqiang; Cheng, Fangyi; Xi, Pinxian

    2018-05-28

    Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS 2 /CoS 2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS 2 /CoS 2 NSs are confirmed by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, extended X-ray absorption fine structure spectroscopy clarifies that FeS 2 /CoS 2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS 2 /CoS 2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm -2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm -2 for the oxygen evolution reaction (OER). More importantly, the FeS 2 /CoS 2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm -2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua

    2017-12-01

    A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.

  14. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity

    NASA Astrophysics Data System (ADS)

    Alajmi, Mohamed F.; Ahmed, Jahangeer; Hussain, Afzal; Ahamad, Tansir; Alhokbany, Norah; Amir, Samira; Ahmad, Tokeer; Alshehri, Saad M.

    2018-04-01

    Iron oxide (Fe3O4) nanoparticles (NPs) were prepared at room temperature by one-step synthesis via green chemistry using aqueous extracts of Pandanus odoratissimus leaves. Fe3O4 NPs show uniform particle size distribution with an average diameter of 5.0 nm. BET surface area and average pore diameter of the nanoparticles were found to be 150 m2/g and 3.0 nm, respectively. FTIR, Raman, EDAX and XPS studies were also carried out to confirm the phase purity of the prepared materials. Electrochemical water splitting reactions have been carried out using Fe3O4 NPs as electrocatalysts in 0.1 M KOH electrolyte solution. Polarization studies confirm dual nature of Fe3O4 electro-catalysts in water electrolysis for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Potentiodynamic polarization curves reveal low Tafel values of 295 and 126 mV/dec (± 2) for OER and ORR, respectively. The overpotential for water oxidation reaction was found to be 390 mV (± 5) at the current density of 1 mA/cm2 in 0.1 M KOH. Chronoamperometry and chronopotentiometry experiments were conducted for stability tests of the electrodes.

  15. Oxygen Vacancy Engineering of Co3 O4 Nanocrystals through Coupling with Metal Support for Water Oxidation.

    PubMed

    Zhang, Jun-Jun; Wang, Hong-Hui; Zhao, Tian-Jian; Zhang, Ke-Xin; Wei, Xiao; Jiang, Zhi-Dong; Hirano, Shin-Ichi; Li, Xin-Hao; Chen, Jie-Sheng

    2017-07-21

    Oxygen vacancies can help to capture oxygen-containing species and act as active centers for oxygen evolution reaction (OER). Unfortunately, effective methods for generating a high amount of oxygen vacancies on the surface of various nanocatalysts are rather limited. Here, we described an effective way to generate oxygen-vacancy-rich surface of transition metal oxides, exemplified with Co 3 O 4 , simply by constructing highly coupled interface of ultrafine Co 3 O 4 nanocrystals and metallic Ti. Impressively, the amounts of oxygen vacancy on the surface of Co 3 O 4 /Ti surpassed the reported values of the Co 3 O 4 modified even under highly critical conditions. The Co 3 O 4 /Ti electrode could provide a current density of 23 mA cm -2 at an OER overpotential of 570 mV, low Tafel slope, and excellent durability in neutral medium. Because of the formation of a large amount of oxygen vacancies as the active centers for OER on the surface, the TOF value of the Co 3 O 4 @Ti electrode was optimized to be 3238 h -1 at an OER overpotential of 570 mV, which is 380 times that of the state-of-the-art non-noble nanocatalysts in the literature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and characterization of different MnO2 morphologies for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-A.; Jang, Hyuk; Hwang, Hyein; Choi, Mincheol; Lim, Dongwook; Shim, Sang Eun; Baeck, Sung-Hyeon

    2014-09-01

    Manganese dioxide (MnO2) was synthesized in the forms of nanorods, nanoparticles, and mesoporous structures and the characteristics of these materials were investigated. Crystallinities were studied by x-ray diffraction and morphologies by scanning and transmission electron microscopy. Average pore sizes and specific surface areas were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. Samples were also studied by cyclic voltammetry using 1M aqueous KOH solution saturated with either O2 or N2 as electrolytes to investigate their ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) activities. Of the samples produced, mesoporous MnO2 exhibited the highest ORR and OER catalytic activities. Mesoporous MnO2 supported on a gas diffusion layer was also used as a catalyst on the air electrode (cathode) of a lithium-air battery in organic electrolyte. The charge-discharge behavior of mesoporous MnO2 was investigated at a current density 0.2 mAcm-2 in a pure oxygen environment. Mesoporous MnO2 electrodes showed stable cycleability up to 65 cycles at a cell capacity of 700 mAhg-1.

  17. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis.

    PubMed

    Guo, Chunxian; Zheng, Yao; Ran, Jingrun; Xie, Fangxi; Jaroniec, Mietek; Qiao, Shi-Zhang

    2017-07-10

    Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn 3 O 4 nano-octahedrons (hi-Mn 3 O 4 ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn III -O present in hi-Mn 3 O 4 . The CoO/hi-Mn 3 O 4 demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state

    PubMed Central

    Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping

    2017-01-01

    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal–based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF–Ni foam anode coupled with the Pt–Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm−2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm−2. PMID:28691090

  19. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects.

    PubMed

    Zhang, Dawei; Li, Jingwei; Luo, Jiaxian; Xu, Peiman; Wei, Licheng; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng

    2018-06-15

    It is essential to synthesize low-cost, earth-abundant bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) for water electrolysis. Herein, we present a one-step sulfurization method to fabricate Ni 3 S 2 nanowires directly grown on Ni foam (Ni 3 S 2 NWs/Ni) as such an electrocatalyst. This synthetic strategy has several advantages including facile preparation, low cost and can even be expanded to large-scale preparation for practical applications. The as-synthesized Ni 3 S 2 NWs/Ni exhibits a low overpotential of 81 and 317 mV to render a current density of 10 mA cm -2 for the HER and OER, respectively, in 1.0 mol l -1 KOH solution. The Ni 3 S 2 NWs/Ni was integrated to be the cathode and the anode in the alkaline electrolyzer for overall water splitting with a current density of 10 mA cm -2 afforded at a cell voltage of 1.63 V. More importantly, this electrolyzer maintained its electrocatalytic activity even after continual water splitting for 30 h. Owing to its simple synthesis process, the earth-abundant electrocatalyst and high performance, this versatile Ni 3 S 2 NWs/Ni electrode will become a promising electrocatalyst for water splitting.

  20. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Li, Jingwei; Luo, Jiaxian; Xu, Peiman; Wei, Licheng; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng

    2018-06-01

    It is essential to synthesize low-cost, earth-abundant bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) for water electrolysis. Herein, we present a one-step sulfurization method to fabricate Ni3S2 nanowires directly grown on Ni foam (Ni3S2 NWs/Ni) as such an electrocatalyst. This synthetic strategy has several advantages including facile preparation, low cost and can even be expanded to large-scale preparation for practical applications. The as-synthesized Ni3S2 NWs/Ni exhibits a low overpotential of 81 and 317 mV to render a current density of 10 mA cm‑2 for the HER and OER, respectively, in 1.0 mol l‑1 KOH solution. The Ni3S2 NWs/Ni was integrated to be the cathode and the anode in the alkaline electrolyzer for overall water splitting with a current density of 10 mA cm‑2 afforded at a cell voltage of 1.63 V. More importantly, this electrolyzer maintained its electrocatalytic activity even after continual water splitting for 30 h. Owing to its simple synthesis process, the earth-abundant electrocatalyst and high performance, this versatile Ni3S2 NWs/Ni electrode will become a promising electrocatalyst for water splitting.

  1. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-25

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO 2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co 3 O 4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm -2 , while that of HER is -106 mV @ -10 mA cm -2 . The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm -2 while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  2. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  3. Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis.

    PubMed

    McKendry, Ian G; Thenuwara, Akila C; Shumlas, Samantha L; Peng, Haowei; Aulin, Yaroslav V; Chinnam, Parameswara Rao; Borguet, Eric; Strongin, Daniel R; Zdilla, Michael J

    2018-01-16

    The effect on the electrocatalytic oxygen evolution reaction (OER) of cobalt incorporation into the metal oxide sheets of the layered manganese oxide birnessite was investigated. Birnessite and cobalt-doped birnessite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and conductivity measurements. A cobalt:manganese ratio of 1:2 resulted in the most active catalyst for the OER. In particular, the overpotential (η) for the OER was 420 mV, significantly lower than the η = 780 mV associated with birnessite in the absence of Co. Furthermore, the Tafel slope for Co/birnessite was 81 mV/dec, in comparison to a Tafel slope of greater than 200 mV/dec for birnessite. For chemical water oxidation catalysis, an 8-fold turnover number (TON) was achieved (h = 70 mmol of O 2 /mol of metal). Density functional theory (DFT) calculations predict that cobalt modification of birnessite resulted in a raising of the valence band edge and occupation of that edge by holes with enhanced mobility during catalysis. Inclusion of extra cobalt beyond the ideal 1:2 ratio was detrimental to catalysis due to disruption of the layered structure of the birnessite phase.

  4. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Clarifying the Controversial Catalytic Performance of Co(OH)2 and Co3O4 for Oxygen Reduction/Evolution Reactions toward Efficient Zn-Air Batteries.

    PubMed

    Song, Zhishuang; Han, Xiaopeng; Deng, Yida; Zhao, Naiqin; Hu, Wenbin; Zhong, Cheng

    2017-07-12

    Cobalt-based nanomaterials have been widely studied as catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) due to their remarkable bifunctional catalytic activity, low cost, and easy availability. However, controversial results concerning OER/ORR performance exist between different types of cobalt-based catalysts, especially for Co(OH) 2 and Co 3 O 4 . To address this issue, we develop a facile electrochemical deposition method to grow Co(OH) 2 directly on the skeleton of carbon cloth, and further Co 3 O 4 was obtained by post thermal treatment. The entire synthesis strategy removes the use of any binders and also avoids the additional preparation process (e.g., transfer and slurry coating) of final electrodes. This leads to a true comparison of the ORR/OER catalytic performance between Co(OH) 2 and Co 3 O 4 , eliminating uncertainties arising from the electrode preparation procedures. The surface morphologies, microstructures, and electrochemical behaviors of prepared Co(OH) 2 and Co 3 O 4 catalysts were systemically investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and electrochemical characterization methods. The results revealed that the electrochemically deposited Co(OH) 2 was in the form of vertically aligned nanosheets with average thickness of about 4.5 nm. After the thermal treatment in an air atmosphere, Co(OH) 2 nanosheets were converted into mesoporous Co 3 O 4 nanosheets with remarkably increased electrochemical active surface area (ECSA). Although the ORR/OER activity normalized by the geometric surface area of mesoporous Co 3 O 4 nanosheets is higher than that of Co(OH) 2 nanosheets, the performance normalized by the ECSA of the former is lower than that of the latter. Considering the superior apparent overall activity and durability, the Co 3 O 4 catalyst has been further evaluated by integrating it into a Zn-air battery prototype. The Co 3 O 4 nanosheets in situ supported on carbon cloth cathode enable the assembled Zn-air cells with large peak power density of 106.6 mW cm -2 , low charge and discharge overpotentials (0.67 V), high discharge rate capability (1.18 V at 20 mA cm -2 ), and long cycling stability (400 cycles), which are comparable or even superior to the mixture of state-of-the-art Pt/C and RuO 2 cathode.

  6. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

    PubMed

    Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-04-21

    A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

  7. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances.

    PubMed

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-25

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co 9 S 8 aerogel with a high surface area (274.2 m 2 g -1 ) and large pore volume (0.87 cm 3 g -1 ) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co 9 S 8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g -1 at 1 A g -1 ), good rate capability (74.3% capacitance retention from 1 to 20 A g -1 ) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  8. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    NASA Astrophysics Data System (ADS)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  9. Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/cobalt metal thin film.

    PubMed

    Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G

    2013-04-10

    Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.

  10. A multiscale physical model for the transient analysis of PEM water electrolyzer anodes.

    PubMed

    Oliveira, Luiz Fernando L; Laref, Slimane; Mayousse, Eric; Jallut, Christian; Franco, Alejandro A

    2012-08-07

    Polymer electrolyte membrane water electrolyzers (PEMWEs) are electrochemical devices that can be used for the production of hydrogen. In a PEMWE the anode is the most complex electrode to study due to the high overpotential of the oxygen evolution reaction (OER), not widely understood. A physical bottom-up multi-scale transient model describing the operation of a PEMWE anode is proposed here. This model includes a detailed description of the elementary OER kinetics in the anode, a description of the non-equilibrium behavior of the nanoscale catalyst-electrolyte interface, and a microstructural-resolved description of the transport of charges and O(2) at the micro and mesoscales along the whole anode. The impact of different catalyst materials on the performance of the PEMWE anode, and a study of sensitivity to the operation conditions are evaluated from numerical simulations and the results are discussed in comparison with experimental data.

  11. Novel Nano-Composite Catalysts for Renewable Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Devaguptapu, Surya Vamsi

    Spinel NiCo2O4 catalysts are considered the promising precious metal-free catalyst for oxygen reactions. Significant efforts are mainly explore optimal chemical doping and substituent to tune its electronic structures for enhanced performance. Here, we focuses on morphology control and determine the morphology-dependent activity for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In particular, three types of spinel NiCo2O4 were prepared using temple-free, SiO 2 hard template, and Pluronic-123 soft template hydrothermal methods, showing significantly different morphologies, respectively. In particular, template-free method yield dense structures. Sold-template method assists the formation of porous and hollow structures. Importantly, the soft template is effective to prepare a unique nanoflower morphology containing abundant rose petal (needle) like structures. The effect of the utilization of templates, both soft and hard as well as a template free synthesis on the morphology as well as the activity and stability of the final catalyst is investigated. Compared to others, the nanoflower-like NiCo2O4 exhibited the highest bifunctional catalytic activity simultaneously for ORR and OER, likely due to the facile absorption of oxygen molecules on increased surface areas with efficient mass transfer. The nanoflower NiCo2O 4 also exhibited an onset and half-wave potentials of 0.94 and 0.82 V for the ORR in alkaline media. Although it is still inferior to state of the art Pt, the new type of spinel NiCo2O4 catalyst represents the best activity compared to reported carbon-free oxides. Meanwhile, OER activity and stability were achieved with an onset potential of 1.48 V generating a current density of 14 mA/cm2 at 1.6 V. The OER activity does not declined after 10,000 potential cycles demonstrating excellent stability, which is superior to the benchmark of Ir for the OER. This work provides an effective solution to enhance catalytic activity and stability of oxides by engineering their morphology and nanostructures. The high performance bifunctional oxide catalyst is carbon free and can eventually overcome the stability issue for reversible fuel cell and metal-air battery applications. In addition, we have synthesized highly active transition metal doped Carbon Nano Tubes of very small thickness called Graphene Tubes which when integrated with metal oxides can lead to enhanced activity and durability for ORR and OER with current density as high as 25mAcm-2 at 1.6V vs RHE for OER and an onset potential of 1.0V vs RHE during ORR. Finally, we conclude by giving a brief description of the Hydrogen Economy and the role that ammonia decomposition can play in achieving the potential of hydrogen economy. We detail the synthesis procedures of some highly active transition metal nitride- alkali metal imide composites and study their activity for ammonia decomposition. The catalysts show conversion efficiencies as high as 95%.

  12. Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes.

    PubMed

    Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm

    2017-02-08

    Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Zhu, Chengzhou; Xu, Bo Z.

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance hasmore » been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.« less

  14. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    NASA Astrophysics Data System (ADS)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  15. Porous LaCo1-xNixO3-δ Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery.

    PubMed

    Vignesh, Ahilan; Prabu, Moni; Shanmugam, Sangaraju

    2016-03-09

    Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm(-2) in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application.

  16. Solution Plasma-assisted Bimetallic Oxide Alloy Nanoparticles of Pt and Pd Embedded within Two-dimensional Ti3C2Tx Nanosheets as Highly Active Electrocatalysts for Overall Water-splitting.

    PubMed

    Cui, Bingbing; Hu, Bin; Liu, Jiameng; Wang, Minghua; Song, Yingpan; Tian, Kuan; Zhang, Zhihong; He, Linghao

    2018-06-25

    Exploiting high-efficiency and low-cost bifunctional electrocatalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) has been actively encouraged because of their potential applications in the field of clean energy. In this paper, we reported a novel electrocatalyst based on an exfoliated two-dimensional (2D) MXene (Ti3C2Tx) loaded with bimetallic oxide alloy nanoparticles (NPs) of Pt and Pd (represented by PtOaPdObNPs@Ti3C2Tx), which was synthesized via solution plasma (SP) modification. The prepared materials were then utilized as highly efficient bifunctional electrocatalysts toward HER and OER in alkaline solution. At a high plasma input power (200 W), bimetallic oxide alloy nanoparticles of Pt and Pd or nanoclusters with different metallic valence states deposited onto the Ti3C2Tx nanosheets. Due to the synergism of the noble metal NPs and the Ti3C2Tx nanosheets, the electrocatalytic results revealed that the as-prepared PtOaPdObNPs@Ti3C2Tx nanosheets under the plasma input power of 200 W for 3 min catalyst only required a low overpotential to attain 10 mA cm-2 for HER (57 mV) in 0.5 M H2SO4 solution and OER (1.63 V) in 0.1 M KOH sollution. Moreover, water electrolysis using this catalyst achieved a water splitting current density of 10 mA cm-2 at a low cell voltage of 1.53 V in 1.0 M KOH solution. These results suggested that the hybridization of the ultra-extremely low usage of PtOa/PdOb NPs (1.07 μg cm-2) and Ti3C2Tx nanosheets by SP will expand the applications of other clean energy reactions to achieve sustainable energy.

  17. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    PubMed

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  18. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

    DOE PAGES

    Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen; ...

    2017-11-17

    While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less

  19. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen

    While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less

  20. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    NASA Astrophysics Data System (ADS)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  1. In situ growth of NiFe alloy nanoparticles embedded into N-doped bamboo-like carbon nanotube as a bifunctional electrocatalyst for Zn-air battery.

    PubMed

    Bin, Duan; Yang, Beibei; Li, Chao; Liu, Yao; Zhang, Xiao; Wang, Yong-Gang; Xia, Yongyao

    2018-06-26

    Developing low-cost catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with superior performance in alkaline solution is of significance for large-scale application in aqueous zinc-air batteries (ZABs). Herein, we describe in situ design of embedded NiFe nanoparticles into the N-doped bamboo-like carbon nanotube (NBCNT) with high catalytic performance and stability. The obtained NiFe@NBCNT hybrid exhibits a high electrochemical activity and stability with an unexpectedly low overpotential of ~195 mV for OER at 10 mA cm-2, and an onset potential at 1.03 V for ORR, superior to the state-of-the-art Pt/C and RuO2 catalysts. Additionally, compared to the mixture Pt/C and RuO2 cathode, the ZAB based on the NiFe@NBCNT cathode displays lower overpotential (0.80 V), higher stable round-trip efficiency (58.3%) and improved power density for 200 cycles at 10 mA cm-2. Apparently, the obtained results indicate that NiFe@NBCNT hybird is proven to be one of the best non-noble metal catalysts for achieving commercial implementation of rechargeable ZABs.

  2. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    PubMed

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  3. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  4. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Xueli; Zhang, Bo; de Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F. Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J.; He, Sisi; Xin, Huolin L.; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H.

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm-2, reducing CO2 into CO and oxidizing H2O to O2 with a 64% electricity-to-chemical-fuel efficiency.

  5. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    DOE PAGES

    Zheng, Xueli; Zhang, Bo; De Luna, Phil; ...

    2017-11-20

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. Here, we took the view that generating transition metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal phosphorus. Here we synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics by employing in situ soft X-ray absorption (sXAS). In situmore » sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 hours of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2, reducing CO 2 into CO and oxidizing H 2O to O 2 with a 64% electricity-to-chemical-fuel efficiency.« less

  6. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueli; Zhang, Bo; De Luna, Phil

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. Here, we took the view that generating transition metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal phosphorus. Here we synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics by employing in situ soft X-ray absorption (sXAS). In situmore » sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 hours of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2, reducing CO 2 into CO and oxidizing H 2O to O 2 with a 64% electricity-to-chemical-fuel efficiency.« less

  7. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption.

    PubMed

    Zheng, Xueli; Zhang, Bo; De Luna, Phil; Liang, Yufeng; Comin, Riccardo; Voznyy, Oleksandr; Han, Lili; García de Arquer, F Pelayo; Liu, Min; Dinh, Cao Thang; Regier, Tom; Dynes, James J; He, Sisi; Xin, Huolin L; Peng, Huisheng; Prendergast, David; Du, Xiwen; Sargent, Edward H

    2018-02-01

    The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni 4+ sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P. We therefore synthesized NiCoFeP oxyhydroxides and probed their oxidation kinetics with in situ soft X-ray absorption spectroscopy (sXAS). In situ sXAS studies of neutral-pH OER catalysts indicate ready promotion of Ni 4+ under low overpotential conditions. The NiCoFeP catalyst outperforms IrO 2 and retains its performance following 100 h of operation. We showcase NiCoFeP in a membrane-free CO 2 electroreduction system that achieves a 1.99 V cell voltage at 10 mA cm -2 , reducing CO 2 into CO and oxidizing H 2 O to O 2 with a 64% electricity-to-chemical-fuel efficiency.

  8. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting.

    PubMed

    Tang, Tang; Jiang, Wen-Jie; Niu, Shuai; Liu, Ning; Luo, Hao; Chen, Yu-Yun; Jin, Shi-Feng; Gao, Feng; Wan, Li-Jun; Hu, Jin-Song

    2017-06-21

    Developing bifunctional efficient and durable non-noble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable and challenging for overall water splitting. Herein, Co-Mn carbonate hydroxide (CoMnCH) nanosheet arrays with controllable morphology and composition were developed on nickel foam (NF) as such a bifunctional electrocatalyst. It is discovered that Mn doping in CoCH can simultaneously modulate the nanosheet morphology to significantly increase the electrochemical active surface area for exposing more accessible active sites and tune the electronic structure of Co center to effectively boost its intrinsic activity. As a result, the optimized Co 1 Mn 1 CH/NF electrode exhibits unprecedented OER activity with an ultralow overpotential of 294 mV at 30 mA cm -2 , compared with all reported metal carbonate hydroxides. Benefited from 3D open nanosheet array topographic structure with tight contact between nanosheets and NF, it is able to deliver a high and stable current density of 1000 mA cm -2 at only an overpotential of 462 mV with no interference from high-flux oxygen evolution. Despite no reports about effective HER on metal carbonate hydroxides yet, the small overpotential of 180 mV at 10 mA cm -2 for HER can be also achieved on Co 1 Mn 1 CH/NF by the dual modulation of Mn doping. This offers a two-electrode electrolyzer using bifunctional Co 1 Mn 1 CH/NF as both anode and cathode to perform stable overall water splitting with a cell voltage of only 1.68 V at 10 mA cm -2 . These findings may open up opportunities to explore other multimetal carbonate hydroxides as practical bifunctional electrocatalysts for scale-up water electrolysis.

  9. High-Performance Rh 2 P Electrocatalyst for Efficient Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Haohong; Li, Dongguo; Tang, Yan

    2017-04-05

    Search for active, stable and cost-efficient electrocatalysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the rhodium phosphide nanocubes was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM),more » which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.« less

  10. OER in Africa's Higher Education Institutions

    ERIC Educational Resources Information Center

    Ngugi, Catherine N.

    2011-01-01

    Higher education in Africa has had diverse histories and trajectories, and has played different roles over time. This article is concerned with the evolution and future of higher education on the continent, and the role that open educational resources (OER) might play therein. It is generally accepted that "the university in Africa and higher…

  11. Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganese-Oxynitride Nanocatalysts on Graphene

    DOE PAGES

    Li, Yang; Kuttiyiel, Kurian A.; Wu, Lijun; ...

    2016-11-21

    In this paper, we report the synthesis and characterization of graphenesupported cobalt–manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. Finally, an appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.

  12. Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation.

    PubMed

    Sun, Ke; Shen, Shaohua; Cheung, Justin S; Pang, Xiaolu; Park, Namseok; Zhou, Jigang; Hu, Yongfeng; Sun, Zhelin; Noh, Sun Young; Riley, Conor T; Yu, Paul K L; Jin, Sungho; Wang, Deli

    2014-03-14

    We report an ultrathin NiOx catalyzed Si np(+) junction photoanode for a stable and efficient solar driven oxygen evolution reaction (OER) in water. A stable semi-transparent ITO/Au/ITO hole conducting oxide layer, sandwiched between the OER catalyst and the Si photoanode, is used to protect the Si from corrosion in an alkaline working environment, enhance the hole transportation, and provide a pre-activation contact to the NiOx catalyst. The NiOx catalyzed Si photoanode generates a photocurrent of 1.98 mA cm(-2) at the equilibrium water oxidation potential (EOER = 0.415 V vs. NHE in 1 M NaOH solution). A thermodynamic solar-to-oxygen conversion efficiency (SOCE) of 0.07% under 0.51-sun illumination is observed. The successful development of a low cost, highly efficient, and stable photoelectrochemical electrode based on earth abundant elements is essential for the realization of a large-scale practical solar fuel conversion.

  13. Surface Engineering of a Nickel Oxide-Nickel Hybrid Nanoarray as a Versatile Catalyst for Both Superior Water and Urea Oxidation.

    PubMed

    Yue, Zhihao; Zhu, Wenxin; Li, Yuanzhen; Wei, Ziyi; Hu, Na; Suo, Yourui; Wang, Jianlong

    2018-04-16

    Developing efficient and low-cost oxygen evolution reaction (OER) electrodes is a pressing but still challenging task for energy conversion technologies such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Hence, this study reports that a nickel oxide-nickel hybrid nanoarray on nickel foam (NiO-Ni/NF) could act as a versatile anode for superior water and urea oxidation. Impressively, this anode could attain high current densities of 50 and 100 mA cm -2 at extremely low overpotentials of 292 and 323 mV for OER, respectively. Besides, this electrode also shows excellent activity for urea oxidation with the need for just 0.28 and 0.36 V (vs SCE) to attain 10 and 100 mA cm -2 in 1.0 M KOH with 0.33 M urea, respectively. The enhanced oxidation performance should be due to the synergistic effect of NiO and Ni, improved conductivity, and enlarged active surface area.

  14. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  15. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    PubMed

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  16. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  17. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation.

    PubMed

    Nguyen, Andy I; Ziegler, Micah S; Oña-Burgos, Pascual; Sturzbecher-Hohne, Manuel; Kim, Wooyul; Bellone, Donatela E; Tilley, T Don

    2015-10-14

    Artificial photosynthesis (AP) promises to replace society's dependence on fossil energy resources via conversion of sunlight into sustainable, carbon-neutral fuels. However, large-scale AP implementation remains impeded by a dearth of cheap, efficient catalysts for the oxygen evolution reaction (OER). Cobalt oxide materials can catalyze the OER and are potentially scalable due to the abundance of cobalt in the Earth's crust; unfortunately, the activity of these materials is insufficient for practical AP implementation. Attempts to improve cobalt oxide's activity have been stymied by limited mechanistic understanding that stems from the inherent difficulty of characterizing structure and reactivity at surfaces of heterogeneous materials. While previous studies on cobalt oxide revealed the intermediacy of the unusual Co(IV) oxidation state, much remains unknown, including whether bridging or terminal oxo ligands form O2 and what the relevant oxidation states are. We have addressed these issues by employing a homogeneous model for cobalt oxide, the [Co(III)4] cubane (Co4O4(OAc)4py4, py = pyridine, OAc = acetate), that can be oxidized to the [Co(IV)Co(III)3] state. Upon addition of 1 equiv of sodium hydroxide, the [Co(III)4] cubane is regenerated with stoichiometric formation of O2. Oxygen isotopic labeling experiments demonstrate that the cubane core remains intact during this stoichiometric OER, implying that terminal oxo ligands are responsible for forming O2. The OER is also examined with stopped-flow UV-visible spectroscopy, and its kinetic behavior is modeled, to surprisingly reveal that O2 formation requires disproportionation of the [Co(IV)Co(III)3] state to generate an even higher oxidation state, formally [Co(V)Co(III)3] or [Co(IV)2Co(III)2]. The mechanistic understanding provided by these results should accelerate the development of OER catalysts leading to increasingly efficient AP systems.

  18. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.

    PubMed

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-21

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.

  19. NiSe-Ni0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Chen, Yajie; Ren, Zhiyu; Fu, Huiying; Zhang, Xin; Tian, Guohui; Fu, Honggang

    2018-06-01

    Fabricating cost-effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni 0.85 Se/CP, and NiSe-Ni 0.85 Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe-Ni 0.85 Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single-phase NiSe/CP and Ni 0.85 Se/CP. A current density of 10 mA cm -2 at 1.62 V and a high stability can be obtained by using NiSe-Ni 0.85 Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH - can be more easily adsorbed on NiSe-Ni 0.85 Se than on NiSe and Ni 0.85 Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Single-Crystalline Ultrathin Co 3O 4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis

    DOE PAGES

    Cai, Zhao; Bi, Yongmin; Hu, Enyuan; ...

    2017-09-18

    The role of vacancy defects is demonstrated to be positive in various energy-related processes. However, introducing vacancy defects into single-crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this paper deliberately introduces oxygen defects into single-crystalline ultrathin Co 3O 4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As-prepared defect-rich Co 3O 4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec -1 for the oxygen evolution reaction (OER), which is among the best Co-based OERmore » catalysts to date and even more active than the state-of-the-art IrO 2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second-layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. Finally, this mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect-based electrocatalysts.« less

  1. Single-Crystalline Ultrathin Co 3O 4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Bi, Yongmin; Hu, Enyuan

    The role of vacancy defects is demonstrated to be positive in various energy-related processes. However, introducing vacancy defects into single-crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this paper deliberately introduces oxygen defects into single-crystalline ultrathin Co 3O 4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As-prepared defect-rich Co 3O 4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec -1 for the oxygen evolution reaction (OER), which is among the best Co-based OERmore » catalysts to date and even more active than the state-of-the-art IrO 2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second-layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. Finally, this mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect-based electrocatalysts.« less

  2. Controllable Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis.

    PubMed

    Zhao, Yingxuan; Lai, Qingxue; Zhu, Junjie; Zhong, Jia; Tang, Zeming; Luo, Yan; Liang, Yanyu

    2018-05-01

    Designing rational nanostructures of metal-organic frameworks based carbon materials to promote the bifunctional catalytic activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desired but still remains a great challenge. Herein, an in situ growth method to achieve 1D structure-controllable zeolitic imidazolate frameworks (ZIFs)/polyacrylonitrile (PAN) core/shell fiber (PAN@ZIFs) is developed. Subsequent pyrolysis of this precursor can obtain a heteroatom-doped carbon nanofiber network as an efficient bifunctional oxygen electrocatalyst. The electrocatalytic performance of derived carbon nanofiber is dominated by the structures of PAN@ZIFs fiber, which is facilely regulated by efficiently controlling the nucleation and growth process of ZIFs on the surface of polymer fiber as well as optimizing the components of ZIFs. Benefiting from the core-shell structures with appropriate dopants and porosity, as-prepared catalysts show brilliant bifunctional ORR/OER catalytic activity and durability. Finally, the rechargeable Zn-air battery assembled from the optimized catalyst (CNF@Zn/CoNC) displays a peak power density of 140.1 mW cm -2 , energy density of 878.9 Wh kg Zn -1 , and excellent cyclic stability over 150 h, giving a promising performance in realistic application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo2O4 nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries.

    PubMed

    Bin, Duan; Guo, Ziyang; Tamirat, Andebet Gedamu; Ma, Yuanyuan; Wang, Yonggang; Xia, Yongyao

    2017-08-10

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out using noble metals (such as Pt) and metal oxides (such as RuO 2 and IrO 2 ) as catalysts, respectively. Nevertheless, several key issues such as high cost, poor stability, and detrimental environmental effects limit the catalytic activity of these noble metal- and metal oxide-based catalysts. Herein, we have designed and synthesized macroporous carbon nanofiber arrays by using a natural crab shell template. Subsequently, spinel MnCo 2 O 4 nanoparticles were embedded into the nitrogen-doped macroporous carbon nanofiber arrays (NMCNAs) by a hydrothermal method. Accompanied by the good conductivity, large surface area and doping of nitrogen, the as-prepared MnCo 2 O 4 /NMCNA exhibited remarkable catalytic performance and outstanding stability for both ORR and OER in alkaline media. The macroporous superstructures play vital role in reducing the ion transport resistance and facilitating the diffusion of gaseous products (O 2 ). Finally, rechargeable Zn-air batteries using the MnCo 2 O 4 /NMCNA catalyst displayed appreciably lower overpotentials, higher power density and better stability than commercial Pt/C, thus raising the prospect of functional low-cost, non-precious-metal bifunctional catalysts in metal-air batteries.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia

    The effect due to systematic substitution of cobalt by iron in La 0.6Ca 0.4Co 1-xFe xO 3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reactionmore » order towards OH- near unity were achieved for the unsubstituted La 0.6Ca 0.4CoO 3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La 0.6Ca 0.4Co 0.2Fe 0.8O 3 and La 0.6Ca 0.4Co 0.1Fe 0.9O 3 showed higher area specific activity towards OER than La 0.6Ca 0.4CoO 3 or La 0.6Ca 0.4FeO 3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  5. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.

    2017-03-06

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast,more » absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fedoped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixedmetal oxidation states in heterogeneous catalysts.« less

  6. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.

    PubMed

    Goldsmith, Zachary K; Harshan, Aparna K; Gerken, James B; Vörös, Márton; Galli, Giulia; Stahl, Shannon S; Hammes-Schiffer, Sharon

    2017-03-21

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni 2+ to Ni 3+ , followed by oxidation to a mixed Ni 3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe 4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

  7. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    PubMed Central

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Galli, Giulia; Stahl, Shannon S.

    2017-01-01

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts. PMID:28265083

  8. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.

    PubMed

    Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T

    2013-09-11

    The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.

  9. Controllable Synthesis of Ni xSe (0.5 ≤ x ≤ 1) Nanocrystals for Efficient Rechargeable Zinc-Air Batteries and Water Splitting.

    PubMed

    Zheng, Xuerong; Han, Xiaopeng; Liu, Hui; Chen, Jianjun; Fu, Dongju; Wang, Jihui; Zhong, Cheng; Deng, Yida; Hu, Wenbin

    2018-04-25

    The development of earth-abundant, highly active, and corrosion-resistant electrocatalysts to promote the oxygen reduction reaction (ORR) and oxygen and hydrogen evolution reactions (OER/HER) for rechargeable metal-air batteries and water-splitting devices is urgently needed. In this work, Ni x Se (0.5 ≤ x ≤ 1) nanocrystals with different crystal structures and compositions have been controllably synthesized and investigated as potential electrocatalysts for multifunctional ORR, OER, and HER in alkaline conditions. A novel hot-injection process at ambient pressure was developed to control the phase and composition of a series of Ni x Se by simply adjusting the added molar ratio of the nickel resource to triethylenetetramine. Electrochemical analysis reveals that Ni 0.5 Se nanocrystalline exhibits superior OER activity compared to its counterparts and is comparable to RuO 2 in terms of the low overpotential required to reach a current density of 10 mA cm -2 (330 mV), which may benefit from the pyrite-type crystal structure and Se enrichment in Ni 0.5 Se. For the ORR and HER, Ni 0.75 Se nanoparticles achieve the best performance including lower overpotentials and larger apparent current densities. Further investigations demonstrate that Ni 0.75 Se could not only provide an enhanced electrochemical active area but also facilitate electron transfer during the electrocatalytic process, thus contributing to the remarkable catalytic activity. As a practical application, the Ni 0.75 Se electrode enables rechargeable Zn-air battery with a considerable performance including a long cycling lifetime (200 cycles), high specific capacity (609 mA h g -1 based on the consumed Zn), and low overpotential (0.75 V) at 10 mA cm -2 . Meanwhile, the water-splitting cell setup with an anode of Ni 0.5 Se for the HER and a cathode of Ni 0.75 Se for the OER exhibits a considerable performance with low decay in activity of 12.9% under continuous polarization for 10 h. These results suggest the promising potential of nickel selenide nanocrystals as earth-abundant and high-performance electrocatalysts for metal-air batteries and alkaline water splitting.

  10. Rational Design and Nanoscale Integration of Multi-Heterostructures as Highly Efficient Photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiangfeng

    2017-11-03

    The central goal of this project is to design and synthesize complex multi-hetero-nanostructures and fundamental investigation of their potential as efficient and robust photocatalysts. Specifically, the project aims to develop a nanoscale light-harvesting antenna that can efficiently convert solar photon energy into excited electrons and holes, and integrate such antenna with efficient redox nanocatalysts that can harness the photo-generated carriers for productive electrochemical processes. Focusing on this central goal, we have investigated several potential light-harvesting antennas including: silicon nanowires, nitrogen-doped TiO2 nanowires and the emerging perovskite materials. We also devoted considerable effort in developing electrocatalysts including: hydrogen evolution reaction (HER)more » catalysts, oxygen evolution reaction (OER) catalysts and oxygen reduction reaction catalysts (ORR). In previous annual reports, we have described our effort in the synthesis and photoelectrochemical properties of silicon, TiO2, perovskite-based materials and heterostructures. Here, we focus our discussion on the recent effort in investigating charge transport dynamics in organolead halide perovskites, as well as carbon nanostructure and platinum nanostructure-based electrocatalysts for energy conversion and storage.« less

  11. Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse.

    PubMed

    Xu, Shaomao; Chen, Yanan; Li, Yiju; Lu, Aijiang; Yao, Yonggang; Dai, Jiaqi; Wang, Yanbin; Liu, Boyang; Lacey, Steven D; Pastel, Glenn R; Kuang, Yudi; Danner, Valencia A; Jiang, Feng; Fu, Kun Kelvin; Hu, Liangbing

    2017-09-13

    The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co 2 B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co 2 B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS 2 ) and cobalt oxide (Co 3 O 4 ) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.

  12. Simple synthetic route to manganese-containing nanowires with the spinel crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lei; Zhang, Yan; Hudak, Bethany M.

    This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less

  13. Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan

    Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less

  14. Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan; ...

    2018-01-22

    Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less

  15. Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhang, Huijuan; Mu, Yanping; Bai, Yuanjuan; Wang, Yu

    2016-09-01

    The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of exposing more active sites. In consideration of the structural preponderances and versatility of the materials, the CoFe2O4 nanomesh arrays have been researched as the binder-free electrode materials for electrocatalysis and supercapacitors. When the CoFe2O4nanomesh arrays on nickel foam (CoFe2O4 NM-As/Ni) directly act as the free-binder catalyst toward catalyzing the oxygen evolution reaction (OER) of electrochemical water splitting, CoFe2O4 NM-As/Ni exhibits an admirable OER property with a low onset potential of 1.47 V(corresponding to the onset overpotential of 240 mV), a minimal overpotential (η10 = 253 mV), a small Tafel slope (44 mV dec-1), large anodic currents and long-term durability for 35 h in alkaline media. In addition, as an electrode of supercapacitors, CoFe2O4 NM-As/Ni obtains a desired specific capacitance (1426 F/g at the current density of 1 A/g), remarkable rate capability (1024 F/g at the current density of 20 A/g) and eminent capacitance retention (92.6% after 3000 cycles). The above results demonstrate the CoFe2O4 NM-As/Ni possesses great potential application in electrocatalysis and supercapacitors.

  16. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction.

    PubMed

    Xu, Wangwang; Xie, Weiwei; Wang, Ying

    2017-08-30

    Hollow heterostructured nanomaterials have received tremendous interest in new-generation electrocatalyst applications. However, the design and fabrication of such materials remain a significant challenge. In this work, we present Co 3 O 4-x -carbon@Fe 2-y Co y O 3 heterostructural hollow polyhedrons that have been fabricated by facile thermal treatment followed by solution-phase growth for application as efficient oxygen evolution reaction (OER) electrocatalysts. Starting from a single ZIF-67 hollow polyhedron, a novel complex structured composite material constructed from Co 3 O 4-x nanocrystallite-embedded carbon matrix embedded with Fe 2-y Co y O 3 nanowires was successfully prepared. The Co 3 O 4-x nanocrystallite with oxygen vacancies provides both heterogeneous nucleation sites and growth platform for Fe 2-y Co y O 3 nanowires. The resultant heterostructure combines the advantages of Fe 2-y Co y O 3 nanowires with the large surface area and surface defects of Co 3 O 4-x nanocrystallite, resulting in improved electrocatalytic activity and electrical conductivity. As a result, such novel heterostructured OER electrocatalysts exhibit much lower onset potential (1.52 V) and higher current density (70 mA/cm 2 at 1.7 V) than Co 3 O 4-x -carbon hollow polyhedrons (onset 1.55 V, 35 mA/cm 2 at 1.7 V) and pure Co 3 O 4 hollow polyhedrons (onset 1.62 V, 5 mA/cm 2 at 1.7 V). Furthermore, the design and synthesis of metal-organic framework (MOF)-derived nanomaterials in this work offer new opportunities for developing novel and efficient electrocatalysts in electrochemical devices.

  17. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System.

    PubMed

    Luo, Pan; Zhang, Huijuan; Liu, Li; Zhang, Yan; Deng, Ju; Xu, Chaohe; Hu, Ning; Wang, Yu

    2017-01-25

    Water splitting is one of the ideal technologies to meet the ever increasing demands of energy. Many materials have aroused great attention in this field. The family of nickel-based sulfides is one of the examples that possesses interesting properties in water-splitting fields. In this paper, a controllable and simple strategy to synthesize nickel sulfides was proposed. First, we fabricated NiS 2 hollow microspheres via a hydrothermal process. After a precise heat control in a specific atmosphere, NiS porous hollow microspheres were prepared. NiS 2 was applied in hydrogen evolution reaction (HER) and shows a marvelous performance both in acid medium (an overpotential of 174 mV to achieve a current density of 10 mA/cm 2 and the Tafel slope is only 63 mV/dec) and in alkaline medium (an overpotential of 148 mV to afford a current density of 10 mA/cm 2 and the Tafel slope is 79 mV/dec). NiS was used in oxygen evolution reaction (OER) showing a low overpotential of 320 mV to deliver a current density of 10 mA/cm 2 , which is meritorious. These results enlighten us to make an efficient water-splitting system, including NiS 2 as HER catalyst in a cathode and NiS as OER catalyst in an anode. The system shows high activity and good stabilization. Specifically, it displays a stable current density of 10 mA/cm 2 with the applying voltage of 1.58 V, which is a considerable electrolyzer for water splitting.

  18. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  19. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onsetmore » potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.« less

  20. Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production

    PubMed Central

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Tu, Jiangping

    2017-01-01

    Abstract Designing ever more efficient and cost‐effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder‐free hollow TiO2@Co9S8 core–branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core–branch arrays of TiO2@Co9S8 are readily realized by the rational combination of crosslinked Co9S8 nanoflakes on TiO2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as‐obtained TiO2@Co9S8 core–branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm−2 as well as low Tafel slopes of 55 and 65 mV Dec−1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO2@Co9S8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm−2 and long‐term durability with no decay after 10 d. The versatile fabrication protocol and smart branch‐core design provide a new way to construct other advanced metal sulfides for energy conversion and storage. PMID:29593976

  1. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    PubMed

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  2. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles.

    PubMed

    Yilmaz, Eda; Yogi, Chihiro; Yamanaka, Keisuke; Ohta, Toshiaki; Byon, Hye Ryung

    2013-10-09

    Low electrical efficiency for the lithium-oxygen (Li-O2) electrochemical reaction is one of the most significant challenges in current nonaqueous Li-O2 batteries. Here we present ruthenium oxide nanoparticles (RuO2 NPs) dispersed on multiwalled carbon nanotubes (CNTs) as a cathode, which dramatically increase the electrical efficiency up to 73%. We demonstrate that the RuO2 NPs contribute to the formation of poorly crystalline lithium peroxide (Li2O2) that is coated over the CNT with large contact area during oxygen reduction reaction (ORR). This unique Li2O2 structure can be smoothly decomposed at low potential upon oxygen evolution reaction (OER) by avoiding the energy loss associated with the decomposition of the more typical Li2O2 structure with a large size, small CNT contact area, and insulating crystals.

  3. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries.

    PubMed

    Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang

    2017-10-01

    Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. First report of vertically aligned (Sn,Ir)O2:F solid solution nanotubes: Highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis

    NASA Astrophysics Data System (ADS)

    Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.

    2018-07-01

    One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.

  5. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

    PubMed

    Exner, Kai S; Over, Herbert

    2017-05-16

    Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO 2 (110), while the kinetics of the OER over RuO 2 (110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G rds # , defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G max (RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG loss , as a descriptor for the kinetics.

  6. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Bo; Jiang, Nan; Sheng, Meili

    2015-11-05

    The design of active, robust, and nonprecious electrocatalysts with both H 2 and O 2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Here in this article, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoP x (a mixture of CoP and Co 2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and highmore » nitrogen content of ZIF (a subclass of metal–organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m 2 g -1 and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm -2 at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm -2 at 2.0 V, superior to that of Pt/IrO 2 couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoP x encapsulated within N-doped carbon matrices.« less

  8. Sugar Blowing-Induced Porous Cobalt Phosphide/Nitrogen-Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chengzhou; Fu, Shaofang; Xu, Bo Z.

    Finely controlled synthesis of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy-efficient and economical. Among these noble metal-free catalysts, transition-metal-based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low-cost intrinsic activities, high abundance and diversity in terms of structure and morphology. In this work, we reported a facile sugar-blowing technique and low-temperature phosphorization to generate 3D self-supported metal involved carbon nanostructures, which termed as Co2P@Co/nitrogen-doped carbon (Co2P@Co/N-C). By capitalizing on the 3D porous nanostructuresmore » with high surface area, generously dispersed active sites, the intimate interaction between active sites and 3D N-doped carbon, the resultant Co2P@Co/N-C exhibited satisfying OER performance superior to CoO@Co/N-C, delivering 10 mA cm-2 at overpotential of 0.32 V. It is noting that in contrast to the substantial current density loss of RuO2, Co2P@Co/N-C showed much enhanced catalytic activity during the stability test and the 1.8-fold increase in current density was observed after stability test. Furthermore, the obtained Co2P@Co/N-C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.

    Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less

  10. Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella

    2017-02-01

    Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.

  11. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    PubMed

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  12. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction

    NASA Astrophysics Data System (ADS)

    Li, Mian; Xiong, Yueping; Liu, Xiaotian; Bo, Xiangjie; Zhang, Yufan; Han, Ce; Guo, Liping

    2015-05-01

    Designing and preparing porous transition metal ferrites without using any template, shape-directing agent, and surfactant is a challenge. Herein, heterojunction MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber (NF) based films with three-dimensional configurations were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed show the 3D net-like textural structures of the electrospun spinel-type MFe2O4 NFs. In particular, the resulting MFe2O4 NFs have lengths up to several dozens of micrometers with an average diameter size of about 150 nm and possess abundant micro/meso/macropores on both the surface and within the films. The hierarchically porous structures and high surface areas of these MFe2O4 NFs (for example, the CoFe2O4 NFs possess a larger BET specific surface area (61.48 m2 g-1) than those of the CoFe2O4 NPs (5.93 m2 g-1)) can afford accessible transport channels for effectively decreasing the mass transport resistances, enhancing the electrical conductivity, and increasing the density and reactivity of the exposed catalytic active sites. All these advantages will be responsible for the better electrocatalytic performances of these MFe2O4 NFs compared with their structural isomers (i.e. the MFe2O4 NPs) for the oxygen evolution reaction (OER) and H2O2 reduction in alkaline solution. Meanwhile, both the OER and H2O2 reduction catalytic activities for these MFe2O4 NFs obey the order of CoFe2O4 NFs > CuFe2O4 NFs > NiFe2O4 NFs > MnFe2O4 NFs > Fe2O3 NFs. The CoFe2O4 NFs represent a new class of highly efficient non-noble-metal catalysts for both OER and H2O2 reduction/detection in alkaline media.Designing and preparing porous transition metal ferrites without using any template, shape-directing agent, and surfactant is a challenge. Herein, heterojunction MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber (NF) based films with three-dimensional configurations were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed show the 3D net-like textural structures of the electrospun spinel-type MFe2O4 NFs. In particular, the resulting MFe2O4 NFs have lengths up to several dozens of micrometers with an average diameter size of about 150 nm and possess abundant micro/meso/macropores on both the surface and within the films. The hierarchically porous structures and high surface areas of these MFe2O4 NFs (for example, the CoFe2O4 NFs possess a larger BET specific surface area (61.48 m2 g-1) than those of the CoFe2O4 NPs (5.93 m2 g-1)) can afford accessible transport channels for effectively decreasing the mass transport resistances, enhancing the electrical conductivity, and increasing the density and reactivity of the exposed catalytic active sites. All these advantages will be responsible for the better electrocatalytic performances of these MFe2O4 NFs compared with their structural isomers (i.e. the MFe2O4 NPs) for the oxygen evolution reaction (OER) and H2O2 reduction in alkaline solution. Meanwhile, both the OER and H2O2 reduction catalytic activities for these MFe2O4 NFs obey the order of CoFe2O4 NFs > CuFe2O4 NFs > NiFe2O4 NFs > MnFe2O4 NFs > Fe2O3 NFs. The CoFe2O4 NFs represent a new class of highly efficient non-noble-metal catalysts for both OER and H2O2 reduction/detection in alkaline media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07243j

  13. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.

  14. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries

    PubMed Central

    Zhao, Yunlong; Xu, Lin; Mai, Liqiang; Han, Chunhua; An, Qinyou; Xu, Xu; Liu, Xue; Zhang, Qingjie

    2012-01-01

    Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current. Furthermore, we fabricated Li-air batteries on the basis of hierarchical mesoporous LSCO nanowires and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca. over 11,000 mAh⋅g –1, one order of magnitude higher than that of LSCO nanoparticles. Besides, the possible reaction mechanism is proposed to explain the catalytic activity of the LSCO mesoporous nanowire. PMID:23150570

  15. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  16. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  17. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction.

    PubMed

    Li, Mian; Xiong, Yueping; Liu, Xiaotian; Bo, Xiangjie; Zhang, Yufan; Han, Ce; Guo, Liping

    2015-05-21

    Designing and preparing porous transition metal ferrites without using any template, shape-directing agent, and surfactant is a challenge. Herein, heterojunction MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber (NF) based films with three-dimensional configurations were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed show the 3D net-like textural structures of the electrospun spinel-type MFe2O4 NFs. In particular, the resulting MFe2O4 NFs have lengths up to several dozens of micrometers with an average diameter size of about 150 nm and possess abundant micro/meso/macropores on both the surface and within the films. The hierarchically porous structures and high surface areas of these MFe2O4 NFs (for example, the CoFe2O4 NFs possess a larger BET specific surface area (61.48 m(2) g(-1)) than those of the CoFe2O4 NPs (5.93 m(2) g(-1))) can afford accessible transport channels for effectively decreasing the mass transport resistances, enhancing the electrical conductivity, and increasing the density and reactivity of the exposed catalytic active sites. All these advantages will be responsible for the better electrocatalytic performances of these MFe2O4 NFs compared with their structural isomers (i.e. the MFe2O4 NPs) for the oxygen evolution reaction (OER) and H2O2 reduction in alkaline solution. Meanwhile, both the OER and H2O2 reduction catalytic activities for these MFe2O4 NFs obey the order of CoFe2O4 NFs > CuFe2O4 NFs > NiFe2O4 NFs > MnFe2O4 NFs > Fe2O3 NFs. The CoFe2O4 NFs represent a new class of highly efficient non-noble-metal catalysts for both OER and H2O2 reduction/detection in alkaline media.

  18. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  19. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution.

    PubMed

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-18

    Bifunctional bamboo-like CoSe 2 arrays are synthesized by thermal annealing of Co(CO 3 ) 0.5 OH grown on carbon cloth in Se atmosphere. The CoSe 2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe 2 delivers a higher specific capacitance (544.6 F g -1 at current density of 1 mA cm -2 ) compared with CoO (308.2 F g -1 ) or Co 3 O 4 (201.4 F g -1 ). In addition, the CoSe 2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe 2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe 2 , the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg -1 at a power density of 144.1 W kg -1 , and an outstanding cyclic stability. As the catalyst for the OER, the CoSe 2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm -2 , a smaller Tafel slope of 62.5 mV dec -1 and an also outstanding stability.

  20. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-01

    Bifunctional bamboo-like CoSe2 arrays are synthesized by thermal annealing of Co(CO3)0.5OH grown on carbon cloth in Se atmosphere. The CoSe2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe2 delivers a higher specific capacitance (544.6 F g‑1 at current density of 1 mA cm‑2) compared with CoO (308.2 F g‑1) or Co3O4 (201.4 F g‑1). In addition, the CoSe2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe2, the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg‑1 at a power density of 144.1 W kg‑1, and an outstanding cyclic stability. As the catalyst for the OER, the CoSe2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm‑2, a smaller Tafel slope of 62.5 mV dec‑1 and an also outstanding stability.

  1. Boosting water oxidation layer-by-layer.

    PubMed

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  2. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    PubMed Central

    Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.

    2015-01-01

    Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106

  3. Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Sheng; Zhang, Haimin; Liu, Rongrong; Zhang, Xian; Zhao, Huijun; Wang, Guozhong

    2017-01-01

    Metal-organic frameworks (MOFs) materials have aroused great research interest in different areas owing to their unique properties, such as high surface area, various composition, well-organized framework and controllable porous structure. Controllable fabrication of MOFs materials at macro-scale may be more promising for their large-scale practical applications. Here we report the synthesis of macro-scale Co-MOFs crystals using 1,3,5-benzenetricarboxylic acid (H3BTC) linker in the presence of Co2+, triethylamine (TEA) and nonanoic acid by a facile solvothermal reaction. Further, the as-fabricated Co-MOFs as precursor was pyrolytically treated at different temperatures in N2 atmosphere to obtain metallic Co nanoparticles embedded in N-doped porous carbon layers (denoted as Co@NPC). The results demonstrate that the Co-MOFs derived sample obtained at 900 °C (Co@NPC-900) shows a porous structure (including micropore and mesopore) with a surface area of 110.8 m2 g-1 and an N doping level of 1.62 at.% resulted from TEA in the pyrolysis process. As electrocatalyst, the Co@NPC-900 exhibits bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media which are key reactions in some renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The results indicate that the Co@NPC-900 can afford an onset potential of 1.50 V (vs. RHE) and a potential value of 1.61 V (vs. RHE) at a current density of 10 mA cm-2 for ORR and OER with high applicable stability, respectively. The efficient catalytic activity of Co@NPC-900 as bifunctional oxygen electrocatalyst can be ascribed to N doping and embedded metallic Co nanoparticles in carbon structure providing catalytic active sites and porous structure favourable for electrocatalysis-related mass transport.

  4. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    PubMed

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  5. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting.

    PubMed

    Zhang, Mingdao; Dai, Quanbin; Zheng, Hegen; Chen, Mindong; Dai, Liming

    2018-03-01

    Metal-organic frameworks (MOFs) and MOF-derived materials have recently attracted considerable interest as alternatives to noble-metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N-C materials (C-MOF-C2-T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C-MOF-C2-900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N-doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO 2 , respectively. Primary Zn-air batteries based on C-MOF-900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h g Zn -1 under 10 mA cm -2 . Rechargeable Zn-air batteries based on C-MOF-C2-900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm -2 ), along with an excellent cycling stability with no increase in polarization even after 120 h - outperform their counterparts based on noble-metal-based air electrodes. The resultant rechargeable Zn-air batteries are used to efficiently power electrochemical water-splitting systems, demonstrating promising potential as integrated green energy systems for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.

    PubMed

    Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk

    2016-01-27

    Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.

  7. Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy

    DOE PAGES

    Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.; ...

    2017-08-28

    Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less

  8. Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries

    PubMed Central

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}. PMID:25169737

  9. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei

    2015-09-01

    A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02983j

  10. Coping with unpredictability: dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.).

    PubMed

    Vindas, Marco A; Sørensen, Christina; Johansen, Ida B; Folkedal, Ole; Höglund, Erik; Khan, Uniza W; Stien, Lars H; Kristiansen, Tore S; Braastad, Bjarne O; Øverli, Øyvind

    2014-01-01

    Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability.

  11. Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode.

    PubMed

    Aijaz, Arshad; Masa, Justus; Rösler, Christoph; Xia, Wei; Weide, Philipp; Botz, Alexander J R; Fischer, Roland A; Schuhmann, Wolfgang; Muhler, Martin

    2016-03-14

    Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal-air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core-shell Co@Co3O4 nanoparticles embedded in CNT-grafted N-doped carbon-polyhedra obtained by the pyrolysis of cobalt metal-organic framework (ZIF-67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2 , and RuO2 and thus ranking them among one of the best non-precious-metal electrocatalysts for reversible oxygen electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. On the impact of water activity on reversal tolerant fuel cell anode performance and durability

    NASA Astrophysics Data System (ADS)

    Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn

    2016-10-01

    Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.

  13. Co3O4/MnO2/Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc-Air Batteries.

    PubMed

    Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli

    2018-05-09

    The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.

  14. Tunable Bifunctional Activity of Mnx Co3-x O4 Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis.

    PubMed

    Zhao, Tingting; Gadipelli, Srinivas; He, Guanjie; Ward, Matthew J; Do, David; Zhang, Peng; Guo, Zhengxiao

    2018-04-25

    Noble-metal-free electrocatalysts are attractive for cathodic oxygen catalysis in alkaline membrane fuel cells, metal-air batteries, and electrolyzers. However, much of the structure-activity relationship is poorly understood. Herein, the comprehensive development of manganese cobalt oxide/nitrogen-doped multiwalled carbon nanotube hybrids (Mn x Co 3-x O 4 @NCNTs) is reported for highly reversible oxygen reduction and evolution reactions (ORR and OER, respectively). The hybrid structures are rationally designed by fine control of surface chemistry and synthesis conditions, including tuning of functional groups at surfaces, congruent growth of nanocrystals with controllable phases and particle sizes, and ensuring strong coupling across catalyst-support interfaces. Electrochemical tests reveal distinctly different oxygen catalytic activities among the hybrids, Mn x Co 3-x O 4 @NCNTs. Nanocrystalline MnCo 2 O 4 @NCNTs (MCO@NCNTs) hybrids show superior ORR activity, with a favorable potential to reach 3 mA cm -2 and a high current density response, equivalent to that of the commercial Pt/C standard. Moreover, the hybrid structure exhibits tunable and durable catalytic activities for both ORR and OER, with a lowest overall potential of 0.93 V. It is clear that the long-term electrochemical activities can be ensured by rational design of hybrid structures from the nanoscale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Undoped and Ni-doped CoO x surface modification of porous BiVO 4 photoelectrodes for water oxidation

    DOE PAGES

    Liu, Ya; Guo, Youhong; Schelhas, Laura T.; ...

    2016-09-29

    Surface modification of photoanodes with oxygen evolution reaction (OER) catalysts is an effective approach to enhance water oxidation kinetics, to reduce external bias, and to improve the energy harvesting efficiency of photoelectrochemical (PEC) water oxidation. Here, the surface of porous BiVO 4 photoanodes was modified by the deposition of undoped and Ni-doped CoO x via nitrogen flow assisted electrostatic spray pyrolysis. This newly developed atmospheric pressure deposition technique allows for surface coverage throughout the porous structure with thickness and composition control. PEC testing of modified BiVO 4 photoanodes shows that after deposition of an undoped CoO x surface layer, themore » onset potential shifts negatively by ca. 420 mV and the photocurrent density reaches 2.01 mA cm –2 at 1.23 vs V RHE under AM 1.5G illumination. Modification with Ni-doped CoO x produces even more effective OER catalysis and yields a photocurrent density of 2.62 mA cm –2 at 1.23 V RHE under AM 1.5G illumination. Furthermore, the valence band X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy results show the Ni doping reduces the Fermi level of the CoO x layer; the increased surface band bending produced by this effect is partially responsible for the superior PEC performance.« less

  16. (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Xu, Peiman; Li, Jingwei; Luo, Jiaxian; Wei, Licheng; Zhang, Dawei; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng

    2018-06-21

    Earth-abundant and efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly significant for renewable energy systems. However, the performance of existing electrocatalysts is usually restricted by the low electroic conductivity and the limited amount of exposed active sites. In this work, (Fe 0.2 Ni 0.8 ) 0.96 S tubular spheres supported on Ni foam have been prepared by a sulfuration of FeNi layered double hydroxide spheres grown on Ni foam. Benefiting from the unique tubular sphere architecture, the rich inner defects and the enhanced electron interactions between Fe, Ni and S, this electrocatalyst shows low overpotential of 48 mV for HER at 10 mA cm -2 in 1.0 mol L -1 KOH solution, which is one of the lowest value of non-previous electrocatalyts for HER in alkaline electrolyte. Furthermore, assembled this versatile electrode as an alkaline electrolyzer for overall water splitting, a current density of 10 mA cm -2 is achieved at a low cell voltage of 1.56 V, and reach up to 30 mA cm -2 only at an operating cell voltage of 1.65 V.

  17. Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting.

    PubMed

    Bui, Hoa Thi; Shrestha, Nabeen K; Khadtare, Shubhangi; Bathula, Chinna D; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-05-31

    One of the challenges in obtaining hydrogen economically by electrochemical water splitting is to identify and substitute cost-effective earth-abundant materials for the traditionally used precious-metal-based water-splitting electrocatalysts. Herein, we report the electrochemical formation of a thin film of nickel-based Prussian blue analogue hexacyanoferrate (Ni-HCF) through the anodization of a nickel substrate in ferricyanide electrolyte. As compared to the traditionally used Nafion-binder-based bulk film, the anodically obtained binder-free Ni-HCF film demonstrates superior performance in the electrochemical hydrogen evolution reaction (HER), which is highly competitive with that shown by a Pt-plate electrode. The HER onset and the benchmark cathodic current density of 10 mA cm -2 were achieved at small overpotentials of 15 mV and 0.2 V (not iR-corrected), respectively, in 1 M KOH electrolyte, together with the long-term electrochemical durability of the film. Further, a metal-HCF-electrode-based full water-splitting device consisting of the binder-free Ni-HCF film on a Ni plate and a one-dimensional Co-HCF film on carbon paper as the electrodes for the HER and the oxygen evolution reaction (OER), respectively, was designed and was found to demonstrate very promising performance for overall water splitting.

  18. Hierarchical cobalt-based hydroxide microspheres for water oxidation.

    PubMed

    Zhang, Ye; Cui, Bai; Derr, Olivia; Yao, Zhibo; Qin, Zhaotong; Deng, Xiangyun; Li, Jianbao; Lin, Hong

    2014-03-21

    3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH)·0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.

  19. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    PubMed

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo 2 O 4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo 2 O 4 , the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm -2 after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  20. Mechanistic Parameters of Electrocatalytic Water Oxidation on LiMn2 O4 in Comparison to Natural Photosynthesis.

    PubMed

    Köhler, Lennart; Ebrahimizadeh Abrishami, Majid; Roddatis, Vladimir; Geppert, Janis; Risch, Marcel

    2017-11-23

    Targeted improvement of the low efficiency of water oxidation during the oxygen evolution reaction (OER) is severely hindered by insufficient knowledge of the electrocatalytic mechanism on heterogeneous surfaces. We chose LiMn 2 O 4 as a model system for mechanistic investigations as it shares the cubane structure with the active site of photosystem II and the valence of Mn 3.5+ with the dark-stable S1 state in the mechanism of natural photosynthesis. The investigated LiMn 2 O 4 nanoparticles are electrochemically stable in NaOH electrolytes and show respectable activity in any of the main metrics. At low overpotential, the key mechanistic parameters of Tafel slope, Nernst slope, and reaction order have constant values on the RHE scale of 62(1) mV dec -1 , 1(1) mV pH -1 , -0.04(2), respectively. These values are interpreted in the context of the well-studied mechanism of natural photosynthesis. The uncovered difference in the reaction sequence is important for the design of efficient bio-inspired electrocatalysts. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Structural implications for oxygen electrocatalysis in earthabundant transition metal oxides

    NASA Astrophysics Data System (ADS)

    Gardner, Graeme Patrick

    Transition metal oxides and related nitrides/nitride-oxides represent a class of materials that have shown great promise as oxygen electrocatalysts to replace the otherwise non-scalable noble metal-based catalysts currently implemented in commercial technologies. That is, compounds in this class of materials have shown promise as electrocatalysts for both the oxygen evolution (OER) and oxygen reduction reactions (ORR). The two aforementioned half-reactions are at the cornerstone of most renewable energy transformations, as oxygen is an inherently practical and abundant source and sink for electrons. In water electrolysis to produce hydrogen, oxygen is inevitably formed, and in a fuel cell the driving force for extracting electrochemical energy from hydrogen is pairing it with the reduction of oxygen to water. If this can be accomplished reversibly, the problem of "transient" renewable energy and its storage can be mitigated. We have examined many metal oxides and related compounds based upon Earth- abundant transition metals (primarily first row) that are crystalline, yet high surface area, for these important electrocatalytic reactions, and found that crystal structure plays a crucial role in determining activity. In fact, while most studies on heterogeneous catalysis focus on the synthesis of defect-rich, high surface area, practically amorphous materials to elicit high activity, we have found that particular crystalline phases possess not only the appropriate activity, but to some degree more importantly, the stability to be named good catalysts. In Chapter 2, we demonstrate that of the two structural types of lithium cobalt oxide (LiCoO2) - layered (R-3m) and cubic (Fd-3m) - only the cubic phase is revealed to be an efficient and stable catalyst for OER. Whether water oxidation is driven photochemically, or electrochemically, the cubic phase LiCoO2 possessing a spinel-like structure (AB 2O4) with [Co4O4] subunits within the crystal is more active. It is seen that electrochemically, both the cubic and layered phases transform to the spinel LiCo2O4 at surface and subsurface levels. This coincides with partial delithiation that is more extensive in layered LiCoO2. It is revealed that the oxidation of CoMn3+ to Co4+ is accompanied by delithiation in aqueous electrolyte to form the active state of the LiCoO2 catalyst. The electronic properties of the cubic spinel allow for localization of electron holes at cubic core active sites to effect water oxidation, whereas holes are more extensively delocalized in layered LiCoO2 in concert with the Li+ deintercalation reaction. In Chapter 3, we investigate the influence of chemical composition on the catalytic water oxidation activity of Co-substituted spinel LiMn 2O4 and Mn-substituted cubic LiCoO2. We find that in the spinel LiMn2O4, CoMn3+ substitution occurs at the B-site for MnMn3+, and the solid solution limit for starts at 1:1 Co:Mn ratio, where Co begins to go into the A-site. The activity for OER increases with increasing Co, owing to the symmetrization of the M4O4 core structure (Jahn-Teller distortions suppressed), which allows for hole delocalization that enables CoMn 3+/4+ oxidation. The more positive redox potential of Co4+ makes for facile water oxidation. Substituting Mn for Co in cubic LiCoO2 allows for retention of MnMn3+, which has been correlated with water oxidation activity in many catalysts. The solid solution limit in this series is also near 1:1 at the B- site. However, the increase in Mn content corresponds to decreasing activity in both water oxidation and oxygen reduction, which correlates well with decreases in pre- catalytic oxidation and reduction peak yields. The results show replacement of CoMn 3+ with MnMn3+ effectively eliminates active sites. Therefore, MnMn3+ in this electronic and structural environment is not active, which agrees well with a recent literature report on corner- shared MnMn3+ octahedral being necessary to produce OER activity in Mn oxides. Finally, in chapter 4, bifunctional oxygen electrocatalysts are explored in depth with a series of cobalt-molybdenum oxides/nitrides. We demonstrate that CoMoN2, with relatively strong M-N interactions, has ideal electronic properties for ORR, and upon oxidation of the surface, yields an active OER catalyst. However, the surface oxidation is found to be irreversible and once oxidized, the activity for ORR significantly decreases. The surface both before and after catalysis was analyzed by XPS, which showed the suppression of Mo and N signals after exposure to OER conditions, meaning the active catalyst is a Co oxide of high valency (3/4+). The results from this study suggests truly reversible, bifunctional oxygen electrocatalysis may be obtained by designing a catalyst whose surface is only partly oxidized and/or can be reversibly reduced in the potential window relevant to OER and ORR.

  2. Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N-C) as efficient oxygen catalysts for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Bing; Chen, Ye; Ge, Xiaoming; Chai, Jianwei; Zhang, Xiao; Hor, T. S. Andy; Du, Guojun; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2016-02-01

    Transition metal and nitrogen co-doping into carbon is an effective approach to promote the catalytic activities towards the oxygen reduction reaction (ORR) and/or oxygen evolution reaction (OER) in the resultant electrocatalysts, M/N-C. The preparation of such catalysts, however, is often complicated and in low yield. Herein we report a robust approach for easy synthesis of M/N-C hybrids in high yield, which includes a mussel-inspired polymerization reaction at room temperature and a subsequent carbonization process. With the introduction of selected transition metal salts into an aqueous solution of dopamine (DA), the obtained mixture self-polymerizes to form metal-containing polydopamine (M-PDA) composites, e.g. Co-PDA, Ni-PDA and Fe-PDA. Upon carbonization at elevated temperatures, these metal-containing composites were converted into M/N-C, i.e. Co-PDA-C, Ni-PDA-C and Fe-PDA-C, respectively, whose morphologies, chemical compositions, and electrochemical performances were fully studied. Enhanced ORR activities were found in all the obtained hybrids, with Co-PDA-C standing out as the most promising catalyst with excellent stability and catalytic activities towards both ORR and OER. This was further proven in Zn-air batteries (ZnABs) in terms of discharge voltage stability and cycling performance. At a discharge-charge current density of 2 mA cm-2 and 1 h per cycle, the Co-PDA-C based ZnABs were able to steadily cycle up to 500 cycles with only a small increase in the discharge-charge voltage gap which notably outperformed Pt/C; at a discharge current density of 5 mA cm-2, the battery continuously discharged for more than 540 h with the discharge voltage above 1 V and a voltage drop rate of merely 0.37 mV h-1. With the simplicity and scalability of the synthetic approach and remarkable battery performances, the Co-PDA-C hybrid catalyst is anticipated to play an important role in practical ZnABs.Transition metal and nitrogen co-doping into carbon is an effective approach to promote the catalytic activities towards the oxygen reduction reaction (ORR) and/or oxygen evolution reaction (OER) in the resultant electrocatalysts, M/N-C. The preparation of such catalysts, however, is often complicated and in low yield. Herein we report a robust approach for easy synthesis of M/N-C hybrids in high yield, which includes a mussel-inspired polymerization reaction at room temperature and a subsequent carbonization process. With the introduction of selected transition metal salts into an aqueous solution of dopamine (DA), the obtained mixture self-polymerizes to form metal-containing polydopamine (M-PDA) composites, e.g. Co-PDA, Ni-PDA and Fe-PDA. Upon carbonization at elevated temperatures, these metal-containing composites were converted into M/N-C, i.e. Co-PDA-C, Ni-PDA-C and Fe-PDA-C, respectively, whose morphologies, chemical compositions, and electrochemical performances were fully studied. Enhanced ORR activities were found in all the obtained hybrids, with Co-PDA-C standing out as the most promising catalyst with excellent stability and catalytic activities towards both ORR and OER. This was further proven in Zn-air batteries (ZnABs) in terms of discharge voltage stability and cycling performance. At a discharge-charge current density of 2 mA cm-2 and 1 h per cycle, the Co-PDA-C based ZnABs were able to steadily cycle up to 500 cycles with only a small increase in the discharge-charge voltage gap which notably outperformed Pt/C; at a discharge current density of 5 mA cm-2, the battery continuously discharged for more than 540 h with the discharge voltage above 1 V and a voltage drop rate of merely 0.37 mV h-1. With the simplicity and scalability of the synthetic approach and remarkable battery performances, the Co-PDA-C hybrid catalyst is anticipated to play an important role in practical ZnABs. Electronic supplementary information (ESI) available: Schematic structure of ZnAB; photos of home-made ZnABs; EDX spectra and elemental mapping of M-PDA-C; N2 adsorption/desorption isotherms, high magnification TEM images of M-PDA-C, and RDE data of M-PDA-C, etc. See DOI: 10.1039/c5nr06538k

  3. OER Perspectives: Emerging Issues for Universities

    ERIC Educational Resources Information Center

    Olcott, Don

    2012-01-01

    This reflection examines some of the continuing and emerging issues in the open educational resources (OER) field. These include blending OER with university management structures; formal and non-formal OER; the need for sustainable OER business models; and expanding awareness, adoption, and use of OER. In the future, research will need to examine…

  4. Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn–Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi; Deng, Ya-Ping; Fu, Jing

    Rational construction of atomic-scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). In this paper, a hybrid of interpenetrating metallic Co and spinel Co 3O 4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co 3O 4@PGS) is synthesized via ionic exchange and redox between Co 2+ and 2D metal–organic-framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells providesmore » an optimal charge/mass transport environment. Furthermore, the defect-rich interfaces act as atomic-traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co 3O 4@PGS outperforms state-of-the-art noble-metal catalysts with a positive half-wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm -2 for OER. Finally, in a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm -2 is achieved by Zn–air batteries with Co/Co 3O 4@PGS within the rechargeable air electrode.« less

  5. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel

    2017-04-01

    In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.

  6. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  7. Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn–Air Batteries

    DOE PAGES

    Jiang, Yi; Deng, Ya-Ping; Fu, Jing; ...

    2018-01-31

    Rational construction of atomic-scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). In this paper, a hybrid of interpenetrating metallic Co and spinel Co 3O 4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co 3O 4@PGS) is synthesized via ionic exchange and redox between Co 2+ and 2D metal–organic-framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells providesmore » an optimal charge/mass transport environment. Furthermore, the defect-rich interfaces act as atomic-traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co 3O 4@PGS outperforms state-of-the-art noble-metal catalysts with a positive half-wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm -2 for OER. Finally, in a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm -2 is achieved by Zn–air batteries with Co/Co 3O 4@PGS within the rechargeable air electrode.« less

  8. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    PubMed

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  9. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    PubMed

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  10. Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengyu; Yan, Xiaocong; Tang, Haolin; Cai, Haopeng; Pan, Mu; Zhang, Haining; Luo, Jiangshui

    2017-05-01

    Pt/C has been commercially used as anode electrocatalyst for fuel cells but generally exhibits limited durability under conditions of fuel starvation and subsequent cell reversal. Herein we report an improved scaffold concept to simultaneously stabilize the catalyst against particle growth and reduce the adverse effects of cell reversal by modifying Pt/C with suitable protic ionic liquids (PILs). The modified Pt/C catalysts show enhanced cell reversal tolerance because of their high activity towards oxygen evolution reaction (OER), up to 300 mV lower overpotential compared to the unmodified Pt/C. Moreover, the PIL modified catalysts show better resistance to the loss of electrochemical surface area (ECSA) under simulated cell reversal conditions. The results indicate that modification of Pt/C catalysts with PILs is a promising strategy to enhance the stability and durability of electrocatalysts in fuel cell applications with the risk of frequent fuel starvation events, such as automotive fuel cells.

  11. RuO 2 nanoparticles supported on MnO 2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yue-Feng; Chen, Yuan; Xu, Gui-Liang

    RuO2 nanoparticles supported on MnO2 nanorods (denoted as np-RuO2/nr-MnO2) were synthesized via a two-step hydrothermal reaction. SEM and TEM images both illustrated that RuO2 nanoparticles are well dispersed on the surface of MnO2 nanorods in the as-prepared np-RuO2/nr-MnO2 material. Electrochemical results demonstrated that the np-RuO2/nr-MnO2 as oxygen cathode of Li-O-2 batteries could maintain a reversible capacity of 500 mA h g(-1) within 75 cycles at a rate of 50 mA g(-1), and a higher capacity of 4000 mA h g(-1) within 20 cycles at a rate as high as 200 mA g(-1). Moreover, the cell with the np-RuO2/nr-MnO2 catalyst presentedmore » much lower voltage polarization (about 0.58 V at a rate of 50 mA g(-1)) than that measured with only MnO2 nanorods during charge/discharge processes. The catalytic property of the np-RuO2/nr-MnO2 and MnO2 nanorods were further compared by conducting studies of using rotating disk electrode (RDE), chronoamperommetry and linear sweep voltammetry. The results illustrated that the np-RuO2/nr-MnO2 exhibited excellent bifunctional electrocatalytic activities towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, in-situ high-energy X-ray diffraction was employed to trace evolution of species on the np-RuO2/nr-MnO2 cathode during the discharge processes. In-situ XRD patterns demonstrated the formation process of the discharge products that consisted of mainly Li2O2. Ex-situ SEM images were recorded to investigate the morphology and decomposition of the sphere-like Li2O2, which could be observed clearly after discharge process, while are decomposed almost after charge process. The excellent electrochemical performances of the np-RuO2/nr-MnO2 as cathode of Li-O-2 battery could be contributed to the excellent bifunctional electrocatalytic activities for both the ORR and OER, and to the one-dimensional structure which would benefit the diffusion of oxygen and the storage of Li2O2 in the discharge process of Li-O-2 battery.« less

  12. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.

    PubMed

    Gao, Min-Rui; Zheng, Ya-Rong; Jiang, Jun; Yu, Shu-Hong

    2017-09-19

    Since being proposed by John Bockris in 1970, hydrogen economy has emerged as a very promising alternative to the current hydrocarbon economy. Access to reliable and affordable hydrogen economy, however, requires cost-effective and highly efficient electrocatalytic materials that replace noble metals (e.g., Pt, Ir, Ru) to negotiate electrode processes such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR). Although substantial advances in the development of inexpensive catalysts, successful deployment of these materials in fuel cells and electrolyzers will depend on their improved activity and robustness. Recent research has demonstrated that the nanostructuring of Earth-abundant minerals provides access to newly advanced energy materials, particularly for nanostructured pyrites, which are attracting great interest. Crystalline pyrites commonly contain the characteristic dianion units and have cations occurring in octahedral coordination-whose generalized formula is MX 2 , where M can be transition metal of groups 8-12 and X is a chalcogen. The diversity of pyrites that are accessible and their versatile and tunable properties make them attractive for a wide range of applications from photovoltaics to energy storage and electrocatalysis. Pyrite-type structures can be further extended to their ternary analogues, for example, CoAsS (cobaltite), NiAsS (gersdorffite), NiSbS (ullmannite), CoPS, and many others. Moreover, improved properties of pyrites can be realized through grafting them with promoter objects (e.g., metal oxides, metal chalcogenides, noble metals, and carbons), which bring favorable interfaces and structural and electronic modulations, thus leading to performance gains. In recent years, research on the synthesis of pyrite nanomaterials and on related structure understanding has dramatically advanced their applications, which offers new perspectives in the search for efficient and robust electrocatalysts, yet a focused review that concentrates the critical developments is still missing. In this Account, we describe our recent progress on the discoveries and applications of nanostructured pyrite-type materials in the area of electrocatalysis. We first briefly highlight some interesting properties of pyrite-type materials and why they are attractive for modern electrocatalysis. Some recent advances on their synthesis that allows access to highly nanostructured pyrite-type materials are reviewed, along with the grafting of resultant pyrites with foreign materials (e.g., metal oxides, metal chalcogenides, noble metals, and carbons) to enable improved catalytic performances. We finally spotlight the exciting examples where pyrite nanostructures were used as efficient electrocatalysts to drive the OER, HER, and methanol-tolerant ORR. It is reasonable to assume that, with significant efforts and focus, the next few years will bring new advances on the pyrites and other minerals for electrocatalysis.

  13. From Mixed-Metal MOFs to Carbon-Coated Core-Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to CoxNi1-x@CoyNi1-yO@C for the Oxygen Evolution Reaction.

    PubMed

    Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui

    2017-05-01

    Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated Co x Ni 1-x @Co y Ni 1-y O with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the Co x Ni 1-x @Co y Ni 1-y O nanoparticles in small size. The Co x Ni 1-x @Co y Ni 1-y O@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.

  14. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

    PubMed

    Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang

    2017-04-18

    Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further. Although the majority of carbon-based materials remain uncompetitive with state-of-the-art metal-based catalysts for the aforementioned catalytic processes, non-metal carbon hybrids have already shown performance that typically only conventional noble metals or transition metal materials can achieve. The idea of hybridized carbon-based catalysts possessing unique active surfaces and macro- or nanostructures is addressed herein. For metal-carbon couples, the incorporation of carbon can effectively compensate for the intrinsic deficiency in conductivity of the metallic components. Chemical modification of carbon frameworks, such as nitrogen doping, not only can change the electron-donor character, but also can introduce anchoring sites for immobilizing active metallic centers to form metal-nitrogen-carbon (M-N-C) species, which are thought to facilitate the electrocatalytic process. With thoughtful material design, control over the porosity of composites, the molecular architecture of active metal moieties and macromorphologies of the whole catalysts can be achieved, leading to a better understanding structure-activity relationships. We hope that we can offer new insight into material design, particularly the role of chemical composition and structural properties in electrochemical performance and reaction mechanisms.

  15. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.« less

  16. Institutional and technological barriers to the use of open educational resources (OERs) in physiology and medical education.

    PubMed

    Hassall, Christopher; Lewis, David I

    2017-03-01

    Open educational resources (OERs) are becoming increasingly common as a tool in education, particularly in medical and biomedical education. However, three key barriers have been identified to their use: 1) lack of awareness of OERs, 2) lack of motivation to use OERs, and 3) lack of training in the use of OERs. Here, we explore these three barriers with teachers of medical and biomedical science to establish how best to enhance the use of OERs to improve pedagogical outcomes. An online survey was completed by 209 educators, many of whom (68.4%) reported using OERs in their teaching and almost all (99.5%) showing awareness of at least one OER. The results suggest that key problems that prevent educators from adopting OERs in their teaching include suitability for particular classes, time, and copyright. Most (81.8%) educators were somewhat, very, or extremely comfortable with OERs so there is no innate motivational barrier to adoption. A lack of training was reported by 13.9% of respondents, and 40% of respondents stated that there was little or no support from their institutions. OER users were no more comfortable with technology or better supported by departments but tended to be aware of a greater number of sources of OERs. Our study illustrates key opportunities for the expansion of OER use in physiology and medical teaching: increased breadth of awareness, increased institutional support (including time, training, and copyright support), and greater sharing of diverse OERs to suit the range of teaching challenges faced by staff in different subdisciplines. Copyright © 2017 the American Physiological Society.

  17. X-ray spectroscopic characterization of Co(IV) and metal–metal interactions in Co 4O 4: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.

    2016-08-12

    In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co 4O 4 cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combinationmore » of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t 2g-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co 4O 4. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co 4O 4 to CoM 3O 4 structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E 0 over hundreds of mVs.« less

  18. New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.

    PubMed

    Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Reiter, Jakub; Tsiouvaras, Nikolaos; Passerini, Stefano; Hassoun, Jusef

    2018-03-02

    Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm -2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Li x Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Looking at OER with a Critical Eye: Strengthening OER Initiatives by Focusing on Student Learning

    ERIC Educational Resources Information Center

    Pierce, Matthew

    2016-01-01

    This paper discusses aspects of adopting, adapting, and building Open Educational Resources (OER) that have the potential to influence student learning but are sometimes overlooked by OER advocates. The author makes recommendations for ensuring that OER initiatives have a positive impact on student learning and argues that librarians can be…

  20. Khan Academy Videos in Chinese: A Case Study in OER Revision

    ERIC Educational Resources Information Center

    Rao, Allen; Hilton, John, III; Harper, Sarah

    2017-01-01

    Over the past decade, great progress has been made in improving the quality and availability of Open Educational Resources (OER). OER proponents often discuss the ability for users to revise and remix OER to make them more suitable for local contexts; however, much OER goes unmodified. This note from the field examines the efforts of NetEase…

  1. Institutional and Technological Barriers to the Use of Open Educational Resources (OERs) in Physiology and Medical Education

    ERIC Educational Resources Information Center

    Hassall, Christopher; Lewis, David I.

    2017-01-01

    Open educational resources (OERs) are becoming increasingly common as a tool in education, particularly in medical and biomedical education. However, three key barriers have been identified to their use: 1) lack of awareness of OERs, 2) lack of motivation to use OERs, and 3) lack of training in the use of OERs. Here, we explore these three…

  2. A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes

    DOE PAGES

    Wang, Jie; Wu, Zexing; Han, Lili; ...

    2017-03-07

    Here, we develop a simple one-pot synthetic strategy for the general preparation of nitrogen doped carbon supported metal/metal oxides (Co@CoO/NDC, Ni@NiO/NDC and MnO/NDC) derived from the complexing function of (ethylenediamine)tetraacetic acid (EDTA). EDTA serves not only as a resource to tune the morphology in terms of the complexation constant for M–EDTA, but also as a nitrogen and oxygen source for nitrogen doping and metal oxide formation, respectively. When the materials are used as electrocatalysts for the oxygen electrode reaction, Co@CoO/NDC-700 and MnO/NDC-700 show superior electrocatalytic activity towards the oxygen reduction reaction (ORR), while Co@CoO/NDC-700 and Ni@NiO/NDC-700 exhibit excellent oxygen evolutionmore » reaction (OER) activities. Taken together, the resultant Co@CoO/NDC-700 exhibits the best catalytic activity with favorable reaction kinetics and durability as a bi-functional catalyst for the ORR and OER, which is much better than the other two catalysts, Pt/C and Ir/C. Moreover, as an air electrode for a homemade zinc–air battery, Co@CoO/NDC-700 shows superior cell performance with a highest power density of 192.1 mW cm -2, the lowest charge–discharge overpotential and high charge–discharge durability over 100 h.« less

  3. 570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition

    DOE PAGES

    Zhou, Xinghao; Liu, Rui; Sun, Ke; ...

    2016-01-08

    Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thin ~50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of -205 ± 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O 2(g) conversion efficiencies of 1.42 ± 0.20%, and operated continuously for over 100 days (~2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoO x thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes thatmore » are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.« less

  4. High-Efficiency Co/CoxSy@S,N-Codoped Porous Carbon Electrocatalysts Fabricated from Controllably Grown Sulfur- and Nitrogen-Including Cobalt-Based MOFs for Rechargeable Zinc-Air Batteries.

    PubMed

    Liu, Shengwen; Zhang, Xian; Wang, Guozhong; Zhang, Yunxia; Zhang, Haimin

    2017-10-04

    Developing bifunctional oxygen electrocatalysts with superior catalytic activities of oxygen reduction reaction (ORR) and oxygen revolution reaction (OER) is crucial to their practical energy storage and conversion applications. In this work, we report the fabrication of Co/Co x S y @S,N-codoped porous carbon structures with various morphologies, specific surface areas, and pore structures, derived from controllably grown Co-based metal-organic frameworks with S- and N-containing organic ligands (thiophene-2,5-dicarboxylate, Tdc; and 4,4'-bipyridine, bpy) utilizing solvent effect (e.g., water and methanol) under room temperature and hydrothermal conditions. The results demonstrate that Co/Co x S y @S,N-codoped carbon fibers fabricated at a pyrolytic temperature of 800 °C (Co/Co x S y @SNCF-800) from Co-MOFs fibers fabricated in methanol under hydrothermal conditions as electrocatalysts exhibit superior bifunctional ORR and OER activities in alkaline media, endowing them as air cathodic catalysts in rechargeable zinc-air batteries with high power density and good durability.

  5. High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Chuanhua; Yu, Zhiyong; Liu, Hanxing; Chen, Kang

    2018-02-01

    To improve sluggish kinetics of ORR and OER (oxygen reduction and evolution reaction) on the air electrode, the high surface area LaMnO3 nanoparticle catalysts were synthesized by sol-gel method. The specific surface area of as-synthesized pure phase LaMnO3 nanoparticles is 21.21 m2 g-1. The onset potential of high surface area LaMnO3 in alkaline solution is -0.0202 V which is comparable to commercial Pt/C. When the assembled high surface area LaMnO3-based lithium-air batteries were measured at 100 mA g-1, the initial discharge specific capacity could reach 6851.9 mA h g-1(carbon). In addition, lithium-oxygen batteries including high surface area LaMnO3 catalysts could be cycled for 52 cycles at 200 mA g-1 under a limited discharge-charge depth of 500 mA h gcarbon-1.

  6. Establishing a Framework on OER Practices for ICT Competence of Disabled Citizens

    ERIC Educational Resources Information Center

    Altinay, Zehra; Ossiannilsson, Ebba; Kalaç, Mustafa Ozhan; Basari, Gülsün; Aktepebasi, Ali; Altinay, Fahriye

    2016-01-01

    The research encapsulates the framework on potential contributions of OER practices for supporting the ICT competence for disabled adult learners in building equal opportunities within the society. The study underlined the developing OER policy and framework to focus on digital citizenship competency for disabled adult learners. OER practices can…

  7. Further Investigation into the Reuse of OERs for Language Teaching

    ERIC Educational Resources Information Center

    Pulker, Hélène

    2013-01-01

    The use of Open Educational Resources (OERs) to support language teaching and learning in higher education has become standard practice in recent years. While OER initiatives have given considerable attention to teacher's engagement as well as the sharing of culture and the creation and uploading of OERs, there is little evidence about specific…

  8. OER, Resources for Learning--Experiences from an OER Project in Sweden

    ERIC Educational Resources Information Center

    Ossiannilsson, Ebba S. I.; Creelman, Alastair M.

    2012-01-01

    This article aims to share experience from a Swedish project on the introduction and implementation of Open Educational Resources (OER) in higher education with both national and international perspectives. The project, "OER--resources for learning", was part of the National Library of Sweden Open Access initiative and aimed at exploring, raising…

  9. NOAA Office of Exploration and Research > About OER > Organization > Map of

    Science.gov Websites

    About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Overview Website & Social Media News Room OER Symposium Guiding Documents Organizational Structure Map About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate

  10. Librarians and OER: Cultivating a Community of Practice to Be More Effective Advocates

    ERIC Educational Resources Information Center

    Smith, Brenda; Lee, Leva

    2017-01-01

    As the costs of scholarly and educational publications skyrocket, open educational resources (OER) are becoming an important way to provide content and enhance the teaching and learning experience. Librarians have a key role to play in developing, advocating, and managing OER. For many librarians, however, championing OERs means adding an…

  11. Harnessing OER to Drive Systemic Educational Change in Secondary Schooling

    ERIC Educational Resources Information Center

    Butcher, Neil; Moore, Andrew; Hoosen, Sarah

    2014-01-01

    There is growing interest about the concept of Open Educational Resources (OER) and how it can transform education around the world, with governments exploring the potential of OER and considering policy positions supportive of open licensing. The urgent imperative--and the real transformational potential of OER--is to evolve new systems of…

  12. The Impact of Enrollment in an OER Course on Student Learning Outcomes

    ERIC Educational Resources Information Center

    Grewe, Kim E.; Davis, W. Preston

    2017-01-01

    Open Educational Resources (OER) are gaining acceptance as legitimate and effective teaching materials in higher education, particularly in 2-year institutions. Despite the steady growth in the availability and use of OER, there have been relatively few studies on the efficacy of OER and student achievement. This study analyzed the effect…

  13. Surfing the net for public health resources.

    PubMed

    Angell, C; Hemingway, A; Hartwell, H

    2011-08-01

    To identify public health open educational resources (OER) available online, map the identified OER to The Public Health Skills and Career Framework (PHSCF), and triangulate these findings with public health practitioners. Systematic online search for public health OER. An online search was undertaken using a pre-defined set of search terms and inclusion/exclusion criteria. Public health OER were then mapped against the UK PHSCF. The findings of the search were discussed with public health specialists to determine whether or not they used these resources. A number of public health OER were identified, located on 42 websites from around the world. Mapping against the UK PHSCF demonstrated a lack of coverage in some areas of public health education. It was noted that many of the OER websites identified were not those generally used in practice, and those sites preferred by public health specialists were not identified by the online search. Public health OER are available from a number of providers, frequently universities and government organizations. However, these reflect a relatively small pool of original OER providers. Tagging of websites does not always identify their public health content. In addition, users of public health OER may not use search engines to identify resources but locate them using other means. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Spherical α-MnO₂ Supported on N-KB as Efficient Electrocatalyst for Oxygen Reduction in Al-Air Battery.

    PubMed

    Chen, Kui; Wang, Mei; Li, Guangli; He, Quanguo; Liu, Jun; Li, Fuzhi

    2018-04-13

    Traditional noble metal platinum (Pt) is regarded as a bifunctional oxygen catalyst due to its highly catalytic efficiency, but its commercial availability and application is often restricted by high cost. Herein, a cheap and effective catalyst mixed with α-MnO₂ and nitrogen-doped Ketjenblack (N-KB) (denoted as MnO₂-SM150-0.5) is examined as a potential electrocatalyst in oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). This α-MnO₂ is prepared by redox reaction between K₂S₂O₈ and MnSO₄ in acid conditions with a facile hydrothermal process (named the SM method). As a result, MnO₂-SM150-0.5 exhibits a good catalytic performance for ORR in alkaline solution, and this result is comparable to a Pt/C catalyst. Moreover, this catalyst also shows superior durability and methanol tolerance compared with a Pt/C catalyst. It also displays a discharge voltage (~1.28 V) at a discharge density of 50 mA cm -2 in homemade Al-air batteries that is higher than commercial 20% Pt/C (~1.19 V). The superior electrocatalytic performance of MnO₂-SM150-0.5 could be attributed to its higher Mn 3+ /Mn 4+ ratio and the synergistic effect between MnO₂ and the nitrogen-doped KB. This study provides a novel strategy for the preparation of an MnO₂-based composite electrocatalyst.

  15. The Emergence of Public Health Open Educational Resources

    ERIC Educational Resources Information Center

    Angell, C.; Hartwell, H.; Hemingway, A.

    2011-01-01

    Purpose: The purpose of this paper is to identify key concepts in the literature relating to the release of open educational resources (OER), with specific reference to the emergence of public health OER. Design/methodology/approach: A review of the literature relating to the development of OER was followed by an online search for OER literature…

  16. Guidelines for Leveraging University Didactics Centers to Support OER Uptake in German-Speaking Europe

    ERIC Educational Resources Information Center

    Ebner, M.; Schön, S.; Kumar, S.

    2016-01-01

    Although less well established than in other parts of the world, higher education institutions in German-speaking countries have seen a marked increase in the number of open educational resource (OER) initiatives and in government-supported OER funding in recent years. OER implementation, however, brings with it a unique set of challenges in…

  17. NOAA Office of Exploration and Research > About OER > 2014 Funding

    Science.gov Websites

    Room OER Symposium OER FY 2014 Federal Funding Opportunity: Closed Pre-Proposals were due on November 4 is the OER formal public announcement requesting pre-proposals and full proposals for fiscal year 2014. For the full FFO go to http://www.grants.gov/view-opportunity.html?oppId=243154. Pre-proposals

  18. Assessing the Potential for Openness: A Framework for Examining Course-Level OER Implementation in Higher Education

    ERIC Educational Resources Information Center

    Judith, Kate; Bull, David

    2016-01-01

    The implementation of open educational resources (OER) at the course level in higher education poses numerous challenges to education practitioners--ranging from discoverability challenges to the lack of knowledge on how to best localize and utilize OER as courseware. Drawing on case studies of OER initiatives globally, the article discusses…

  19. Incentives and Barriers to OER Adoption: A Qualitative Analysis of Faculty Perceptions

    ERIC Educational Resources Information Center

    Belikov, Olga Maria; Bodily, Robert

    2016-01-01

    In this paper, 218 U.S. faculty responses regarding Open Educational Resources (OER) were qualitatively analyzed. Ten categories emerged in the coding process. The top three categories that indicated barriers to the adoption of OER were "need more information" (faculty wanted more information before they would be willing to adopt OER),…

  20. OER on the Asian Mega Universities: Developments, Motives, Openness, and Sustainability

    ERIC Educational Resources Information Center

    Farisi, Mohammad Imam

    2013-01-01

    The OER movement originated and integrated into ODE developments. Mega Universities (MUs) are among the most important of ODE providers worldwide should be to be the primary organizations for providing access to OER. So far, however, in-depth studies on OER developments in the Asian MUs were very limited. This study focuses on the developments,…

  1. The OER Mix in Higher Education: Purpose, Process, Product, and Policy

    ERIC Educational Resources Information Center

    Nikoi, Samuel; Armellini, Alejandro

    2012-01-01

    Success in open educational resources (OER) has been reported by the Massachusetts Institute of Technology in the USA and the Open University in the UK, among others. It is unclear, however, how valuable OER are in learning and teaching. Approaches to OER policy and sustainability are just two other key aspects that remain unresolved across the…

  2. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06028a

  3. A Survey of the Awareness, Offering, and Adoption of OERs and MOOCs in Japan

    ERIC Educational Resources Information Center

    Shigeta, Katsusuke; Koizumi, Mitsuyo; Sakai, Hiroyuki; Tsuji, Yasuhiro; Inaba, Rieko; Hiraoka, Naoshi

    2017-01-01

    Awareness about Open Educational Resources (OERs) and the purposes for offering and adopting OERs and Massive Open Online Courses (MOOCs) were analyzed using a detailed survey of higher education across Japan, which was conducted in 2015. A comparison with a similar study conducted in 2013 revealed that awareness of OERs has increased slightly and…

  4. Peer Reviewing of OER in a Contested Domain--An Activity Theoretical Analysis

    ERIC Educational Resources Information Center

    Algers, Anne; Ljung, Magnus

    2015-01-01

    Globally, we experience numerous initiatives to increase the adoption of open educational resources (OER), but quality concerns challenge the adoption. In this study we present an analysis of the peer review process of an OER. The OER under review is produced by the European Commission (EU). It has the goal to teach children about farm animal…

  5. An OER Framework, Heuristic and Lens: Tools for Understanding Lecturers' Adoption of OER

    ERIC Educational Resources Information Center

    Cox, Glenda; Trotter, Henry

    2017-01-01

    This paper examines three new tools--a framework, an heuristic and a lens--for analysing lecturers' adoption of OER in higher educational settings. Emerging from research conducted at the universities of Cape Town (UCT), Fort Hare (UFH) and South Africa (UNISA) on why lecturers adopt--or do not adopt--OER, these tools enable greater analytical…

  6. Acceptance and Usability of OER in Indian Higher Education: An Investigation Using UTAUT Model

    ERIC Educational Resources Information Center

    Padhi, Nayantara

    2018-01-01

    In the global movement towards open knowledge society, open educational resources (OER) have become a prominent contributor as a medium of education, research and training. In India, the phenomenon of OER is still in nascent stage. Although the country has been massively investing on growth and usage of ICT, it still requires acceptance of OER as…

  7. A Preliminary Exploration of the Relationships between Student-Created OER Sustainability, and Students Success

    ERIC Educational Resources Information Center

    Wiley, David; Webb, Ashley; Weston, Sarah; Tonks, DeLaina

    2017-01-01

    This article explores the relationship between open educational resources (OER) created by students for use by other students, the long-term sustainability of the movement toward OER, and the success of students who use OER created by other students as part of their core curricular materials. We begin by providing definitions and a broader context…

  8. Opening the Curriculum: Open Educational Resources in U.S. Higher Education, 2014

    ERIC Educational Resources Information Center

    Allen, I. Elaine; Seaman, Jeff

    2014-01-01

    Awareness and adoption of open educational resources (OER) has yet to enter the mainstream of higher education. Most faculty remain unaware of OER, and OER is not a driving force for faculty decisions about which educational materials to adopt. This report builds on several previous Babson Survey Research Group efforts exploring the role of OER in…

  9. The Tidewater Z-Degree and the INTRO Model for Sustaining OER Adoption

    ERIC Educational Resources Information Center

    Wiley, David; Williams, Linda; DeMarte, Daniel; Hilton, John

    2016-01-01

    A growing body of research confirms the financial and academic benefits that accrue to students whose faculty adopt open educational resources, or OER. While there are no content licensing costs associated with using OER, there are several real costs that must be incurred by an institution that chooses to support its faculty in adopting OER. The…

  10. The use of free online educational resources by Canadian emergency medicine residents and program directors.

    PubMed

    Purdy, Eve; Thoma, Brent; Bednarczyk, Joseph; Migneault, David; Sherbino, Jonathan

    2015-03-01

    Introduction Online educational resources (OERs) are increasingly available for emergency medicine (EM) education. This study describes and compares the use of free OERs by the Royal College of Physicians and Surgeons of Canada (RCPSC) EM residents and program directors (PDs) and investigates the relationship between the use of OERs and peer-reviewed literature. A bilingual, online survey was distributed to RCPSC-EM residents and PDs using a modified Dillman method. The chi-square test and Fisher's exact test were used to compare the responses of residents and PDs. The survey was completed by 214/350 (61%) residents and 11/14 (79%) PDs. Free OERs were used by residents most frequently for general EM education (99.5%), procedural skills training (96%), and learning to interpret diagnostic tests (92%). OER modalities used most frequently included wikis (95%), file-sharing websites (95%), e-textbooks (94%), and podcasts (91%). Residents used wikis, podcasts, vodcasts, and file-sharing websites significantly more frequently than PDs. Relative to PDs, residents found entertainment value to be more important for choosing OERs (p<0.01). Some residents (23%) did not feel that literature references were important, whereas all PDs did. Both groups reported that OERs increased the amount of peer-reviewed literature (75% and 60%, respectively) that they read. EM residents make extensive use of OERs and differ from their PDs in the importance that they place on their entertainment value and incorporation of peer-reviewed references. OERs may increase the use of peer-reviewed literature in both groups. Given the prevalence of OER use for core educational goals among RCPSC-EM trainees, future efforts to facilitate critical appraisal and appropriate resource selection are warranted.

  11. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less

  12. Evaluation of Patient Migration Patterns and Related Health Care Costs Within a National Medicare Advantage Prescription Drug Plan After Implementation of an Oxycodone HCl Extended-Release Access Restriction.

    PubMed

    Chen, Chi-Chang; De, Ajita P; Sweet, Brian; Wade, Rolin L

    2017-08-01

    Health plans use formulary restrictions (e.g., prior authorization, step therapy, tier change, nonformulary status) in an effort to control cost and promote quality, safety, and appropriate prescription utilization. Some Medicare payers perceive that the inclusion of certain agents, such as branded oxycodone HCl extended-release tablets (OERs), on their formularies is associated with attracting high-cost members to the plan. To evaluate disenrollment rates, patient migration, and subsequent health care costs among OER users who disenrolled from a national Medicare Advantage Prescription Drug plan (study-MAPD) in the plan year following OER nonformulary restriction. A retrospective, longitudinal cohort study using IMS pharmacy and medical claims data between July 1, 2011, and December 31, 2014, was conducted. In the study-MAPD, adults aged ≥ 18 years who were chronic OER users with ≥ 2 OER claims 6 months before the nonformulary restriction date on January 1, 2013 (index date) and with continuous activity in pharmacy and medical claims for 6 months pre- and post-index were included in the study. Comparison years of 2012 and 2014 prerestriction/postrestriction were selected. All groups were followed for 6 months postindex. Year-to-year disenrollment rates of OER patients and the overall plan, as well as patient characteristics and costs of those who disenrolled from and those who remained with the plan, were measured. Costs were compared using a difference-in-differences approach. This study identified 2,935 eligible OER users from the study-MAPD population after imposing nonformulary restrictions on OERs on January 1, 2013. Mean age was 62.1 years, and 59.8% were female. The mean Charlson Comorbidity Index score was 1.83 for those 1,001 patients with medical claims data. For comparison years 2012 (prerestriction) and 2014 (postrestriction), 2,248 and 2,222 OER patients were identified, respectively. Patient characteristics were similar across patient cohorts in all 3 study years. Disenrollment rates for OER users (12.9%, 5.5%, and 14.3% for years 2012, 2013, and 2014, respectively) were lower or similar to those of the overall plan (18.3%, 7.6%, and 14.1%, respectively, for the same 3 years). Approximately 40% of OER users who disenrolled from the study-MAPD migrated to plans also imposing a nonformulary restriction on OERs, while about 25% moved to plans with less restrictive OER coverage. The majority (59.9%) of patients continued OER use irrespective of their disenrollment from the study-MAPD in 2013. Although a nonsignificant decrease ($117; P = 0.340) in per patient per month (PPPM) cost was observed among OER patients postrestriction (from 2012 to 2013), the difference-in-difference analysis indicated a net postrestriction increase of $124 (P = 0.461) in PPPM for OER patients. This study found little evidence to support any consistent directional effect on patient enrollment behavior as a result of an OER non-formulary restriction. Implementation of an OER nonformulary restriction did not lead to higher OER patient disenrollment or lower patient costs in the study-MAPD. Funding for this study was provided by Purdue Pharma. De, Chen, and Wade are employees of QuintilesIMS, a for-profit company that was contracted by Purdue Pharma to undertake this research. Sweet was a paid consultant for Purdue Pharma at the time of this study. Study concept and design were contributed by Chen, Wade, and De. Chen, De, and Wade collected the data, which were interpreted by all the authors. The manuscript was written by Chen and De, along with Sweet and Wade, and revised by all the authors.

  13. What Impacts Do OER Have on Students? Students Share Their Experiences with a Health Psychology OER at New York City College of Technology

    ERIC Educational Resources Information Center

    Cooney, Cailean

    2017-01-01

    This article reports findings from a study conducted with students in three sections of a Health Psychology course that replaced a traditional textbook with open educational resources (OER) as the primary course material. The purpose of the study was to learn how OER impacted students. Data were collected in Fall 2015 with students from New York…

  14. The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries.

    PubMed

    Yang, Hong-Kai; Chin, Chih-Chun; Chen, Jenn-Shing

    2016-11-07

    The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant ( k f ) for the production of superoxide radical (O₂ • - ) and the propylene carbonate (PC)-electrolyte decomposition rate constant ( k ) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂ • - and produces a faster PC-electrolyte decomposition rate.

  15. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun

    Water is generally considered to be deteriorating to the performance of aprotic Li-air batteries, while it is challenged by the disparate effects observed recently. This has provoked a range of discussion on the role of water and its impact on the battery operation. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic Li-O 2 batteries was discovered. Both lithium ions and protons were found to be involved in the oxygen reduction (ORR) and evolution reactions (OER), and LiOOH and LiOH were identified as predominant materials in the discharge product. As a new lithium compound, the crystallographic andmore » spectroscopic characteristics of LiOOH∙H 2O were scrutinized both experimentally and theoretically. The structure of LiOOH∙H 2O was found to be closely related to that of LiOH∙H 2O implying a fast conversion kinetics between the two phases. Intriguingly, LiOOH∙H 2O exhibits superior dynamic property towards the reaction with I 3 -, which renders considerably lower overpotential during the charging process. We anticipate that the new battery chemistry unveiled in this mechanistic study would provide important insights to the understanding of nominally aprotic Li-O 2 batteries and help to tackle the critical issues confronted.« less

  16. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    DOE PAGES

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; ...

    2017-02-06

    Water is generally considered to be deteriorating to the performance of aprotic Li-air batteries, while it is challenged by the disparate effects observed recently. This has provoked a range of discussion on the role of water and its impact on the battery operation. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic Li-O 2 batteries was discovered. Both lithium ions and protons were found to be involved in the oxygen reduction (ORR) and evolution reactions (OER), and LiOOH and LiOH were identified as predominant materials in the discharge product. As a new lithium compound, the crystallographic andmore » spectroscopic characteristics of LiOOH∙H 2O were scrutinized both experimentally and theoretically. The structure of LiOOH∙H 2O was found to be closely related to that of LiOH∙H 2O implying a fast conversion kinetics between the two phases. Intriguingly, LiOOH∙H 2O exhibits superior dynamic property towards the reaction with I 3 -, which renders considerably lower overpotential during the charging process. We anticipate that the new battery chemistry unveiled in this mechanistic study would provide important insights to the understanding of nominally aprotic Li-O 2 batteries and help to tackle the critical issues confronted.« less

  17. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02417j

    PubMed Central

    Li, Zhenhua; An, Hongli; Wang, Zixuan; Xu, Simin; Evans, David G.; Duan, Xue

    2015-01-01

    A new electrochemical synthesis route was developed for the fabrication of Fe-containing layered double hydroxide (MFe-LDHs, M = Ni, Co and Li) hierarchical nanoarrays, which exhibit highly-efficient electrocatalytic performances for the oxidation reactions of several small molecules (water, hydrazine, methanol and ethanol). Ultrathin MFe-LDH nanoplatelets (200–300 nm in lateral length; 8–12 nm in thickness) perpendicular to the substrate surface are directly prepared within hundreds of seconds (<300 s) under cathodic potential. The as-obtained NiFe-LDH nanoplatelet arrays display promising behavior in the oxygen evolution reaction (OER), giving rise to a rather low overpotential (0.224 V) at 10.0 mA cm–2 with largely enhanced stability, much superior to previously reported electro-oxidation catalysts as well as the state-of-the-art Ir/C catalyst. Furthermore, the MFe-LDH nanoplatelet arrays can also efficiently catalyze several other fuel molecules’ oxidation (e.g., hydrazine, methanol and ethanol), delivering a satisfactory electrocatalytic activity and a high operation stability. In particular, this preparation method of Fe-containing LDHs is amenable to fast, effective and large-scale production, and shows promising applications in water splitting, fuel cells and other clean energy devices. PMID:29435211

  18. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  19. NOAA Office of Exploration and Research > About OER > Program Review >

    Science.gov Websites

    About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate

  20. The Organizational Impact of Open Educational Resources

    NASA Astrophysics Data System (ADS)

    Sclater, Niall

    The open educational resource (OER) movement has been growing rapidly since 2001, stimulated by funding from benefactors such as the Hewlett Foundation and UNESCO, and providing educational content freely to institutions and learners across the world. Individuals and organizations are motivated by a variety of drivers to produce OERs, both altruistic and self-interested. There are parallels with the open source movement, where authors and others combine their efforts to provide a product which they and others can use freely and adapt to their own purposes. There are many different ways in which OER initiatives are organized and an infinite range of possibilities for how the OERs themselves are constituted. If institutions are to develop sustainable OER initiatives, they need to build successful change management initiatives, developing models for the production and quality assurance of OERs, licensing them through appropriate mechanisms such as the Creative Commons, and considering how the resources will be discovered and used by learners.

  1. 75 FR 15686 - NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...-01] NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015 AGENCY: Office of Ocean Exploration and Research (OER), Oceanic and Atmospheric Research (OAR), National Oceanic... comment. [[Page 15687

  2. Simultaneous Detection of Electronic Structure Changes from Two Elements of a Bifunctional Catalyst Using Wavelength-Dispersive X-ray Emission Spectroscopy and in situ Electrochemistry

    PubMed Central

    Gul, Sheraz; Desmond Ng, Jia Wei; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H.; Zhang, Jin Z.; Bergmann, Uwe; Yachandra, Vittal K.; Jaramillo, Thomas F.; Yano, Junko

    2015-01-01

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions. PMID:25747045

  3. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry.

    PubMed

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H; Zhang, Jin Z; Bergmann, Uwe; Yachandra, Vittal K; Jaramillo, Thomas F; Yano, Junko

    2015-04-14

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.

  4. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry

    DOE PAGES

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; ...

    2015-02-25

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based onmore » the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. In conclusion, the detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.« less

  5. An OER Architecture Framework: Needs and Design

    ERIC Educational Resources Information Center

    Khanna, Pankaj; Basak, P. C.

    2013-01-01

    This paper describes an open educational resources (OER) architecture framework that would bring significant improvements in a well-structured and systematic way to the educational practices of distance education institutions of India. The OER architecture framework is articulated with six dimensions: pedagogical, technological, managerial,…

  6. Opening education.

    PubMed

    Smith, Marshall S

    2009-01-02

    Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER.

  7. NOAA Office of Exploration and Research > Public Affairs > Website & Social

    Science.gov Websites

    Partners Materials NOAA Initiatives Partnerships Evaluation Public Affairs Overview Website & Social Media News Room OER Symposium Overview Website & Social Media News Room OER Symposium Public Affairs Website & Social Media Home About OER Overview Organization Guiding Documents Organizational Structure

  8. The Challenges of OER to Academic Practice

    ERIC Educational Resources Information Center

    Browne, Tom; Holding, Richard; Howell, Anna; Rodway-Dyer, Sue

    2010-01-01

    The degree to which Open Educational Resources (OER) reflect the values of its institutional provider depends on questions of economics and the level of support amongst its academics. For project managers establishing OER repositories, the latter question--how to cultivate, nurture and maintain academic engagement--is critical. Whilst…

  9. Developing a Sustainable Financial Model in Higher Education for Open Educational Resources

    ERIC Educational Resources Information Center

    Annand, David

    2015-01-01

    Financial issues regarding the sustainable production, dissemination, and use of Open Educational Resources (OER) in higher education are reviewed and proposed solutions critiqued. Use of OER produce demonstrable cost savings for students. Yet OER development continues to rely almost completely on government and philanthropic funding. This…

  10. Why Not OER?

    ERIC Educational Resources Information Center

    Doan, Tomalee

    2017-01-01

    Many observers find it baffling that faculty in higher education have been slow to adopt open educational resources (OER). The William and Flora Hewlett Foundation, a private foundation that makes grants to expand access to learning materials, defines OER as: Teaching, learning, and research resources that reside in the public domain or have been…

  11. Usage Data as Indicators of OER Utility

    ERIC Educational Resources Information Center

    Mardis, Marcia A.; Ambavarapu, Chandrahasa R.

    2017-01-01

    A key component of online and blended learning content, open educational resources, (OER) are heralded in a global movement toward high-quality, affordable, accessible, and personalized education. However, stakeholders have expressed concern about scaling OER use due to a lack of means to ensure a fit between learner, resource, and task. Usage…

  12. Politics, Practices, and Possibilities of Open Educational Resources

    ERIC Educational Resources Information Center

    Phelan, Liam

    2012-01-01

    In this article, I reflect on the politics, practices and possibilities of the open educational resources (OER). OER raise important implications for current and potential students, for postsecondary education institutions, and for those currently teaching in higher education. The key questions raised by OER centre on the role of teaching in…

  13. Postgraduate Students as OER Capacitators

    ERIC Educational Resources Information Center

    King, Thomas William

    2017-01-01

    A comprehensive theoretical, legal and practical basis for OER has been developed over the past fifteen years, supported by the expansion of open source curation platforms and the work of advocacy groups and international bodies. OER's potential has been sufficiently documented; the question remains how best to support, integrate and normalise OER…

  14. Maintaining Momentum toward Graduation: OER and the Course Throughput Rate

    ERIC Educational Resources Information Center

    Hilton, John, III; Fischer, Lane; Wiley, David; Williams, Linda

    2016-01-01

    "Open Educational Resources" (OER) have the potential to replace traditional textbooks in higher education. Previous studies indicate that use of OER results in high student and faculty satisfaction, lower costs, and similar or better educational outcomes. In this case study, we compared students using traditional textbooks with those…

  15. Pedagogical Framing of OER--The Case of Language Teaching

    ERIC Educational Resources Information Center

    Bradley, Linda; Vigmo, Sylvi

    2016-01-01

    This study investigates what characterises teachers' pedagogical design of OER [Open Educational Resources], and potential affordances and constraints in pedagogical design in an open education practice, when contributing to a Swedish repository Lektion.se. The teachers' framing of the OER shared on the repository included the analyses of a…

  16. The VLAB OER Experience: Modeling Potential-Adopter Student Acceptance

    ERIC Educational Resources Information Center

    Raman, Raghu; Achuthan, Krishnashree; Nedungadi, Prema; Diwakar, Shyam; Bose, Ranjan

    2014-01-01

    Virtual Labs (VLAB) is a multi-institutional Open Educational Resources (OER) initiative, exclusively focused on lab experiments for engineering education. This project envisages building a large OER repository, containing over 1650 virtual experiments mapped to the engineering curriculum. The introduction of VLAB is a paradigm shift in an…

  17. U.S. Army Officer Perceptions of the New OER (DA Form 67-8).

    DTIC Science & Technology

    1982-12-01

    SECUNITY CLASSIICATION OF THIS PAGE (Wma 0 a ISeWI I"I --z;-In order to determine the perceptions of Army Officers in the field concerning this OER...perceptions of Army officers in the field concerning this OER, a sample of officers in the grades of 0-3, 0-4, and 0-5 from three Army installations in...involves the examination of the perceptions of U.S. Army officers in the field concerning the present Officer Evaluation Report System (OERS). This will

  18. A Framework to Integrate Public, Dynamic Metrics into an OER Platform

    ERIC Educational Resources Information Center

    Cohen, Jaclyn Zetta; Omollo, Kathleen Ludewig; Malicke, Dave

    2014-01-01

    The usage metrics for open educational resources (OER) are often either hidden behind an authentication system or shared intermittently in static, aggregated format at the repository level. This paper discusses the first year of University of Michigan's project to share its OER usage data dynamically, publicly, to synthesize it across different…

  19. Developing and Deploying OERs in Sub-Saharan Africa: Building on the Present

    ERIC Educational Resources Information Center

    Wright, Clayton R.; Reju, Sunday A.

    2012-01-01

    Open educational resources (OERs) have the potential to reduce costs, improve quality, and increase access to educational opportunities. OER development and deployment is one path that could contribute to achieving education for all. This article builds on existing information and communication technology (ICT) implementation plans in Africa and…

  20. Mainstreaming Use of Open Educational Resources (OER) in an African Context

    ERIC Educational Resources Information Center

    Mays, Tony John

    2017-01-01

    The study derives from a multi-year project implemented by OER Africa. The project sought to understand how OER might be used as a catalyst for pedagogical transformation in African universities. Within a nondeterminist and interpretivist theoretical framework and an over-arching project methodology of participatory action research, the study made…

  1. Open Educational Resources: Removing Barriers from Within

    ERIC Educational Resources Information Center

    Mishra, Sanjaya

    2017-01-01

    Enthusiasts and evangelists of open educational resources (OER) see these resources as a panacea for all of the problems of education. However, despite its promises, their adoption in educational institutions is slow. There are many barriers to the adoption of OER, and many are from within the community of OER advocates. This commentary calls for…

  2. The Impact of OER on Teaching and Learning Practice

    ERIC Educational Resources Information Center

    Weller, Martin; de los Arcos, Bea; Farrow, Rob; Pitt, Beck; McAndrew, Patrick

    2015-01-01

    The OER Research Hub has been investigating the impact of OER, using eleven hypotheses, and a mixed methods approach to establish an evidence base. This paper explores the findings relating to teaching and learning. The findings reveal a set of direct impacts, including an increase in factors relating to student performance, increased reflection…

  3. Exploration of Open Educational Resources in Non-English Speaking Communities

    ERIC Educational Resources Information Center

    Cobo, Cristobal

    2013-01-01

    Over the last decade, open educational resources (OER) initiatives have created new possibilities for knowledge-sharing practices. This research examines how, where, and when OER are attracting attention in the higher education sector and explores to what extent the OER discussion has moved beyond the English-speaking world. This study analysed…

  4. Visualization Mapping Approaches for Developing and Understanding OER

    ERIC Educational Resources Information Center

    Connolly, Teresa

    2013-01-01

    Open educational resources (OER) can be described in numerous ways (Creative Commons, 2012). In this visualization based context, however, OER can be defined as ...teaching, learning and research resources that reside in the public domain or have been released under an intellectual property license that permits their free use or re-purposing by…

  5. NOAA Office of Exploration and Research > About OER > Strategic Plan

    Science.gov Websites

    Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Strategic Plan Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff

  6. NOAA Office of Exploration and Research > About OER > Overview

    Science.gov Websites

    Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Overview Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and

  7. NOAA Office of Exploration and Research > About OER > Organization >

    Science.gov Websites

    Organizational Structure Saturday, May 26, 2018 THIS WEBSITE IS NO LONGER BEING UPDATED OR About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Overview Website & Social Media News Room OER Symposium Guiding Documents Organizational Structure Map

  8. NOAA Office of Exploration and Research > About OER > Contact Us

    Science.gov Websites

    Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Contact Us Home About OER Overview Organization Guiding Documents Organizational Structure Map of Staff

  9. NOAA Office of Exploration and Research > About OER > Program Review

    Science.gov Websites

    Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Program Review Home About OER Overview Organization Guiding Documents Organizational Structure Map of

  10. Multimedia Open Educational Resources in Mathematics for High School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Park, Sanghoon; McLeod, Kenneth

    2018-01-01

    Open Educational Resources (OER) can offer educators the necessary flexibility for tailoring educational resources to better fit their educational goals. Although the number of OER repositories is growing fast, few studies have been conducted to empirically test the effectiveness of OER integration in the classroom. Furthermore, very little is…

  11. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery. Electronic supplementary information (ESI) available: Typical TG-DSC curves, XRD patterns, elemental mapping profiles, LSV curves, Tafel plots, current density difference curves, current density against ECSA curves and designed water-splitting cell. See DOI: 10.1039/c6nr00988c

  12. Fullerene-Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Liu, Junli; Yang, Yong; Ni, Bing; Li, Haoyi; Wang, Xun

    2017-02-01

    Fullerene-like nickel oxysulfide hollow nanospheres with ≈50 nm are constructed by in situ growth on the surface of nickel foam by taking advantage of solvothermal reaction. The as-prepared composite exhibits exhilaratingly high HER and OER performance in 1 m KOH, which opens up a very promising aspect for non-noble metal chalcogenides as bifunctional electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte.

    PubMed

    Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2018-01-10

    The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O 2 batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O 2 battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O 2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn 0.9 Fe 0.1 O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Equity Considerations for Open Educational Resources in the Glocalization of Education

    ERIC Educational Resources Information Center

    Willems, Julie; Bossu, Carina

    2012-01-01

    Open educational resources (OER) have become new buzzwords in the glocalization of education. While OER are often espoused as enabling educational equity, the reality is not always the case. Looking only at the positives of new educational methods can mask perpetuating challenges, which makes the open aspect of OER a misnomer. Taking an…

  15. Institutional Culture and OER Policy: How Structure, Culture, and Agency Mediate OER Policy Potential in South African Universities

    ERIC Educational Resources Information Center

    Cox, Glenda; Trotter, Henry

    2016-01-01

    Several scholars and organizations suggest that institutional policy is a key enabling factor for academics to contribute their teaching materials as open educational resources (OER). But given the diversity of institutions comprising the higher education sector--and the administrative and financial challenges facing many institutions in the…

  16. NOAA Office of Exploration and Research > About OER > Organization

    Science.gov Websites

    the break of the continental shelf between Virginia and New England. May 2011: OER EX Program hosts an Atlantic Basin Workshop to identify exploration targets for the 2012 EX field season. May 2011: OER -U.S. exploration and NOAA Ship Okeanos Explorer's (EX) maiden voyage. Jul 2009: Renewed Joint Project

  17. Open Educational Resources (OER) Usage and Barriers: A Study from Zhejiang University, China

    ERIC Educational Resources Information Center

    Hu, Ermei; Li, Yan; Li, Jessica; Huang, Wen-Hao

    2015-01-01

    Open educational resources (OER) as an innovation to share educational resources has been influential in past decade and expected to bring changes to higher education worldwide. There is, however, very limited literature on OER usage, especially from the perspective of college students in developing countries, who are often projected as the…

  18. Questions of Quality in Repositories of Open Educational Resources: A Literature Review

    ERIC Educational Resources Information Center

    Atenas, Javiera; Havemann, Leo

    2014-01-01

    Open educational resources (OER) are teaching and learning materials which are freely available and openly licensed. Repositories of OER (ROER) are platforms that host and facilitate access to these resources. ROER should not just be designed to store this content--in keeping with the aims of the OER movement, they should support educators in…

  19. Needs for and Utilization of OER in Distance Education: A Chinese Survey

    ERIC Educational Resources Information Center

    Chen, Qing; Panda, Santosh

    2013-01-01

    The recent developments within open educational resources (OERs) and open licensing have generated considerable interest among distance educators since open and distance learning is supposed to be the largest consumer/user of and contributor to OER. In China, given the policy of development and use of elaborate courses, conversion of radio and…

  20. Adoption of Open Educational Resources (OER) Textbook for an Introductory Information Systems Course

    ERIC Educational Resources Information Center

    Wang, Shouhong; Wang, Hai

    2017-01-01

    Open educational resources (OER) can make educational resources widely available to all students and educators for free; however, OER are still untried in many academic programmes in higher education. This article reports a case of adoption of an open access textbook for an introductory information systems course and discusses the process and…

  1. Uptake of OER by Staff in Distance Education in South Africa

    ERIC Educational Resources Information Center

    de Hart, Kerry; Chetty, Yuraisha; Archer, Elizabeth

    2015-01-01

    Open Educational Resources (OER) emerged within the context of open education which is typically characterized by the sharing of knowledge and resources and the exchange of ideas. Unisa as a mega open distance learning (ODL) university has publicly communicated its intention to take part in the use and creation of OER. As global and local…

  2. OER and the Common Core

    ERIC Educational Resources Information Center

    Waters, John K.

    2013-01-01

    If anyone had thought to recognize a K-12 educational buzzword of the year for 2012, it would surely have been "open educational resources" (OER). Ed tech media has fairly hummed with the topic, largely with exciting predictions: OER would give cash-strapped K-12 educators access to high-quality tools and content for their classrooms at little or…

  3. Motives and Tensions in the Release of Open Educational Resources: The UKOER Program

    ERIC Educational Resources Information Center

    Falconer, Isobel; Littlejohn, Allison; McGill, Lou; Beetham, Helen

    2016-01-01

    Open educational resources (OER) have been promoted as a path to universal education, supporting economic development and intercultural dialogue. However, to realise these benefits requires greater understanding of the factors that influence both OER supply and use. This paper examines an aspect of the supply side of the OER lifecycle--the motives…

  4. Open Educational Resources: A Faculty Author's Perspective

    ERIC Educational Resources Information Center

    Illowsky, Barbara

    2012-01-01

    As the coauthor (with Susan Dean) of a formally for-profit and now open (i.e., free on the web) textbook, "Collaborative Statistics," this author has received many questions about open educational resources (OER), which can be summarized as follows: (1) What are OER?; (2) Why do you support, actively promote, and speak about OER?; (3) If a book is…

  5. From OER to OEP: Shifting Practitioner Perspectives and Practices with Innovative Learning Experience Design

    ERIC Educational Resources Information Center

    Karunanayaka, Shironica P.; Naidu, Som; Rajendra, J. C. N.; Ratnayake, H. U. W.

    2015-01-01

    Like any other educational resource, the integration of OER in teaching and learning requires careful thought and support for the teaching staff. The Faculty of Education at the Open University of Sri Lanka approached this challenge with the help of a professional development course on OER-based e-Learning. Modules in the course incorporated the…

  6. Using Open Educational Resources in Course Syllabi

    ERIC Educational Resources Information Center

    Andreatos, Antonios; Katsoulis, Stavros

    2012-01-01

    The purpose of this article is (1) to review the advantages of using learning objects (LOs) and open educational resources (OER), (2) to propose the enrichment of course syllabi with LOs/OER, (3) to propose new fields to be included in metadata and ways for embedding metadata in LOs/OER, (4) to review the problem of lack of metadata in Web 2.0…

  7. Campus and Online U.S. College Students' Attitudes toward an Open Educational Resource Course Fee: A Pilot Study

    ERIC Educational Resources Information Center

    Lindshield, Brian L.; Adhikari, Koushik

    2013-01-01

    Convincing faculty to accept, create, adapt, and adopt open educational resources (OERs) instead of textbooks for their courses has proven challenging because incentives are lacking. One approach to provide incentive to faculty members is an OER course fee, which could be employed in courses that use OERs approved by the institution for courses…

  8. The Open Translation MOOC: Creating Online Communities to Transcend Linguistic Barriers

    ERIC Educational Resources Information Center

    Beaven, Tita; Comas-Quinn, Anna; Hauck, Mirjam; de los Arcos, Beatriz; Lewis, Timothy

    2013-01-01

    One of the main barriers to the reuse of Open Educational Resources (OER) is language (OLnet, 2009). OER may be available but in a language that users cannot access, so a preliminary step to reuse is their translation or localization. One of the obvious solutions to the vast effort required to translate OER is to crowd-source the translation, as…

  9. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  10. Not All Rubrics Are Equal: A Review of Rubrics for Evaluating the Quality of Open Educational Resources

    ERIC Educational Resources Information Center

    Yuan, Min; Recker, Mimi

    2015-01-01

    The rapid growth in Internet technologies has led to a proliferation in the number of Open Educational Resources (OER), making the evaluation of OER quality a pressing need. In response, a number of rubrics have been developed to help guide the evaluation of OER quality; these, however, have had little accompanying evaluation of their utility or…

  11. What's Educational about Open Educational Resources? Different Theoretical Lenses for Conceptualizing Learning with OER

    ERIC Educational Resources Information Center

    Panke, Stefanie; Seufert, Tina

    2013-01-01

    In the last decade, the concept of Open Educational Resources (OER) has gained an undeniable momentum. However, it is an easy trap to confuse download and registration rates with actual learning and interest in the adoption and reuse of OER. If we focus solely on access, we cannot differentiate between processes of mere information foraging and…

  12. Making Higher Education More Affordable, One Course Reading at a Time: Academic Libraries as Key Advocates for Open Access Textbooks and Educational Resources

    ERIC Educational Resources Information Center

    Okamoto, Karen

    2013-01-01

    Open access textbooks (OATs) and educational resources (OERs) are being lauded as a viable alternative to costly print textbooks. Some academic libraries are joining the OER movement by creating guides to open repositories. Others are promoting OATs and OERs, reviewing them, and even helping to create them. This article analyzes how academic…

  13. OER as Online Edutainment Resources: A Critical Look at Open Content, Branded Content, and How Both Affect the OER Movement

    ERIC Educational Resources Information Center

    Moe, Rolin

    2015-01-01

    Despite a rise in awareness and production of open education resources (OER) over the past decade, mainstream media outlets continue to define open in economic terms of consumer cost and not in theoretical terms of remix or appropriation. This period in the "open access" debate has coincided with a proliferation of free-of-charge video…

  14. Who Are the Open Learners? A Comparative Study Profiling Non-Formal Users of Open Educational Resources

    ERIC Educational Resources Information Center

    Farrow, Robert; de los Arcos, Beatriz; Pitt, Rebecca; Weller, Martin

    2015-01-01

    Open educational resources (OER) have been identified as having the potential to extend opportunities for learning to non-formal learners. However, little research has been conducted into the impact of OER on non-formal learners. This paper presents the results of a systematic survey of more than 3,000 users of open educational resources (OER).…

  15. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    NASA Astrophysics Data System (ADS)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  16. Dramatically Bringing down the Cost of Education with OER: How Open Education Resources Unlock the Door to Free Learning

    ERIC Educational Resources Information Center

    Wiley, David; Green, Cable; Soares, Louis

    2012-01-01

    The nation is in the midst of a revolution in education. For the first time in human history, tools to enable everyone to attain all the education they desire are available. And best of all this education is available at almost no cost. The key to this sea of change in learning is open education resources, or OER. OER are educational materials…

  17. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita

    2006-02-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficientmore » line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.« less

  18. A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes

    NASA Astrophysics Data System (ADS)

    Alegre, Cinthia; Busacca, Concetta; Di Blasi, Orazio; Antonucci, Vincenzo; Aricò, Antonino Salvatore; Di Blasi, Alessandra; Baglio, Vincenzo

    2017-10-01

    Bifunctional materials able to catalyze both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions in alkaline media are still a challenge for the progress of energy conversion and storage devices such as metal-air batteries or unitized regenerative fuel cells. In this work, carbon nanofibers synthesized by electrospinning are modified with a combination of cobalt oxide and metallic cobalt (CoO-Co/CNF) and studied as a bifunctional air electrode for metal-air batteries. The performance of CoO-Co/CNF for both reactions is compared with state-of-the-art catalysts such as Pt/C and IrO2. The combination of cobalt oxide and metallic cobalt, finely distributed on the surface of graphitic carbon nanofibers, leads to a bifunctional catalyst with a half-wave potential for the ORR slightly better than Pt/C and a reversibility (ΔEOER-ORR) of 809 mV. The stability of CoO-Co/CNF is assessed by means of different stress tests: polarizations at high electrochemical potentials (2 V vs. RHE), rapid charge-discharge cycles at ±80 mA cm-2 and long durability tests by charging for 12 h at 60 mA cm-2 and discharging for 8 h at -80 mA cm-2. CoO-Co/CNF shows a remarkable stability, maintaining, at least, an 82% of its performance for the ORR after the stress tests, even when cycled for more than 100 h.

  19. Palladium nanoparticles functionalized graphene nanosheets for Li-O2 batteries: enhanced performance by tailoring the morphology of discharge product

    NASA Astrophysics Data System (ADS)

    Wang, Liangjun; Chen, Wei; SSL Team

    Lithium oxygen (Li-O2) batteries represent a promising candidate for the next generation electric vehicle.1-3 Despite the attractive prospect, some issues including large overpotentials, poor recyclability and unstable electrolyte4-6 limit the wide applications of Li-O2 batteries. Due to the insoluble and non-conductive nature of discharge product Li2O2, it has been widely accepted that the performance of oxygen evolution reaction (OER) process is not only determined by the catalyst itself but also close linked to morphology and electronic conductivity of Li2O2 formed during oxygen reduction reaction (ORR) process. Herein, we report a strategy to improve the battery performance by tailoring the morphology of discharge product. By using graphene nanosheets (GNSs) functionalized with Pd nanoparticles (NPs) as cathode catalyst, the growth and morphology of the discharge products of Li2O2 can be effectively tailored, thereby leading to the improved Li-O2 battery performance. Surprisingly, on bare GNSs cathode, the discharge product showed widely observed large-sized toroidal morphology. While for Pd NPs functionalized GNSs, the discharge product was homogenously distributed on the cathode in the form of small nanoparticles with an average diameter of 25 nm. As a result, Pd NPs functionalized GNSs exhibited a high discharge capacity of 7690 mAh g-1. Meanwhile, the battery with tailored morphology exhibits lower charge overpotential.

  20. Photoelectrochemical devices for solar water splitting - materials and challenges.

    PubMed

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  1. NOAA Office of Exploration and Research > About OER > Program Review >

    Science.gov Websites

    OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations

  2. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos

    PubMed Central

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-01-01

    Objective Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today’s keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users’ information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. Materials and Methods The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively. Results The authors produced a prototype implementation of the proposed system, which is publicly accessible at https://patentq.njit.edu/oer. To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Conclusion Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. PMID:26335986

  3. 75 FR 82377 - NOAA's Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    .... Data and observations resulting from OER investments will result in new discoveries, insights, knowledge and identification of new frontiers, and will likely lead to new or revised understandings of our...

  4. Evidence that the oxygen enhancement ratio for pink somatic mutations in Tradescantia stamen hairs may approach unity at very low x-ray doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underbrink, A.G.; Woch, B.

    1980-11-01

    Experimental evidence was found that the oxygen enhancement ratio (OER) for pink somatic mutations in the stamen hairs of Tradescantia clone 02 appears to reach unity at X-ray doses of 2 to 3 rad. There is also a small segment on the dose-response curves from about 3 to 10 rad where the OER appears to be dose-dependent. At higher doses the aerated and hypoxic curves are parallel, and the OER is 3.2 up to doses where the mutation frequency reaches a plateau.

  5. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.

    PubMed

    Li, Mingyang; Yang, Yi; Ling, Yichuan; Qiu, Weitao; Wang, Fuxin; Liu, Tianyu; Song, Yu; Liu, Xiaoxia; Fang, Pingping; Tong, Yexiang; Li, Yat

    2017-04-12

    High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm -2 at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.

  6. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene.

    PubMed

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-21

    Ni(2+)Mn(3+) layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni(2+)/Mn(2+) salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.

  7. "Open-Sourcing" Personal Learning

    ERIC Educational Resources Information Center

    Fiedler, Sebastian H.D.

    2014-01-01

    This article offers a critical reflection on the contemporary Open Educational Resource (OER) movement, its unquestioned investment in a collective "content fetish" and an educational "problem description" that focuses on issues of scarcity, access, and availability of quality materials. It also argues that OER proponents fail…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegis, Michael L.; Roberts, John A. S.; Wasylenko, Derek J.

    A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O2 + 4e– + 4H+ ⇌ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc+/0) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water frommore » aqueous solution to organic solvent, -0.43 kcal mol–1 for MeCN and -1.47 kcal mol–1 for DMF, and the potential of the H+/H2 couple, – 0.028 V in MeCN and -0.662 V in DMF. The H+/H2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol–1 for acetonitrile and +0.6 kcal mol–1 for DMF.« less

  9. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.

    PubMed

    Tang, Cheng; Wang, Hao-Fan; Zhang, Qiang

    2018-04-17

    Various gas-involving energy electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), has witnessed increasing concerns recently for the sake of clean, renewable, and efficient energy technologies. However, these heterogeneous reactions exhibit sluggish kinetics due to multistep electron transfer and only occur at triple-phase boundary regions. Up to now, tremendous attention has been attracted to develop cost-effective and high-performance electrocatalysts to boost the electrocatalytic activities as promising alternatives to noble metal counterparts. In addition to the prolific achievements in materials science, the advances in interface chemistry are also very critical in consideration of the complex phenomena proceeded at triple-phase boundary regions, such as mass diffusion, electron transfer, and surface reaction. Therefore, insightful principles and effective strategies for a comprehensive optimization, ranging from active sites to electrochemical interface, are necessary to fully enhance the electrocatalytic performance aiming at practical device applications. In this Account, we give an overview of our recent attempts toward efficient gas-involving electrocatalysis with multiscale principles from the respect of electronic structure, hierarchical morphology, and electrode interface step by step. It is widely accepted that the intrinsic activity of individual active sites is directly influenced by their electronic structure. Heteroatom doping and topological defects are demonstrated to be the most effective strategies for metal-free nanocarbon materials, while the cationic (e.g., Ni, Fe, Co, Sn) and anionic (e.g., O, S, OH) regulation is revealed to be a promising method for transition metal compounds, to alter the electronic structure and generate high activity. Additionally, the apparent activity of the whole electrocatalyst is significantly impacted by its hierarchical morphology. The active sites of nanocarbon materials are expected to be enriched on the surface for a full exposure and utilization; the hybridization of other active components with nanocarbon materials should achieve a uniform dispersion in nanoscale and a strongly coupled interface, thereby ensuring the electron transfer and boosting the activity. Furthermore, steady and favorable electrochemical interfaces are strongly anticipated in working electrodes for optimal reaction conditions. The powdery electrocatalysts are suggested to be constructed into self-supported electrodes for more efficient and stable catalysis integrally, while the local microenvironment can be versatilely modified by ionic liquids with more beneficial gas solubility and hydrophobicity. Collectively, with the all-round regulation of the electronic structure, hierarchical morphology, and electrode interface, the electrocatalytic performances are demonstrated to be comprehensively facilitated. Such multiscale principles stemmed from the in-depth insights on the structure-activity relationship and heterogeneous reaction characteristics will no doubt pave the way for the future development of gas-involving energy electrocatalysis, and also afford constructive inspirations in a broad range of research including CO 2 reduction reaction, hydrogen peroxide production, nitrogen reduction reaction, and other important electrocatalytic activation of small molecules.

  10. Stable and efficient nitrogen-containing-carbon based electrocatalysts for reactions in energy conversion systems.

    PubMed

    Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2018-05-17

    High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.

    PubMed

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-04-01

    Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. NOAA Office of Exploration and Research > Education > Evaluation

    Science.gov Websites

    INFORMATION ON THE NOAA OFFICE OF OCEAN EXPLORATION AND RESEARCH, VISIT: OCEANEXPLORER.NOAA.GOV weather oceans fisheries charting satellites climate research coasts careers@noaa OER Banner Home About OER Overview of partnering institutions or Alliances Partners. Surveys containing quantitative and qualitative

  13. Capacity-Building in Open Education: An Australian Approach

    ERIC Educational Resources Information Center

    Bossu, Carina; Fountain, Wendy

    2015-01-01

    Addressing the gap between global open educational resource (OER) proliferation and the slow adoption of OER and open educational practices (OEP) in Australian higher education, this paper focuses on a capacity-building project targeting academics, academic support staff and educational developers. The conception, design, development, piloting and…

  14. Leading the Maricopa Millions OER Project

    ERIC Educational Resources Information Center

    Raneri, April; Young, Lisa

    2016-01-01

    With a reduced number of students purchasing required and necessary textbooks, higher education leaders must look to new opportunities to increase student success. While open educational resources have addressed this issue, they have not received widespread support from faculty, staff, and administrators. The Maricopa Millions OER Project: Scaling…

  15. Faculty Members' Instructional Priorities for Adopting OER

    ERIC Educational Resources Information Center

    Jung, Insung; Hong, Seongyoun

    2016-01-01

    This study aimed to investigate and classify faculty members' instructional priorities for adopting OER. In-depth interview data were collected from 10 faculty members from different regions and analyzed with NVivo 10. The original supposition was that the well-established instructional priorities, effectiveness, efficiency, and appeal would…

  16. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE PAGES

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.; ...

    2018-01-19

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  17. Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO 3 oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Joseph H.; Doyle, Andrew D.; Nørskov, Jens K.

    The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. Here, in this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO 3 oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogenmore » evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. Finally, we also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.« less

  18. Influencing Factors in OER Usage of Adult Learners in Korea

    ERIC Educational Resources Information Center

    Kim, Byoung Wook; Lee, Won Gyu; Lee, Byeong Rae; Shon, Jin Gon

    2015-01-01

    Open Educational Resources (OER) is terminology that refers to educational resources (content and software) distributed through the Internet, free of charge and freely accessible, expanding learning opportunities for adult learners. This terminology first appeared around 2002, although its roots can be traced to the open architecture of the…

  19. OER and the Value of Openness: Implications for the Knowledge Economy

    ERIC Educational Resources Information Center

    Bernstein, Samantha

    2015-01-01

    The knowledge economy is marked by recent trends in technological advancement, globalisation and increasing knowledge intensity. Through new technologies like Open Educational Resources (OER), knowledge can be freely accessed by individuals around the world, blurring traditional notions of ownership and prompting a social transformation manifested…

  20. Writing Commons: A Model for the Creation, Usability, and Evaluation of OERs

    ERIC Educational Resources Information Center

    Herron, Josh

    2016-01-01

    As Open Educational Resources (OER) increasingly receive attention from academics, educational foundations, and government agencies, exemplars will emerge that lower student textbook costs by moving away from commercial publishers through self-publishing or curating web-based resources. Joe Moxley's "Writing Commons" serves as a scaled…

  1. 75 FR 3449 - Office of Innovation and Improvement; Overview Information; Teaching American History Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Educational Resources (OER). OER are teaching, learning, and research resources that reside in the public... traditional American history content, proven teaching strategies, and lessons learned in implementing TAH... students. The applicant is encouraged to address how its proposed professional development strategy will...

  2. Strategic Implementation of Open Educational Resources in Higher Education Institutions

    ERIC Educational Resources Information Center

    Jung, Eulho; Bauer, Christine; Heaps, Allan

    2017-01-01

    Higher education institutions have been playing a pivotal role in the emergence and elaboration of the Open Educational Resources (OER) movement. Initially, pioneering institutions such as the Massachusetts Institute of Technology (MIT) have led the conceptualization of OER, providing models of sustainable initiatives. Following the forerunners,…

  3. OER Use in Intermediate Language Instruction: A Case Study

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2017-01-01

    This paper reports on a case study in the experimental use of Open Educational Resources (OERs) in intermediate level language instruction. The resources come from three sources: the instructor, the students, and open content repositories. The objective of this action research project was to provide student-centered learning materials, enhance…

  4. Student Perceptions of College Faculty Who Use OER

    ERIC Educational Resources Information Center

    Vojtech, Gabrielle; Grissett, Judy

    2017-01-01

    Research indicates that students find open educational resources (OER) favorable, but there is no research regarding students' perceptions of faculty who use open textbooks. In the present study we examined this topic experimentally with two undergraduate psychology courses at a small public university. Participants read two passages--one about an…

  5. Open Access Scholarly Publications as OER

    ERIC Educational Resources Information Center

    Anderson, Terry

    2013-01-01

    This paper presents the rationale, common practices, challenges, and some personal anecdotes from a journal editor on the production, use, and re-use of peer-reviewed scholarly articles as open educational resources (OER). The scholarly and professional discourse related to open educational resources has largely focused on open learning objects,…

  6. Multilingual Videos for MOOCs and OER

    ERIC Educational Resources Information Center

    Valor Miró, Juan Daniel; Baquero-Arnal, Pau; Civera, Jorge; Turró, Carlos; Juan, Alfons

    2018-01-01

    Massive Open Online Courses (MOOCs) and Open Educational Resources (OER) are rapidly growing, but are not usually offered in multiple languages due to the lack of cost-effective solutions to translate the different objects comprising them and particularly videos. However, current state-of-the-art automatic speech recognition (ASR) and machine…

  7. The Promise of Open Educational Resources

    ERIC Educational Resources Information Center

    Smith, Marshall S.; Casserly, Catherine M.

    2006-01-01

    Open educational resources (OER) include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to either support access to knowledge, or have an impact on teaching, learning, and research. At the heart of the OER movement is the simple and powerful idea that the…

  8. Women's Empowerment through Openness: OER, OEP and the Sustainable Development Goals

    ERIC Educational Resources Information Center

    Perryman, Leigh-Anne; de los Arcos, Beatriz

    2016-01-01

    This paper explores the potential of open educational resources (OER) and open educational practices (OEP) in helping achieve women's empowerment in the developing world. Our evidence comprises the Open Education Research Hub open dataset, featuring survey responses from 7,700 educators, formal and informal learners from 175 countries concerning…

  9. Researching Resistance to Open Education Resource Contribution: An Activity Theory Approach

    ERIC Educational Resources Information Center

    Cox, Glenda

    2013-01-01

    Higher education and associated institutions are beginning to share teaching materials known as Open Educational Resources (OER) or open courseware across the globe. Their success depends largely on the willingness of academics at these institutions to add their teaching resources. In a survey of the literature on OER there are several articles…

  10. Examining Student Perception of an Open Statistics Book

    ERIC Educational Resources Information Center

    Illowsky, Barbara Sack; Hilton, John, III; Whiting, Justin; Ackerman, Jordan Dale

    2016-01-01

    The rise of Open Educational Resources (OER) research provides data that Open Textbooks and other forms of OER may be one cost saving approach for college and university students. Yet little research has been conducted around the attitudes and perceptions of the students using these Open Textbooks. This paper examines the perceptions that students…

  11. Open Educational Resources in Canada 2015

    ERIC Educational Resources Information Center

    McGreal, Rory; Anderson, Terry; Conrad, Dianne

    2015-01-01

    Canada's important areas of expertise in open educational resources (OER) are beginning to be built upon or replicated more broadly in all education and training sectors. This paper provides an overview of the state of the art in OER initiatives and open higher education in general in Canada, providing insights into what is happening nationally…

  12. Understanding Social OER Environments--A Quantitative Study on Factors Influencing the Motivation to Share and Collaborate

    ERIC Educational Resources Information Center

    Pirkkalainen, Henri; Jokinen, Jussi P. P.; Pawlowski, Jan M.

    2014-01-01

    Social software environments are increasingly used for open education: teachers and learners share and collaborate in these environments. While there are various possibilities for the inclusion of such social functionalities for OER, many organizational, individual and technological challenges can hinder the motivation of teachers to share and…

  13. Designing Capacity Building of Educators in Open Educational Resources Integration Leads to Transformational Change

    ERIC Educational Resources Information Center

    Karunanayaka, Shironica P.; Naidu, Som

    2018-01-01

    While there is growing recognition and acceptance of Open Educational Resources (OER) and Open Educational Practices (OEP) in teaching and learning, designing for their integration remains very challenging for educators. Adopting OER and OEP in their profession requires significant changes in practitioners' pedagogical thinking and practices,…

  14. The Integration of Spirituality and Transformational Leadership in Higher Education

    ERIC Educational Resources Information Center

    Patton, Cheryl; Webster, Natasha; Moore-Dent, JoAnne

    2017-01-01

    As concerns about the skyrocketing costs of a college degree have converged with the increasing availability of open educational resources (OER), higher education administrators are asking faculty and curriculum designers to use OERs to design courses and programs. This case study explores the decision making process and outcomes of an online,…

  15. Localizing OER in Afghanistan: Developing a Multilingual Digital Library for Afghan Teachers

    ERIC Educational Resources Information Center

    Oates, Lauryn; Hashimi, Jamshid

    2016-01-01

    The Darakht-e Danesh ("knowledge tree") Online Library is the first open educational resource (OER) initiative in Afghanistan, established to enhance teacher subject-area knowledge, access and use of learning materials, and to foster more diverse teaching methodologies in order to improve learning outcomes in Afghan classrooms. This…

  16. State Support for Open Educational Resources: Key Findings from Achieve's OER Institute

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    Open Educational Resources (OER) offer unique new opportunities for educators to share quality learning resources, especially in an increasingly digital world. Forty-six states and the District of Columbia have adopted the Common Core State Standards (CCSS), providing them with the unprecedented advantage of being able to share resources that are…

  17. A Model of Digital Textbook Quality from the Perspective of College Students

    ERIC Educational Resources Information Center

    Bliss, T. J.

    2013-01-01

    The cost of textbooks is a financial burden on many college students. Fortunately the advent of open educational resources (OER) has allowed for the development of textbooks and other materials at significantly reduced costs to students. Many faculty are using OER to develop customized textbooks for their students, usually published digitally…

  18. Framework for the Development of OER-Based Learning Materials in ODL Environment

    ERIC Educational Resources Information Center

    Teng, Khor Ean; Hung, Chung Sheng

    2013-01-01

    This paper describes the framework for the development of OER-based learning materials "TCC121/05 Programming Fundamentals with Java" for ODL learners in Wawasan Open University (WOU) using three main development phases mainly: creation, evaluation and production phases. The proposed framework has further been tested on ODL learners to…

  19. Open Educational Resources in the Commonwealth 2016

    ERIC Educational Resources Information Center

    Phalachandra, B.; Abeywardena, Ishan

    2016-01-01

    This study was conducted as part of the OER for Skills Development project of COL, supported by The William and Flora Hewlett Foundation. The objective of the study was to collect baseline data from Commonwealth institutions with respect to the development, use and reuse of OER; the availability of support; and challenges faced in fostering the…

  20. Incentivizing the Production and Use of Open Educational Resources in Higher Education Institutions

    ERIC Educational Resources Information Center

    Annand, David; Jensen, Tilly

    2017-01-01

    Substituting open educational resources (OER) for commercially-produced textbooks results in demonstrable cost savings for students in most higher education institutions. Yet OER are still not widely used, and progress toward large-scale adoption in most colleges and universities has been slow. This article reviews the literature informing…

  1. A Federated Reference Structure for Open Informational Ecosystems

    ERIC Educational Resources Information Center

    Heinen, Richard; Kerres, Michael; Scharnberg, Gianna; Blees, Ingo; Rittberger, Marc

    2016-01-01

    The paper describes the concept of a federated ecosystem for Open Educational Resources (OER) in the German education system. Here, a variety of OER repositories (ROER) (Muuß-Merholz & Schaumburg, 2014) and reference platforms have been established in the recent past. In order to develop this ecosystem, not only are metadata standards…

  2. The OpenCourseWare Model: High-Impact Open Educational Content

    ERIC Educational Resources Information Center

    Carson, Stephen

    2007-01-01

    OpenCourseWare (OCW) is one among several models for offering open educational resources (OER). This article explains the OCW model and its position within the broader OER context. OCW primarily represents publication of existing course materials already in use for teaching purposes. OCW projects are most often institutional, carrying the…

  3. A Case for Authoring Multi-Touch Interactive Open Educational Resources

    ERIC Educational Resources Information Center

    Mills, Michael S.

    2016-01-01

    As textbook prices continue to skyrocket, open educational resources (OER) offer a significant way to deliver high quality content to students in higher education. The pressing issue is whether these OER are engaging, relevant, and accurate. Authoring multi-touch interactive resources that are delivered to students as open-access may not only…

  4. A Naive Bayes Approach for Converging Learning Objects with Open Educational Resources

    ERIC Educational Resources Information Center

    Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay; Sharma, B. K.

    2016-01-01

    Open educational resources (OER) are digitised material freely available to the students and self learners. Many institutions had initiated in incorporating these OERs in their higher educational system, to improve the quality of teaching and learning. These resources promote individualised study, collaborative learning. If they are coupled with…

  5. Implementation of Open Educational Resources in a Nursing Programme: Experiences and Reflections

    ERIC Educational Resources Information Center

    Elf, Marie; Ossiannilsson, Ebba; Neljesjö, Maria; Jansson, Monika

    2015-01-01

    The IMPOER project (implementation of open educational resources, OER) aimed to implement OER in a nursing programme at Dalarna University, Sweden. The university and its nursing programme have long engaged in e-learning, and the nursing programme has recently been awarded the European Association of Distance Teaching Universities E-xcellence…

  6. AM-OER: An Agile Method for the Development of Open Educational Resources

    ERIC Educational Resources Information Center

    Arimoto, Maurício M.; Barroca, Leonor; Barbosa, Ellen F.

    2016-01-01

    Open Educational Resources have emerged as important elements of education in the contemporary society, promoting life-long and personalized learning that transcends social, economic and geographical barriers. To achieve the potential of OERs and bring impact on education, it is necessary to increase their development and supply. However, one of…

  7. Conceptual Framework for Parametrically Measuring the Desirability of Open Educational Resources Using D-Index

    ERIC Educational Resources Information Center

    Abeywardena, Ishan Sudeera; Tham, Choy Yoong; Raviraja, S.

    2012-01-01

    Open educational resources (OER) are a global phenomenon that is fast gaining credibility in many academic circles as a possible solution for bridging the knowledge divide. With increased funding and advocacy from governmental and nongovernmental organisations paired with generous philanthropy, many OER repositories, which host a vast array of…

  8. The RISE Framework: Using Learning Analytics to Automatically Identify Open Educational Resources for Continuous Improvement

    ERIC Educational Resources Information Center

    Bodily, Robert; Nyland, Rob; Wiley, David

    2017-01-01

    The RISE (Resource Inspection, Selection, and Enhancement) Framework is a framework supporting the continuous improvement of open educational resources (OER). The framework is an automated process that identifies learning resources that should be evaluated and either eliminated or improved. This is particularly useful in OER contexts where the…

  9. Open Educational Practices and Resources. OLCOS Roadmap, 2012

    ERIC Educational Resources Information Center

    Geser, Guntram, Ed.

    2007-01-01

    As a Transversal Action under the European eLearning Programme, the Open e-Learning Content Observatory Services (OLCOS) project carries out a set of activities that aim at fostering the creation, sharing and re-use of Open Educational Resources (OER) in Europe and beyond. OER are understood to comprise content for teaching and learning,…

  10. Open Educational Resources and the Transformation of Education

    ERIC Educational Resources Information Center

    Tuomi, Ilkka

    2013-01-01

    The extremely rapid expansion of open educational resource (OER) initiatives and the millions of learners they attract can be understood as an indicator of an emerging revolution in education and learning. This article describes recent developments in this area and develops conceptual foundations for studies and policies on OER. We describe four…

  11. Localization of Open Educational Resources (OER) in Nepal: Strategies of Himalayan Knowledge-Workers

    ERIC Educational Resources Information Center

    Ivins, Tiffany Zenith

    2011-01-01

    This dissertation examines localization of Open Educational Resources (OER) in Himalayan community technology centers of Nepal. Specifically, I examine strategies and practices that local knowledge-workers utilize in order to localize educational content for the disparate needs, interests, and ability-levels of learners in rural villages. This…

  12. RBE and OER within the spread-out Bragg peak for proton beam therapy: in vitro study at the Proton Medical Research Center at the University of Tsukuba

    PubMed Central

    Kanemoto, Ayae; Hirayama, Ryoichi; Moritake, Takashi; Furusawa, Yoshiya; Sun, Lue; Sakae, Takeji; Kuno, Akihiro; Terunuma, Toshiyuki; Yasuoka, Kiyoshi; Mori, Yutaro; Tsuboi, Koji; Sakurai, Hideyuki

    2014-01-01

    There are few reports on the biological homogeneity within the spread-out Bragg peak (SOBP) of proton beams. Therefore, to evaluate the relative biological effectiveness (RBE) and the oxygen enhancement ratio (OER), human salivary gland tumor (HSG) cells were irradiated at the plateau position (position A) and three different positions within a 6-cm-wide SOBP (position B, 26 mm proximal to the middle; position C, middle; position D, 26 mm distal to the middle) using 155-MeV/n proton beams under both normoxic and hypoxic conditions at the Proton Medical Research Center, University of Tsukuba, Japan. The RBE to the plateau region (RBEplateau) and the OER value were calculated from the doses corresponding to 10% survival data. Under the normoxic condition, the RBEplateau was 1.00, 0.99 and 1.09 for positions B, C and D, respectively. Under the hypoxic condition, the RBEplateau was 1.10, 1.06 and 1.12 for positions B, C and D, respectively. The OER was 2.84, 2.60, 2.63 and 2.76 for positions A, B, C and D, respectively. There were no significant differences in either the RBEplateau or the OER between these three positions within the SOBP. In conclusion, biological homogeneity need not necessarily be taken into account for treatment planning for proton beam therapy at the University of Tsukuba. PMID:24876271

  13. Merging and Visualization of Archived Oceanographic Acoustic, Optical, and Sensor Data to Support Improved Access and Interpretation

    NASA Astrophysics Data System (ADS)

    Malik, M. A.; Cantwell, K. L.; Reser, B.; Gray, L. M.

    2016-02-01

    Marine researchers and managers routinely rely on interdisciplinary data sets collected using hull-mounted sonars, towed sensors, or submersible vehicles. These data sets can be broadly categorized into acoustic remote sensing, imagery-based observations, water property measurements, and physical samples. The resulting raw data sets are overwhelmingly large and complex, and often require specialized software and training to process. To address these challenges, NOAA's Office of Ocean Exploration and Research (OER) is developing tools to improve the discoverability of raw data sets and integration of quality-controlled processed data in order to facilitate re-use of archived oceanographic data. Majority of recently collected OER raw oceanographic data can be retrieved from national data archives (e.g. NCEI and NOAA central library). Merging of disperse data sets by scientists with diverse expertise, however remains problematic. Initial efforts at OER have focused on merging geospatial acoustic remote sensing data with imagery and water property measurements that typically lack direct geo-referencing. OER has developed `smart' ship and submersible tracks that can provide a synopsis of geospatial coverage of various data sets. Tools under development enable scientists to quickly assess the relevance of archived OER data to their respective research or management interests, and enable quick access to the desired raw and processed data sets. Pre-processing of the data and visualization to combine various data sets also offers benefits to streamline data quality assurance and quality control efforts.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Hiromitsu, E-mail: h-iwa-ncu@nifty.com; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya; Ogino, Hiroyuki

    Purpose: To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. Methods and Materials: The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. Themore » OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. Results: The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (P<.05 for both cells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). Conclusions: The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons.« less

  15. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in photocatalytic HER.

  16. A Bibliometric Mapping of Open Educational Resources

    ERIC Educational Resources Information Center

    Zancanaro, Airton; Todesco, José Leomar; Ramos, Fernando

    2015-01-01

    Open educational resources (OER) is a topic that has aroused increasing interest by researchers as a powerful contribution to improve the educational system quality and openness, both in face to face and distance education. The goal of this research is to map publications related to OER, dating from 2002 to 2013, and available through the Web of…

  17. OERScout Technology Framework: A Novel Approach to Open Educational Resources Search

    ERIC Educational Resources Information Center

    Abeywardena, Ishan Sudeera; Chan, Chee Seng; Tham, Choy Yoong

    2013-01-01

    The open educational resources (OER) movement has gained momentum in the past few years. With this new drive towards making knowledge open and accessible, a large number of OER repositories have been established and made available online throughout the world. However, the inability of existing search engines such as Google, Yahoo!, and Bing to…

  18. Use of Open Educational Resources: How, Why and Why Not?

    ERIC Educational Resources Information Center

    Islim, Omer Faruk; Gurel Koybasi, Nergis A.; Cagiltay, Kursat

    2016-01-01

    Open Educational Resources (OER) and OpenCourseWare (OCW) target barriers of education and learning by sharing knowledge for free to benefit self-learners, educators, and students. This study aims to investigate the use of OER both as a supplementary resource for a traditional course and as a resource for self-learners. First, the attitudes and…

  19. OER Usage by Instructional Designers and Training Managers in Corporations

    ERIC Educational Resources Information Center

    Merkel, Eli; Cohen, Anat

    2015-01-01

    Since the development of Open Educational Resources (OERs), different models regarding the usage of these resources in education have appeared in the literature. Wiley's 4-Rs model is considered to be one of the leading models. Research based on Wiley's model shows that using materials without making changes is the most common use. Compared to the…

  20. Turkish Teachers' Awareness and Perceptions of Open Educational Resources

    ERIC Educational Resources Information Center

    Ozdemir, Ozgur; Bonk, Curtis J.

    2017-01-01

    The purpose of this study is to explore K-12 teachers' awareness of open educational resources (OER) as well as their perceptions of its potential opportunities and challenges for teaching practices. Data were gathered from 99 online survey respondents and six interviewees in this study. Findings showed that teachers are aware of OER to a certain…

Top