Sample records for evolution selected dynamics

  1. Chaos and unpredictability in evolution.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.

    PubMed

    Lenski, Richard E

    2017-10-01

    Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.

  3. The role of weak selection and high mutation rates in nearly neutral evolution.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2009-04-21

    Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.

  4. Evolution of Site-Selection Stabilizes Population Dynamics, Promotes Even Distribution of Individuals, and Occasionally Causes Evolutionary Suicide.

    PubMed

    Parvinen, Kalle; Brännström, Åke

    2016-08-01

    Species that compete for access to or use of sites, such as parasitic mites attaching to honey bees or apple maggots laying eggs in fruits, can potentially increase their fitness by carefully selecting sites at which they face little or no competition. Here, we systematically investigate the evolution of site-selection strategies among animals competing for discrete sites. By developing and analyzing a mechanistic and population-dynamical model of site selection in which searching individuals encounter sites sequentially and can choose to accept or continue to search based on how many conspecifics are already there, we give a complete characterization of the different site-selection strategies that can evolve. We find that evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals among sites, and occasionally causes evolutionary suicide. We also discuss the broader implications of our findings and propose how they can be reconciled with an earlier study (Nonaka et al. in J Theor Biol 317:96-104, 2013) that reported selection toward ever higher levels of aggregation among sites as a consequence of site-selection.

  5. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.

    PubMed

    Rubin, Ilan N; Doebeli, Michael

    2017-12-21

    Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards.

    PubMed

    Hagey, Travis J; Uyeda, Josef C; Crandell, Kristen E; Cheney, Jorn A; Autumn, Kellar; Harmon, Luke J

    2017-10-01

    Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  7. The origin and dynamic evolution of chemical information transfer

    PubMed Central

    Steiger, Sandra; Schmitt, Thomas; Schaefer, H. Martin

    2011-01-01

    Although chemical communication is the most widespread form of communication, its evolution and diversity are not well understood. By integrating studies of a wide range of terrestrial plants and animals, we show that many chemicals are emitted, which can unintentionally provide information (cues) and, therefore, act as direct precursors for the evolution of intentional communication (signals). Depending on the content, design and the original function of the cue, there are predictable ways that selection can enhance the communicative function of chemicals. We review recent progress on how efficacy-based selection by receivers leads to distinct evolutionary trajectories of chemical communication. Because the original function of a cue may channel but also constrain the evolution of functional communication, we show that a broad perspective on multiple selective pressures acting upon chemicals provides important insights into the origin and dynamic evolution of chemical information transfer. Finally, we argue that integrating chemical ecology into communication theory may significantly enhance our understanding of the evolution, the design and the content of signals in general. PMID:21177681

  8. Parasite transmission among relatives halts Red Queen dynamics.

    PubMed

    Greenspoon, Philip B; Mideo, Nicole

    2017-03-01

    The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Evolutionary dynamics on graphs: Efficient method for weak selection

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  10. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  11. Effects of adaptive dynamical linking in networked games

    NASA Astrophysics Data System (ADS)

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

  12. Laboratory evolution of protein conformational dynamics.

    PubMed

    Campbell, Eleanor C; Correy, Galen J; Mabbitt, Peter D; Buckle, Ashley M; Tokuriki, Nobuhiko; Jackson, Colin J

    2017-11-08

    This review focuses on recent work that has begun to establish specific functional roles for protein conformational dynamics, specifically how the conformational landscapes that proteins can sample can evolve under laboratory based evolutionary selection. We discuss recent technical advances in computational and biophysical chemistry, which have provided us with new ways to dissect evolutionary processes. Finally, we offer some perspectives on the emerging view of conformational dynamics and evolution, and the challenges that we face in rationally engineering conformational dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2017-11-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  14. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2018-07-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  15. Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.

    PubMed

    Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas

    2015-11-10

    Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.

  16. Evolution in plant populations as a driver of ecological changes in arthropod communities

    PubMed Central

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution. PMID:19414473

  17. Natural selection and the predictability of evolution in Timema stick insects.

    PubMed

    Nosil, Patrik; Villoutreix, Romain; de Carvalho, Clarissa F; Farkas, Timothy E; Soria-Carrasco, Víctor; Feder, Jeffrey L; Crespi, Bernard J; Gompert, Zach

    2018-02-16

    Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time ( r 2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection ( r 2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Convergence of biannual moulting strategies across birds and mammals

    PubMed Central

    Burns, Jennifer M.; Breed, Greg A.

    2018-01-01

    Birds and mammals have developed numerous strategies for replacing worn feathers and hair. Moulting usually occurs on an annual basis; however, moults that take place twice per year (biannual moults) also occur. Here, we review the forces driving the evolution of various moult strategies, focusing on the special case of the complete biannual moult as a convergence of selection pressures across birds and mammals. Current evidence suggests that harsh environmental conditions or seasonality (e.g. larger variation in temperatures) drive evolution of a biannual moult. In turn, the biannual moult can respond to secondary selection that results in phenotypic alteration such as colour changes for mate choice dynamics (sexual selection) or camouflage requirements (natural selection). We discuss the contributions of natural and sexual selection to the evolution of biannual moulting strategies in the contexts of energetics, niche selection, functionality and physiological mechanisms. Finally, we suggest that moult strategies are directly related to species niche because environmental attributes drive the utility (e.g. thermoregulation, camouflage, social dynamics) of the hair or feathers. Functional efficiency of moult may be undermined if the pace of evolution fails to match that of the changing climate. Thus, future research should seek to understand the plasticity of moult duration and phenology, especially in the context of annual cycles. PMID:29769361

  19. Evolution and selection of river networks: Statics, dynamics, and complexity

    PubMed Central

    Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R.; Maritan, Amos; Rodriguez-Iturbe, Ignacio

    2014-01-01

    Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics—every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept. PMID:24550264

  20. The potential and flux landscape theory of evolution.

    PubMed

    Zhang, Feng; Xu, Li; Zhang, Kun; Wang, Erkang; Wang, Jin

    2012-08-14

    We established the potential and flux landscape theory for evolution. We found explicitly the conventional Wright's gradient adaptive landscape based on the mean fitness is inadequate to describe the general evolutionary dynamics. We show the intrinsic potential as being Lyapunov function(monotonically decreasing in time) does exist and can define the adaptive landscape for general evolution dynamics for studying global stability. The driving force determining the dynamics can be decomposed into gradient of potential landscape and curl probability flux. Non-zero flux causes detailed balance breaking and measures how far the evolution from equilibrium state. The gradient of intrinsic potential and curl flux are perpendicular to each other in zero fluctuation limit resembling electric and magnetic forces on electrons. We quantified intrinsic energy, entropy and free energy of evolution and constructed non-equilibrium thermodynamics. The intrinsic non-equilibrium free energy is a Lyapunov function. Both intrinsic potential and free energy can be used to quantify the global stability and robustness of evolution. We investigated an example of three allele evolutionary dynamics with frequency dependent selection (detailed balance broken). We uncovered the underlying single, triple, and limit cycle attractor landscapes. We found quantitative criterions for stability through landscape topography. We also quantified evolution pathways and found paths do not follow potential gradient and are irreversible due to non-zero flux. We generalized the original Fisher's fundamental theorem to the general (i.e., frequency dependent selection) regime of evolution by linking the adaptive rate with not only genetic variance related to the potential but also the flux. We show there is an optimum potential where curl flux resulting from biotic interactions of individuals within a species or between species can sustain an endless evolution even if the physical environment is unchanged. We offer a theoretical basis for explaining the corresponding Red Queen hypothesis proposed by Van Valen. Our work provides a theoretical foundation for evolutionary dynamics.

  1. Older partner selection promotes the prevalence of cooperation in evolutionary games.

    PubMed

    Yang, Guoli; Huang, Jincai; Zhang, Weiming

    2014-10-21

    Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    PubMed

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Multi-Topic Tracking Model for dynamic social network

    NASA Astrophysics Data System (ADS)

    Li, Yuhua; Liu, Changzheng; Zhao, Ming; Li, Ruixuan; Xiao, Hailing; Wang, Kai; Zhang, Jun

    2016-07-01

    The topic tracking problem has attracted much attention in the last decades. However, existing approaches rarely consider network structures and textual topics together. In this paper, we propose a novel statistical model based on dynamic bayesian network, namely Multi-Topic Tracking Model for Dynamic Social Network (MTTD). It takes influence phenomenon, selection phenomenon, document generative process and the evolution of textual topics into account. Specifically, in our MTTD model, Gibbs Random Field is defined to model the influence of historical status of users in the network and the interdependency between them in order to consider the influence phenomenon. To address the selection phenomenon, a stochastic block model is used to model the link generation process based on the users' interests to topics. Probabilistic Latent Semantic Analysis (PLSA) is used to describe the document generative process according to the users' interests. Finally, the dependence on the historical topic status is also considered to ensure the continuity of the topic itself in topic evolution model. Expectation Maximization (EM) algorithm is utilized to estimate parameters in the proposed MTTD model. Empirical experiments on real datasets show that the MTTD model performs better than Popular Event Tracking (PET) and Dynamic Topic Model (DTM) in generalization performance, topic interpretability performance, topic content evolution and topic popularity evolution performance.

  4. Stochastic processes constrain the within and between host evolution of influenza virus.

    PubMed

    McCrone, John T; Woods, Robert J; Martin, Emily T; Malosh, Ryan E; Monto, Arnold S; Lauring, Adam S

    2018-05-03

    The evolutionary dynamics of influenza virus ultimately derive from processes that take place within and between infected individuals. Here we define influenza virus dynamics in human hosts through sequencing of 249 specimens from 200 individuals collected over 6290 person-seasons of observation. Because these viruses were collected from individuals in a prospective community-based cohort, they are broadly representative of natural infections with seasonal viruses. Consistent with a neutral model of evolution, sequence data from 49 serially sampled individuals illustrated the dynamic turnover of synonymous and nonsynonymous single nucleotide variants and provided little evidence for positive selection of antigenic variants. We also identified 43 genetically-validated transmission pairs in this cohort. Maximum likelihood optimization of multiple transmission models estimated an effective transmission bottleneck of 1-2 genomes. Our data suggest that positive selection is inefficient at the level of the individual host and that stochastic processes dominate the host-level evolution of influenza viruses. © 2018, McCrone et al.

  5. Human niche construction in interdisciplinary focus

    PubMed Central

    Kendal, Jeremy; Tehrani, Jamshid J.; Odling-Smee, John

    2011-01-01

    Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene–culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue. PMID:21320894

  6. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  7. Selection methods regulate evolution of cooperation in digital evolution

    PubMed Central

    Lichocki, Paweł; Floreano, Dario; Keller, Laurent

    2014-01-01

    A key, yet often neglected, component of digital evolution and evolutionary models is the ‘selection method’ which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations’ average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics. PMID:24152811

  8. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

    PubMed

    Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-20

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.

  9. The Dynamics of Diverse Segmental Amplifications in Populations of Saccharomyces cerevisiae Adapting to Strong Selection

    PubMed Central

    Payen, Celia; Di Rienzi, Sara C.; Ong, Giang T.; Pogachar, Jamie L.; Sanchez, Joseph C.; Sunshine, Anna B.; Raghuraman, M. K.; Brewer, Bonita J.; Dunham, Maitreya J.

    2014-01-01

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another. PMID:24368781

  10. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  11. Female mating preferences determine system-level evolution in a gene network model.

    PubMed

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  12. Eco-evolutionary effects on population recovery following catastrophic disturbance

    PubMed Central

    Weese, Dylan J; Schwartz, Amy K; Bentzen, Paul; Hendry, Andrew P; Kinnison, Michael T

    2011-01-01

    Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. PMID:25567978

  13. Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.

    PubMed

    Weber, Bruce H

    2011-03-01

    Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. How much can history constrain adaptive evolution? A real-time evolutionary approach of inversion polymorphisms in Drosophila subobscura.

    PubMed

    Fragata, I; Lopes-Cunha, M; Bárbaro, M; Kellen, B; Lima, M; Santos, M A; Faria, G S; Santos, M; Matos, M; Simões, P

    2014-12-01

    Chromosomal inversions are present in a wide range of animals and plants, having an important role in adaptation and speciation. Although empirical evidence of their adaptive value is abundant, the role of different processes underlying evolution of chromosomal polymorphisms is not fully understood. History and selection are likely to shape inversion polymorphism variation to an extent yet largely unknown. Here, we perform a real-time evolution study addressing the role of historical constraints and selection in the evolution of these polymorphisms. We founded laboratory populations of Drosophila subobscura derived from three locations along the European cline and followed the evolutionary dynamics of inversion polymorphisms throughout the first 40 generations. At the beginning, populations were highly differentiated and remained so throughout generations. We report evidence of positive selection for some inversions, variable between foundations. Signs of negative selection were more frequent, in particular for most cold-climate standard inversions across the three foundations. We found that previously observed convergence at the phenotypic level in these populations was not associated with convergence in inversion frequencies. In conclusion, our study shows that selection has shaped the evolutionary dynamics of inversion frequencies, but doing so within the constraints imposed by previous history. Both history and selection are therefore fundamental to predict the evolutionary potential of different populations to respond to global environmental changes. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  15. Some basic properties of immune selection.

    PubMed

    Iwasa, Yoh; Michor, Franziska; Nowak, Martin

    2004-07-21

    We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.

  16. Adaptation to larval crowding in Drosophila ananassae leads to the evolution of population stability.

    PubMed

    Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2012-05-01

    Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.

  17. Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution.

    PubMed

    Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei

    2016-12-01

    Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.

    2018-04-01

    Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.

  19. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Plant domestication slows pest evolution.

    PubMed

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  2. Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering

    PubMed Central

    Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi

    2015-01-01

    Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539

  3. Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering.

    PubMed

    Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi

    2015-01-01

    Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.

  4. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    PubMed

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  5. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  6. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence

    PubMed Central

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D.

    2015-01-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710

  7. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    PubMed

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  8. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  9. Learning about evolution from sequence data

    NASA Astrophysics Data System (ADS)

    Dayarian, Adel; Shraiman, Boris

    2012-02-01

    Recent advances in sequencing and in laboratory evolution experiments have made possible to obtain quantitative data on genetic diversity of populations and on the dynamics of evolution. This dynamics is shaped by the interplay between selection acting on beneficial and deleterious mutations and recombination which reshuffles genotypes. Mounting evidence suggests that natural populations harbor extensive fitness diversity, yet most of the currently available tools for analyzing polymorphism data are based on the neutral theory. Our aim is to develop methods to analyze genomic data for populations in the presence of the above-mentioned factors. We consider different evolutionary regimes - Muller's ratchet, mutation-recombination-selection balance and positive adaption rate - and revisit a number of observables considered in the nearly-neutral theory of evolution. In particular, we examine the coalescent structure in the presence of recombination and calculate quantities such as the distribution of the coalescent times along the genome, the distribution of haplotype block sizes and the correlation between ancestors of different loci along the genome. In addition, we characterize the probability and time of fixation of mutations as a function of their fitness effect.

  10. Expanding the eco-evolutionary context of herbicide resistance research.

    PubMed

    Neve, Paul; Busi, Roberto; Renton, Michael; Vila-Aiub, Martin M

    2014-09-01

    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management. © 2014 Society of Chemical Industry.

  11. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.

    PubMed

    van Doorn, G Sander; Dieckmann, Ulf

    2006-11-01

    Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.

  12. On-chip dynamic stress control for cancer cell evolution study

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert

    2010-03-01

    The growth and spreading of cancer in host organisms is an evolutionary process. Cells accumulate mutations that help them adapt to changing environments and to obtain survival fitness. However, all cancer--promoting mutations do not occur at once. Cancer cells face selective environmental pressures that drive their evolution in stages. In traditional cancer studies, environmental stress is usually homogenous in space and difficult to change in time. Here, we propose a microfluidic chip employing embedded dynamic traps to generate dynamic heterogeneous microenvironments for cancer cells in evolution studies. Based on polydimethylsiloxane (PDMS) flexible diaphragms, these traps are able to enclose and shield cancer cells or expose them to external environmental stress. Digital controls for each trap determine the nutrition, antibiotics, CO2/O2 conditions, and temperatures to which trapped cells are subjected. Thus, the stress applied to cells can be varied in intensity and duration in each trap independently. The chip can also output cells from specific traps for sequencing and other biological analysis. Hence our design simultaneously monitors and analyzes cell evolution behaviors under dynamic stresses.

  13. Selection history and epistatic interactions impact dynamics of adaptation to novel environmental stresses.

    PubMed

    Lagator, Mato; Colegrave, Nick; Neve, Paul

    2014-11-07

    In rapidly changing environments, selection history may impact the dynamics of adaptation. Mutations selected in one environment may result in pleiotropic fitness trade-offs in subsequent novel environments, slowing the rates of adaptation. Epistatic interactions between mutations selected in sequential stressful environments may slow or accelerate subsequent rates of adaptation, depending on the nature of that interaction. We explored the dynamics of adaptation during sequential exposure to herbicides with different modes of action in Chlamydomonas reinhardtii. Evolution of resistance to two of the herbicides was largely independent of selection history. For carbetamide, previous adaptation to other herbicide modes of action positively impacted the likelihood of adaptation to this herbicide. Furthermore, while adaptation to all individual herbicides was associated with pleiotropic fitness costs in stress-free environments, we observed that accumulation of resistance mechanisms was accompanied by a reduction in overall fitness costs. We suggest that antagonistic epistasis may be a driving mechanism that enables populations to more readily adapt in novel environments. These findings highlight the potential for sequences of xenobiotics to facilitate the rapid evolution of multiple-drug and -pesticide resistance, as well as the potential for epistatic interactions between adaptive mutations to facilitate evolutionary rescue in rapidly changing environments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Measuring cancer evolution from the genome.

    PubMed

    Graham, Trevor A; Sottoriva, Andrea

    2017-01-01

    The temporal dynamics of cancer evolution remain elusive, because it is impractical to longitudinally observe cancers unperturbed by treatment. Consequently, our knowledge of how cancers grow largely derives from inferences made from a single point in time - the endpoint in the cancer's evolution, when it is removed from the body and studied in the laboratory. Fortuitously however, the cancer genome, by virtue of ongoing mutations that uniquely mark clonal lineages within the tumour, provides a rich, yet surreptitious, record of cancer development. In this review, we describe how a cancer's genome can be analysed to reveal the temporal history of mutation and selection, and discuss why both selective and neutral evolution feature prominently in carcinogenesis. We argue that selection in cancer can only be properly studied once we have some understanding of what the absence of selection looks like. We review the data describing punctuated evolution in cancer, and reason that punctuated phenotype evolution is consistent with both gradual and punctuated genome evolution. We conclude that, to map and predict evolutionary trajectories during carcinogenesis, it is critical to better understand the relationship between genotype change and phenotype change. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America.

    PubMed

    Lee, Justin S; Bevins, Sarah N; Serieys, Laurel E K; Vickers, Winston; Logan, Ken A; Aldredge, Mat; Boydston, Erin E; Lyren, Lisa M; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L; Riley, Seth P; Boyce, Walter M; Crooks, Kevin R; VandeWoude, Sue

    2014-07-01

    Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories. Importance: An understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition.

    PubMed

    Polly, P David

    2015-05-01

    Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.

  17. The dynamics of sex ratio evolution: from the gene perspective to multilevel selection.

    PubMed

    Argasinski, Krzysztof

    2013-01-01

    The new dynamical game theoretic model of sex ratio evolution emphasizes the role of males as passive carriers of sex ratio genes. This shows inconsistency between population genetic models of sex ratio evolution and classical strategic models. In this work a novel technique of change of coordinates will be applied to the new model. This will reveal new aspects of the modelled phenomenon which cannot be shown or proven in the original formulation. The underlying goal is to describe the dynamics of selection of particular genes in the entire population, instead of in the same sex subpopulation, as in the previous paper and earlier population genetics approaches. This allows for analytical derivation of the unbiased strategic model from the model with rigorous non-simplified genetics. In effect, an alternative system of replicator equations is derived. It contains two subsystems: the first describes changes in gene frequencies (this is an alternative unbiased formalization of the Fisher-Dusing argument), whereas the second describes changes in the sex ratios in subpopulations of carriers of genes for each strategy. An intriguing analytical result of this work is that the fitness of a gene depends on the current sex ratio in the subpopulation of its carriers, not on the encoded individual strategy. Thus, the argument of the gene fitness function is not constant but is determined by the trajectory of the sex ratio among carriers of that gene. This aspect of the modelled phenomenon cannot be revealed by the static analysis. Dynamics of the sex ratio among gene carriers is driven by a dynamic "tug of war" between female carriers expressing the encoded strategic trait value and random partners of male carriers expressing the average population strategy (a primary sex ratio). This mechanism can be called "double-level selection". Therefore, gene interest perspective leads to multi-level selection.

  18. Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection.

    PubMed

    Lee, William; van Baalen, Minus; Jansen, Vincent A A

    2016-01-07

    Like many other bacteria, Pseudomonas aeruginosa sequesters iron from the environment through the secretion, and subsequent uptake, of iron-binding molecules. As these molecules can be taken up by other bacteria in the population than those who secreted them, this is a form of cooperation through a public good. Traditionally, this problem has been studied by comparing the relative fitnesses of siderophore-producing and non-producing strains, but this gives no information about the fate of strains that do produce intermediate amounts of siderophores. Here, we investigate theoretically how the amount invested in this form of cooperation evolves. We use a mechanistic description of the laboratory protocols used in experimental evolution studies to describe the competition and cooperation of the bacteria. From this dynamical model we derive the fitness following the adaptive dynamics method. The results show how selection is driven by local siderophore production and local competition. Because siderophore production reduces the growth rate, local competition decreases with the degree of relatedness (which is a dynamical variable in our model). Our model is not restricted to the analysis of small phenotypic differences and allows for theoretical exploration of the effects of large phenotypic differences between cooperators and cheats. We predict that an intermediate ESS level of cooperation (molecule production) should exist. The adaptive dynamics approach allows us to assess evolutionary stability, which is often not possible in other kin-selection models. We found that selection can lead to an intermediate strategy which in our model is always evolutionarily stable, yet can allow invasion of strategies that are much more cooperative. Our model describes the evolution of a public good in the context of the ecology of the microorganism, which allows us to relate the extent of production of the public good to the details of the interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Random and non-random mating populations: Evolutionary dynamics in meiotic drive.

    PubMed

    Sarkar, Bijan

    2016-01-01

    Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Statistical genetics and evolution of quantitative traits

    NASA Astrophysics Data System (ADS)

    Neher, Richard A.; Shraiman, Boris I.

    2011-10-01

    The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.

  1. Use of non-adiabatic geometric phase for quantum computing by NMR.

    PubMed

    Das, Ranabir; Kumar, S K Karthick; Kumar, Anil

    2005-12-01

    Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of error. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using the non-adiabatic geometric phase we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.

  2. The evolution of syntactic communication

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; Plotkin, Joshua B.; Jansen, Vincent A. A.

    2000-03-01

    Animal communication is typically non-syntactic, which means that signals refer to whole situations. Human language is syntactic, and signals consist of discrete components that have their own meaning. Syntax is a prerequisite for taking advantage of combinatorics, that is, ``making infinite use of finite means''. The vast expressive power of human language would be impossible without syntax, and the transition from non-syntactic to syntactic communication was an essential step in the evolution of human language. We aim to understand the evolutionary dynamics of this transition and to analyse how natural selection can guide it. Here we present a model for the population dynamics of language evolution, define the basic reproductive ratio of words and calculate the maximum size of a lexicon. Syntax allows larger repertoires and the possibility to formulate messages that have not been learned beforehand. Nevertheless, according to our model natural selection can only favour the emergence of syntax if the number of required signals exceeds a threshold value. This result might explain why only humans evolved syntactic communication and hence complex language.

  3. Dynamically Close Pairs of Galaxies Selected in the NIR

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan C.; Foucaud, Sebastien; De Propris, Roberto; Lin, Jing-Hua

    2013-07-01

    Studies of dynamically close pairs of galaxies can serve as a powerful probe of the galaxy merger rate and its evolution. Here we present a large sample of dynamically close pairs of galaxies selected in the K-band from the UKIDSS LAS. These data span ~ 175 deg2 on the sky in the 2dFGRS equatorial region (10 h < RA < 14h). Combining the 2dFGRS redshifts with those from the SDSS, our K-band selected catalog is > 90% spectroscopically complete at K AB < 16.4. In this study, we focus on quantifying the relative contributions of wet, dry, and mixed mergers to the stellar mass buildup of galaxies over the past 1-2 Gyr.

  4. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Evolution of Inbreeding Avoidance and Inbreeding Preference through Mate Choice among Interacting Relatives.

    PubMed

    Duthie, A Bradley; Reid, Jane M

    2016-12-01

    While extensive population genetic theory predicts conditions favoring evolution of self-fertilization versus outcrossing, there is no analogous theory that predicts conditions favoring evolution of inbreeding avoidance or inbreeding preference enacted through mate choice given obligate biparental reproduction. Multiple interacting processes complicate the dynamics of alleles underlying such inbreeding strategies, including sexual conflict, distributions of kinship, genetic drift, purging of mutation load, direct costs, and restricted kin discrimination. We incorporated these processes into an individual-based model to predict conditions where selection should increase or decrease frequencies of alleles causing inbreeding avoidance or inbreeding preference when females or males controlled mating. Selection for inbreeding avoidance occurred given strong inbreeding depression when either sex chose mates, while selection for inbreeding preference occurred given very weak inbreeding depression when females chose but never occurred when males chose. Selection for both strategies was constrained by direct costs and restricted kin discrimination. Purging was negligible, but allele frequencies were strongly affected by drift in small populations, while selection for inbreeding avoidance was weak in larger populations because inbreeding risk decreased. Therefore, while selection sometimes favored alleles underlying inbreeding avoidance or preference, evolution of such strategies may be much more restricted and stochastic than is commonly presumed.

  6. Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection

    PubMed Central

    2013-01-01

    Background The arylamine N-acetyltransferases (NATs) are a unique family of enzymes widely distributed in nature that play a crucial role in the detoxification of aromatic amine xenobiotics. Considering the temporal changes in the levels and toxicity of environmentally available chemicals, the metabolic function of NATs is likely to be under adaptive evolution to broaden or change substrate specificity over time, making NATs a promising subject for evolutionary analyses. In this study, we trace the molecular evolutionary history of the NAT gene family during the last ~450 million years of vertebrate evolution and define the likely role of gene duplication, gene conversion and positive selection in the evolutionary dynamics of this family. Results A phylogenetic analysis of 77 NAT sequences from 38 vertebrate species retrieved from public genomic databases shows that NATs are phylogenetically unstable genes, characterized by frequent gene duplications and losses even among closely related species, and that concerted evolution only played a minor role in the patterns of sequence divergence. Local signals of positive selection are detected in several lineages, probably reflecting response to changes in xenobiotic exposure. We then put a special emphasis on the study of the last ~85 million years of primate NAT evolution by determining the NAT homologous sequences in 13 additional primate species. Our phylogenetic analysis supports the view that the three human NAT genes emerged from a first duplication event in the common ancestor of Simiiformes, yielding NAT1 and an ancestral NAT gene which in turn, duplicated in the common ancestor of Catarrhini, giving rise to NAT2 and the NATP pseudogene. Our analysis suggests a main role of purifying selection in NAT1 protein evolution, whereas NAT2 was predicted to mostly evolve under positive selection to change its amino acid sequence over time. These findings are consistent with a differential role of the two human isoenzymes and support the involvement of NAT1 in endogenous metabolic pathways. Conclusions This study provides unequivocal evidence that the NAT gene family has evolved under a dynamic process of birth-and-death evolution in vertebrates, consistent with previous observations made in fungi. PMID:23497148

  7. Eco-evolutionary dynamics in a coevolving host-virus system.

    PubMed

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  8. r- and K-selection in fluctuating populations is determined by the evolutionary trade-off between two fitness measures: Growth rate and lifetime reproductive success.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2017-01-01

    In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r-selection and K-selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r 0 and the lifetime reproductive success (LRS) R 0 , both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r 0 and average lifetimes are small, whereas R 0 dominates and lifetimes are larger under small noise. Thus, K-selection is closely linked to selection for large R 0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r 0 and R 0 ) tend to be maximized at low and high densities, respectively, favoring density-dependent changes in the optimal life history. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. How sexual selection can drive the evolution of costly sperm ornamentation

    NASA Astrophysics Data System (ADS)

    Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott

    2016-05-01

    Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.

  10. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  11. Single-virion sequencing of lamivudine-treated HBV populations reveal population evolution dynamics and demographic history.

    PubMed

    Zhu, Yuan O; Aw, Pauline P K; de Sessions, Paola Florez; Hong, Shuzhen; See, Lee Xian; Hong, Lewis Z; Wilm, Andreas; Li, Chen Hao; Hue, Stephane; Lim, Seng Gee; Nagarajan, Niranjan; Burkholder, William F; Hibberd, Martin

    2017-10-27

    Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.

  12. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  13. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. "Synergistic selection": a Darwinian frame for the evolution of complexity.

    PubMed

    Corning, Peter A; Szathmáry, Eörs

    2015-04-21

    Non-Darwinian theories about the emergence and evolution of complexity date back at least to Lamarck, and include those of Herbert Spencer and the "emergent evolution" theorists of the later nineteenth and early twentieth centuries. In recent decades, this approach has mostly been espoused by various practitioners in biophysics and complexity theory. However, there is a Darwinian alternative - in essence, an economic theory of complexity - proposing that synergistic effects of various kinds have played an important causal role in the evolution of complexity, especially in the "major transitions". This theory is called the "synergism hypothesis". We posit that otherwise unattainable functional advantages arising from various cooperative phenomena have been favored over time in a dynamic that the late John Maynard Smith characterized and modeled as "synergistic selection". The term highlights the fact that synergistic "wholes" may become interdependent "units" of selection. We provide some historical perspective on this issue, as well as a brief explication of the underlying theory and the concept of synergistic selection, and we describe two relevant models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Boltzmann, Darwin and Directionality theory

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and extinction. We also elucidate the relation between thermodynamic entropy, which pertains to the extent of energy spreading and sharing within inanimate matter, and evolutionary entropy, which refers to the rate of energy appropriation from the environment and allocation within living systems. We show that the entropic principle of thermodynamics is the limit as R→0, M→∞, (where R denote the resource production rate, and M denote population size) of the entropic principle of evolution. We exploit this relation between the thermodynamic and evolutionary tenets to propose a physico-chemical model of the transition from inanimate matter which is under thermodynamic selection, to living systems which are subject to evolutionary selection. Life history variation and the evolution of senescence The evolutionary dynamics of speciation and extinction Evolutionary trends in body size. The origin of sporadic forms of cancer and neurological diseases, and the evolution of cooperation are important recent applications of directionality theory. These applications, which draw from the medical sciences and sociobiology, appeal to methods which lie outside the formalism described in this report. A companion review, Demetrius and Gundlach (submitted for publication), gives an account of these applications.An important aspect of this report pertains to the connection between statistical mechanics and evolutionary theory and its implications towards understanding the processes which underlie the emergence of living systems from inanimate matter-a problem which has recently attracted considerable attention, Morowitz (1992), Eigen (1992), Dyson (2000), Pross (2012).The connection between the two disciplines can be addressed by appealing to certain extremal principles which are considered the mainstay of the respective theories.The extremal principle in statistical mechanics can be stated as follows:

  16. Invasion fitness for gene-culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission.

    PubMed

    Mullon, Charles; Lehmann, Laurent

    2017-08-01

    Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evolution of learning and levels of selection: A lesson from avian parent-offspring communication.

    PubMed

    Lotem, Arnon; Biran-Yoeli, Inbar

    2013-09-20

    In recent years, it has become increasingly clear that the evolution of behavior may be better understood as the evolution of the learning mechanisms that produce it, and that such mechanisms should be modeled and tested explicitly. However, this approach, which has recently been applied to animal foraging and decision-making, has rarely been applied to the social and communicative behaviors that are likely to operate in complex social environments and be subject to multi-level selection. Here we use genetic, agent-based evolutionary simulations to explore how learning mechanisms may evolve to adjust the level of nestling begging (offspring signaling of need), and to examine the possible consequences of this process for parent-offspring conflict and communication. In doing so, we also provide the first step-by-step dynamic model of parent-offspring communication. The results confirm several previous theoretical predictions and demonstrate three novel phenomena. First, negatively frequency-dependent group-level selection can generate a stable polymorphism of learning strategies and parental responses. Second, while conventional reinforcement learning models fail to cope successfully with family dynamics at the nest, a newly developed learning model (incorporating behaviors that are consistent with recent experimental results on learning in nestling begging) produced effective learning, which evolved successfully. Third, while kin-selection affects the frequency of the different learning genes, its impact on begging slope and intensity was unexpectedly negligible, demonstrating that evolution is a complex process, and showing that the effect of kin-selection on behaviors that are shaped by learning may not be predicted by simple application of Hamilton's rule. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Evolution of learning and levels of selection: a lesson from avian parent-offspring communication.

    PubMed

    Lotem, Arnon; Biran-Yoeli, Inbar

    2014-02-01

    In recent years, it has become increasingly clear that the evolution of behavior may be better understood as the evolution of the learning mechanisms that produce it, and that such mechanisms should be modeled and tested explicitly. However, this approach, which has recently been applied to animal foraging and decision-making, has rarely been applied to the social and communicative behaviors that are likely to operate in complex social environments and be subject to multi-level selection. Here we use genetic, agent-based evolutionary simulations to explore how learning mechanisms may evolve to adjust the level of nestling begging (offspring signaling of need), and to examine the possible consequences of this process for parent-offspring conflict and communication. In doing so, we also provide the first step-by-step dynamic model of parent-offspring communication. The results confirm several previous theoretical predictions and demonstrate three novel phenomena. First, negatively frequency-dependent group-level selection can generate a stable polymorphism of learning strategies and parental responses. Second, while conventional reinforcement learning models fail to cope successfully with family dynamics at the nest, a newly developed learning model (incorporating behaviors that are consistent with recent experimental results on learning in nestling begging) produced effective learning, which evolved successfully. Third, while kin-selection affects the frequency of the different learning genes, its impact on begging slope and intensity was unexpectedly negligible, demonstrating that evolution is a complex process, and showing that the effect of kin-selection on behaviors that are shaped by learning may not be predicted by simple application of Hamilton's rule. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Feedback between environment and traits under selection in a seasonal environment: consequences for experimental evolution.

    PubMed

    Collot, Dorian; Nidelet, Thibault; Ramsayer, Johan; Martin, Olivier C; Méléard, Sylvie; Dillmann, Christine; Sicard, Delphine; Legrand, Judith

    2018-04-11

    Batch cultures are frequently used in experimental evolution to study the dynamics of adaptation. Although they are generally considered to simply drive a growth rate increase, other fitness components can also be selected for. Indeed, recurrent batches form a seasonal environment where different phases repeat periodically and different traits can be under selection in the different seasons. Moreover, the system being closed, organisms may have a strong impact on the environment. Thus, the study of adaptation should take into account the environment and eco-evolutionary feedbacks. Using data from an experimental evolution on yeast Saccharomyces cerevisiae , we developed a mathematical model to understand which traits are under selection, and what is the impact of the environment for selection in a batch culture. We showed that two kinds of traits are under selection in seasonal environments: life-history traits, related to growth and mortality, but also transition traits, related to the ability to react to environmental changes. The impact of environmental conditions can be summarized by the length of the different seasons which weight selection on each trait: the longer a season is, the higher the selection on associated traits. Since phenotypes drive season length, eco-evolutionary feedbacks emerge. Our results show how evolution in successive batches can affect season lengths and strength of selection on different traits. © 2018 The Author(s).

  20. Coevolution of cooperation and network structure under natural selection

    NASA Astrophysics Data System (ADS)

    Yang, D.-P.; Lin, H.; Shuai, J. W.

    2011-02-01

    A coevolution model by coupling mortality and fertility selection is introduced to investigate the evolution of cooperation and network structure in the prisoner's dilemma game. The cooperation level goes through a continuous phase transition vs. defection temptation b for low mortality selection intensity β and through a discontinuous one for infinite β. The cooperation level is enhanced most at β≈1 for any b. The local and global properties of the network structure, such as cluster and cooperating k-core, are investigated for the understanding of cooperation evolution. Cooperation is promoted by forming a tight cooperating k-core at moderate β, but too large β will destroy the cooperating k-core rapidly resulting in a rapid drop of the cooperation level. Importantly, the infinite β changes the normalized sucker's payoff S from 0 to 1-b and its dynamics of the cooperation level undergoes a very slow power-law decay, which leads the evolution into the regime of neutral evolution.

  1. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  2. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    PubMed

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  3. Rapid evolution accelerates plant population spread in fragmented experimental landscapes.

    PubMed

    Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M

    2016-07-29

    Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions. Copyright © 2016, American Association for the Advancement of Science.

  4. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    PubMed Central

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  5. On meme--gene coevolution.

    PubMed

    Bull, L; Holland, O; Blackmore, S

    2000-01-01

    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  6. The importance of selection in the evolution of blindness in cavefish.

    PubMed

    Cartwright, Reed A; Schwartz, Rachel S; Merry, Alexandra L; Howell, Megan M

    2017-02-07

    Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration. Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus. Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

  7. Population dynamics in the presence of quasispecies effects and changing environments

    NASA Astrophysics Data System (ADS)

    Forster, Robert Burke

    2006-12-01

    This thesis explores how natural selection acts on organisms such as viruses that have either highly error-prone reproduction or face variable environmental conditions or both. By modeling population dynamics under these conditions, we gain a better understanding of the selective forces at work, both in our simulations and hopefully also in real organisms. With an understanding of the important factors in natural selection we can forecast not only the immediate fate of an existing population but also in what directions such a population might evolve in the future. We demonstrate that the concept of a quasispecies is relevant to evolution in a neutral fitness landscape. Motivated by RNA viruses such as HIV, we use RNA secondary structure as our model system and find that quasispecies effects arise both rapidly and in realistically small populations. We discover that the evolutionary effects of neutral drift, punctuated equilibrium and the selection for mutational robustness extend to the concept of a quasispecies. In our study of periodic environments, we consider the tradeoffs faced by quasispecies in adapting to environmental change. We develop an analytical model to predict whether evolution favors short-term or long-term adaptation and validate our model through simulation. Our results bear directly on the population dynamics of viruses such as West Nile that alternate between two host species. More generally, we discover that a selective pressure exists under these conditions to fuse or split genes with complementary environmental functions. Lastly, we study the general effects of frequency-dependent selection on two strains competing in a periodic environment. Under very general assumptions, we prove that stable coexistence rather than extinction is the likely outcome. The population dynamics of this system may be as simple as stable equilibrium or as complex as deterministic chaos.

  8. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India.

    PubMed

    Lewnard, Joseph A; Townsend, Jeffrey P

    2016-12-20

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.

  9. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India

    PubMed Central

    Lewnard, Joseph A.

    2016-01-01

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference. PMID:27791071

  10. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Lehn, Jean-Marie

    2006-12-27

    Constitutional dynamics, self-assembly, and helical-folding control are brought together in the efficient Sc(OTf)3/microwave-catalyzed transimination of helical oligohydrazone strands, yielding highly diverse dynamic libraries of interconverting constituents through assembly, dissociation, and exchange of components. The transimination-type mechanism of the ScIII-promoted exchange, as well as its regioselectivity, occurring only at the extremities of the helical strands, allow one to perform directional terminal polymerization/depolymerization processes when starting with dissymmetric strands. A particular library is subsequently brought to express quantitatively [2 x 2] gridlike metallosupramolecular arrays in the presence of ZnII ions by component recombination generating the correct ligand from the dynamic set of interconverting strands. This behavior represents a process of driven evolution of a constitutional dynamic chemical system under the pressure (coordination interaction) of an external effector (metal ions).

  11. Runaway cultural niche construction

    PubMed Central

    Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.

    2011-01-01

    Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897

  12. Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.

    PubMed

    Zehender, Gianguglielmo; De Maddalena, Chiara; Canuti, Marta; Zappa, Alessandra; Amendola, Antonella; Lai, Alessia; Galli, Massimo; Tanzi, Elisabetta

    2010-03-01

    Human bocavirus (HBoV) is a linear single-stranded DNA virus belonging to the Parvoviridae family that has recently been isolated from the upper respiratory tract of children with acute respiratory infection. All of the strains observed so far segregate into two genotypes (1 and 2) with a low level of polymorphism. Given the recent description of the infection and the lack of epidemiological and molecular data, we estimated the virus's rates of molecular evolution and population dynamics. A dataset of forty-nine dated VP2 sequences, including also eight new isolates obtained from pharyngeal swabs of Italian patients with acute respiratory tract infections, was submitted to phylogenetic analysis. The model parameters, evolutionary rates and population dynamics were co-estimated using a Bayesian Markov Chain Monte Carlo approach, and site-specific positive and negative selection was also investigated. Recombination was investigated by seven different methods and one suspected recombinant strain was excluded from further analysis. The estimated mean evolutionary rate of HBoV was 8.6x10(-4)subs/site/year, and that of the 1st+2nd codon positions was more than 15 times less than that of the 3rd codon position. Viral population dynamics analysis revealed that the two known genotypes diverged recently (mean tMRCA: 24 years), and that the epidemic due to HBoV genotype 2 grew exponentially at a rate of 1.01year(-1). Selection analysis of the partial VP2 showed that 8.5% of sites were under significant negative pressure and the absence of positive selection. Our results show that, like other parvoviruses, HBoV is characterised by a rapid evolution. The low level of polymorphism is probably due to a relatively recent divergence between the circulating genotypes and strong purifying selection acting on viral antigens.

  13. A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate

    PubMed Central

    Khatri, Bhavin S.; Goldstein, Richard A.

    2015-01-01

    Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759

  14. Between-Region Genetic Divergence Reflects the Mode and Tempo of Tumor Evolution

    PubMed Central

    Sun, Ruping; Hu, Zheng; Sottoriva, Andrea; Graham, Trevor A.; Harpak, Arbel; Ma, Zhicheng; Fischer, Jared M.; Shibata, Darryl; Curtis, Christina

    2017-01-01

    Given the implications of tumor dynamics for precision medicine, there is a need to systematically characterize the mode of evolution across diverse solid tumor types. In particular, methods to infer the role of natural selection within established human tumors are lacking. By simulating spatial tumor growth under different evolutionary modes and examining patterns of between-region subclonal genetic divergence from multi-region sequencing (MRS) data, we demonstrate that it is feasible to distinguish tumors driven by strong positive subclonal selection from those evolving neutrally or under weak selection, as the latter fail to dramatically alter subclonal composition. We developed a classifier based on measures of between-region subclonal genetic divergence and projected patient data into model space, revealing different modes of evolution both within and between solid tumor types. Our findings have broad implications for how human tumors progress, accumulate intra-tumor heterogeneity, and ultimately how they may be more effectively treated. PMID:28581503

  15. Bridging scales in the evolution of infectious disease life histories: application.

    PubMed

    Mideo, Nicole; Nelson, William A; Reece, Sarah E; Bell, Andrew S; Read, Andrew F; Day, Troy

    2011-11-01

    Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that "simple" virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  16. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    PubMed Central

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc. PMID:26678220

  17. Origins of Solar Systems Workshop: The Origin, Evolution, and Detectability of Short Period Comets

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    The origin of the short period comets (SPC) (periods less than 200 years), the dynamical formation of their present reservoir(s), the cause and rate of their transport to the inner planetary region where they can be detected, and the magnitude of selection effects in their discovery are important research questions directly coupled to the goals of understanding the origin and evolution of the Solar System. To address these questions in an intensive way, an interdisciplinary, five month long Workshop from Jan. to May 1993 at Southwest Research Institute (SwRI) in San Antonio was convened. The goal of this Workshop was to advance the state of understanding about the origins, dynamical evolution, and present location of short period comets and their reservoir(s).

  18. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  19. Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives

    PubMed Central

    Burggren, Warren

    2016-01-01

    Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population. PMID:27231949

  20. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  1. Evolution of resource cycling in ecosystems and individuals.

    PubMed

    Crombach, Anton; Hogeweg, Paulien

    2009-06-01

    Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned? We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves. In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.

  2. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion.

    PubMed

    Van Petegem, Katrien H P; Boeye, Jeroen; Stoks, Robby; Bonte, Dries

    2016-11-01

    In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion.

  3. The temporal distribution of directional gradients under selection for an optimum.

    PubMed

    Chevin, Luis-Miguel; Haller, Benjamin C

    2014-12-01

    Temporal variation in phenotypic selection is often attributed to environmental change causing movements of the adaptive surface relating traits to fitness, but this connection is rarely established empirically. Fluctuating phenotypic selection can be measured by the variance and autocorrelation of directional selection gradients through time. However, the dynamics of these gradients depend not only on environmental changes altering the fitness surface, but also on evolution of the phenotypic distribution. Therefore, it is unclear to what extent variability in selection gradients can inform us about the underlying drivers of their fluctuations. To investigate this question, we derive the temporal distribution of directional gradients under selection for a phenotypic optimum that is either constant or fluctuates randomly in various ways in a finite population. Our analytical results, combined with population- and individual-based simulations, show that although some characteristic patterns can be distinguished, very different types of change in the optimum (including a constant optimum) can generate similar temporal distributions of selection gradients, making it difficult to infer the processes underlying apparent fluctuating selection. Analyzing changes in phenotype distributions together with changes in selection gradients should prove more useful for inferring the mechanisms underlying estimated fluctuating selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    NASA Astrophysics Data System (ADS)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  5. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  6. Accelerated Evolution of Developmentally Biased Genes in the Tetraphenic Ant Cardiocondyla obscurior.

    PubMed

    Schrader, Lukas; Helanterä, Heikki; Oettler, Jan

    2017-03-01

    Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry.

    PubMed

    Duthie, A B; Bocedi, G; Germain, R R; Reid, J M

    2018-01-01

    Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post-copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post-copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post-copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post-copulatory inbreeding avoidance might cause functional redundancy (i.e. 'degeneracy') potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual-based modelling to quantify evolution of interacting precopulatory and post-copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post-copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower-cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post-copulatory inbreeding avoidance, but fixed post-copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post-copulatory inbreeding avoidance is precluded or costly, and evolution of post-copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry. © The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  8. Selection on skewed characters and the paradox of stasis.

    PubMed

    Bonamour, Suzanne; Teplitsky, Céline; Charmantier, Anne; Crochet, Pierre-André; Chevin, Luis-Miguel

    2017-11-01

    Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date - repeatedly described as more evolutionarily stable than expected - so this skewness should be accounted for when investigating evolutionary dynamics in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Strategy selection in structured populations.

    PubMed

    Tarnita, Corina E; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A

    2009-08-07

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix(abcd). We study a mutation and selection process. For weak selection strategy A is favored over B if and only if sigma a+b>c+sigma d. This means the effect of population structure on strategy selection can be described by a single parameter, sigma. We present the values of sigma for various examples including the well-mixed population, games on graphs, games in phenotype space and games on sets. We give a proof for the existence of such a sigma, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between sigma and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, sigma, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games.

  10. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  11. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    PubMed

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  12. Competition-colonization dynamics: An ecology approach to quasispecies dynamics and virulence evolution in RNA viruses.

    PubMed

    Ojosnegros, Samuel; Beerenwinkel, Niko; Domingo, Esteban

    2010-07-01

    A single and purified clone of foot-and-mouth disease virus diversified in cell culture into two subpopulations that were genetically distinct. The subpopulation with higher virulence was a minority and was suppressed by the dominant but less virulent one. These two populations follow the competitioncolonization dynamics described in ecology. Virulent viruses can be regarded as colonizers because they killed the cells faster and they spread faster. The attenuated subpopulation resembles competitors because of its higher replication efficiency in coinfected cells. Our results suggest a new model for the evolution of virulence which is based on interactions between components of the quasispecies. Competition between viral mutants takes place at two levels, intracellular competition and competition for new cells. The two strategies are subjected to densitydependent selection.

  13. Evolution of sex: Using experimental genomics to select among competing theories.

    PubMed

    Sharp, Nathaniel P; Otto, Sarah P

    2016-08-01

    Few topics have intrigued biologists as much as the evolution of sex. Understanding why sex persists despite its costs requires not just rigorous theoretical study, but also empirical data on related fundamental issues, including the nature of genetic variance for fitness, patterns of genetic interactions, and the dynamics of adaptation. The increasing feasibility of examining genomes in an experimental context is now shedding new light on these problems. Using this approach, McDonald et al. recently demonstrated that sex uncouples beneficial and deleterious mutations, allowing selection to proceed more effectively with sex than without. Here we discuss the insights provided by this study, along with other recent empirical work, in the context of the major theoretical models for the evolution of sex. © 2016 WILEY Periodicals, Inc.

  14. Evolution of proliferation and the angiogenic switch in tumors with high clonal diversity.

    PubMed

    Bickel, Scott T; Juliano, Joseph D; Nagy, John D

    2014-01-01

    Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark--the angiogenic switch--has suggested that selection for angiogenesis can "run away" and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

  15. Bioattractors: dynamical systems theory and the evolution of regulatory processes.

    PubMed

    Jaeger, Johannes; Monk, Nick

    2014-06-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  16. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  17. Intratumoral heterogeneity and clonal evolution in blood malignancies and solid tumors.

    PubMed

    Varela, Ignacio; Menendez, Pablo; Sanjuan-Pla, Alejandra

    2017-09-12

    This meeting held at the University of Barcelona in March 2017, brought together scientists and clinicians worldwide to discuss current and future clinico-biological implications of intratumoral heterogeneity (ITH) and subclonal evolution in cancer diagnosis, patient stratification, and treatment resistance in diagnosis, treatment and follow-up. There was consensus that both longitudinal and tumor multi-region studies in matched samples are needed to better understand the dynamics of ITH. The contribution of the epigenome and microenvironment to ITH and subclone evolution remains understudied. It was recommended to combine computational, pathology and imaging tools to study the role of the microenvironment in subclone selection/evolution.

  18. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  19. Relative importance of evolutionary dynamics depends on the composition of microbial predator–prey community

    PubMed Central

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-01-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities. PMID:26684728

  20. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa

    Treesearch

    Raul de la Mata; Sharon Hood; Anna Sala

    2017-01-01

    Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important...

  1. Parental effects in ecology and evolution: mechanisms, processes and implications

    PubMed Central

    Badyaev, Alexander V.; Uller, Tobias

    2009-01-01

    As is the case with any metaphor, parental effects mean different things to different biologists—from developmental induction of novel phenotypic variation to an evolved adaptation, and from epigenetic transference of essential developmental resources to a stage of inheritance and ecological succession. Such a diversity of perspectives illustrates the composite nature of parental effects that, depending on the stage of their expression and whether they are considered a pattern or a process, combine the elements of developmental induction, homeostasis, natural selection, epigenetic inheritance and historical persistence. Here, we suggest that by emphasizing the complexity of causes and influences in developmental systems and by making explicit the links between development, natural selection and inheritance, the study of parental effects enables deeper understanding of developmental dynamics of life cycles and provides a unique opportunity to explicitly integrate development and evolution. We highlight these perspectives by placing parental effects in a wider evolutionary framework and suggest that far from being only an evolved static outcome of natural selection, a distinct channel of transmission between parents and offspring, or a statistical abstraction, parental effects on development enable evolution by natural selection by reliably transferring developmental resources needed to reconstruct, maintain and modify genetically inherited components of the phenotype. The view of parental effects as an essential and dynamic part of an evolutionary continuum unifies mechanisms behind the origination, modification and historical persistence of organismal form and function, and thus brings us closer to a more realistic understanding of life's complexity and diversity. PMID:19324619

  2. Dynamics of Markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2009-09-01

    Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.

  3. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution

    PubMed Central

    Rübben, Albert; Nordhoff, Ole

    2013-01-01

    Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients. PMID:23336076

  4. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-09-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.

  5. Chaos and the (un)predictability of evolution in a changing environment.

    PubMed

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-02-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Evolutionarily stable disequilibrium: endless dynamics of evolution in a stationary population.

    PubMed

    Takeuchi, Nobuto; Kaneko, Kunihiko; Hogeweg, Paulien

    2016-05-11

    Evolution is often conceived as changes in the properties of a population over generations. Does this notion exhaust the possible dynamics of evolution? Life is hierarchically organized, and evolution can operate at multiple levels with conflicting tendencies. Using a minimal model of such conflicting multilevel evolution, we demonstrate the possibility of a novel mode of evolution that challenges the above notion: individuals ceaselessly modify their genetically inherited phenotype and fitness along their lines of descent, without involving apparent changes in the properties of the population. The model assumes a population of primitive cells (protocells, for short), each containing a population of replicating catalytic molecules. Protocells are selected towards maximizing the catalytic activity of internal molecules, whereas molecules tend to evolve towards minimizing it in order to maximize their relative fitness within a protocell. These conflicting evolutionary tendencies at different levels and genetic drift drive the lineages of protocells to oscillate endlessly between high and low intracellular catalytic activity, i.e. high and low fitness, along their lines of descent. This oscillation, however, occurs independently in different lineages, so that the population as a whole appears stationary. Therefore, ongoing evolution can be hidden behind an apparently stationary population owing to conflicting multilevel evolution. © 2016 The Authors.

  7. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  8. Exploiting Fast-Variables to Understand Population Dynamics and Evolution

    NASA Astrophysics Data System (ADS)

    Constable, George W. A.; McKane, Alan J.

    2018-07-01

    We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.

  9. Exploiting Fast-Variables to Understand Population Dynamics and Evolution

    NASA Astrophysics Data System (ADS)

    Constable, George W. A.; McKane, Alan J.

    2017-11-01

    We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.

  10. Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution

    PubMed Central

    2017-01-01

    In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929

  11. Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.

    PubMed

    Mesoudi, Alex

    2017-07-24

    In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.

  12. Population genetics and demography unite ecology and evolution

    USGS Publications Warehouse

    Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.

    2017-01-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.

  13. New frontiers in the study of human cultural and genetic evolution.

    PubMed

    Ross, Cody T; Richerson, Peter J

    2014-12-01

    In this review, we discuss the dynamic linkages between culture and the genetic evolution of the human species. We begin by briefly describing the framework of gene-culture coevolutionary (or dual-inheritance) models for human evolutionary change. Until recently, the literature on gene-culture coevolution was composed primarily of mathematical models and formalized theory describing the complex dynamics underlying human behavior, adaptation, and technological evolution, but had little empirical support concerning genetics. The rapid progress in the fields of molecular genetics and genomics, however, is now providing the kinds of data needed to produce rich empirical support for gene-culture coevolutionary models. We briefly outline how theoretical and methodological progress in genome sciences has provided ways for the strength of selection on genes to be evaluated, and then outline how evidence of selection on several key genes can be directly linked to human cultural practices. We then describe some exciting new directions in the empirical study of gene-culture coevolution, and conclude with a discussion of the role of gene-culture evolutionary models in the future integration of medical, biological, and social sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Chaos and the (un)predictability of evolution in a changing environment

    PubMed Central

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-01-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104

  15. Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity.

    PubMed

    Bell, Rayna C; Zamudio, Kelly R

    2012-12-07

    Sexual dichromatism, a form of sexual dimorphism in which males and females differ in colour, is widespread in animals but has been predominantly studied in birds, fishes and butterflies. Moreover, although there are several proposed evolutionary mechanisms for sexual dichromatism in vertebrates, few studies have examined this phenomenon outside the context of sexual selection. Here, we describe unexpectedly high diversity of sexual dichromatism in frogs and create a comparative framework to guide future analyses of the evolution of these sexual colour differences. We review what is known about evolution of colour dimorphism in frogs, highlight alternative mechanisms that may contribute to the evolution of sexual colour differences, and compare them to mechanisms active in other major groups of vertebrates. In frogs, sexual dichromatism can be dynamic (temporary colour change in males) or ontogenetic (permanent colour change in males or females). The degree and the duration of sexual colour differences vary greatly across lineages, and we do not detect phylogenetic signal in the distribution of this trait, therefore frogs provide an opportunity to investigate the roles of natural and sexual selection across multiple independent derivations of sexual dichromatism.

  16. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  17. New Editions for the Apple II of the Chelsea Science Simulations.

    ERIC Educational Resources Information Center

    Pipeline, 1983

    1983-01-01

    Ten computer simulations for the Apple II are described. Subject areas of programs include: population dynamics, plant competition, enzyme kinetics, evolution and natural selection, genetic mapping, ammonia synthesis, reaction kinetics, wave interference/diffraction, satellite orbits, and particle scattering. (JN)

  18. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  20. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    PubMed

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  1. Joint evolution of specialization and dispersal in structured metapopulations.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2011-04-21

    We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Co-existence of Distinct Prion Types Enables Conformational Evolution of Human PrPSc by Competitive Selection*

    PubMed Central

    Haldiman, Tracy; Kim, Chae; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Qing, Liuting; Cohen, Mark L.; Langeveld, Jan; Telling, Glenn C.; Kong, Qingzhong; Safar, Jiri G.

    2013-01-01

    The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrPSc). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrPSc particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrPSc particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrPC substrate, the dominant PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrPSc is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrPSc conformers. PMID:23974118

  3. Selection in a fluctuating environment and the evolution of sexual dimorphism in the seed beetle Callosobruchus maculatus.

    PubMed

    Hallsson, L R; Björklund, M

    2012-08-01

    Temperature changes in the environment, which realistically include environmental fluctuations, can create both plastic and evolutionary responses of traits. Sexes might differ in either or both of these responses for homologous traits, which in turn has consequences for sexual dimorphism and its evolution. Here, we investigate both immediate changes in and the evolution of sexual dimorphism in response to a changing environment (with and without fluctuations) using the seed beetle Callosobruchus maculatus. We investigate sex differences in plasticity and also the genetic architecture of body mass and developmental time dimorphism to test two existing hypotheses on sex differences in plasticity (adaptive canalization hypothesis and condition dependence hypothesis). We found a decreased sexual size dimorphism in higher temperature and that females responded more plastically than males, supporting the condition dependence hypothesis. However, selection in a fluctuating environment altered sex-specific patterns of genetic and environmental variation, indicating support for the adaptive canalization hypothesis. Genetic correlations between sexes (r(MF) ) were affected by fluctuating selection, suggesting facilitated independent evolution of the sexes. Thus, the selective past of a population is highly important for the understanding of the evolutionary dynamics of sexual dimorphism. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  4. Evolution Models with Conditional Mutation Rates: Strange Plateaus in Population Distribution

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    Cancer is related to clonal evolution with a strongly nonlinear, collective behavior. Here we investigate a slightly advanced version of the popular Crow-Kimura evolution model, suggested recently, by simply assuming a conditional mutation rate. We investigated the steady-state solution and found a highly intriguing plateau in the distribution. There are selective and nonselective phases, with a rather narrow plateau in the distribution at the peak in the first phase, and a wide plateau for many Hamming classes (a collection of genomes with the same number of mutations from the reference genome) in the second phase. We analytically solved the steady state distribution in the selective and nonselective phases, calculating the widths of the plateaus. Numerically, we also found an intermediate phase with several plateaus in the steady-state distribution, related to large finite-genome-length corrections. We assume that the newly observed phenomena should exist in other versions of evolution dynamics when the parameters of the model are conditioned to the population distribution.

  5. The ecogenetic link between demography and evolution: can we bridge the gap between theory and data?

    PubMed

    Kokko, Hanna; López-Sepulcre, Andrés

    2007-09-01

    Calls to understand the links between ecology and evolution have been common for decades. Population dynamics, i.e. the demographic changes in populations, arise from life history decisions of individuals and thus are a product of selection, and selection, on the contrary, can be modified by such dynamical properties of the population as density and stability. It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence). This is not an easy challenge, and arguably theory has advanced at a greater pace than empirical research. However, theory would benefit from more interaction between related fields, as is evident in the many near-synonymous names that the ecogenetic loop has attracted. We also list encouraging examples where empiricists have shown feasible ways of addressing the question, ranging from advanced data analysis to experiments and comparative analyses of phylogenetic data.

  6. Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films

    DOE PAGES

    Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.; ...

    2017-12-15

    The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less

  7. Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Jose Juan; Zhou, Xiao W.; Almeida, Sergio F.

    The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate’s defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditionsmore » formed misfit dislocations and grew with a small angle tilt (within ~5°) of the underlying substrate’s orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Finally, our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.« less

  8. Nearly neutral evolution in IFNL3 gene retains the immune function to detect and clear the viral infection in HCV.

    PubMed

    Singh, Pratichi; Dass, J Febin Prabhu

    2018-05-07

    IFNL3 gene plays a crucial role in immune defense against viruses. It induces the interferon stimulated genes (ISGs) with antiviral properties by activating the JAK-STAT pathway. In this study, we investigated the evolutionary force involved in shaping the IFNL3 gene to perform its downstream function as a regulatory gene in HCV clearance. We have selected 25 IFNL3 coding sequences with human gene as a reference sequence and constructed a phylogeny. Furthermore, rate of variation, substitution saturation test, phylogenetic informativeness and differential selection were also analysed. The codon evolution result suggests that nearly neutral mutation is the key pattern in shaping the IFNL3 evolution. The results were validated by subjecting the human IFNL3 protein variants to that of the native through a molecular dynamics simulation study. The molecular dynamics simulation clearly depicts the negative impact on the reported variants in human IFNL3 protein. However, these detrimental mutations (R157Q and R157W) were shown to be negatively selected in the evolutionary study of the mammals. Hence, the variation revealed a mild impact on the IFNL3 function and may be removed from the population through negative selection due to its high functional constraints. In a nutshell, our study may contribute the overall evidence in phylotyping and structural transformation that takes place in the non-synonymous substitutions of IFNL3 protein. Substantially, our obtained theoretical knowledge will lay the path to extend the experimental validation in HCV clearance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Complex Dynamics of Droplet Traffic in a Bifurcating Microfluidic Channel: Periodicity, Multistability, and Selection Rules

    NASA Astrophysics Data System (ADS)

    Sessoms, D. A.; Amon, A.; Courbin, L.; Panizza, P.

    2010-10-01

    The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.

  10. Population Genetics and Demography Unite Ecology and Evolution.

    PubMed

    Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W

    2017-02-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of solvent in metal-on-metal surface diffusion: A case for rational solvent selection for materials synthesis

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Jagannath, Mantha Sai Pavan; Chatterjee, Abhijit

    2018-09-01

    The effect of solvent on diffusion at metal surfaces is poorly understood despite its importance to morphological evolution during materials processing, corrosion and catalysis. In this article, we probe the metal-solvent interfacial structure, effective nature of interactions and dynamics when a solvent is in contact with a metal using a novel accelerated molecular dynamics simulation technique called temperature programmed molecular dynamics (TPMD). TPMD simulations reveal that surface diffusion of metal-on-metal can be made to vary over orders-of-magnitude by tuning the metal-solvent interaction. Ultimately, the solvent can have an indirect effect on diffusion. As the solvent tugs at the metal surface the separation between the adsorbed metal atom (adatom) and the surface layer can be modulated via metal-solvent interactions. The resulting adatom-surface separation can cause stronger/weaker binding of the adatom to the metal surface, which in turn results in the observed slower/enhanced diffusion in the presence of solvent. We believe this effect is ubiquitous in pure metal and metal alloys and in principle one could rationally select solvent to control the material structural evolution. Implications on materials synthesis are discussed in the context of formation of nanoporous materials.

  12. Mutation rate evolution in replicator dynamics.

    PubMed

    Allen, Benjamin; Rosenbloom, Daniel I Scholes

    2012-11-01

    The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.

  13. Hidden long evolutionary memory in a model biochemical network

    NASA Astrophysics Data System (ADS)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  14. Sex ratio selection and multi-factorial sex determination in the housefly: a dynamic model.

    PubMed

    Kozielska, M; Pen, I; Beukeboom, L W; Weissing, F J

    2006-05-01

    Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.

  15. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today.

    PubMed

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an "abstract" without references, compiled by Charles Darwin from a much longer manuscript entitled "Natural Selection." Here, I summarize the five theories that can be extracted from Darwin's monograph, explain the true meaning of the phrase "struggle for life" (i.e., competition and cooperation), and outline Darwin's original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that "selection only eliminates but is not creative" is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this "Weismann-Schmalhausen principle" with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria, Archaea, and Cyanobacteria are, together with eukaryotic microorganisms (marine phytoplankton, etc.), the hidden "winners" in the Darwinian struggle for existence in nature.

  16. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an “abstract” without references, compiled by Charles Darwin from a much longer manuscript entitled “Natural Selection.” Here, I summarize the five theories that can be extracted from Darwin’s monograph, explain the true meaning of the phrase “struggle for life” (i.e., competition and cooperation), and outline Darwin’s original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that “selection only eliminates but is not creative” is still alive today. However, I document that August Weismann ( Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen ( Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this “Weismann-Schmalhausen principle” with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky ( Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria, Archaea, and Cyanobacteria are, together with eukaryotic microorganisms (marine phytoplankton, etc.), the hidden “winners” in the Darwinian struggle for existence in nature.

  17. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  18. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  19. Quantifying selection in evolving populations using time-resolved genetic data

    NASA Astrophysics Data System (ADS)

    Illingworth, Christopher J. R.; Mustonen, Ville

    2013-01-01

    Methods which uncover the molecular basis of the adaptive evolution of a population address some important biological questions. For example, the problem of identifying genetic variants which underlie drug resistance, a question of importance for the treatment of pathogens, and of cancer, can be understood as a matter of inferring selection. One difficulty in the inference of variants under positive selection is the potential complexity of the underlying evolutionary dynamics, which may involve an interplay between several contributing processes, including mutation, recombination and genetic drift. A source of progress may be found in modern sequencing technologies, which confer an increasing ability to gather information about evolving populations, granting a window into these complex processes. One particularly interesting development is the ability to follow evolution as it happens, by whole-genome sequencing of an evolving population at multiple time points. We here discuss how to use time-resolved sequence data to draw inferences about the evolutionary dynamics of a population under study. We begin by reviewing our earlier analysis of a yeast selection experiment, in which we used a deterministic evolutionary framework to identify alleles under selection for heat tolerance, and to quantify the selection acting upon them. Considering further the use of advanced intercross lines to measure selection, we here extend this framework to cover scenarios of simultaneous recombination and selection, and of two driver alleles with multiple linked neutral, or passenger, alleles, where the driver pair evolves under an epistatic fitness landscape. We conclude by discussing the limitations of the approach presented and outlining future challenges for such methodologies.

  20. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  1. Magnetospheric Substorm Evolution in the Magnetotail: Challenge to Global MHD Modeling.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Dorelli, J.; Rastaetter, L.

    2003-12-01

    Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at CCMC. We perform simulations of magnetotail dynamics using global MHD models residing at CCMC. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. We will analyze the effects of spatial resolution in the plasma sheet on modeled expansion phase evolution, maximum energy stored in the tail, and details of magnetotail reconnection. We will pay special attention to current sheet thinning and multiple plasmoid formation.

  2. Genomic signature of natural and anthropogenic stress in wild populations of the waterflea Daphnia magna: validation in space, time and experimental evolution.

    PubMed

    Orsini, Luisa; Spanier, Katina I; DE Meester, Luc

    2012-05-01

    Natural populations are confronted with multiple selection pressures resulting in a mosaic of environmental stressors at the landscape level. Identifying the genetic underpinning of adaptation to these complex selection environments and assigning causes of natural selection within multidimensional selection regimes in the wild is challenging. The water flea Daphnia is a renowned ecological model system with its well-documented ecology, the possibility to analyse subfossil dormant egg banks and the short generation time allowing an experimental evolution approach. Capitalizing on the strengths of this model system, we here link candidate genome regions to three selection pressures, known to induce micro-evolutionary responses in Daphnia magna: fish predation, parasitism and land use. Using a genome scan approach in space, time and experimental evolution trials, we provide solid evidence of selection at the genome level under well-characterized environmental gradients in the wild and identify candidate genes linked to the three environmental stressors. Our study reveals differential selection at the genome level in Daphnia populations and provides evidence for repeatable patterns of local adaptation in a geographic mosaic of environmental stressors fuelled by standing genetic variation. Our results imply high evolutionary potential of local populations, which is relevant to understand the dynamics of trait changes in natural populations and their impact on community and ecosystem responses through eco-evolutionary feedbacks. © 2012 Blackwell Publishing Ltd.

  3. Punctuated equilibrium and power law in economic dynamics

    NASA Astrophysics Data System (ADS)

    Gupta, Abhijit Kar

    2012-02-01

    This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called 'feedback' was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of 'fitness' and 'selection' in the present model of economic evolution.

  4. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities

    PubMed Central

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C.; Bell, Thomas

    2015-01-01

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics. PMID:25833854

  5. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities.

    PubMed

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C; Bell, Thomas

    2015-05-07

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  7. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  8. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  9. BRIDGING SCALES IN THE EVOLUTION OF INFECTIOUS DISEASE LIFE HISTORIES: APPLICATION

    PubMed Central

    Mideo, Nicole; Nelson, William A.; Reece, Sarah E.; Bell, Andrew S.; Read, Andrew F.; Day, Troy

    2014-01-01

    Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that “simple” virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications. PMID:22023593

  10. Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms

    PubMed Central

    Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.

    2011-01-01

    Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134

  11. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    PubMed Central

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  12. Constraints on the evolution of tolerance to herbicide in the common morning glory: resistance and tolerance are mutually exclusive.

    PubMed

    Baucom, Regina S; Mauricio, Rodney

    2008-11-01

    Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.

  13. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape

    PubMed Central

    2017-01-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792

  14. Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow.

    PubMed

    Sachdeva, Himani; Barton, Nicholas H

    2017-06-01

    Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    PubMed

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  16. Within-host evolution of Staphylococcus aureus during asymptomatic carriage.

    PubMed

    Golubchik, Tanya; Batty, Elizabeth M; Miller, Ruth R; Farr, Helen; Young, Bernadette C; Larner-Svensson, Hanna; Fung, Rowena; Godwin, Heather; Knox, Kyle; Votintseva, Antonina; Everitt, Richard G; Street, Teresa; Cule, Madeleine; Ip, Camilla L C; Didelot, Xavier; Peto, Timothy E A; Harding, Rosalind M; Wilson, Daniel J; Crook, Derrick W; Bowden, Rory

    2013-01-01

    Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.

  17. Big Bang Tumor Growth and Clonal Evolution.

    PubMed

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2018-05-01

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Dynamics of morphological evolution in experimental Escherichia coli populations.

    PubMed

    Cui, F; Yuan, B

    2016-08-30

    Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.

  19. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G. V.

    2017-03-01

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator. This article is part of the themed issue 'Wind energy in complex terrains'.

  20. Ecological extension of the theory of evolution by natural selection from a perspective of Western and Eastern holistic philosophy.

    PubMed

    Nakajima, Toshiyuki

    2017-12-01

    Evolution by natural selection requires the following conditions: (1) a particular selective environment; (2) variation of traits in the population; (3) differential survival/reproduction among the types of organisms; and (4) heritable traits. However, the traditional (standard) model does not clearly explain how and why these conditions are generated or determined. What generates a selective environment? What generates new types? How does a certain type replace, or coexist with, others? In this paper, based on the holistic philosophy of Western and Eastern traditions, I focus on the ecosystem as a higher-level system and generator of conditions that induce the evolution of component populations; I also aim to identify the ecosystem processes that generate those conditions. In particular, I employ what I call the scientific principle of dependent-arising (SDA), which is tailored for scientific use and is based on Buddhism principle called "pratītya-samutpāda" in Sanskrit. The SDA principle asserts that there exists a higher-level system, or entity, which includes a focal process of a system as a part within it; this determines or generates the conditions required for the focal process to work in a particular way. I conclude that the ecosystem generates (1) selective environments for component species through ecosystem dynamics; (2) new genetic types through lateral gene transfer, hybridization, and symbiogenesis among the component species of the ecosystem; (3) mechanistic processes of replacement of an old type with a new one. The results of this study indicate that the ecological extension of the theoretical model of adaptive evolution is required for better understanding of adaptive evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations.

    PubMed

    Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W

    2010-01-01

    The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.

  2. Theoretical modeling of cellular and dendritic solidification microstructures

    NASA Astrophysics Data System (ADS)

    Song, Younggil

    In this dissertation, we use three-dimensional (3D) phase-field (PF) modeling to investigate (i) 3D solid-liquid interface dynamics observed in microgravity experiments, and (ii) array patterns in a thin-sample geometry. In addition, using the two-dimensional (2D) dendritic-needle-network (DNN) model, we explore (iii) secondary sidebranching dynamics. Recently, solidification experiments are carried out in the DSI (Directional Solidification Insert) of the DECLIC (Device for the study of Critical LIquids and Crystallization) facility aboard the International Space Station (ISS). Thus, the directional solidification experiments are achieved under limited convective currents, and the experimental observations reveal unique dynamics of 3D microstructure in a purely diffusive growth regime. In this directional solidification setup, a temperature field between heat sources could evolve due to two main factors: (i) heat transfer within an adiabatic zone and (ii) latent heat rejection at the interface. These two thermal effects are phenomenologically characterized using a time-dependent thermal shift. In addition, we could quantitatively account for these thermal factors using a numerical calculation of the evolution of temperature field. We introduce these phenomenological and quantitative thermal representations into the PF model. The performed simulations using different thermal descriptions are compared to the experimental measurements from the initial planar interface dynamics to the final spacing selection. The DECLIC-DSI experimental observations exhibit complex grain boundary (GB) dynamics between large grains with a small misorientation. In the observations, several large grains with a small misorientation with respect to the temperature gradient are formed during solidification. Specifically, at a convergent GB, a localized group of misoriented cells penetrates into a nearby grain, which yields the morphological instability of grain boundaries. Remarkably, while the invasion process starts with a group of cells, the leader cell can detach itself from the group and grow continuously as a misoriented solitary cell in the other grain with a different misorientation. We use PF simulations to investigate the GB morphology and dynamics of a solitary cell. Solidification experiments on earth are typically performed in a thin-sample geometry to avoid fluid convection. Thus, we consider various influences on cellular and dendritic array patterns in thin samples. First, we explore the influence of crystal orientation. When a grain in a thin-sample geometry is misoriented with respect to the temperature gradient, primary cells and dendrites drift laterally in both experiments and simulations. At the same time, grain boundaries are systematically formed at the edges of the misoriented grain. The misoriented primary branches move away from the divergent grain boundary. At this boundary, cells/dendrites are generated continuously, and their spacings are larger than the dynamically selected spacings. Primary branches run into the other convergent GB, which leads to their elimination. Thus, at a stationary state, a spacing distribution is uniform with the spacing selected at the divergent GB until it decreases near the convergent GB. We perform simulations to illustrate the global evolutions of a primary spacing. In addition, we suggest a simple geometrical model and a nonlinear advection equation for the dynamics of the primary spacing evolution, which can predict the slow evolution of a primary spacing in a quasi-2D array. Experimental observations point out that the primary spacing selection could be affected by the sample thickness; however, the detailed description for the link between the primary spacing selection and a sample thickness is still missing. Here, we use PF simulations to investigate the primary cellular and dendritic spacing selection mechanisms under the influence of a sample thickness. A thin-sample geometry can limit thermal and solutal convective currents effectively. However, as the sample thickness increases, the convective currents can influence the solid- liquid interface dynamics. Then, the microstructure selection mechanisms can be different from the classical theories that are valid in a diffusive regime. We propose a simple approach for the PF model to demonstrate the microstructure selection when liquid convection is present. These simulations are compared to experimental results. Columnar microstructures with cells and dendrites typically form polycrystalline materials during directional solidification. Then, convergent and divergent grain boundaries form systematically between grains, which are misoriented with respect to the temperature gradient. Moreover, the GB is dynamically selected during the competition between two nearby misoriented grains. In order to investigate the GB orientation selection, we carry out 3D PF simulations in a thin-sample geometry. These simulations reveal the influence of the 3D GB bi-crystallography on grain competition. The results highlight the importance of considering the orientation of the orthogonal planes containing secondary branches in addition to the growth direction of primary branches. Finally, we propose three growth steps to demonstrate the secondary sidebranching growth dynamics under isothermal dendritic growth condition. (Abstract shortened by ProQuest.).

  3. Ecological and evolutionary dynamics of interconnectedness and modularity

    PubMed Central

    Nordbotten, Jan M.; Levin, Simon A.; Szathmáry, Eörs; Stenseth, Nils C.

    2018-01-01

    In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: (i) ecologically driven change, (ii) evolutionarily driven change, and (iii) environmentally driven change. PMID:29311333

  4. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    PubMed

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exploiting temporal collateral sensitivity in tumor clonal evolution

    PubMed Central

    Zhao, Boyang; Sedlak, Joseph C.; Srinivas, Raja; Creixell, Pau; Pritchard, Justin R.; Tidor, Bruce; Lauffenburger, Douglas A.; Hemann, Michael T.

    2016-01-01

    SUMMARY The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities; a notion that we term ‘temporal collateral sensitivity’. Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph+ acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1 targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models, and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities. PMID:26924578

  6. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  7. Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution.

    PubMed

    Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja; Creixell, Pau; Pritchard, Justin R; Tidor, Bruce; Lauffenburger, Douglas A; Hemann, Michael T

    2016-03-24

    The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.

    PubMed

    Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D

    2018-05-10

    Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.

  9. The impact of resource quality on the evolution of virulence in spatially heterogeneous environments.

    PubMed

    Su, Min; Boots, Mike

    2017-03-07

    Understanding the drivers of parasite evolution and in particular disease virulence remains a major focus of evolutionary theory. Here, we examine the role of resource quality and in particular spatial environmental heterogeneity in the distribution of these resources on the evolution of virulence. There may be direct effects of resources on host susceptibility and pathogenicity alongside effects on reproduction that indirectly impact host-parasite population dynamics. Therefore, we assume that high resource quality may lead to both increased host reproduction and/or increased disease resistance. In completely mixed populations there is no effect of resource quality on the outcome of disease evolution. However, when there are local interactions higher resource quality generally selects for higher virulence/transmission for both linear and saturating transmission-virulence trade-off assumptions. The exception is that in castrators (i.e., infected hosts have no reproduction), higher virulence is selected for both low and high resource qualities at mixed local and global infection. Heterogeneity in the distribution of environment resources only has an effect on the outcome in castrators where random distributions generally select for higher virulence. Overall, our results further underline the importance of considering spatial structure in order to understand evolutionary processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Symbiogenesis, natural selection, and the dynamic Earth.

    PubMed

    Kutschera, U

    2009-08-01

    One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin's proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky-Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative 'synade-model' of macroevolution which takes into account organisms from all five Kingdoms of life.

  11. Complexity in models of cultural niche construction with selection and homophily.

    PubMed

    Creanza, Nicole; Feldman, Marcus W

    2014-07-22

    Niche construction is the process by which organisms can alter the ecological environment for themselves, their descendants, and other species. As a result of niche construction, differences in selection pressures may be inherited across generations. Homophily, the tendency of like phenotypes to mate or preferentially associate, influences the evolutionary dynamics of these systems. Here we develop a model that includes selection and homophily as independent culturally transmitted traits that influence the fitness and mate choice determined by another focal cultural trait. We study the joint dynamics of a focal set of beliefs, a behavior that can differentially influence the fitness of those with certain beliefs, and a preference for partnering based on similar beliefs. Cultural transmission, selection, and homophily interact to produce complex evolutionary dynamics, including oscillations, stable polymorphisms of all cultural phenotypes, and simultaneous stability of oscillation and fixation, which have not previously been observed in models of cultural evolution or gene-culture interactions. We discuss applications of this model to the interaction of beliefs and behaviors regarding education, contraception, and animal domestication.

  12. CLONAL EVOLUTION IN CANCER

    PubMed Central

    Greaves, Mel; Maley, Carlo C.

    2012-01-01

    Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609

  13. The Heterogeneous Dynamics of Economic Complexity

    PubMed Central

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch—Economic Complexity—have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method—the selective predictability scheme—in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries. PMID:25671312

  14. The heterogeneous dynamics of economic complexity.

    PubMed

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.

  15. A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.

    PubMed

    Raichlen, David A; Pontzer, Herman; Shapiro, Liza J

    2013-01-01

    The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.

  16. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering.

    PubMed

    Cheng, Zhongyi; Peplowski, Lukasz; Cui, Wenjing; Xia, Yuanyuan; Liu, Zhongmei; Zhang, Jialei; Kobayashi, Michihiko; Zhou, Zhemin

    2018-03-01

    Optically pure compounds are important in the synthesis of fine chemicals. Using directed evolution of enzymes to obtain biocatalysts that can selectively produce high-value chiral chemicals is often time-, money-, and resource-intensive; traditional semi-rational designs based on structural data and docking experiments are still limited due to the lack of accurate selection of hot-spot residues. In this study, through ligand-protein collision counts based on steered molecular dynamics simulation, we accurately identified four residues related to improving nitrile hydratase stereoselectivity toward rac-mandelonitrile (MAN). All the four selected residues had numerous collisions with rac-MAN. Five mutants significantly shifting stereoselectivity towards (S)-MAN were obtained from site-saturation mutagenesis, one of them, at position βPhe37, exhibiting efficient production of (S)-MAN with 96.8% ee p , was isolated and further analyzed. The increased pulling force observed during SMD simulation was found to be in good coincidence with the formation of hydrogen bonds between (R)-MAN and residue βHis37. (R)-MAN had to break these barriers to enter the active site of nitrile hydratase and S selectivity was thus improved. The results indicated that combining steered molecular dynamics simulation with a traditional semi-rational design significantly reduced the select range of hot-spot residues for the evolution of NHase stereoselectivity, which could serve as an alternative for the modulation of enzyme stereoselectivity. © 2017 Wiley Periodicals, Inc.

  17. Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of Potato Virus Y

    PubMed Central

    2017-01-01

    ABSTRACT RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid). IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes. PMID:28592544

  18. Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations.

    PubMed

    Duffy, Meghan A; Hall, Spencer R

    2008-04-01

    Parasites are ubiquitous and often highly virulent, yet clear examples of parasite-driven changes in host density in natural populations are surprisingly scarce. Here, we illustrate an example of this phenomenon and offer a theoretically reasonable resolution. We document the effects of two parasites, the bacterium Spirobacillus cienkowskii and the yeast Metschnikowia bicuspidata, on a common freshwater invertebrate, Daphnia dentifera. We show that while both parasites were quite virulent to individual hosts, only bacterial epidemics were associated with significant changes in host population dynamics and density. Our theoretical results may help explain why yeast epidemics did not significantly affect population dynamics. Using a model parameterized with data we collected, we argue that two prominent features of this system, rapid evolution of host resistance to the parasite and selective predation on infected hosts, both decrease peak infection prevalence and can minimize decline in host density during epidemics. Taken together, our results show that understanding the outcomes of host-parasite interactions in this Daphnia-microparasite system may require consideration of ecological context and evolutionary processes and their interaction.

  19. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach.

    PubMed

    Camara, Ibrahima; Tacchi, Silvia; Garnier, Louis-Charles; Eddrief, Mahmoud; Fortuna, Franck; Carlotti, Giovanni; Marangolo, Massimiliano

    2017-09-26

    The resonant eigenmodes of a nitrogen-implanted iron α'-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures. © 2017 IOP Publishing Ltd.

  20. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach

    NASA Astrophysics Data System (ADS)

    Camara, I. S.; Tacchi, S.; Garnier, L.-C.; Eddrief, M.; Fortuna, F.; Carlotti, G.; Marangolo, M.

    2017-11-01

    The resonant eigenmodes of an α‧-FeN thin film characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized magnetic excitations generally found in nanostructures.

  1. Feed-backs among inbreeding, inbreeding depression in sperm traits, and sperm competition can drive evolution of costly polyandry.

    PubMed

    Bocedi, Greta; Reid, Jane M

    2017-12-01

    Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed-back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed-backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed-backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population-wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex-specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Stochastic evolution in populations of ideas

    PubMed Central

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games. PMID:28098244

  3. Stochastic evolution in populations of ideas

    NASA Astrophysics Data System (ADS)

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games.

  4. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    PubMed

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.

  5. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.

  6. Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan

    2013-01-01

    Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.

  7. Traditional Amerindian cultivators combine directional and ideotypic selection for sustainable management of cassava genetic diversity.

    PubMed

    Duputié, A; Massol, F; David, P; Haxaire, C; McKey, D

    2009-06-01

    Plant domestication provides striking examples of rapid evolution. Yet, it involves more complex processes than plain directional selection. Understanding the dynamics of diversity in traditional agroecosystems is both a fundamental goal in evolutionary biology and a practical goal in conservation. We studied how Amerindian cultivators maintain dynamically evolving gene pools in cassava. Farmers purposely maintain diversity in the form of phenotypically distinct, clonally propagated landraces. Landrace gene pools are continuously renewed by incorporating seedlings issued from spontaneous sexual reproduction. This poses two problems: agronomic quality may decrease because some seedlings are inbred, and landrace identity may be progressively lost through the incorporation of unrelated seedlings. Using a large microsatellite dataset, we show that farmers solve these problems by applying two kinds of selection: directional selection against inbred genotypes, and counter-selection of off-type phenotypes, which maintains high intra-landrace relatedness. Thus, cultural elements such as ideotypes (a representation of the ideal phenotype of a landrace) can shape genetic diversity.

  8. The Evolution of Latent Genes in Subdivided Populations

    PubMed Central

    Moody, M. E.; Basten, C. J.

    1990-01-01

    We define latent genes as phenotypically silent DNA sequences which may be reactivated by various genetic mechanisms. Of interest is how they and their functional counterparts can be maintained at high frequency in the face of mutation and selection pressure. We propose a two-deme, three-allele model incorporating viability selection, mutation and migration in haploid populations. It is shown that polymorphism for the three alleles can be easily maintained for a wide range of biologically meaningful parameter values. Computer simulations were employed to gain qualitative insight into the global dynamics of the system. It was found that the dynamics of the latent allele is closely correlated with that of the functional allele. In addition, bias in the migration rates can strengthen or weaken selective conditions for preservation of the functional and latent alleles. PMID:2307354

  9. Cancer in light of experimental evolution.

    PubMed

    Sprouffske, Kathleen; Merlo, Lauren M F; Gerrish, Philip J; Maley, Carlo C; Sniegowski, Paul D

    2012-09-11

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Luria-Delbrück, revisited: the classic experiment does not rule out Lamarckian evolution

    NASA Astrophysics Data System (ADS)

    Holmes, Caroline M.; Ghafari, Mahan; Abbas, Anzar; Saravanan, Varun; Nemenman, Ilya

    2017-10-01

    We re-examined data from the classic Luria-Delbrück fluctuation experiment, which is often credited with establishing a Darwinian basis for evolution. We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms (as would happen for bacteria with CRISPR-Cas immunity). Analysis of the combined model was not performed in the original 1943 paper. The Luria-Delbrück paper also did not consider the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that the Luria-Delbrück experiment, indeed, favors the Darwinian evolution over purely Lamarckian. However, our analysis does not rule out the combined model, and hence cannot rule out Lamarckian contributions to the evolutionary dynamics.

  11. Luria-Delbrück, revisited: the classic experiment does not rule out Lamarckian evolution.

    PubMed

    Holmes, Caroline M; Ghafari, Mahan; Abbas, Anzar; Saravanan, Varun; Nemenman, Ilya

    2017-08-21

    We re-examined data from the classic Luria-Delbrück fluctuation experiment, which is often credited with establishing a Darwinian basis for evolution. We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms (as would happen for bacteria with CRISPR-Cas immunity). Analysis of the combined model was not performed in the original 1943 paper. The Luria-Delbrück paper also did not consider the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that the Luria-Delbrück experiment, indeed, favors the Darwinian evolution over purely Lamarckian. However, our analysis does not rule out the combined model, and hence cannot rule out Lamarckian contributions to the evolutionary dynamics.

  12. Cancer in Light of Experimental Evolution

    PubMed Central

    Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.

    2012-01-01

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007

  13. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates

    PubMed Central

    Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.

    2017-01-01

    The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320

  14. Social evolution and genetic interactions in the short and long term.

    PubMed

    Van Cleve, Jeremy

    2015-08-01

    The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Dark soliton dynamics and interactions in continuous-wave-induced lattices.

    PubMed

    Tsopelas, Ilias; Kominis, Yannis; Hizanidis, Kyriakos

    2007-10-01

    The dynamics of dark spatial soliton beams and their interaction under the presence of a continuous wave (CW), which dynamically induces a photonic lattice, are investigated. It is shown that appropriate selection of the characteristic parameters of the CW result in controllable steering of a single soliton as well as controllable interaction between two solitons. Depending on the CW parameters, the soliton angle of propagation can be changed drastically, while two-soliton interaction can be either enhanced or reduced, suggesting a reconfigurable soliton control mechanism. Our analytical approach, based on the variational perturbation method, provides a dynamical system for the dark soliton evolution parameters. Analytical results are shown in good agreement with direct numerical simulations.

  16. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs.

    PubMed

    Stollmeier, Frank; Nagler, Jan

    2018-02-02

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  17. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs

    NASA Astrophysics Data System (ADS)

    Stollmeier, Frank; Nagler, Jan

    2018-02-01

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  18. Multilevel selection analysis of a microbial social trait

    PubMed Central

    de Vargas Roditi, Laura; Boyle, Kerry E; Xavier, Joao B

    2013-01-01

    The study of microbial communities often leads to arguments for the evolution of cooperation due to group benefits. However, multilevel selection models caution against the uncritical assumption that group benefits will lead to the evolution of cooperation. We analyze a microbial social trait to precisely define the conditions favoring cooperation. We combine the multilevel partition of the Price equation with a laboratory model system: swarming in Pseudomonas aeruginosa. We parameterize a population dynamics model using competition experiments where we manipulate expression, and therefore the cost-to-benefit ratio of swarming cooperation. Our analysis shows that multilevel selection can favor costly swarming cooperation because it causes population expansion. However, due to high costs and diminishing returns constitutive cooperation can only be favored by natural selection when relatedness is high. Regulated expression of cooperative genes is a more robust strategy because it provides the benefits of swarming expansion without the high cost or the diminishing returns. Our analysis supports the key prediction that strong group selection does not necessarily mean that microbial cooperation will always emerge. PMID:23959025

  19. The Evolution of Phenotypic Switching in Subdivided Populations

    PubMed Central

    Carja, Oana; Liberman, Uri; Feldman, Marcus W.

    2014-01-01

    Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012

  20. Environment determines evolutionary trajectory in a constrained phenotypic space

    PubMed Central

    Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe

    2017-01-01

    Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136

  1. Cultural selection drives the evolution of human communication systems

    PubMed Central

    Tamariz, Monica; Ellison, T. Mark; Barr, Dale J.; Fay, Nicolas

    2014-01-01

    Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems. PMID:24966310

  2. Cultural selection drives the evolution of human communication systems.

    PubMed

    Tamariz, Monica; Ellison, T Mark; Barr, Dale J; Fay, Nicolas

    2014-08-07

    Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems.

  3. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  4. Variation in the Intensity of Selection on Codon Bias over Time Causes Contrasting Patterns of Base Composition Evolution in Drosophila

    PubMed Central

    Jackson, Benjamin C.; Campos, José L.; Haddrill, Penelope R.; Charlesworth, Brian

    2017-01-01

    Four-fold degenerate coding sites form a major component of the genome, and are often used to make inferences about selection and demography, so that understanding their evolution is important. Despite previous efforts, many questions regarding the causes of base composition changes at these sites in Drosophila remain unanswered. To shed further light on this issue, we obtained a new whole-genome polymorphism data set from D. simulans. We analyzed samples from the putatively ancestral range of D. simulans, as well as an existing polymorphism data set from an African population of D. melanogaster. By using D. yakuba as an outgroup, we found clear evidence for selection on 4-fold sites along both lineages over a substantial period, with the intensity of selection increasing with GC content. Based on an explicit model of base composition evolution, we suggest that the observed AT-biased substitution pattern in both lineages is probably due to an ancestral reduction in selection intensity, and is unlikely to be the result of an increase in mutational bias towards AT alone. By using two polymorphism-based methods for estimating selection coefficients over different timescales, we show that the selection intensity on codon usage has been rather stable in D. simulans in the recent past, but the long-term estimates in D. melanogaster are much higher than the short-term ones, indicating a continuing decline in selection intensity, to such an extent that the short-term estimates suggest that selection is only active in the most GC-rich parts of the genome. Finally, we provide evidence for complex evolutionary patterns in the putatively neutral short introns, which cannot be explained by the standard GC-biased gene conversion model. These results reveal a dynamic picture of base composition evolution. PMID:28082609

  5. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders

    PubMed Central

    Haney, Robert A.; Clarke, Thomas H.; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y.; Ayoub, Nadia A.; Garb, Jessica E.

    2016-01-01

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576

  6. Cybersecurity Dynamics

    DTIC Science & Technology

    2014-08-20

    of Cybersecurity Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack...Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack-defense interactions...evolution of cyberse- curity state as caused by cyber attack-defense interactions. By studying Cybersecurity Dynamics, we can characterize the

  7. Are genetically robust regulatory networks dynamically different from random ones?

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.

  8. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES).

    PubMed

    Campos, Marcelino; Llorens, Carlos; Sempere, José M; Futami, Ricardo; Rodriguez, Irene; Carrasco, Purificación; Capilla, Rafael; Latorre, Amparo; Coque, Teresa M; Moya, Andres; Baquero, Fernando

    2015-08-05

    Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem. In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis. The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with feedback reciprocity among the different units of selection influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary, with different parameters, until a correct model description of the process in the real world is convincingly approached. ARES can be accessed at http://gydb.org/ares.

  9. Evolution of a predator-induced, nonlinear reaction norm.

    PubMed

    Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P

    2017-08-30

    Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.

  10. Ecological and evolutionary dynamics of interconnectedness and modularity.

    PubMed

    Nordbotten, Jan M; Levin, Simon A; Szathmáry, Eörs; Stenseth, Nils C

    2018-01-23

    In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: ( i ) ecologically driven change, ( ii ) evolutionarily driven change, and ( iii ) environmentally driven change. Copyright © 2018 the Author(s). Published by PNAS.

  11. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes

    NASA Astrophysics Data System (ADS)

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.

    2016-10-01

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.

  12. Fitness in time-dependent environments includes a geometric phase contribution

    PubMed Central

    Tănase-Nicola, Sorin; Nemenman, Ilya

    2012-01-01

    Phenotypic evolution implies sequential rise in frequency of new genomic sequences. The speed of the rise depends, in part, on the relative fitness (selection coefficient) of the mutant versus the ancestor. Using a simple population dynamics model, we show that the relative fitness in dynamical environments is not equal to the geometric average of the fitness over individual environments. Instead, it includes a term that explicitly depends on the sequence of the environments. For slowly varying environments, this term depends only on the oriented area enclosed by the trajectory taken by the system in the environment state space. It is closely related to the well-studied geometric phases in classical and quantum physical systems. We discuss possible biological implications of these observations, focusing on evolution of novel metabolic or stress-resistant functions. PMID:22112653

  13. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  14. Ecosystems and the Biosphere as Complex Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.

    1998-01-01

    Ecosystems are prototypical examples of complex adaptive systems, in which patterns at higher levels emerge from localized interactions and selection processes acting at lower levels. An essential aspect of such systems is nonlinearity, leading to historical dependency and multiple possible outcomes of dynamics. Given this, it is essential to determine the degree to which system features are determined by environmental conditions, and the degree to which they are the result of self-organization. Furthermore, given the multiple levels at which dynamics become apparent and at which selection can act, central issues relate to how evolution shapes ecosystems properties, and whether ecosystems become buffered to changes (more resilient) over their ecological and evolutionary development or proceed to critical states and the edge of chaos.

  15. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.

    PubMed

    Debnath, M; Santoni, C; Leonardi, S; Iungo, G V

    2017-04-13

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  16. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  17. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    PubMed Central

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  18. Frequency-dependent selection can lead to evolution of high mutation rates.

    PubMed

    Rosenbloom, Daniel I S; Allen, Benjamin

    2014-05-01

    Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.

  19. How Large Asexual Populations Adapt

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2007-03-01

    We often think of beneficial mutations as being rare, and of adaptation as a sequence of selected substitutions: a beneficial mutation occurs, spreads through a population in a selective sweep, then later another beneficial mutation occurs, and so on. This simple picture is the basis for much of our intuition about adaptive evolution, and underlies a number of practical techniques for analyzing sequence data. Yet many large and mostly asexual populations -- including a wide variety of unicellular organisms and viruses -- live in a very different world. In these populations, beneficial mutations are common, and frequently interfere or cooperate with one another as they all attempt to sweep simultaneously. This radically changes the way these populations adapt: rather than an orderly sequence of selective sweeps, evolution is a constant swarm of competing and interfering mutations. I will describe some aspects of these dynamics, including why large asexual populations cannot evolve very quickly and the character of the diversity they maintain. I will explain how this changes our expectations of sequence data, how sex can help a population adapt, and the potential role of ``mutator'' phenotypes with abnormally high mutation rates. Finally, I will discuss comparisons of these predictions with evolution experiments in laboratory yeast populations.

  20. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  1. Feed‐backs among inbreeding, inbreeding depression in sperm traits, and sperm competition can drive evolution of costly polyandry

    PubMed Central

    Bocedi, Greta; Reid, Jane M.

    2017-01-01

    Abstract Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed‐back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed‐backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed‐backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population‐wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex‐specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding. PMID:28895138

  2. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    PubMed Central

    Huang, Yuan; Wang, Jun; Yang, Yongping; Fan, Chuanzhu; Chen, Jiahui

    2017-01-01

    Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide resources to better understand the successful adaptation of Salicaceae species. PMID:28676809

  3. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015).

  4. Dynamic evolution characteristics of a fractional order hydropower station system

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  5. Is cooperation viable in mobile organisms? Simple Walk Away rule favors the evolution of cooperation in groups

    PubMed Central

    Aktipis, C. Athena

    2011-01-01

    The evolution of cooperation through partner choice mechanisms is often thought to involve relatively complex cognitive abilities. Using agent-based simulations I model a simple partner choice rule, the ‘Walk Away’ rule, where individuals stay in groups that provide higher returns (by virtue of having more cooperators), and ‘Walk Away’ from groups providing low returns. Implementing this conditional movement rule in a public goods game leads to a number of interesting findings: 1) cooperators have a selective advantage when thresholds are high, corresponding to low tolerance for defectors, 2) high thresholds lead to high initial rates of movement and low final rates of movement (after selection), and 3) as cooperation is selected, the population undergoes a spatial transition from high migration (and a many small and ephemeral groups) to low migration (and large and stable groups). These results suggest that the very simple ‘Walk Away’ rule of leaving uncooperative groups can favor the evolution of cooperation, and that cooperation can evolve in populations in which individuals are able to move in response to local social conditions. A diverse array of organisms are able to leave degraded physical or social environments. The ubiquitous nature of conditional movement suggests that ‘Walk Away’ dynamics may play an important role in the evolution of social behavior in both cognitively complex and cognitively simple organisms. PMID:21666771

  6. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America

    USGS Publications Warehouse

    Lee, Justin S.; Bevins, Sarah N.; Serieys, Laurel E.K.; Vickers, Winston; Logan, Ken A.; Aldredge, Mat; Boydston, Erin E.; Lyren, Lisa M.; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L.; Riley, Seth P.; Boyce, Walter M.; Crooks, Kevin R.; VandeWoude, Sue

    2014-01-01

    Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories.

  7. On the evolution of dispersal via heterogeneity in spatial connectivity

    PubMed Central

    Henriques-Silva, Renato; Boivin, Frédéric; Calcagno, Vincent; Urban, Mark C.; Peres-Neto, Pedro R.

    2015-01-01

    Dispersal has long been recognized as a mechanism that shapes many observed ecological and evolutionary processes. Thus, understanding the factors that promote its evolution remains a major goal in evolutionary ecology. Landscape connectivity may mediate the trade-off between the forces in favour of dispersal propensity (e.g. kin-competition, local extinction probability) and those against it (e.g. energetic or survival costs of dispersal). It remains, however, an open question how differing degrees of landscape connectivity may select for different dispersal strategies. We implemented an individual-based model to study the evolution of dispersal on landscapes that differed in the variance of connectivity across patches ranging from networks with all patches equally connected to highly heterogeneous networks. The parthenogenetic individuals dispersed based on a flexible logistic function of local abundance. Our results suggest, all else being equal, that landscapes differing in their connectivity patterns will select for different dispersal strategies and that these strategies confer a long-term fitness advantage to individuals at the regional scale. The strength of the selection will, however, vary across network types, being stronger on heterogeneous landscapes compared with the ones where all patches have equal connectivity. Our findings highlight how landscape connectivity can determine the evolution of dispersal strategies, which in turn affects how we think about important ecological dynamics such as metapopulation persistence and range expansion. PMID:25673685

  8. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  9. Present Day Biology seen in the Looking Glass of Physics of Complexity

    NASA Astrophysics Data System (ADS)

    Schuster, P.

    Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.

  10. Evolutionary dynamics on any population structure

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Lippner, Gabor; Chen, Yu-Ting; Fotouhi, Babak; Momeni, Naghmeh; Yau, Shing-Tung; Nowak, Martin A.

    2017-03-01

    Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure—graph surgery—affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.

  11. Carbonate landscapes evolution: Insights from 36Cl

    NASA Astrophysics Data System (ADS)

    Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team

    2017-04-01

    Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition toward a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief observed in many Mediterranean carbonate landscapes.

  12. Luria-Delbrück Revisited: The Classic Experiment Doesn't Rule out Lamarckian Evolution

    NASA Astrophysics Data System (ADS)

    Holmes, Caroline; Ghafari, Mahan; Abbas, Anzar; Saravanan, Varun; Nemenman, Ilya

    We re-examine data from the classic 1943 Luria-Delbruck fluctuation experiment. This experiment is often credited with establishing that phage resistance in bacteria is acquired through a Darwinian mechanism (natural selection on standing variation) rather than through a Lamarckian mechanism (environmentally induced mutations). We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms. Analysis of the combined model was not performed in the 1943 paper, and nor was analysis of the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that: 1) all datasets from the paper favor Darwinian over purely Lamarckian evolution, 2) some of the datasets are unable to distinguish between the purely Darwinian and the combined models, and 3) the other datasets cannot be explained by any of the models considered. In summary, the classic experiment cannot rule out Lamarckian contributions to the evolutionary dynamics. This work was supported by National Science Foundation Grant 1410978, NIH training Grant 5R90DA033462, and James S. McDonnell Foundation Grant 220020321.

  13. Directionality theory and the evolution of body size.

    PubMed

    Demetrius, L

    2000-12-07

    Directionality theory, a dynamic theory of evolution that integrates population genetics with demography, is based on the concept of evolutionary entropy, a measure of the variability in the age of reproducing individuals in a population. The main tenets of the theory are three principles relating the response to the ecological constraints a population experiences, with trends in entropy as the population evolves under mutation and natural selection. (i) Stationary size or fluctuations around a stationary size (bounded growth): a unidirectional increase in entropy; (ii) prolonged episodes of exponential growth (unbounded growth), large population size: a unidirectional decrease in entropy; and (iii) prolonged episodes of exponential growth (unbounded growth), small population size: random, non-directional change in entropy. We invoke these principles, together with an allometric relationship between entropy, and the morphometric variable body size, to provide evolutionary explanations of three empirical patterns pertaining to trends in body size, namely (i) Cope's rule, the tendency towards size increase within phyletic lineages; (ii) the island rule, which pertains to changes in body size that occur as species migrate from mainland populations to colonize island habitats; and (iii) Bergmann's rule, the tendency towards size increase with increasing latitude. The observation that these ecotypic patterns can be explained in terms of the directionality principles for entropy underscores the significance of evolutionary entropy as a unifying concept in forging a link between micro-evolution, the dynamics of gene frequency change, and macro-evolution, dynamic changes in morphometric variables.

  14. The genetical theory of social behaviour

    PubMed Central

    Lehmann, Laurent; Rousset, François

    2014-01-01

    We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1–16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments. PMID:24686929

  15. The genetical theory of social behaviour.

    PubMed

    Lehmann, Laurent; Rousset, François

    2014-05-19

    We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.

  16. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  17. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  18. Clonal evolution in relapsed and refractory diffuse large B-cell lymphoma is characterized by high dynamics of subclones.

    PubMed

    Melchardt, Thomas; Hufnagl, Clemens; Weinstock, David M; Kopp, Nadja; Neureiter, Daniel; Tränkenschuh, Wolfgang; Hackl, Hubert; Weiss, Lukas; Rinnerthaler, Gabriel; Hartmann, Tanja N; Greil, Richard; Weigert, Oliver; Egle, Alexander

    2016-08-09

    Little information is available about the role of certain mutations for clonal evolution and the clinical outcome during relapse in diffuse large B-cell lymphoma (DLBCL). Therefore, we analyzed formalin-fixed-paraffin-embedded tumor samples from first diagnosis, relapsed or refractory disease from 28 patients using next-generation sequencing of the exons of 104 coding genes. Non-synonymous mutations were present in 74 of the 104 genes tested. Primary tumor samples showed a median of 8 non-synonymous mutations (range: 0-24) with the used gene set. Lower numbers of non-synonymous mutations in the primary tumor were associated with a better median OS compared with higher numbers (28 versus 15 months, p=0.031). We observed three patterns of clonal evolution during relapse of disease: large global change, subclonal selection and no or minimal change possibly suggesting preprogrammed resistance. We conclude that targeted re-sequencing is a feasible and informative approach to characterize the molecular pattern of relapse and it creates novel insights into the role of dynamics of individual genes.

  19. Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming

    NASA Astrophysics Data System (ADS)

    Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng

    2017-10-01

    With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.

  20. On the long-period evolution of the sun-synchronous orbits

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. D.; Jasim, A. T.

    2016-05-01

    The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite's passage through the Earth's shadow.

  1. The evolutionary language game: an orthogonal approach.

    PubMed

    Lenaerts, Tom; Jansen, Bart; Tuyls, Karl; De Vylder, Bart

    2005-08-21

    Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of vertical parent-offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the derived transmission system is expressed in terms of the well-known selection-mutation model defined in the context of evolutionary dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit. Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.

  2. Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution

    PubMed Central

    Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A.

    2017-01-01

    The evolution of resistance against pesticides is an important problem of modern agriculture. The high‐dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two‐patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source‐sink environments. PMID:28422284

  3. Stability-based sorting: The forgotten process behind (not only) biological evolution.

    PubMed

    Toman, Jan; Flegr, Jaroslav

    2017-12-21

    Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  5. Eco-evolutionary feedbacks drive species interactions

    PubMed Central

    Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio

    2014-01-01

    In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674

  6. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    PubMed Central

    Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D

    2007-01-01

    Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria. PMID:17655768

  7. Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability.

    PubMed

    Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  8. Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability

    NASA Astrophysics Data System (ADS)

    Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  9. Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster

    PubMed Central

    Lagasse, Fabrice; Moreno, Celine; Preat, Thomas; Mery, Frederic

    2012-01-01

    Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila, two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic. PMID:22859595

  10. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.

    PubMed

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2016-10-21

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.

  11. Population biological principles of drug-resistance evolution in infectious diseases.

    PubMed

    zur Wiesch, Pia Abel; Kouyos, Roger; Engelstädter, Jan; Regoes, Roland R; Bonhoeffer, Sebastian

    2011-03-01

    The emergence of resistant pathogens in response to selection pressure by drugs and their possible disappearance when drug use is discontinued are evolutionary processes common to many pathogens. Population biological models have been used to study the dynamics of resistance in viruses, bacteria, and eukaryotic microparasites both at the level of the individual treated host and of the treated host population. Despite the existence of generic features that underlie such evolutionary dynamics, different conclusions have been reached about the key factors affecting the rate of resistance evolution and how to best use drugs to minimise the risk of generating high levels of resistance. Improved understanding of generic versus specific population biological aspects will help to translate results between different studies, and allow development of a more rational basis for sustainable drug use than exists at present. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Looking for the optimal rate of recombination for evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  13. Intra-individual variation and evolution of modular structure in Draba plants.

    PubMed

    Grigorieva, Olga V; Cherdantsev, Vladimir G

    2014-09-01

    We studied the evolution of quantitative traits related to shoot system architecture in a large genus Draba (Brassicaceae) making emphasis on the dynamics of relationship between individual and intra-individual variation. The results suggest that selection leading to origin of different life forms arises mainly from a necessity of moderation of the non-adaptive contest between the egoistic plant modules, taking care of self-reproduction of their own. We separated two evolutionary trends, one leading to the formation of short-lived monocarpic, and the other to long-lived polycarpic forms from the short-lived polycarpic plants. The first trend concerns with transformation of the innovation shoots into the axillary inflorescences by shortening of their vegetative developmental phase, while the second one - with individuation of the plant modules owing to acquisition of the capacity of rooting and separating from the mother plant. In both trends, the turning points of the evolution are those of originating of the negative for individual plants interactions between the plant modules being indirect non-adaptive consequences of the previous adaptive evolution and initiating selection for rebuilding of the plant modular structure. The difference between selection operating on intra-individual and individual variations is that, in the first case, combining of the characters of different individuals is infeasible. This leaves no choice for the evolution but to change the developmental mechanisms. In the case considered in this work, this is a change in shoot architecture using the material afforded by the natural variability of developmental pathways of the plant modules. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.

    PubMed

    Brand, Philipp; Ramírez, Santiago R

    2017-08-01

    Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. The evolving cobweb of relations among partially rational investors

    PubMed Central

    DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco

    2017-01-01

    To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144

  16. The evolving cobweb of relations among partially rational investors.

    PubMed

    DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco

    2017-01-01

    To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.

  17. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  18. Characterizing Middle Atmospheric Dynamical Variability and its Impact on the Thermosphere/Ionosphere System During Recent Stratospheric Sudden Warmings

    NASA Astrophysics Data System (ADS)

    McCormack, J. P.; Sassi, F.; Hoppel, K.; Ma, J.; Eckermann, S. D.

    2015-12-01

    We investigate the evolution of neutral atmospheric dynamics in the 10-100 km altitude range before, during, and after recent stratospheric sudden warmings (SSWs) using a prototype high-altitude version of the Navy Global Environmental Model (NAVGEM), which combines a 4-dimensional variational (4DVAR) data assimilation system with a 3-time-level semi-Lagrangian semi-implicit global forecast model. In addition to assimilating conventional meteorological observations, NAVGEM also assimilates middle atmospheric temperature and constituent observations from both operational and research satellite platforms to provide global synoptic meteorological analyses of winds, temperatures, ozone, and water vapor from the surface to ~90 km. In this study, NAVGEM analyses are used to diagnose the spatial and temporal evolution of the main dynamical drivers in the mesosphere and lower thermosphere (MLT) before, during, and after specific SSW events during the 2009-2013 period when large disturbances were observed in the thermosphere/ionosphere (TI) region. Preliminary findings show strong modulation of the semidiurnal tide in the MLT during the onset of an SSW. To assess the impact of the neutral atmosphere dynamical variability on the TI system, NAVGEM analyses are used to constrain simulations of select SSW events using the specified dynamics (SD) configuration of the extended Whole Atmosphere Community Climate Model (WACCM-X).

  19. Observing single quantum trajectories of a superconducting qubit: ensemble properties and driven dynamics

    NASA Astrophysics Data System (ADS)

    Weber, Steven; Murch, K. W.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Siddiqi, I.

    2014-03-01

    We use weak measurements to track individual quantum trajectories of a superconducting qubit embedded in a microwave cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We analyze ensembles of trajectories to determine statistical properties such as the most likely path and most likely time connecting pre and post-selected quantum states. We compare our results with theoretical predictions derived from an action principle for continuous quantum measurement. Furthermore, by introducing a qubit drive, we investigate the interplay between unitary state evolution and non-unitary measurement dynamics. This work was supported by the IARPA CSQ program and the ONR.

  20. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts

    PubMed Central

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Holmes, Edward C.; Bourhy, Hervé

    2016-01-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. PMID:27977811

  1. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.

    PubMed

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Duchene, Sebastián; Holmes, Edward C; Bourhy, Hervé

    2016-12-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.

  2. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  3. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445

  4. The effect of relationship status on health with dynamic health and persistent relationships.

    PubMed

    Kohn, Jennifer L; Averett, Susan L

    2014-07-01

    The dynamic evolution of health and persistent relationship status pose econometric challenges to disentangling the causal effect of relationships on health from the selection effect of health on relationship choice. Using a new econometric strategy we find that marriage is not universally better for health. Rather, cohabitation benefits the health of men and women over 45, being never married is no worse for health, and only divorce marginally harms the health of younger men. We find strong evidence that unobservable health-related factors can confound estimates. Our method can be applied to other research questions with dynamic dependent and multivariate endogenous variables. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) identifies immune-selected HIV variants

    DOE PAGES

    Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...

    2015-10-21

    Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less

  6. In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale?

    PubMed Central

    van Hal, Sebastiaan J.; Steen, Jason A.; Espedido, Björn A.; Grimmond, Sean M.; Cooper, Matthew A.; Holden, Matthew T. G.; Bentley, Stephen D.; Gosbell, Iain B.; Jensen, Slade O.

    2014-01-01

    Objectives To obtain an expanded understanding of antibiotic resistance evolution in vivo, particularly in the context of vancomycin exposure. Methods The whole genomes of six consecutive methicillin-resistant Staphylococcus aureus blood culture isolates (ST239-MRSA-III) from a single patient exposed to various antimicrobials (over a 77 day period) were sequenced and analysed. Results Variant analysis revealed the existence of non-susceptible sub-populations derived from a common susceptible ancestor, with the predominant circulating clone(s) selected for by type and duration of antimicrobial exposure. Conclusions This study highlights the dynamic nature of bacterial evolution and that non-susceptible sub-populations can emerge from clouds of variation upon antimicrobial exposure. Diagnostically, this has direct implications for sample selection when using whole-genome sequencing as a tool to guide clinical therapy. In the context of bacteraemia, deep sequencing of bacterial DNA directly from patient blood samples would avoid culture ‘bias’ and identify mutations associated with circulating non-susceptible sub-populations, some of which may confer cross-resistance to alternate therapies. PMID:24047554

  7. In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale?

    PubMed

    van Hal, Sebastiaan J; Steen, Jason A; Espedido, Björn A; Grimmond, Sean M; Cooper, Matthew A; Holden, Matthew T G; Bentley, Stephen D; Gosbell, Iain B; Jensen, Slade O

    2014-02-01

    To obtain an expanded understanding of antibiotic resistance evolution in vivo, particularly in the context of vancomycin exposure. The whole genomes of six consecutive methicillin-resistant Staphylococcus aureus blood culture isolates (ST239-MRSA-III) from a single patient exposed to various antimicrobials (over a 77 day period) were sequenced and analysed. Variant analysis revealed the existence of non-susceptible sub-populations derived from a common susceptible ancestor, with the predominant circulating clone(s) selected for by type and duration of antimicrobial exposure. This study highlights the dynamic nature of bacterial evolution and that non-susceptible sub-populations can emerge from clouds of variation upon antimicrobial exposure. Diagnostically, this has direct implications for sample selection when using whole-genome sequencing as a tool to guide clinical therapy. In the context of bacteraemia, deep sequencing of bacterial DNA directly from patient blood samples would avoid culture 'bias' and identify mutations associated with circulating non-susceptible sub-populations, some of which may confer cross-resistance to alternate therapies.

  8. Macroevolution of perfume signalling in orchid bees.

    PubMed

    Weber, Marjorie G; Mitko, Lukasz; Eltz, Thomas; Ramírez, Santiago R

    2016-11-01

    Theory predicts that both stabilising selection and diversifying selection jointly contribute to the evolution of sexual signalling traits by (1) maintaining the integrity of communication signals within species and (2) promoting the diversification of traits among lineages. However, for many important signalling traits, little is known about whether these dynamics translate into predictable macroevolutionary signatures. Here, we test for macroevolutionary patterns consistent with sexual signalling theory in the perfume signals of neotropical orchid bees, a group well studied for their chemical sexual communication. Our results revealed both high species-specificity and elevated rates of evolution in perfume signals compared to nonsignalling traits. Perfume complexity was correlated with the number of congeners in a species' range, suggesting that perfume evolution may be tied to the remarkably high number of orchid bee species coexisting together in some neotropical communities. Finally, sister-pair comparisons were consistent with both rapid divergence at speciation and character displacement upon secondary contact. Together, our results provide new insight into the macroevolution of sexual signalling in insects. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. The genomic and epidemiological dynamics of human influenza A virus.

    PubMed

    Rambaut, Andrew; Pybus, Oliver G; Nelson, Martha I; Viboud, Cecile; Taubenberger, Jeffery K; Holmes, Edward C

    2008-05-29

    The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.

  10. Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.

    2016-10-01

    New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.

  11. How mutation alters the evolutionary dynamics of cooperation on networks

    NASA Astrophysics Data System (ADS)

    Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki

    2018-05-01

    Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.

  12. Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.

    2017-01-01

    A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0

  13. Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade.

    PubMed

    Lagomarsino, Laura P; Forrestel, Elisabeth J; Muchhala, Nathan; Davis, Charles C

    2017-08-01

    Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean-centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved ∼13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird- and bat-pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species-rich clades. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Evolution and the Growth Process: Natural Selection of Entrepreneurial Traits.

    PubMed

    Galor, Oded; Michalopoulos, Stelios

    2012-03-01

    This research suggests that a Darwinian evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and the process of economic development. In mature stages of development, however, risk-averse traits gained an evolutionary advantage, diminishing the growth potential of advanced economies and contributing to convergence in economic growth across countries.

  15. Evolution and the Growth Process: Natural Selection of Entrepreneurial Traits*

    PubMed Central

    Galor, Oded; Michalopoulos, Stelios

    2013-01-01

    This research suggests that a Darwinian evolution of entrepreneurial spirit played a significant role in the process of economic development and the dynamics of inequality within and across societies. The study argues that entrepreneurial spirit evolved non-monotonically in the course of human history. In early stages of development, risk-tolerant, growth promoting traits generated an evolutionary advantage and their increased representation accelerated the pace of technological progress and the process of economic development. In mature stages of development, however, risk-averse traits gained an evolutionary advantage, diminishing the growth potential of advanced economies and contributing to convergence in economic growth across countries. PMID:25089059

  16. Orbital evolution of some Centaurs

    NASA Astrophysics Data System (ADS)

    Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim

    2002-11-01

    In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.

  17. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    PubMed

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models.

  18. The Nearly Neutral and Selection Theories of Molecular Evolution Under the Fisher Geometrical Framework: Substitution Rate, Population Size, and Complexity

    PubMed Central

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A.

    2012-01-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population’s phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models. PMID:22426879

  19. Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China

    PubMed Central

    Wu, E-Jiao; Yang, Li-Na; Zhu, Wen; Chen, Xiao-Mei; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen. PMID:27193142

  20. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae).

    PubMed

    Roberts, Wade R; Roalson, Eric H

    2017-03-20

    Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.

  1. Co-evolutionary interactions between host resistance and pathogen avirulence genes in rice-Magnaporthe oryzae pathosystem.

    PubMed

    Singh, Pankaj Kumar; Ray, Soham; Thakur, Shallu; Rathour, Rajeev; Sharma, Vinay; Sharma, Tilak Raj

    2018-06-01

    Rice and Magnaporthe oryzae constitutes an ideal pathosystem for studying host-pathogen interaction in cereals crops. There are two alternative hypotheses, viz. Arms race and Trench warfare, which explain the co-evolutionary dynamics of hosts and pathogens which are under continuous confrontation. Arms race proposes that both R- and Avr- genes of host and pathogen, respectively, undergo positive selection. Alternatively, trench warfare suggests that either R- or Avr- gene in the pathosystem is under balanced selection intending to stabilize the genetic advantage gained over the opposition. Here, we made an attempt to test the above-stated hypotheses in rice-M. oryzae pathosystem at loci of three R-Avr gene pairs, Piz-t-AvrPiz-t, Pi54-AvrPi54 and Pita-AvrPita using allele mining approach. Allele mining is an efficient way to capture allelic variants existing in the population and to study the selective forces imposed on the variants during evolution. Results of nucleotide diversity, neutrality statistics and phylogenetic analyses reveal that Piz-t, Pi54 and AvrPita are diversified and under positive selection at their corresponding loci, while their counterparts, AvrPiz-t, AvrPi54 and Pita are conserved and under balancing selection, in nature. These results imply that rice-M. oryzae populations are engaged in a trench warfare at least at the three R/Avr loci studied. It is a maiden attempt to study the co-evolution of three R-Avr gene pairs in this pathosystem. Knowledge gained from this study will help in understanding the evolutionary dynamics of host-pathogen interaction in a better way and will also aid in developing new durable blast resistant rice varieties in future. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    PubMed

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  3. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees

    PubMed Central

    Ramírez, Santiago R.

    2017-01-01

    Abstract Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. PMID:28854688

  4. Ecological and evolutionary approaches to managing honeybee disease.

    PubMed

    Brosi, Berry J; Delaplane, Keith S; Boots, Michael; de Roode, Jacobus C

    2017-09-01

    Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences.

  5. Raptors and primate evolution.

    PubMed

    McGraw, W Scott; Berger, Lee R

    2013-01-01

    Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review. Copyright © 2013 Wiley Periodicals, Inc.

  6. The Evolution of Sexually Antagonistic Phenotypes

    PubMed Central

    Perry, Jennifer C.; Rowe, Locke

    2015-01-01

    Sexual conflict occurs whenever there is sexually antagonistic selection on shared traits. When shared traits result from interactions (e.g., mating rate) and have a different genetic basis in each sex (i.e., interlocus conflict), then sex-specific traits that shift the value of these interaction traits toward the sex-specific optimum will be favored. Male traits can be favored that increase the fitness of their male bearers, but decrease the fitness of interacting females. Likewise, female traits that reduce the costs of interacting with harmful males may simultaneously impose costs on males. If the evolution of these antagonistic traits changes the nature of selection acting on the opposite sex, interesting coevolutionary dynamics will result. Here we examine three current issues in the study of sexually antagonistic interactions: the female side of sexual conflict, the ecological context of sexual conflict, and the strength of evidence for sexually antagonistic coevolution. PMID:26032715

  7. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  8. Information Mining of Spatio-Temporal Evolution of Lakes Based on Multiple Dynamic Measurements

    NASA Astrophysics Data System (ADS)

    Feng, W.; Chen, J.

    2017-09-01

    Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes' area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1) the swap dynamic degree (SDD) reflects the space activity of lakes in the study period. 2) the attenuation dynamic degree (ADD) reflects the net attenuation of lakes into non-lake areas. 3) the fragmentation dynamic degree (FDD) reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation - fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  9. Does sex induce a phase transition?

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m < mc, evolutionary life is possible. The finite-size-scaling behaviour of this transition is exhibited for large enough “chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  10. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?

    PubMed

    Huang, Sui

    2012-02-01

    The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.

  11. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  12. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  13. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes.

    PubMed

    Huang, Shan; Eronen, Jussi T; Janis, Christine M; Saarinen, Juha J; Silvestro, Daniele; Fritz, Susanne A

    2017-02-22

    Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context. © 2017 The Author(s).

  14. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes

    PubMed Central

    Eronen, Jussi T.; Janis, Christine M.; Saarinen, Juha J.

    2017-01-01

    Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context. PMID:28202809

  15. Dynamic Evolution Model Based on Social Network Services

    NASA Astrophysics Data System (ADS)

    Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen

    2013-11-01

    Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.

  16. Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution.

    PubMed

    Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A

    2017-06-01

    The evolution of resistance against pesticides is an important problem of modern agriculture. The high-dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two-patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source-sink environments. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  17. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics.

    PubMed

    Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G

    2011-06-01

    Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.

  18. INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species.

    PubMed

    Kwon, Daehong; Lee, Daehwan; Kim, Juyeon; Lee, Jongin; Sim, Mikang; Kim, Jaebum

    2018-05-09

    Proteins perform biological functions through cascading interactions with each other by forming protein complexes. As a result, interactions among proteins, called protein-protein interactions (PPIs) are not completely free from selection constraint during evolution. Therefore, the identification and analysis of PPI changes during evolution can give us new insight into the evolution of functions. Although many algorithms, databases and websites have been developed to help the study of PPIs, most of them are limited to visualize the structure and features of PPIs in a chosen single species with limited functions in the visualization perspective. This leads to difficulties in the identification of different patterns of PPIs in different species and their functional consequences. To resolve these issues, we developed a web application, called INTER-Species Protein Interaction Analysis (INTERSPIA). Given a set of proteins of user's interest, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins and searches for different patterns of PPIs in multiple species through a server-side pipeline, and second visualizes the dynamics of PPIs in multiple species using an easy-to-use web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/.

  19. The time course of saccadic decision making: dynamic field theory.

    PubMed

    Wilimzig, Claudia; Schneider, Stefan; Schöner, Gregor

    2006-10-01

    Making a saccadic eye movement involves two decisions, the decision to initiate the saccade and the selection of the visual target of the saccade. Here we provide a theoretical account for the time-courses of these two processes, whose instabilities are the basis of decision making. We show how the cross-over from spatial averaging for fast saccades to selection for slow saccades arises from the balance between excitatory and inhibitory processes. Initiating a saccade involves overcoming fixation, as can be observed in the countermanding paradigm, which we model accounting both for the temporal evolution of the suppression probability and its dependence on fixation activity. The interaction between the two forms of decision making is demonstrated by predicting how the cross-over from averaging to selection depends on the fixation stimulus in gap-step-overlap paradigms. We discuss how the activation dynamics of our model may be mapped onto neuronal structures including the motor map and the fixation cells in superior colliculus.

  20. Models of microbiome evolution incorporating host and microbial selection.

    PubMed

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.

  1. Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome.

    PubMed

    Wernegreen, Jennifer J; Funk, Daniel J

    2004-12-01

    The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.

  2. Phylogenetic Properties of RNA Viruses

    PubMed Central

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2012-01-01

    A new word, phylodynamics, was coined to emphasize the interconnection between phylogenetic properties, as observed for instance in a phylogenetic tree, and the epidemic dynamics of viruses, where selection, mediated by the host immune response, and transmission play a crucial role. The challenges faced when investigating the evolution of RNA viruses call for a virtuous loop of data collection, data analysis and modeling. This already resulted both in the collection of massive sequences databases and in the formulation of hypotheses on the main mechanisms driving qualitative differences observed in the (reconstructed) evolutionary patterns of different RNA viruses. Qualitatively, it has been observed that selection driven by the host immune response induces an uneven survival ability among co-existing strains. As a consequence, the imbalance level of the phylogenetic tree is manifestly more pronounced if compared to the case when the interaction with the host immune system does not play a central role in the evolutive dynamics. While many imbalance metrics have been introduced, reliable methods to discriminate in a quantitative way different level of imbalance are still lacking. In our work, we reconstruct and analyze the phylogenetic trees of six RNA viruses, with a special emphasis on the human Influenza A virus, due to its relevance for vaccine preparation as well as for the theoretical challenges it poses due to its peculiar evolutionary dynamics. We focus in particular on topological properties. We point out the limitation featured by standard imbalance metrics, and we introduce a new methodology with which we assign the correct imbalance level of the phylogenetic trees, in agreement with the phylodynamics of the viruses. Our thorough quantitative analysis allows for a deeper understanding of the evolutionary dynamics of the considered RNA viruses, which is crucial in order to provide a valuable framework for a quantitative assessment of theoretical predictions. PMID:23028645

  3. Reconstruction of Haplotype-Blocks Selected during Experimental Evolution.

    PubMed

    Franssen, Susanne U; Barton, Nicholas H; Schlötterer, Christian

    2017-01-01

    The genetic analysis of experimentally evolving populations typically relies on short reads from pooled individuals (Pool-Seq). While this method provides reliable allele frequency estimates, the underlying haplotype structure remains poorly characterized. With small population sizes and adaptive variants that start from low frequencies, the interpretation of selection signatures in most Evolve and Resequencing studies remains challenging. To facilitate the characterization of selection targets, we propose a new approach that reconstructs selected haplotypes from replicated time series, using Pool-Seq data. We identify selected haplotypes through the correlated frequencies of alleles carried by them. Computer simulations indicate that selected haplotype-blocks of several Mb can be reconstructed with high confidence and low error rates, even when allele frequencies change only by 20% across three replicates. Applying this method to real data from D. melanogaster populations adapting to a hot environment, we identify a selected haplotype-block of 6.93 Mb. We confirm the presence of this haplotype-block in evolved populations by experimental haplotyping, demonstrating the power and accuracy of our haplotype reconstruction from Pool-Seq data. We propose that the combination of allele frequency estimates with haplotype information will provide the key to understanding the dynamics of adaptive alleles. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Measuring competitive fitness in dynamic environments.

    PubMed

    Razinkov, Ivan A; Baumgartner, Bridget L; Bennett, Matthew R; Tsimring, Lev S; Hasty, Jeff

    2013-10-24

    Most yeast genes are dispensable for optimal growth in laboratory cultures. However, this apparent lack of fitness contribution is difficult to reconcile with the theory of natural selection. Here we use stochastic modeling to show that environmental fluctuations can select for a genetic mechanism that does not affect growth in static laboratory environments. We then present a novel experimental platform for measuring the fitness levels of specific genotypes in fluctuating environments. We test this platform by monitoring a mixed culture of two yeast strains that differ in their ability to respond to changes in carbon source yet exhibit the same fitness level in static conditions. When the sugar in the growth medium was switched between galactose and glucose, the wild-type strain gained a growth advantage over the mutant strain. Interestingly, both our computational and experimental results show that the strength of the adaptive advantage conveyed by the wild-type genotype depends on the total number of carbon source switches, not on the frequency of these fluctuations. Our results illustrate the selective power of environmental fluctuations on seemingly slight phenotypic differences in cellular response dynamics and underscore the importance of dynamic processes in the evolution of species.

  5. In Situ Time-Resolved Measurements of Extension Twinning During Dynamic Compression of Polycrystalline Magnesium

    NASA Astrophysics Data System (ADS)

    Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.

    2018-04-01

    We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.

  6. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    PubMed

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  7. How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes under the Fisher-Wright mutation-selection framework.

    PubMed

    Dos Reis, Mario

    2015-04-01

    First principles of population genetics are used to obtain formulae relating the non-synonymous to synonymous substitution rate ratio to the selection coefficients acting at codon sites in protein-coding genes. Two theoretical cases are discussed and two examples from real data (a chloroplast gene and a virus polymerase) are given. The formulae give much insight into the dynamics of non-synonymous substitutions and may inform the development of methods to detect adaptive evolution. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Seismic Characterizations of Fractures: Dynamic Diagnostics

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.

    2017-12-01

    Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  9. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  10. Social eavesdropping and the evolution of conditional cooperation and cheating strategies

    PubMed Central

    Earley, Ryan L.

    2010-01-01

    The response of bystanders to information available in their social environment can have a potent influence on the evolution of cooperation and signalling systems. In the presence of bystanders, individuals might be able to increase their payoff by exaggerating signals beyond their means (cheating) or investing to help others despite considerable costs. In doing so, animals can accrue immediate benefits by manipulating (or helping) individuals with whom they are currently interacting and delayed benefits by convincing bystanders that they are more fit or cooperative than perhaps is warranted. In this paper, I provide some illustrative examples of how bystanders could apply added positive selection pressure on both cooperative behaviour and dishonest signalling during courtship or conflict. I also discuss how the presence of bystanders might select for greater flexibility in behavioural strategies (e.g. conditional or condition dependence), which could maintain dishonesty at evolutionarily stable frequencies under some ecological conditions. By recognizing bystanders as a significant selection pressure, we might gain a more realistic approximation of what drives signalling and/or interaction dynamics in social animals. PMID:20679111

  11. Flood risk (d)evolution: Disentangling key drivers of flood risk change with a retro-model experiment.

    PubMed

    Zischg, Andreas Paul; Hofer, Patrick; Mosimann, Markus; Röthlisberger, Veronika; Ramirez, Jorge A; Keiler, Margreth; Weingartner, Rolf

    2018-05-19

    Flood risks are dynamically changing over time. Over decades and centuries, the main drivers for flood risk change are influenced either by perturbations or slow alterations in the natural environment or, more importantly, by socio-economic development and human interventions. However, changes in the natural and human environment are intertwined. Thus, the analysis of the main drivers for flood risk changes requires a disentangling of the individual risk components. Here, we present a method for isolating the individual effects of selected drivers of change and selected flood risk management options based on a model experiment. In contrast to purely synthetic model experiments, we built our analyses upon a retro-model consisting of several spatio-temporal stages of river morphology and settlement structure. The main advantage of this approach is that the overall long-term dynamics are known and do not have to be assumed. We used this model setup to analyse the temporal evolution of the flood risk, for an ex-post evaluation of the key drivers of change, and for analysing possible alternative pathways for flood risk evolution under different governance settings. We showed that in the study region the construction of lateral levees and the consecutive river incision are the main drivers for decreasing flood risks over the last century. A rebound effect in flood risk can be observed following an increase in settlements since the 1960s. This effect is not as relevant as the river engineering measures, but it will become increasingly relevant in the future with continued socio-economic growth. The presented approach could provide a methodological framework for studying pathways for future flood risk evolvement and for the formulation of narratives for adapting governmental flood risk strategies to the spatio-temporal dynamics in the built environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Evolution of individual versus social learning on social networks

    PubMed Central

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-01-01

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of ‘cultural models’ exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. PMID:25631568

  13. Evolution of individual versus social learning on social networks.

    PubMed

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Sexual selection expedites the evolution of pesticide resistance.

    PubMed

    Jacomb, Frances; Marsh, Jason; Holman, Luke

    2016-12-01

    The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Ecological and evolutionary approaches to managing honey bee disease

    PubMed Central

    Brosi, Berry J.; Delaplane, Keith S.; Boots, Michael; de Roode, Jacobus C.

    2017-01-01

    Honey bee declines are a serious threat to global agricultural security and productivity. While multiple factors contribute to these declines, parasites are a key driver. Disease problems in honey bees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and manage these threats via honey bee management. We cover the ecological context of honey bee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honey bees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. PMID:29046562

  16. A discrete mathematical model of the dynamic evolution of a transportation network

    NASA Astrophysics Data System (ADS)

    Malinetskii, G. G.; Stepantsov, M. E.

    2009-09-01

    A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.

  17. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    PubMed

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  18. Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps.

    PubMed

    Chruściński, Dariusz; Macchiavello, Chiara; Maniscalco, Sabrina

    2017-02-24

    We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behavior with several instructive examples. It is shown that for several important classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map provides a simple non-Markovianity witness.

  19. Deception in plants: mimicry or perceptual exploitation?

    PubMed

    Schaefer, H Martin; Ruxton, Graeme D

    2009-12-01

    Mimicry involves adaptive resemblance between a mimic and a model. However, despite much recent research, it remains contentious in plants. Here, we review recent progress on studying deception by flowers, distinguishing between plants relying on mimicry to achieve pollination and those relying on the exploitation of the perceptual biases of animals. We disclose fundamental differences between both mechanisms and explain why the evolution of exploitation is less constrained than that of mimicry. Exploitation of perceptual biases might thus be a precursor for the gradual evolution of mimicry. Increasing knowledge on the sensory and cognitive filters in animals, and on the selective pressures that maintain them, should aid researchers in tracing the evolutionary dynamics of deception in plants.

  20. Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting.

    PubMed

    López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio

    2018-04-01

    Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.

  1. Synergy and Self-organization in Tribosystem’s evolution. Energy Model of Friction

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.; Assenova, E.

    2018-01-01

    Different approaches are known to treat self-organization in tribosystems, related to the structural adaptation in the formation of dissipative surface structures and of frictional or tribo-films, using of synergistic modifying of layers and coatings, e.g. of the selective material transfer during friction, etc. Regarding tribological processes in contact systems, self-organization is observed as spontaneous creation of higher ordered structures during the contact interaction. The proposed paper considers friction as process of transformation and dissipation of energy and process of elasto-plastic deformation localized in thin surface layers of the interacting bodies. Еnergetic interpretation of friction is proposed. Based on the energy balance equations of friction, the evolution of tribosystems is followed in its adaptive-dissipative character. It reflects the variable friction surfaces compatibility and the nonlinear dynamics of friction evolution. Structural-energy relationships in the contacting surfaces evolution are obtained. Maximum of tribosystem’s efficiency during the evolution is the stage of self-organzation of the friction surface layers, which is a state of abnormal low friction and wear.

  2. Experimental evolution and the dynamics of genomic mutation rate modifiers.

    PubMed

    Raynes, Y; Sniegowski, P D

    2014-11-01

    Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.

  3. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    NASA Astrophysics Data System (ADS)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-08-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  4. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure.

    PubMed

    Schleussner, Carl-Friedrich; Donges, Jonathan F; Engemann, Denis A; Levermann, Anders

    2016-08-11

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.

  5. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    PubMed Central

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  6. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication

    PubMed Central

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-01-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253

  7. Spatio-temporal dynamics in the origin of genetic information

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Jeong, Hawoong

    2005-04-01

    We study evolutionary processes induced by spatio-temporal dynamics in prebiotic evolution. Using numerical simulations, we demonstrate that hypercycles emerge from complex interaction structures in multispecies systems. In this work, we also find that ‘hypercycle hybrid’ protects the hypercycle from its environment during the growth process. There is little selective advantage for one hypercycle to maintain coexistence with others. This brings the possibility of the outcompetition between hypercycles resulting in the negative effect on information diversity. To enrich the information in hypercycles, symbiosis with parasites is suggested. It is shown that symbiosis with parasites can play an important role in the prebiotic immunology.

  8. Structural drift: the population dynamics of sequential learning.

    PubMed

    Crutchfield, James P; Whalen, Sean

    2012-01-01

    We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream "teacher" and then pass samples from the model to their downstream "student". It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.

  9. Continuous-variable quantum teleportation in bosonic structured environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangqiang; Zhang Jingtao; Zhu Jun

    2011-09-15

    The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.

  10. Experimental evolution of insect immune memory versus pathogen resistance.

    PubMed

    Khan, Imroze; Prakash, Arun; Agashe, Deepa

    2017-12-20

    Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms. © 2017 The Author(s).

  11. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae

    PubMed Central

    Rubio, Luis; Guerri, José; Moreno, Pedro

    2013-01-01

    RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process. PMID:23805130

  12. A Parent-Offspring Trade-Off Limits the Evolution of an Ontogenetic Niche Shift.

    PubMed

    Ten Brink, Hanna; de Roos, André M

    2017-07-01

    Many free-living animal species, including the majority of fish, insects, and amphibians, change their food and habitat during their life. Even though these ontogenetic changes in niche are common, it is not well understood which ecological conditions have favored the evolution of these shifts. Using an adaptive dynamics approach, we show that it is evolutionarily advantageous to switch to an alternative food source in the course of ontogeny when this results in a higher intake rate for the switching consumers. Individuals are, however, not able to specialize on this new food source when this negatively affects the performance early in life on the original food source. Selection on these early life stages is so strong that in species with a complete diet shift, evolution results in large juveniles and adults that are maladapted to the alternative food source while their offspring are specialized on the original food source when young. These outcomes suggest strong selection to decouple the different life stages, such that they can maximize their performance on different food sources independently from each other. Metamorphosis could be a way to decouple the different life stages and therefore evolve in species that feed on multiple food sources during their life.

  13. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  14. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    PubMed Central

    Muraille, Eric

    2018-01-01

    Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life. PMID:29487592

  15. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium.

    PubMed

    Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E

    2015-02-14

    The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.

  16. Evidence for r- and K-selection in a wild bird population: a reciprocal link between ecology and evolution.

    PubMed

    Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar

    2016-04-27

    Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).

  17. Cooperation and charity in spatial public goods game under different strategy update rules

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Jin, Xiaogang; Su, Xianchuang; Kong, Fansheng; Peng, Chengbin

    2010-03-01

    Human cooperation can be influenced by other human behaviors and recent years have witnessed the flourishing of studying the coevolution of cooperation and punishment, yet the common behavior of charity is seldom considered in game-theoretical models. In this article, we investigate the coevolution of altruistic cooperation and egalitarian charity in spatial public goods game, by considering charity as the behavior of reducing inter-individual payoff differences. Our model is that, in each generation of the evolution, individuals play games first and accumulate payoff benefits, and then each egalitarian makes a charity donation by payoff transfer in its neighborhood. To study the individual-level evolutionary dynamics, we adopt different strategy update rules and investigate their effects on charity and cooperation. These rules can be classified into two global rules: random selection rule in which individuals randomly update strategies, and threshold selection rule where only those with payoffs below a threshold update strategies. Simulation results show that random selection enhances the cooperation level, while threshold selection lowers the threshold of the multiplication factor to maintain cooperation. When charity is considered, it is incapable in promoting cooperation under random selection, whereas it promotes cooperation under threshold selection. Interestingly, the evolution of charity strongly depends on the dispersion of payoff acquisitions of the population, which agrees with previous results. Our work may shed light on understanding human egalitarianism.

  18. Sexual selection and population divergence I: The influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus).

    PubMed

    Pascoal, Sonia; Mendrok, Magdalena; Mitchell, Christopher; Wilson, Alastair J; Hunt, John; Bailey, Nathan W

    2016-01-01

    Debates about how coevolution of sexual traits and preferences might promote evolutionary diversification have permeated speciation research for over a century. Recent work demonstrates that the expression of such traits can be sensitive to variation in the social environment. Here, we examined social flexibility in a sexually selected male trait-cuticular hydrocarbon (CHC) profiles-in the field cricket Teleogryllus oceanicus and tested whether population genetic divergence predicts the extent or direction of social flexibility in allopatric populations. We manipulated male crickets' social environments during rearing and then characterized CHC profiles. CHC signatures varied considerably across populations and also in response to the social environment, but our prediction that increased social flexibility would be selected in more recently founded populations exposed to fluctuating demographic environments was unsupported. Furthermore, models examining the influence of drift and selection failed to support a role of sexual selection in driving population divergence in CHC profiles. Variation in social environments might alter the dynamics of sexual selection, but our results align with theoretical predictions that the role social flexibility plays in modulating evolutionary divergence depends critically on whether responses to variation in the social environment are homogeneous across populations, or whether gene by social environment interactions occur. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    PubMed

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  20. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  1. Emerging importance of holobionts in evolution and in probiotics

    PubMed Central

    2013-01-01

    The existence of microbe free animals or plants in nature is virtually impossible as they and plants have a certain degree of symbiotic association with microbes. This symbiotic association leads to the formation of holobiont (host and its symbionts). This mutual coexistence is not merely at the physical or chemical level but also at the genetic level leading to the emergence of the concept of hologenome (gene pool of host and its associated symbionts). The abundance of symbionts with the associated gene diversity contributes to the fitness of the holobiont under varying environmental conditions. The hologenome theory of evolution considers the dynamic holobiont as a single unit for natural selection and provides a more accommodating view of evolution blending Darwinism and Lamarkism. Additionally, holobionts are providing scientific basis to our understanding of the growing importance of probiotics in human health and in disease management. PMID:23694677

  2. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  3. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  4. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.

    PubMed

    Ishengoma, Edson; Agaba, Morris

    2017-02-16

    Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.

  5. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    NASA Astrophysics Data System (ADS)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  6. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  7. Quantitative Imaging in Cancer Evolution and Ecology

    PubMed Central

    Grove, Olya; Gillies, Robert J.

    2013-01-01

    Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral Darwinian dynamics before and during therapy. Advances in image analysis will place clinical imaging in an increasingly central role in the development of evolution-based patient-specific cancer therapy. © RSNA, 2013 PMID:24062559

  8. The metabolic pace-of-life model: incorporating ectothermic organisms into the theory of vertebrate ecoimmunology.

    PubMed

    Sandmeier, Franziska C; Tracy, Richard C

    2014-09-01

    We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system--through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody--antigen interactions. In current theory, the precise mechanisms of vertebrate immune function oft are inadequately considered as diverse selective pressures on the evolution of pathogens. We propose that the strength of adaptive immune function and pace of life together determine many of the important dynamics of host-pathogen evolution, namely, that hosts with a short lifespan and innate immunity or with a long lifespan and strong adaptive immunity are expected to drive the rapid evolution of their populations of pathogens. Long-lived hosts that rely primarily on innate immune functions are more likely to use defense mechanisms of tolerance (instead of resistance), which are not expected to act as a selection pressure for the rapid evolution of pathogens' virulence. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies.

    PubMed

    Finkbeiner, Susan D; Briscoe, Adriana D; Mullen, Sean P

    2017-04-01

    Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  11. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  12. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm?

    PubMed

    Evans, Jonathan P; Simmons, Leigh W

    2008-09-01

    The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.

  13. Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in Caenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size.

    PubMed

    Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali

    2017-06-01

    Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Why did heterospory evolve?

    PubMed

    Petersen, Kurt B; Burd, Martin

    2017-08-01

    The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re-invention of anisogamy within the context of a sporophyte-dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate-encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re-establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation. © 2016 Cambridge Philosophical Society.

  15. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution

    NASA Astrophysics Data System (ADS)

    Kille, Sabrina; Zilly, Felipe E.; Acevedo, Juan P.; Reetz, Manfred T.

    2011-09-01

    A current challenge in synthetic organic chemistry is the development of methods that allow the regio- and stereoselective oxidative C-H activation of natural or synthetic compounds with formation of the corresponding alcohols. Cytochrome P450 enzymes enable C-H activation at non-activated positions, but the simultaneous control of both regio- and stereoselectivity is problematic. Here, we demonstrate that directed evolution using iterative saturation mutagenesis provides a means to solve synthetic problems of this kind. Using P450 BM3(F87A) as the starting enzyme and testosterone as the substrate, which results in a 1:1 mixture of the 2β- and 15β-alcohols, mutants were obtained that are 96-97% selective for either of the two regioisomers, each with complete diastereoselectivity. The mutants can be used for selective oxidative hydroxylation of other steroids without performing additional mutagenesis experiments. Molecular dynamics simulations and docking experiments shed light on the origin of regio- and stereoselectivity.

  16. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution.

    PubMed

    Grubaugh, Nathan D; Rückert, Claudia; Armstrong, Philip M; Bransfield, Angela; Anderson, John F; Ebel, Gregory D; Brackney, Doug E

    2016-07-01

    Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus ) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.

  17. Evolution of flexibility and rigidity in retaliatory punishment

    PubMed Central

    MacGlashan, James; Littman, Michael L.

    2017-01-01

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game—a “thief” and a “victim”—must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension—and the adaptation of social behavior in this game—hinges on the game’s learning dynamics. Our findings clarify punishment’s adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts. PMID:28893996

  18. Evolution of flexibility and rigidity in retaliatory punishment.

    PubMed

    Morris, Adam; MacGlashan, James; Littman, Michael L; Cushman, Fiery

    2017-09-26

    Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game-a "thief" and a "victim"-must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension-and the adaptation of social behavior in this game-hinges on the game's learning dynamics. Our findings clarify punishment's adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts.

  19. Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space.

    PubMed

    Oliveira, G M; de Oliveira, P P; Omar, N

    2001-01-01

    Cellular automata (CA) are important as prototypical, spatially extended, discrete dynamical systems. Because the problem of forecasting dynamic behavior of CA is undecidable, various parameter-based approximations have been developed to address the problem. Out of the analysis of the most important parameters available to this end we proposed some guidelines that should be followed when defining a parameter of that kind. Based upon the guidelines, new parameters were proposed and a set of five parameters was selected; two of them were drawn from the literature and three are new ones, defined here. This article presents all of them and makes their qualities evident. Then, two results are described, related to the use of the parameter set in the Elementary Rule Space: a phase transition diagram, and some general heuristics for forecasting the dynamics of one-dimensional CA. Finally, as an example of the application of the selected parameters in high cardinality spaces, results are presented from experiments involving the evolution of radius-3 CA in the Density Classification Task, and radius-2 CA in the Synchronization Task.

  20. Temporal patterns of glacial lake evolution in high-mountain environments

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Emmer, Adam; Viani, Cristina; Huggel, Christian

    2017-04-01

    Lakes forming at the front of retreating glaciers are characteristic features of high-mountain areas in a warming climate. Typically, lakes shift from the proglacial phase (lake is in direct contact with glacier) to a glacier-detached (no direct contact) and finally to a non-glacial phase (lake catchment is completely deglaciated) of lake evolution. Apart from changing glacier-lake interactions, each stage is characterized by particular features of lake growth, and by the lake's susceptibility to sudden drainage (lake outburst flood). While this concept appears to be valid globally, some mountain areas are rich in dynamically evolving proglacial lakes, while in others most lakes have already shifted to the glacier-detached or even non-glacial phase. In the present contribution we (i) explore and quantify the history of glacial lake formation and evolution over the past up to 70 years; (ii) assess the current situation of selected contrasting mountain areas (eastern and western European Alps, southern and northern Pamir, Cordillera Blanca); and (iii) link the patterns of lake evolution to the prevailing topographic and glaciological characteristics in order to improve the understanding of high-mountain geoenvironmental change. In the eastern Alps we identify only very few lakes in the proglacial stage. While many lakes appeared and dynamically evolved until the 1980s between 2550 m and 2800 m asl, most of them have lost glacier contact until the 2000s, whereas very few new proglacial lakes appeared at the same time. Even though a similar trend is observed in the higher western Alps, a more dynamic glacial lake evolution is observed there. The arid southern Pamir is characterized by a high number of proglacial lakes, mainly around 4500 m asl. There is strong evidence that glacial lake evolution is, after a highly dynamic phase between the 1970s and approx. 2000, decelerating. Few proglacial lakes exist in the higher and more humid, heavily glacierized northern Pamir, even though there is some evidence for a the recent trend of lake formation and growth. The tropical Cordillera Blanca displays a high, but gradually decreasing share of proglacial lakes. A significant shift of lake elevation was observed: tmost lakes were situated between 4250 m and 4600 m asl in 1950s, while almost half of the lakes are currently situated above 4600 m asl, confirming post-LIA climate change forcing. We attempt to explain the observed trends by investigating the relation of the timing of lake evolution with an interplay of the broad-scale elevational patterns of glaciers and topography, and the local conditions. The findings will assist in anticipating possible future patterns of lake evolution at different scales, relevant for lake outburst risks and water management issues.

  1. Neutral Theory and Rapidly Evolving Viral Pathogens.

    PubMed

    Frost, Simon D W; Magalis, Brittany Rife; Kosakovsky Pond, Sergei L

    2018-06-01

    The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.

  2. Numerical modeling of the atmosphere with an isentropic vertical coordinate

    NASA Technical Reports Server (NTRS)

    Hsu, Yueh-Jiuan G.; Arakawa, Akio

    1990-01-01

    A theta-coordinate model simulating the nonlinear evolution of a baroclinic wave is presented. In the model, vertical discretization maintains important integral constraints such as conservation of the angular momentum and total energy. A massless-layer approach is used in the treatment of the intersections of coordinate surfaces with the lower boundary. This formally eliminates the intersection problem, but raises other computational problems. Horizontal discretization of the continuity and momentum equations in the model are designed to overcome these problems. Selected results from a 10-day integration with the 25-layer, beta-plane version of the model are presented. It is concluded that the model can simulate the nonlinear evolution of a baroclinic wave and associated dynamical processes without major computational difficulties.

  3. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. Terminal Model Of Newtonian Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.

  5. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.

    PubMed

    Siravegna, Giulia; Mussolin, Benedetta; Buscarino, Michela; Corti, Giorgio; Cassingena, Andrea; Crisafulli, Giovanni; Ponzetti, Agostino; Cremolini, Chiara; Amatu, Alessio; Lauricella, Calogero; Lamba, Simona; Hobor, Sebastijan; Avallone, Antonio; Valtorta, Emanuele; Rospo, Giuseppe; Medico, Enzo; Motta, Valentina; Antoniotti, Carlotta; Tatangelo, Fabiana; Bellosillo, Beatriz; Veronese, Silvio; Budillon, Alfredo; Montagut, Clara; Racca, Patrizia; Marsoni, Silvia; Falcone, Alfredo; Corcoran, Ryan B; Di Nicolantonio, Federica; Loupakis, Fotios; Siena, Salvatore; Sartore-Bianchi, Andrea; Bardelli, Alberto

    2015-07-01

    Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.

  6. Dynamics of monochromatically generated nonequilibrium phonons in LaF3:Pr3+

    NASA Astrophysics Data System (ADS)

    Tolbert, W. A.; Dennis, W. M.; Yen, W. M.

    1990-07-01

    The temporal evolution of nonequilibrium phonon populations in LaF3:Pr3+ is investigated at low temperatures (1.8 K) utilizing pulsed, tunable, monochromatic generation and time-resolved, tunable, narrow-band detection. High occupation number, narrow-band phonon populations are generated via far-infrared pumping of defect-induced one-phonon absorption. Time-resolved, frequency-selective detection is provided by optical sideband absorption. Nonequilibrium phonon decay times are measured and attributed to anharmonic decay.

  7. Evolution of catalytic centers of antibodies by virtual screening of broad repertoire of mutants using supercomputer.

    PubMed

    Golovin, A V; Smirnov, I V; Stepanova, A V; Zalevskiy, A O; Zlobin, A S; Ponomarenko, N A; Belogurov, A A; Knorre, V D; Hurs, E N; Chatziefthimiou, S D; Wilmanns, M; Blackburn, G M; Khomutov, R M; Gabibov, A G

    2017-07-01

    It is proposed to perform quantum mechanical/molecular dynamics calculations of chemical reactions that are planned to be catalyzed by antibodies and then conduct a virtual screening of the library of potential antibody mutants to select an optimal biocatalyst. We tested the effectiveness of this approach by the example of hydrolysis of organophosphorus toxicant paraoxon using kinetic approaches and X-ray analysis of the antibody biocatalyst designed de novo.

  8. Potential Effects of Horizontal Gene Exchange in the Human Gut.

    PubMed

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  9. The challenges of modelling antibody repertoire dynamics in HIV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shishi; Perelson, Alan S.

    Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selectionmore » and compare this to the observed temporal patterns of antibody evolution in HIV infection. In addition, we describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.« less

  10. The challenges of modelling antibody repertoire dynamics in HIV infection

    DOE PAGES

    Luo, Shishi; Perelson, Alan S.

    2015-07-20

    Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selectionmore » and compare this to the observed temporal patterns of antibody evolution in HIV infection. In addition, we describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.« less

  11. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    PubMed

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  12. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  13. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    PubMed

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    PubMed

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  15. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.

    PubMed

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-09-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  17. Transient virulence of emerging pathogens

    PubMed Central

    Bolker, Benjamin M.; Nanda, Arjun; Shah, Dharmini

    2010-01-01

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution. PMID:19864267

  18. The G matrix under fluctuating correlational mutation and selection.

    PubMed

    Revell, Liam J

    2007-08-01

    Theoretical quantitative genetics provides a framework for reconstructing past selection and predicting future patterns of phenotypic differentiation. However, the usefulness of the equations of quantitative genetics for evolutionary inference relies on the evolutionary stability of the additive genetic variance-covariance matrix (G matrix). A fruitful new approach for exploring the evolutionary dynamics of G involves the use of individual-based computer simulations. Previous studies have focused on the evolution of the eigenstructure of G. An alternative approach employed in this paper uses the multivariate response-to-selection equation to evaluate the stability of G. In this approach, I measure similarity by the correlation between response-to-selection vectors due to random selection gradients. I analyze the dynamics of G under several conditions of correlational mutation and selection. As found in a previous study, the eigenstructure of G is stabilized by correlational mutation and selection. However, over broad conditions, instability of G did not result in a decreased consistency of the response to selection. I also analyze the stability of G when the correlation coefficients of correlational mutation and selection and the effective population size change through time. To my knowledge, no prior study has used computer simulations to investigate the stability of G when correlational mutation and selection fluctuate. Under these conditions, the eigenstructure of G is unstable under some simulation conditions. Different results are obtained if G matrix stability is assessed by eigenanalysis or by the response to random selection gradients. In this case, the response to selection is most consistent when certain aspects of the eigenstructure of G are least stable and vice versa.

  19. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  20. Quantifying selective pressures driving bacterial evolution using lineage analysis

    PubMed Central

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population’s rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages –i.e. the life-histories of individuals and their ancestors– to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to E. coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems. PMID:26213639

  1. Toward a theory of multilevel evolution: long-term information integration shapes the mutational landscape and enhances evolvability.

    PubMed

    Hogeweg, Paulien

    2012-01-01

    Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.

  2. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  3. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  4. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem.

    PubMed

    Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V

    2015-06-10

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.

  5. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.

  6. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem

    PubMed Central

    Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.

    2015-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296

  7. Evolution and survival of marine carnivores did not require a diversity of KIR or Ly49 NK cell receptors1

    PubMed Central

    Hammond, John A.; Guethlein, Lisbeth A.; Abi-Rached, Laurent; Moesta, Achim K; Parham, Peter

    2009-01-01

    Ly49 lectin-like receptors and killer cell immunoglobulin-like receptors (KIR) are structurally unrelated cell-surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell-surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and likely led to the sea lion’s loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the > 33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK-cell receptors. PMID:19265140

  8. Evol and ProDy for bridging protein sequence evolution and structural dynamics

    PubMed Central

    Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet

    2014-01-01

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577

  9. Dynamical Evolution of Ring-Satellite Systems

    NASA Technical Reports Server (NTRS)

    Ohtsuki, Keiji

    2005-01-01

    The goal of this research was to understand dynamical processes related to the evolution of size distribution of particles in planetary rings and application of theoretical results to explain features in the present rings of giant planets. We studied velocity evolution and accretion rates of ring particles in the Roche zone. We developed a new numerical code for the evolution of ring particle size distribution, which takes into account the above results for particle velocity evolution and accretion rates. We also studied radial diffusion rate of ring particles due to inelastic collisions and gravitational encounters. Many of these results can be also applied to dynamical evolution of a planetesimal disk. Finally, we studied rotation rates of moonlets and particles in planetary rings, which would influence the accretional evolution of these bodies. We describe our key accomplishments during the past three years in more detail in the following.

  10. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation.

    PubMed

    Havird, Justin C; Hall, Matthew D; Dowling, Damian K

    2015-09-01

    The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation. © 2015 WILEY Periodicals, Inc.

  11. Galactic cannibalism. III. The morphological evolution of galaxies and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, M.A.; Ostriker, J.P.

    1978-09-01

    We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less

  12. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor

    PubMed Central

    2015-01-01

    Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911

  13. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    USDA-ARS?s Scientific Manuscript database

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  14. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    PubMed

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles

    PubMed Central

    Jékely, Gáspár

    2014-01-01

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. PMID:25183829

  16. Origins of altruism diversity II: Runaway co-evolution of altruistic strategies via “reciprocal niche construction”

    PubMed Central

    Van Dyken, J. David; Wade, Michael J.

    2012-01-01

    Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, co-evolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the co-existence of these two altruism types transforms the negative eco-evolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion “reciprocal niche construction”. In the absence of constraints, this process leads to runaway co-evolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process. PMID:22834748

  17. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  18. Simulation of the evolution of root water foraging strategies in dry and shallow soils.

    PubMed

    Renton, Michael; Poot, Pieter

    2014-09-01

    The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model. A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally--the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies.

  19. The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into Microsporidian Genome Dynamics and Reductive Evolution

    PubMed Central

    Heinz, Eva; Williams, Tom A.; Nakjang, Sirintra; Noël, Christophe J.; Swan, Daniel C.; Goldberg, Alina V.; Harris, Simon R.; Weinmaier, Thomas; Markert, Stephanie; Becher, Dörte; Bernhardt, Jörg; Dagan, Tal; Hacker, Christian; Lucocq, John M.; Schweder, Thomas; Rattei, Thomas; Hall, Neil; Hirt, Robert P.; Embley, T. Martin

    2012-01-01

    The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. PMID:23133373

  20. Evolution of frequency-dependent mate choice: keeping up with fashion trends

    PubMed Central

    Kokko, Hanna; Jennions, Michael D; Houde, Anne

    2007-01-01

    The diversity of sexual traits favoured by females is enormous and, curiously, includes preferences for males with rare or novel phenotypes. We modelled the evolution of a preference for rarity that yielded two surprising results. First, a Fisherian ‘sexy son’ effect can boost female preferences to a frequency well above that predicted by mutation–selection balance, even if there are significant mortality costs for females. Preferences do not reach fixation, however, as they are subject to frequency-dependent selection: if choosy females are too common, then rare genotypes in one generation become common, and thus unattractive, in the offspring generation. Nevertheless, even at relatively low frequency, preferences maintain polymorphism in male traits. The second unexpected result is that the preferences can evolve to much higher frequencies if choice is hindered, such that females cannot always express their preferences. Our results emphasize the need to consider feedback where preferences determine the dynamics of male genotypes and vice versa. They also highlight the similarity between the arbitrariness of behavioural norms in models of social evolution with punishment (the so-called ‘folk theorem’) and the diversity of sexual traits that can be preferred simply because deviating from the norm produces unattractive offspring and is, in this sense, ‘punished’. PMID:17360285

  1. Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster.

    PubMed

    Brand, Cara L; Larracuente, Amanda M; Presgraves, Daven C

    2015-05-01

    Meiotic drive elements are a special class of evolutionarily "selfish genes" that subvert Mendelian segregation to gain preferential transmission at the expense of homologous loci. Many drive elements appear to be maintained in populations as stable polymorphisms, their equilibrium frequencies determined by the balance between drive (increasing frequency) and selection (decreasing frequency). Here we show that a classic, seemingly balanced, drive system is instead characterized by frequent evolutionary turnover giving rise to dynamic, rather than stable, equilibrium frequencies. The autosomal Segregation Distorter (SD) system of the fruit fly Drosophila melanogaster is a selfish coadapted meiotic drive gene complex in which the major driver corresponds to a partial duplication of the gene Ran-GTPase activating protein (RanGAP). SD chromosomes segregate at similar, low frequencies of 1-5% in natural populations worldwide, consistent with a balanced polymorphism. Surprisingly, our population genetic analyses reveal evidence for parallel, independent selective sweeps of different SD chromosomes in populations on different continents. These findings suggest that, rather than persisting at a single stable equilibrium, SD chromosomes turn over frequently within populations. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. Response of ice caves to weather extremes in the southeastern Alps, Europe

    NASA Astrophysics Data System (ADS)

    Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.

    2016-05-01

    High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.

  3. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  4. Evolutionary history of Pacific salmon in dynamic environments

    PubMed Central

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-01-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  5. Modeling selective pressures on phytoplankton in the global ocean.

    PubMed

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-03-10

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.

  6. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution

    NASA Astrophysics Data System (ADS)

    Newman, Stuart A.; Bhat, Ramray

    2008-03-01

    The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.

  7. Dynamics of interacting quintessence models: Observational constraints

    NASA Astrophysics Data System (ADS)

    Olivares, Germán; Atrio-Barandela, Fernando; Pavón, Diego

    2008-03-01

    Interacting quintessence models have been proposed to explain or, at least, alleviate the coincidence problem of late cosmic acceleration. In this paper we are concerned with two aspects of these kind of models: (i) the dynamical evolution of the model of Chimento et al. [L. P. Chimento, A. S. Jakubi, D. Pavón, and W. Zimdahl, Phys. Rev. D 67, 083513 (2003).PRVDAQ0556-282110.1103/PhysRevD.67.083513], i.e., whether its cosmological evolution gives rise to a right sequence of radiation, dark matter, and dark energy dominated eras, and (ii) whether the dark matter dark energy ratio asymptotically evolves towards a nonzero constant. After showing that the model correctly reproduces these eras, we correlate three data sets that constrain the interaction at three redshift epochs: z≤104, z=103, and z=1. We discuss the model selection and argue that even if the model under consideration fulfills both requirements, it is heavily constrained by observation. The prospects that the coincidence problem can be explained by the coupling of dark matter to dark energy are not clearly favored by the data.

  8. Quantum entanglement in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  9. On the adaptivity and complexity embedded into differential evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less

  10. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas

    Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronicmore » repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.« less

  11. Stochastic dynamic programming illuminates the link between environment, physiology, and evolution.

    PubMed

    Mangel, Marc

    2015-05-01

    I describe how stochastic dynamic programming (SDP), a method for stochastic optimization that evolved from the work of Hamilton and Jacobi on variational problems, allows us to connect the physiological state of organisms, the environment in which they live, and how evolution by natural selection acts on trade-offs that all organisms face. I first derive the two canonical equations of SDP. These are valuable because although they apply to no system in particular, they share commonalities with many systems (as do frictionless springs). After that, I show how we used SDP in insect behavioral ecology. I describe the puzzles that needed to be solved, the SDP equations we used to solve the puzzles, and the experiments that we used to test the predictions of the models. I then briefly describe two other applications of SDP in biology: first, understanding the developmental pathways followed by steelhead trout in California and second skipped spawning by Norwegian cod. In both cases, modeling and empirical work were closely connected. I close with lessons learned and advice for the young mathematical biologists.

  12. Effects of topology on network evolution

    NASA Astrophysics Data System (ADS)

    Oikonomou, Panos; Cluzel, Philippe

    2006-08-01

    The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.

  13. Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure

    PubMed Central

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders

    2016-01-01

    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking. PMID:27510641

  14. Digital and analog chemical evolution.

    PubMed

    Goodwin, Jay T; Mehta, Anil K; Lynn, David G

    2012-12-18

    Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.

  15. Sex differences, sexual selection, and ageing: an experimental evolution approach.

    PubMed

    Maklakov, Alexei A; Bonduriansky, Russell; Brooks, Robert C

    2009-10-01

    Life-history (LH) theory predicts that selection will optimize the trade-off between reproduction and somatic maintenance. Reproductive ageing and finite life span are direct consequences of such optimization. Sexual selection and conflict profoundly affect the reproductive strategies of the sexes and thus can play an important role in the evolution of life span and ageing. In theory, sexual selection can favor the evolution of either faster or slower ageing, but the evidence is equivocal. We used a novel selection experiment to investigate the potential of sexual selection to influence the adaptive evolution of age-specific LH traits. We selected replicate populations of the seed beetle Callosobruchus maculatus for age at reproduction ("Young" and "Old") either with or without sexual selection. We found that LH selection resulted in the evolution of age-specific reproduction and mortality but these changes were largely unaffected by sexual selection. Sexual selection depressed net reproductive performance and failed to promote adaptation. Nonetheless, the evolution of several traits differed between males and females. These data challenge the importance of current sexual selection in promoting rapid adaptation to environmental change but support the hypothesis that sex differences in LH-a historical signature of sexual selection-are key in shaping trait responses to novel selection.

  16. Small Group Dynamics in the Evolution of Global Network Terrorism: A Comprehensive, People-Based Approach. Part A: Select Publications

    DTIC Science & Technology

    2009-10-07

    uncontroversial that people can rank sacred values, and if sacred values can be ordered relative to each other they cannot be of infinite value. Emile ... Durkheim notes that a significant feature of religion is that it constitutes a system of beliefs and rites where "sacred tilings have relations of...coordination and subordination to one another" ( Durkheim . 1912/ 1995, p. 38). Indeed, in our own studies of religious and politically active samples of

  17. Artificial evolution by viability rather than competition.

    PubMed

    Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario

    2014-01-01

    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  18. Rate of resistance evolution and polymorphism in long- and short-lived hosts.

    PubMed

    Bruns, Emily; Hood, Michael E; Antonovics, Janis

    2015-02-01

    Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  19. Resource-driven changes to host population stability alter the evolution of virulence and transmission.

    PubMed

    Hite, Jessica L; Cressler, Clayton E

    2018-05-05

    What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  20. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  1. Coevolutionary dynamics in large, but finite populations

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Claussen, Jens Christian; Hauert, Christoph

    2006-07-01

    Coevolving and competing species or game-theoretic strategies exhibit rich and complex dynamics for which a general theoretical framework based on finite populations is still lacking. Recently, an explicit mean-field description in the form of a Fokker-Planck equation was derived for frequency-dependent selection with two strategies in finite populations based on microscopic processes [A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)]. Here we generalize this approach in a twofold way: First, we extend the framework to an arbitrary number of strategies and second, we allow for mutations in the evolutionary process. The deterministic limit of infinite population size of the frequency-dependent Moran process yields the adjusted replicator-mutator equation, which describes the combined effect of selection and mutation. For finite populations, we provide an extension taking random drift into account. In the limit of neutral selection, i.e., whenever the process is determined by random drift and mutations, the stationary strategy distribution is derived. This distribution forms the background for the coevolutionary process. In particular, a critical mutation rate uc is obtained separating two scenarios: above uc the population predominantly consists of a mixture of strategies whereas below uc the population tends to be in homogeneous states. For one of the fundamental problems in evolutionary biology, the evolution of cooperation under Darwinian selection, we demonstrate that the analytical framework provides excellent approximations to individual based simulations even for rather small population sizes. This approach complements simulation results and provides a deeper, systematic understanding of coevolutionary dynamics.

  2. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B.

    2018-01-01

    We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments—one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.

  3. The physics of evolution

    NASA Astrophysics Data System (ADS)

    Eigen, Manfred

    1988-12-01

    The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most likely candidate for early evolution2,3, and of the implications on natural selection have been given in Refs. 4 and 5. The quasi-species model has been constructed in Refs. 6 and 7 using the concept of sequence space. Subsequently various methods have been invented to elucidate this concept and to relate it to the theory of critical phenomena 8-19. The instability of the quasi-species at the error threshold is discussed in Ref. 10. Evolution experiments with RNA strands in test tubes are described in Refs. 21 and 22.

  4. Microevolutionary dynamics in Methanothermococcus populations from deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hoffert, M.; Anderson, R. E.; Stepanauskas, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vents sustain diverse communities of microorganisms. The effects of geochemical and biological interactions on the process of evolution in these ecosystems remains poorly understood because the majority of subsurface microorganisms remain uncultivated. By examining metagenomic samples from hydrothermal fluids and mapping the samples to closely-related genomes found in vent sites, we can better understand how the process of evolution is affected by the geochemical and environmental context in deep-sea vents. The Mid-Cayman Rise is a spreading ridge that hosts both mafic-influenced and ultramafic-influenced vent fields. Previous research on metagenomic samples from sites in the Mid-Cayman Rise has shown that these vents contain metabolically and taxonomically diverse microbial communities. Here, we investigate five single cell amplified Methanothermococcus genomes (SAGs) to investigate patterns in pangenomic variation and molecular evolution in these methanogens. Mappings of metagenomic reads from 15 sample sites to the SAGs reveal substantial variation in Methanothermococcus population abundance, nucleotide variability and selection pressure among the 15 geochemically distinct sample sites. Within each sample site, we observed distinct patterns of single nucleotide variant (SNV) accumulation and selection pressure within the SAG populations. Closely related genomes showed similar patterns of SNV accumulation. Analysis of open reading frames (ORFs) from the SAGs indicated that homologous genes accumulated variation at the same rate. For example, a genomic island for Nif genes was identified in three of the five genomes with significantly elevated SNV counts. dN/dS analyses revealed evidence for frequency-dependent selection, in which genes unique to individual SAGs displayed elevated diversifying selection relative to other genes. These results indicate that different strains of Methanothermococcus outcompete others in specific environmental settings, and that these fitness advantages may result from variation in the pangenome, as revealed by dN/dS and SNV analyses. By examining variation and the scale of nucleotide and genes, we aim to gain insight into the roles of genetic diversity and environmental selection on microbial evolution in these ecosystems.

  5. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  6. Wavelet transform analysis of dynamic speckle patterns texture

    NASA Astrophysics Data System (ADS)

    Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo

    2002-11-01

    We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.

  7. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  8. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom

    PubMed Central

    Pomati, Francesco; Kraft, Nathan J. B.; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W.

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection. PMID:23951218

  9. Individual cell based traits obtained by scanning flow-cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom.

    PubMed

    Pomati, Francesco; Kraft, Nathan J B; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection.

  10. Molecular Epidemiology and Evolution of West Nile Virus in North America

    PubMed Central

    Mann, Brian R.; McMullen, Allison R.; Swetnam, Daniele M.; Barrett, Alan D. T.

    2013-01-01

    West Nile virus (WNV) was introduced to New York in 1999 and rapidly spread throughout North America and into parts of Central and South America. Displacement of the original New York (NY99) genotype by the North America/West Nile 2002 (NA/WN02) genotype occurred in 2002 with subsequent identification of a novel genotype in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 genotype). Both genotypes co-circulate to date. Subsequent WNV surveillance studies have confirmed additional genotypes in the United States that have become extinct due to lack of a selective advantage or stochastic effect; however, the dynamic emergence, displacement, and extinction of multiple WNV genotypes in the US from 1999–2012 indicates the continued evolution of WNV in North America. PMID:24135819

  11. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    PubMed

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  12. Coronal Loop Evolution Observed with AIA and Hi-C

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  13. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study

    ERIC Educational Resources Information Center

    Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang

    2018-01-01

    To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…

  15. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.

    PubMed

    Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar

    2015-10-01

    Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The evolution of individuality revisited.

    PubMed

    Radzvilavicius, Arunas L; Blackstone, Neil W

    2018-03-25

    Evolutionary theory is formulated in terms of individuals that carry heritable information and are subject to selective pressures. However, individuality itself is a trait that had to evolve - an individual is not an indivisible entity, but a result of evolutionary processes that necessarily begin at the lower level of hierarchical organisation. Traditional approaches to biological individuality focus on cooperation and relatedness within a group, division of labour, policing mechanisms and strong selection at the higher level. Nevertheless, despite considerable theoretical progress in these areas, a full dynamical first-principles account of how new types of individuals arise is missing. To the extent that individuality is an emergent trait, the problem can be approached by recognising the importance of individuating mechanisms that are present from the very beginning of the transition, when only lower-level selection is acting. Here we review some of the most influential theoretical work on the role of individuating mechanisms in these transitions, and demonstrate how a lower-level, bottom-up evolutionary framework can be used to understand biological complexity involved in the origin of cellular life, early eukaryotic evolution, sexual life cycles and multicellular development. Some of these mechanisms inevitably stem from environmental constraints, population structure and ancestral life cycles. Others are unique to specific transitions - features of the natural history and biochemistry that are co-opted into conflict mediation. Identifying mechanisms of individuation that provide a coarse-grained description of the system's evolutionary dynamics is an important step towards understanding how biological complexity and hierarchical organisation evolves. In this way, individuality can be reconceptualised as an approximate model that with varying degrees of precision applies to a wide range of biological systems. © 2018 Cambridge Philosophical Society.

  17. Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters.

    PubMed

    Abudukelimu, Abulikemu; Mondeel, Thierry D G A; Barberis, Matteo; Westerhoff, Hans V

    2017-06-15

    We present a systems biology view on pseudoenzymes that acknowledges that genes are not selfish: the genome is. With network function as the selectable unit, there has been an evolutionary bonus for recombination of functions of and within proteins. Many proteins house a functionality by which they 'read' the cell's state, and one by which they 'write' and thereby change that state. Should the writer domain lose its cognate function, a 'pseudoenzyme' or 'pseudosignaler' arises. GlnK involved in Escherichia coli ammonia assimilation may well be a pseudosignaler, associating 'reading' the nitrogen state of the cell to 'writing' the ammonium uptake activity. We identify functional pseudosignalers in the cyclin-dependent kinase complexes regulating cell-cycle progression. For the mitogen-activated protein kinase pathway, we illustrate how a 'dead' pseudosignaler could produce potentially selectable functionalities. Four billion years ago, bioenergetics may have shuffled 'electron-writers', producing various networks that all served the same function of anaerobic ATP synthesis and carbon assimilation from hydrogen and carbon dioxide, but at different ATP/acetate ratios. This would have enabled organisms to deal with variable challenges of energy need and substrate supply. The same principle might enable 'gear-shifting' in real time, by dynamically generating different pseudo-redox enzymes, reshuffling their coenzymes, and rerouting network fluxes. Non-stationary pH gradients in thermal vents together with similar such shuffling mechanisms may have produced a first selectable proton-motivated pyrophosphate synthase and subsequent ATP synthase. A combination of functionalities into enzymes, signalers, and the pseudo-versions thereof may offer fitness in terms of plasticity, both in real time and in evolution. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Burstiness and tie activation strategies in time-varying social networks.

    PubMed

    Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella

    2017-04-13

    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks' evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.

  19. Burstiness and tie activation strategies in time-varying social networks

    NASA Astrophysics Data System (ADS)

    Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella

    2017-04-01

    The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks’ evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.

  20. Long term evolution of distant retrograde orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin; Parker, Jeffrey S.

    2017-09-01

    This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit's size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon's solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.

  1. Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution.

    PubMed

    Laughney, Ashley M; Elizalde, Sergi; Genovese, Giulio; Bakhoum, Samuel F

    2015-08-04

    Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  4. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGES

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  5. Characterizing semantic mappings adaptation via biomedical KOS evolution: a case study investigating SNOMED CT and ICD.

    PubMed

    Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2013-01-01

    Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information.

  6. Characterizing Semantic Mappings Adaptation via Biomedical KOS Evolution: A Case Study Investigating SNOMED CT and ICD

    PubMed Central

    Reis, Julio Cesar Dos; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2013-01-01

    Mappings established between Knowledge Organization Systems (KOS) increase semantic interoperability between biomedical information systems. However, biomedical knowledge is highly dynamic and changes affecting KOS entities can potentially invalidate part or the totality of existing mappings. Understanding how mappings evolve and what the impacts of KOS evolution on mappings are is therefore crucial for the definition of an automatic approach to maintain mappings valid and up-to-date over time. In this article, we study variations of a specific KOS complex change (split) for two biomedical KOS (SNOMED CT and ICD-9-CM) through a rigorous method of investigation for identifying and refining complex changes, and for selecting representative cases. We empirically analyze and explain their influence on the evolution of associated mappings. Results point out the importance of considering various dimensions of the information described in KOS, like the semantic structure of concepts, the set of relevant information used to define the mappings and the change operations interfering with this set of information. PMID:24551341

  7. Divergent evolution of life span associated with mitochondrial DNA evolution.

    PubMed

    Stojković, Biljana; Sayadi, Ahmed; Đorđević, Mirko; Jović, Jelena; Savković, Uroš; Arnqvist, Göran

    2017-01-01

    Mitochondria play a key role in ageing. The pursuit of genes that regulate variation in life span and ageing have shown that several nuclear-encoded mitochondrial genes are important. However, the role of mitochondrial encoded genes (mtDNA) is more controversial and our appreciation of the role of mtDNA for the evolution of life span is limited. We use replicated lines of seed beetles that have been artificially selected for long or short life for >190 generations, now showing dramatic phenotypic differences, to test for a possible role of mtDNA in the divergent evolution of ageing and life span. We show that these divergent selection regimes led to the evolution of significantly different mtDNA haplotype frequencies. Selection for a long life and late reproduction generated positive selection for one specific haplotype, which was fixed in most such lines. In contrast, selection for reproduction early in life led to both positive selection as well as negative frequency-dependent selection on two different haplotypes, which were both present in all such lines. Our findings suggest that the evolution of life span was in part mediated by mtDNA, providing support for the emerging general tenet that adaptive evolution of life-history syndromes may involve mtDNA. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations.

    PubMed

    Gorter, Florien A; Derks, Martijn F L; van den Heuvel, Joost; Aarts, Mark G M; Zwaan, Bas J; de Ridder, Dick; de Visser, J Arjan G M

    2017-10-01

    The rate of directional environmental change may have profound consequences for evolutionary dynamics and outcomes. Yet, most evolution experiments impose a sudden large change in the environment, after which the environment is kept constant. We previously cultured replicate Saccharomyces cerevisiae populations for 500 generations in the presence of either gradually increasing or constant high concentrations of the heavy metals cadmium, nickel, and zinc. Here, we investigate how each of these treatments affected genomic evolution. Whole-genome sequencing of evolved clones revealed that adaptation occurred via a combination of SNPs, small indels, and whole-genome duplications and other large-scale structural changes. In contrast to some theoretical predictions, gradual and abrupt environmental change caused similar numbers of genomic changes. For cadmium, which is toxic already at comparatively low concentrations, mutations in the same genes were used for adaptation to both gradual and abrupt increase in concentration. Conversely, for nickel and zinc, which are toxic at high concentrations only, mutations in different genes were used for adaptation depending on the rate of change. Moreover, evolution was more repeatable following a sudden change in the environment, particularly for nickel and zinc. Our results show that the rate of environmental change and the nature of the selection pressure are important drivers of evolutionary dynamics and outcomes, which has implications for a better understanding of societal problems such as climate change and pollution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    PubMed Central

    Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.

    2012-01-01

    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities. PMID:22493682

  10. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    PubMed Central

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  11. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations.

    PubMed

    Cordero, Otto X; Ventouras, Laure-Anne; DeLong, Edward F; Polz, Martin F

    2012-12-04

    A common strategy among microbes living in iron-limited environments is the secretion of siderophores, which can bind poorly soluble iron and make it available to cells via active transport mechanisms. Such siderophore-iron complexes can be thought of as public goods that can be exploited by local communities and drive diversification, for example by the evolution of "cheating." However, it is unclear whether bacterial populations in the environment form stable enough communities such that social interactions significantly impact evolutionary dynamics. Here we show that public good games drive the evolution of iron acquisition strategies in wild populations of marine bacteria. We found that within nonclonal but ecologically cohesive genotypic clusters of closely related Vibrionaceae, only an intermediate percentage of genotypes are able to produce siderophores. Nonproducers within these clusters exhibited selective loss of siderophore biosynthetic pathways, whereas siderophore transport mechanisms were retained, suggesting that these nonproducers can act as cheaters that benefit from siderophore producers in their local environment. In support of this hypothesis, these nonproducers in iron-limited media suffer a significant decrease in growth, which can be alleviated by siderophores, presumably owing to the retention of transport mechanisms. Moreover, using ecological data of resource partitioning, we found that cheating coevolves with the ecological specialization toward association with larger particles in the water column, suggesting that these can harbor stable enough communities for dependencies among organisms to evolve.

  12. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    PubMed Central

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-01-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732

  13. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    NASA Astrophysics Data System (ADS)

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-07-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.

  14. The physics of evolution and biodiversity: Old answers to new questions, and more...

    NASA Astrophysics Data System (ADS)

    Bar-Yam, Yaneer

    2013-03-01

    In recent years there has been a contentious battle among prominent biologists about the validity of Kin versus Group Selection as models of evolutionary biology. I will show that the controversy is widely misunderstood and is rooted in the mean field basis of RA Fisher's statistical treatment of population biology, which is the origin of the ``gene centered view''-kin selection and inclusive fitness-but is also often used in analysis of group selection. As in statistical physics, symmetry breaking and pattern formation, and their spatial realizations, result in breakdown of the mean field approximation and the widely believed mathematical 'proofs' of the universality of the gene centered view. Our simulation and analysis (http://necsi.edu/research/evoeco/) of the role of this breakdown in spatial ecology, biodiversity, speciation and altruism, suggest there is an entire field of new opportunities to explore in the implications for evolutionary theory. The difference between biodiversity of wildtype populations and narrowly homogeneous laboratory types manifest the self-consistency of theoretical assumptions and laboratory experiments performed under conditions in which the mean field approximation applies. In contrast, the highly diverse natural populations manifest the role of boundaries between types (hybrid zones), speciation by spontaneous clustering, and spatio-temporal dynamics in predator prey systems. Altruism arises in evolving populations due to the spontaneous dynamic group formation and the heritability of environmental conditions created by parents and experienced by offspring (niche construction with symmetry breaking), so that altruists are better able to survive over the long term than selfish variants. Many versions of the mean field approximation that are traditionally used eliminate these spatio-temporal processes, leading to false analytic conclusions about their impossibility. The traditional view of altruism influenced views also of individuals in their relationship to society. In addition to the basic reframing of the origin of altruism, the role of space in evolution has important implications for understanding global dangers today, including pandemics driven by evolution of virulent pathogens that escape death through long-range transportation, and economic or environmental overexploitation when globalization enables exploiters to escape the consequences of their actions.

  15. Visible and infrared investigations of planet-crossing asteroids and outer solar system objects

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    The project is supporting lightcurve photometry, colorimetry, thermal radiometry, and astrometry of selected asteroids. Targets include the planet-crossing population, particularly Earth approachers, which are believed to be the immediate source of terrestrial meteorites, future spacecraft targets, and those objects in the outer belt, primarily the Hilda and Trojan populations, that are dynamically isolated from the main asteroid belt. Goals include the determination of population statistics for the planet-crossing objects, the characterization of spacecraft targets to assist in encounter planning and subsequent interpretation of the data, a comparison of the collisional evolution of dynamically isolated Hilda and Trojan populations with the main belt, and the determination of the mechanism driving the activity of the distant object 2060 Chiron.

  16. Brownian dynamics of self-regulated particles with additional degrees of freedom: Symmetry breaking and homochirality

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debankur; Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-04-01

    We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

  17. Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability

    PubMed Central

    Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino

    2012-01-01

    Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419

  18. False Beliefs in Unreliable Knowledge Networks

    NASA Astrophysics Data System (ADS)

    Ioannidis, Evangelos; Varsakelis, Nikos; Antoniou, Ioannis

    2017-03-01

    The aims of this work are: (1) to extend knowledge dynamics analysis in order to assess the influence of false beliefs and unreliable communication channels, (2) to investigate the impact of selection rule-policy for knowledge acquisition, (3) to investigate the impact of targeted link attacks ("breaks" or "infections") of certain "healthy" communication channels. We examine the knowledge dynamics analytically, as well as by simulations on both artificial and real organizational knowledge networks. The main findings are: (1) False beliefs have no significant influence on knowledge dynamics, while unreliable communication channels result in non-monotonic knowledge updates ("wild" knowledge fluctuations may appear) and in significant elongation of knowledge attainment. Moreover, false beliefs may emerge during knowledge evolution, due to the presence of unreliable communication channels, even if they were not present initially, (2) Changing the selection rule-policy, by raising the awareness of agents to avoid the selection of unreliable communication channels, results in monotonic knowledge upgrade and in faster knowledge attainment, (3) "Infecting" links is more harmful than "breaking" links, due to "wild" knowledge fluctuations and due to the elongation of knowledge attainment. Moreover, attacking even a "small" percentage of links (≤5%) with high knowledge transfer, may result in dramatic elongation of knowledge attainment (over 100%), as well as in delays of the onset of knowledge attainment. Hence, links of high knowledge transfer should be protected, because in Information Warfare and Disinformation, these links are the "best targets".

  19. Fecundity selection theory: concepts and evidence.

    PubMed

    Pincheira-Donoso, Daniel; Hunt, John

    2017-02-01

    Fitness results from an optimal balance between survival, mating success and fecundity. The interactions between these three components of fitness vary depending on the selective context, from positive covariation between them, to antagonistic pleiotropic relationships when fitness increases in one reduce the fitness of others. Therefore, elucidating the routes through which selection shapes life history and phenotypic adaptations via these fitness components is of primary significance to understanding ecological and evolutionary dynamics. However, while the fitness components mediated by natural (survival) and sexual (mating success) selection have been debated extensively from most possible perspectives, fecundity selection remains considerably less studied. Here, we review the theoretical basis, evidence and implications of fecundity selection as a driver of sex-specific adaptive evolution. Based on accumulating literature on the life-history, phenotypic and ecological aspects of fecundity, we (i) suggest a re-arrangement of the concepts of fecundity, whereby we coin the term 'transient fecundity' to refer to brood size per reproductive episode, while 'annual' and 'lifetime fecundity' should not be used interchangeably with 'transient fecundity' as they represent different life-history parameters; (ii) provide a generalized re-definition of the concept of fecundity selection as a mechanism that encompasses any traits that influence fecundity in any direction (from high to low) and in either sex; (iii) review the (macro)ecological basis of fecundity selection (e.g. ecological pressures that influence predictable spatial variation in fecundity); (iv) suggest that most ecological theories of fecundity selection should be tested in organisms other than birds; (v) argue that the longstanding fecundity selection hypothesis of female-biased sexual size dimorphism (SSD) has gained inconsistent support, that strong fecundity selection does not necessarily drive female-biased SSD, and that this form of SSD can be driven by other selective pressures; and (vi) discuss cases in which fecundity selection operates on males. This conceptual analysis of the theory of fecundity selection promises to help illuminate one of the central components of fitness and its contribution to adaptive evolution. © 2015 Cambridge Philosophical Society.

  20. Formal properties of the probability of fixation: identities, inequalities and approximations.

    PubMed

    McCandlish, David M; Epstein, Charles L; Plotkin, Joshua B

    2015-02-01

    The formula for the probability of fixation of a new mutation is widely used in theoretical population genetics and molecular evolution. Here we derive a series of identities, inequalities and approximations for the exact probability of fixation of a new mutation under the Moran process (equivalent results hold for the approximate probability of fixation under the Wright-Fisher process, after an appropriate change of variables). We show that the logarithm of the fixation probability has particularly simple behavior when the selection coefficient is measured as a difference of Malthusian fitnesses, and we exploit this simplicity to derive inequalities and approximations. We also present a comprehensive comparison of both existing and new approximations for the fixation probability, highlighting those approximations that induce a reversible Markov chain when used to describe the dynamics of evolution under weak mutation. To demonstrate the power of these results, we consider the classical problem of determining the total substitution rate across an ensemble of biallelic loci and prove that, at equilibrium, a strict majority of substitutions are due to drift rather than selection. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. ISM simulations: an overview of models

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.

    2015-03-01

    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.

  2. A Comparison of Galaxy Spiral Arm Pitch Angle Measurements Using Manual and Automated Techniques

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Treuthardt, Patrick

    2018-01-01

    Disk galaxy evolution is dominated by secular processes in the nearby universe. Revealing the morphological characteristics and underlying dynamics of these galaxies is key to understanding their evolution. The arm structure of disk galaxies can generally be described with logarithmic spirals, thereby giving measurements of pitch angle. These measurements are valuable for probing the dynamics and less apparent characteristics of these galaxies (i.e. supermassive black hole mass). Pitch angle measurements are powerful because they can be derived from a single, uncalibrated, broadband image with sufficient contrast, as opposed to more intensive observations. Accurate determination of these measurements can be challenging, however, since pitch angle can vary with radius.There are currently several semi-automated and manual techniques used to determine pitch angle. These are, or will be, used in at least two Zooniverse citizen science projects. The goal of this work is to determine if different, specific techniques return similar pitch angles for the same set of galaxies. We compare the results from a machine vision technique using SPARCFIRE, a non-Euclidean based hand selection of pitch angle, and two methods using 2D Fourier decomposition (i.e. selecting stable regions from the results of direct application to broadband images and application to traced versions of the observed spiral pattern). Each technique is applied to our sample of galaxies and the resulting pitch angles are compared to generated logarithmic spirals to evaluate the match quality.

  3. Potential Effects of Horizontal Gene Exchange in the Human Gut

    PubMed Central

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host–microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular. PMID:29230215

  4. Guiding the evolution to catch the virus: An in silico study of affinity maturation against rapidly mutating antigen

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Burton, Dennis; Kardar, Mehran; Chakraborty, Arup

    2014-03-01

    The immune system comprises an intricate and evolving collection of cells and molecules that enables a defense against pathogenic agents. Its workings present a rich source of physical problems that impact human health. One intriguing example is the process of affinity maturation (AM) through which an antibody (Ab)--a component of the host immune system--evolves to more efficiently bind an antigen (Ag)--a unique part of a foreign pathogen such as a virus. Sufficiently strong binding to the Ag enables recognition and neutralization. A major challenge is to contain a diversifying mixture of Ag variants, that arise in natural infection, from evading Ab neutralization. This entails a thorough understanding of AM against multiple Ag species and mutating Ag. During AM, Ab-encoding cells undergo cycles of mutation and selection, a process reminiscent of Darwinian evolution yet occurring in real time. We first cast affinity-dependent selection into an extreme value problem and show how the binding characteristics scale with Ag diversity. We then develop an agent-based residue-resolved computational model of AM which allows us to track the evolutionary trajectories of individual cells. This dynamic model not only reveals significant stochastic effects associated with the relatively small and highly dynamic population size, it also uncovers the markedly distinct maturation outcomes if designed Ag variants are presented in different temporal procedures. Insights thus obtained would guide rational design of vaccination protocols.

  5. Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan

    By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.

  6. The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process.

    PubMed

    Wu, Chung-I; Wang, Hurng-Yi; Ling, Shaoping; Lu, Xuemei

    2016-11-23

    Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.

  7. The evolution of phenotypic integration: How directional selection reshapes covariation in mice.

    PubMed

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-10-01

    Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  8. Evolution of the human immunodeficiency virus type 2 envelope in the first years of infection is associated with the dynamics of the neutralizing antibody response

    DOE PAGES

    Rocha, Cheila; Calado, Rita; Borrego, Pedro; ...

    2013-10-24

    Background: therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4 + T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected atmore » birth. As a result, CD4 + T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4 + T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. Finally, our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.« less

  9. Evolution of the human immunodeficiency virus type 2 envelope in the first years of infection is associated with the dynamics of the neutralizing antibody response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Cheila; Calado, Rita; Borrego, Pedro

    Background: therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4 + T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected atmore » birth. As a result, CD4 + T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4 + T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. Finally, our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.« less

  10. Metapopulation dynamics and the evolution of dispersal

    NASA Astrophysics Data System (ADS)

    Parvinen, Kalle

    A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.

  11. Escherichia coli viability determination using dynamic light scattering: a comparison with standard methods.

    PubMed

    Loske, Achim M; Tello, Elba M; Vargas, Susana; Rodriguez, Rogelio

    2014-08-01

    To determine the concentration of bacteria in a sample is important in the food industry, medicine and biotechnology. A disadvantage of the plate-counting method is that a microorganism colony could arise from one cell or from many cells. The other standard methodology, known as optical density determination, is based on the turbidity of a suspension and registers all bacteria, dead and alive. In this article, dynamic light scattering is proposed as a fast and reliable method to determine bacterial viability and, consequently, time evolution. Escherichia coli was selected because this microorganism is well known and easy to handle. A correlation between the data from these three techniques was obtained. We were able to calculate the growth rate, usually determined by plate counting or optical density measurement, using dynamic light scattering and to predict bacterial behavior. An analytical relationship between the colony forming units and the light scattered intensity was also deduced.

  12. Random walks on activity-driven networks with attractiveness

    NASA Astrophysics Data System (ADS)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  13. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  14. Selection, constraint, and the evolution of coloration in African starlings.

    PubMed

    Maia, Rafael; Rubenstein, Dustin R; Shawkey, Matthew D

    2016-05-01

    Colorful plumage plays a prominent role in the evolution of birds, influencing communication (sexual/social selection), and crypsis (natural selection). Comparative studies have focused primarily on these selective pressures, but the mechanisms underlying color production can also be important by constraining the color gamut upon which selection acts. Iridescence is particularly interesting to study the interaction between selection and color-producing mechanisms because a broad range of colors can be produced with a shared template, and innovations to this template further expand this by increasing the parameters interacting to produce colors. We examine the patterns of ornamentation and dichromatism evolution in African starlings, a group remarkably diverse in color production mechanisms, social systems, and ecologies. We find that the presence of iridescence is ancestral to the group, being predominantly lost in females and cooperative breeders, as well as species with less labile templates. Color-producing mechanisms interact and are the main predictors of plumage ornamentation and elaboration, with little influence of selective pressures in their evolution. Dichromatism, however is influenced by social system and the loss of iridescence. Our results show the importance of considering both selection and constraints, and the different roles that they may have, in the evolution of ornamentation and dimorphism. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Evol and ProDy for bridging protein sequence evolution and structural dynamics.

    PubMed

    Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R; Bahar, Ivet

    2014-09-15

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Nonmathematical models for evolution of altruism, and for group selection (peck order-territoriality-ant colony-dual-determinant model-tri-determinant model).

    PubMed

    Darlington, P J

    1972-02-01

    Mathematical biologists have failed to produce a satisfactory general model for evolution of altruism, i.e., of behaviors by which "altruists" benefit other individuals but not themselves; kin selection does not seem to be a sufficient explanation of nonreciprocal altruism. Nonmathematical (but mathematically acceptable) models are now proposed for evolution of negative altruism in dual-determinant and of positive altruism in tri-determinant systems. Peck orders, territorial systems, and an ant society are analyzed as examples. In all models, evolution is primarily by individual selection, probably supplemented by group selection. Group selection is differential extinction of populations. It can act only on populations preformed by selection at the individual level, but can either cancel individual selective trends (effecting evolutionary homeostasis) or supplement them; its supplementary effect is probably increasingly important in the evolution of increasingly organized populations.

  17. Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution.

    PubMed

    Potts, Richard; Faith, J Tyler

    2015-10-01

    Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.

  18. On the thermodynamics of multilevel evolution.

    PubMed

    Tessera, Marc; Hoelzer, Guy A

    2013-09-01

    Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Sexual selection and genital evolution: an overview.

    PubMed

    Shamloul, Rany; el-Sakka, Ahmed; Bella, Anthony J

    2010-05-01

    Genital morphology (especially male) among the animal kingdom is characterized by extensive differences that even members of closely related species with similar general morphology may have remarkably diverse genitalia. To present the sexual medicine specialist with a basic understanding of the current hypotheses on genital evolution with an emphasis on the sexual selection theories. A review of current literature on the theories of genital evolution. Analysis of the supporting evidence for the sexual selection theories of genital evolution. Several theories have been proposed to explain genital evolution. Currently, the sexual selection theories are being considered to present valid and solid evidence explaining genital evolution. However, other theories, including sexual conflict, are still being investigated. All theories of genital evolution have their own weaknesses and strengths. Given that many complex biological mechanisms, mostly unknown yet, are involved in the process of genital evolution, it is thus reasonable to conclude that not one theory can independently explain genital evolution. It is likely that these mechanisms may prove to have synergistic rather than exclusive effects.

  20. Antagonistic responses to natural and sexual selection and the sex-specific evolution of cuticular hydrocarbons in Drosophila simulans.

    PubMed

    Sharma, Manmohan D; Hunt, John; Hosken, David J

    2012-03-01

    Natural and sexual selection are classically thought to oppose one another, and although there is evidence for this, direct experimental demonstrations of this antagonism are largely lacking. Here, we assessed the effects of sexual and natural selection on the evolution of cuticular hydrocarbons (CHCs), a character subject to both modes of selection, in Drosophila simulans. Natural selection and sexual selection were manipulated in a fully factorial design, and after 27 generations of experimental evolution, the responses of male and female CHCs were assessed. The effects of natural and sexual selection differed greatly across the sexes. The responses of female CHCs were generally small, but CHCs evolved predominantly in the direction of natural selection. For males, profiles evolved via sexual and natural selection, as well as through the interaction between the two, with some male CHC components only evolving in the direction of natural selection when sexual selection was relaxed. These results indicate sex-specific responses to selection, and that sexual and natural selection act antagonistically for at least some combinations of CHCs. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

Top