Characterizing behavioural ‘characters’: an evolutionary framework
Araya-Ajoy, Yimen G.; Dingemanse, Niels J.
2014-01-01
Biologists often study phenotypic evolution assuming that phenotypes consist of a set of quasi-independent units that have been shaped by selection to accomplish a particular function. In the evolutionary literature, such quasi-independent functional units are called ‘evolutionary characters’, and a framework based on evolutionary principles has been developed to characterize them. This framework mainly focuses on ‘fixed’ characters, i.e. those that vary exclusively between individuals. In this paper, we introduce multi-level variation and thereby expand the framework to labile characters, focusing on behaviour as a worked example. We first propose a concept of ‘behavioural characters’ based on the original evolutionary character concept. We then detail how integration of variation between individuals (cf. ‘personality’) and within individuals (cf. ‘individual plasticity’) into the framework gives rise to a whole suite of novel testable predictions about the evolutionary character concept. We further propose a corresponding statistical methodology to test whether observed behaviours should be considered expressions of a hypothesized evolutionary character. We illustrate the application of our framework by characterizing the behavioural character ‘aggressiveness’ in wild great tits, Parus major. PMID:24335984
Replaying evolutionary transitions from the dental fossil record
Harjunmaa, Enni; Seidel, Kerstin; Häkkinen, Teemu; Renvoisé, Elodie; Corfe, Ian J.; Kallonen, Aki; Zhang, Zhao-Qun; Evans, Alistair R.; Mikkola, Marja L.; Salazar-Ciudad, Isaac; Klein, Ophir D.; Jernvall, Jukka
2014-01-01
The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character interdependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character state transitions used in evolutionary studies. PMID:25079326
Evolution of early embryogenesis in rhabditid nematodes
Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio
2009-01-01
The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102
Lande, R
2014-05-01
Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Endara, Lorena; Cui, Hong; Burleigh, J Gordon
2018-03-01
Phenotypic data sets are necessary to elucidate the genealogy of life, but assembling phenotypic data for taxa across the tree of life can be technically challenging and prohibitively time consuming. We describe a semi-automated protocol to facilitate and expedite the assembly of phenotypic character matrices of plants from formal taxonomic descriptions. This pipeline uses new natural language processing (NLP) techniques and a glossary of over 9000 botanical terms. Our protocol includes the Explorer of Taxon Concepts (ETC), an online application that assembles taxon-by-character matrices from taxonomic descriptions, and MatrixConverter, a Java application that enables users to evaluate and discretize the characters extracted by ETC. We demonstrate this protocol using descriptions from Araucariaceae. The NLP pipeline unlocks the phenotypic data found in taxonomic descriptions and makes them usable for evolutionary analyses.
Phenex: ontological annotation of phenotypic diversity.
Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J
2010-05-05
Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.
Allen, Cerisse E; Beldade, Patrícia; Zwaan, Bas J; Brakefield, Paul M
2008-03-26
There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Bateman, Richard M; Hilton, Jason; Rudall, Paula J
2006-01-01
Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.
Donohue, Kathleen
2005-04-01
The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).
Repeated evolution of camouflage in speciose desert rodents.
Boratyński, Zbyszek; Brito, José C; Campos, João C; Cunha, José L; Granjon, Laurent; Mappes, Tapio; Ndiaye, Arame; Rzebik-Kowalska, Barbara; Serén, Nina
2017-06-14
There are two main factors explaining variation among species and the evolution of characters along phylogeny: adaptive change, including phenotypic and genetic responses to selective pressures, and phylogenetic inertia, or the resemblance between species due to shared phylogenetic history. Phenotype-habitat colour match, a classic Darwinian example of the evolution of camouflage (crypsis), offers the opportunity to test the importance of historical versus ecological mechanisms in shaping phenotypes among phylogenetically closely related taxa. To assess it, we investigated fur (phenotypic data) and habitat (remote sensing data) colourations, along with phylogenetic information, in the species-rich Gerbillus genus. Overall, we found a strong phenotype-habitat match, once the phylogenetic signal is taken into account. We found that camouflage has been acquired and lost repeatedly in the course of the evolutionary history of Gerbillus. Our results suggest that fur colouration and its covariation with habitat is a relatively labile character in mammals, potentially responding quickly to selection. Relatively unconstrained and substantial genetic basis, as well as structural and functional independence from other fitness traits of mammalian colouration might be responsible for that observation.
Effect of Teosinte Cytoplasmic Genomes on Maize Phenotype
Allen, James O.
2005-01-01
Determining the contribution of organelle genes to plant phenotype is hampered by several factors, including the paucity of variation in the plastid and mitochondrial genomes. To circumvent this problem, evolutionary divergence between maize (Zea mays ssp. mays) and the teosintes, its closest relatives, was utilized as a source of cytoplasmic genetic variation. Maize lines in which the maize organelle genomes were replaced through serial backcrossing by those representing the entire genus, yielding alloplasmic sublines, or cytolines were created. To avoid the confounding effects of segregating nuclear alleles, an inbred maize line was utilized. Cytolines with Z. mays teosinte cytoplasms were generally indistinguishable from maize. However, cytolines with cytoplasm from the more distantly related Z. luxurians, Z. diploperennis, or Z. perennis exhibited a plethora of differences in growth, development, morphology, and function. Significant differences were observed for 56 of the 58 characters studied. Each cytoline was significantly different from the inbred line for most characters. For a given character, variation was often greater among cytolines having cytoplasms from the same species than among those from different species. The characters differed largely independently of each other. These results suggest that the cytoplasm contributes significantly to a large proportion of plant traits and that many of the organelle genes are phenotypically important. PMID:15731518
Orr, H A
1998-01-01
Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061
Uyeda, Josef C; Harmon, Luke J; Blank, Carrine E
2016-01-01
Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record-phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth's history have shaped-and been shaped by-evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and "Snowball Earth" glaciations and is associated with decrease in the evolutionary rates around 1.8-1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes-particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth's history.
Integrating evo-devo with ecology for a better understanding of phenotypic evolution
Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.
2015-01-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411
Integrating evo-devo with ecology for a better understanding of phenotypic evolution.
Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman
2015-11-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.
DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.
Tanaka, Yoshinari
1996-10-01
A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.
Cadena, Carlos Daniel; Zapata, Felipe; Jiménez, Iván
2018-03-01
Progress in the development and use of methods for species delimitation employing phenotypic data lags behind conceptual and practical advances in molecular genetic approaches. The basic evolutionary model underlying the use of phenotypic data to delimit species assumes random mating and quantitative polygenic traits, so that phenotypic distributions within a species should be approximately normal for individuals of the same sex and age. Accordingly, two or more distinct normal distributions of phenotypic traits suggest the existence of multiple species. In light of this model, we show that analytical approaches employed in taxonomic studies using phenotypic data are often compromised by three issues: 1) reliance on graphical analyses that convey little information on phenotype frequencies; 2) exclusion of characters potentially important for species delimitation following reduction of data dimensionality; and 3) use of measures of central tendency to evaluate phenotypic distinctiveness. We outline approaches to overcome these issues based on statistical developments related to normal mixture models (NMMs) and illustrate them empirically with a reanalysis of morphological data recently used to claim that there are no morphologically distinct species of Darwin's ground-finches (Geospiza). We found negligible support for this claim relative to taxonomic hypotheses recognizing multiple species. Although species limits among ground-finches merit further assessments using additional sources of information, our results bear implications for other areas of inquiry including speciation research: because ground-finches have likely speciated and are not trapped in a process of "Sisyphean" evolution as recently argued, they remain useful models to understand the evolutionary forces involved in speciation. Our work underscores the importance of statistical approaches grounded on appropriate evolutionary models for species delimitation. We discuss how NMMs offer new perspectives in the kind of inferences available to systematists, with significant repercussions on ideas about the phenotypic structure of biodiversity.
Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula M
2010-05-20
The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.
Next-generation phenomics for the Tree of Life.
Burleigh, J Gordon; Alphonse, Kenzley; Alverson, Andrew J; Bik, Holly M; Blank, Carrine; Cirranello, Andrea L; Cui, Hong; Daly, Marymegan; Dietterich, Thomas G; Gasparich, Gail; Irvine, Jed; Julius, Matthew; Kaufman, Seth; Law, Edith; Liu, Jing; Moore, Lisa; O'Leary, Maureen A; Passarotti, Maria; Ranade, Sonali; Simmons, Nancy B; Stevenson, Dennis W; Thacker, Robert W; Theriot, Edward C; Todorovic, Sinisa; Velazco, Paúl M; Walls, Ramona L; Wolfe, Joanna M; Yu, Mengjie
2013-06-26
The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.
Selection on skewed characters and the paradox of stasis
Bonamour, Suzanne; Teplitsky, Céline; Charmantier, Anne; Crochet, Pierre-André; Chevin, Luis-Miguel
2018-01-01
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modelling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold’s (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate samples size. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date – repeatedly described as more evolutionarily stable than expected –, so this skewness should be accounted for when investigating evolutionary dynamics in the wild. PMID:28921508
Conover, David O; Duffy, Tara A; Hice, Lyndie A
2009-06-01
Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.
Diogo, R; Wood, B
2011-01-01
Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. PMID:21689100
Diogo, R; Wood, B
2011-09-01
Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
Tremblay, Raymond L.; Ackerman, James D.; Pérez, Maria-Eglée
2010-01-01
Evolutionary models estimating phenotypic selection in character size usually assume that the character is invariant across reproductive bouts. We show that variation in the size of reproductive traits may be large over multiple events and can influence fitness in organisms where these traits are produced anew each season. With data from populations of two orchid species, Caladenia valida and Tolumnia variegata, we used Bayesian statistics to investigate the effect on the distribution in fitness of individuals when the fitness landscape is not flat and when characters vary across reproductive bouts. Inconsistency in character size across reproductive periods within an individual increases the uncertainty of mean fitness and, consequently, the uncertainty in individual fitness. The trajectory of selection is likely to be muddled as a consequence of variation in morphology of individuals across reproductive bouts. The frequency and amplitude of such changes will certainly affect the dynamics between selection and genetic drift. PMID:20047875
The sources of adaptive variation
2017-01-01
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis. Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. PMID:28566483
The sources of adaptive variation.
Charlesworth, Deborah; Barton, Nicholas H; Charlesworth, Brian
2017-05-31
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed. © 2017 The Author(s).
Griffith, Oliver W; Blackburn, Daniel G; Brandley, Matthew C; Van Dyke, James U; Whittington, Camilla M; Thompson, Michael B
2015-09-01
To understand evolutionary transformations it is necessary to identify the character states of extinct ancestors. Ancestral character state reconstruction is inherently difficult because it requires an accurate phylogeny, character state data, and a statistical model of transition rates and is fundamentally constrained by missing data such as extinct taxa. We argue that model based ancestral character state reconstruction should be used to generate hypotheses but should not be considered an analytical endpoint. Using the evolution of viviparity and reversals to oviparity in squamates as a case study, we show how anatomical, physiological, and ecological data can be used to evaluate hypotheses about evolutionary transitions. The evolution of squamate viviparity requires changes to the timing of reproductive events and the successive loss of features responsible for building an eggshell. A reversal to oviparity requires that those lost traits re-evolve. We argue that the re-evolution of oviparity is inherently more difficult than the reverse. We outline how the inviability of intermediate phenotypes might present physiological barriers to reversals from viviparity to oviparity. Finally, we show that ecological data supports an oviparous ancestral state for squamates and multiple transitions to viviparity. In summary, we conclude that the first squamates were oviparous, that frequent transitions to viviparity have occurred, and that reversals to oviparity in viviparous lineages either have not occurred or are exceedingly rare. As this evidence supports conclusions that differ from previous ancestral state reconstructions, our paper highlights the importance of incorporating biological evidence to evaluate model-generated hypotheses. © 2015 Wiley Periodicals, Inc.
Selection on skewed characters and the paradox of stasis.
Bonamour, Suzanne; Teplitsky, Céline; Charmantier, Anne; Crochet, Pierre-André; Chevin, Luis-Miguel
2017-11-01
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date - repeatedly described as more evolutionarily stable than expected - so this skewness should be accounted for when investigating evolutionary dynamics in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Neopolyploidy and diversification in Heuchera grossulariifolia
Oswald, Benjamin P.; Nuismer, Scott L.
2013-01-01
Newly formed polyploid lineages must contend with several obstacles to avoid extinction, including minority cytotype exclusion, competition, and inbreeding depression. If polyploidization results in immediate divergence of phenotypic characters these hurdles may be reduced and establishment made more likely. In addition, if polyploidization alters the phenotypic and genotypic associations between traits, i.e. the P and G matrices, polyploids may be able to explore novel evolutionary paths, facilitating their divergence and successful establishment. Here we report results from a study of the perennial plant Heuchera grossulariifolia in which the phenotypic divergence and changes in phenotypic and genotypic covariance matrices caused by neopolyploidization have been estimated. Our results reveal that polyploidization causes immediate divergence for traits relevant to establishment and results in significant changes in the structure of the phenotypic covariance matrix. In contrast, our results do not provide evidence that polyploidization results in immediate and substantial shifts in the genetic covariance matrix. PMID:21143472
Harmon, Luke J.; Blank, Carrine E.
2016-01-01
Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record—phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth’s history have shaped—and been shaped by—evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and “Snowball Earth” glaciations and is associated with decrease in the evolutionary rates around 1.8–1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes–particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth’s history. PMID:27649395
Morphological and niche divergence of pinyon pines.
Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel
2016-05-01
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.
Anton, K A; Ward, J R; Cruzan, M B
2013-03-01
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
An end to endless forms: epistasis, phenotype distribution bias, and nonuniform evolution.
Borenstein, Elhanan; Krakauer, David C
2008-10-01
Studies of the evolution of development characterize the way in which gene regulatory dynamics during ontogeny constructs and channels phenotypic variation. These studies have identified a number of evolutionary regularities: (1) phenotypes occupy only a small subspace of possible phenotypes, (2) the influence of mutation is not uniform and is often canalized, and (3) a great deal of morphological variation evolved early in the history of multicellular life. An important implication of these studies is that diversity is largely the outcome of the evolution of gene regulation rather than the emergence of new, structural genes. Using a simple model that considers a generic property of developmental maps-the interaction between multiple genetic elements and the nonlinearity of gene interaction in shaping phenotypic traits-we are able to recover many of these empirical regularities. We show that visible phenotypes represent only a small fraction of possibilities. Epistasis ensures that phenotypes are highly clustered in morphospace and that the most frequent phenotypes are the most similar. We perform phylogenetic analyses on an evolving, developmental model and find that species become more alike through time, whereas higher-level grades have a tendency to diverge. Ancestral phenotypes, produced by early developmental programs with a low level of gene interaction, are found to span a significantly greater volume of the total phenotypic space than derived taxa. We suggest that early and late evolution have a different character that we classify into micro- and macroevolutionary configurations. These findings complement the view of development as a key component in the production of endless forms and highlight the crucial role of development in constraining biotic diversity and evolutionary trajectories.
Genetic and developmental basis for parallel evolution and its significance for hominoid evolution.
Reno, Philip L
2014-01-01
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.(1-4) However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan-Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo-devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution. © 2014 Wiley Periodicals, Inc.
Neopolyploidy and diversification in Heuchera grossulariifolia.
Oswald, Benjamin P; Nuismer, Scott L
2011-06-01
Newly formed polyploid lineages must contend with several obstacles to avoid extinction, including minority cytotype exclusion, competition, and inbreeding depression. If polyploidization results in immediate divergence of phenotypic characters these hurdles may be reduced and establishment made more likely. In addition, if polyploidization alters the phenotypic and genotypic associations between traits, that is, the P and G matrices, polyploids may be able to explore novel evolutionary paths, facilitating their divergence and successful establishment. Here, we report results from a study of the perennial plant Heuchera grossulariifolia in which the phenotypic divergence and changes in phenotypic and genotypic covariance matrices caused by neopolyploidization have been estimated. Our results reveal that polyploidization causes immediate divergence for traits relevant to establishment and results in significant changes in the structure of the phenotypic covariance matrix. In contrast, our results do not provide evidence that polyploidization results in immediate and substantial shifts in the genetic covariance matrix. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Mandible shape in hybrid mice.
Renaud, Sabrina; Alibert, Paul; Auffray, Jean-Christophe
2009-09-01
Hybridisation between closely related species is frequently seen as retarding evolutionary divergence and can also promote it by creating novel phenotypes due to new genetic combinations and developmental interactions. We therefore investigated how hybridisation affects the shape of the mouse mandible, a well-known feature in evo-devo studies. Parental groups corresponded to two strains of the European mouse sub-species Mus musculus domesticus and Mus musculus musculus. Parents and hybrids were bred in controlled conditions. The mandibles of F(1) hybrids are mostly intermediate between parental phenotypes as expected for a complex multigenic character. Nevertheless, a transgressive effect as well as an increased phenotypic variance characterise the hybrids. This suggests that hybridisation between the two subspecies could lead to a higher phenotypic variance due to complex interactions among the parental genomes including non-additive genetic effects. The major direction of variance is conserved, however, among hybrids and parent groups. Hybridisation may thus play a role in the production of original transgressive phenotypes occurring following pre-existing patterns of variance.
Morphology captures diet and locomotor types in rodents.
Verde Arregoitia, Luis D; Fisher, Diana O; Schweizer, Manuel
2017-01-01
To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.
Emergent properties of gene evolution: Species as attractors in phenotypic space
NASA Astrophysics Data System (ADS)
Reuveni, Eli; Giuliani, Alessandro
2012-02-01
The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.
Cruz, R; Vilas, C; Mosquera, J; García, C
2004-11-01
To study the role of divergent selection in the differentiation of the two morphs in a hybrid zone of the intertidal snail Littorina saxatilis, we compared the strength of the divergent selection acting on a series of shell characters (as estimated by the viability of snails in a reciprocal transplant experiment) with the contribution of these characters to the phenotypic differences between the morphs. We found a close correlation between selection and differentiation, which suggests a cause-effect relationship, i.e. that all present differentiation is the result of past divergent selection. In addition, divergent selection was a very important component of the total natural selection acting on shell measures. These novel results support previous evidence, based on allozyme analysis, of a parapatric origin for this hybrid zone. We discuss possible limitations of this interpretation and the circumstances under which allopatric differentiation would produce the same results. Phenotypic analysis of divergent selection may be a useful method of investigating the evolutionary mechanisms involved in differentiation processes.
Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja
2013-01-01
The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated "cryptic" lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving divergence and speciation, but also their potential role as repositories of ancestral diversity.
Sikkink, Kristin L; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C
2015-05-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. © 2015 The Author(s).
Campbell, D R; Bischoff, M; Lord, J M; Robertson, A W
2012-02-01
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Sikkink, Kristin L.; Reynolds, Rose M.; Cresko, William A.; Phillips, Patrick C.
2017-01-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. PMID:25809411
Abbasi, R; Marcus, J M
2015-11-01
Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty-four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells -1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Drury, J P; Grether, G F; Garland, T; Morlon, H
2018-05-01
Much ecological and evolutionary theory predicts that interspecific interactions often drive phenotypic diversification and that species phenotypes in turn influence species interactions. Several phylogenetic comparative methods have been developed to assess the importance of such processes in nature; however, the statistical properties of these methods have gone largely untested. Focusing mainly on scenarios of competition between closely-related species, we assess the performance of available comparative approaches for analyzing the interplay between interspecific interactions and species phenotypes. We find that many currently used statistical methods often fail to detect the impact of interspecific interactions on trait evolution, that sister-taxa analyses are particularly unreliable in general, and that recently developed process-based models have more satisfactory statistical properties. Methods for detecting predictors of species interactions are generally more reliable than methods for detecting character displacement. In weighing the strengths and weaknesses of different approaches, we hope to provide a clear guide for empiricists testing hypotheses about the reciprocal effect of interspecific interactions and species phenotypes and to inspire further development of process-based models.
Adaptive evolution of Mediterranean pines.
Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C
2013-09-01
Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Sramkó, Gábor; Paun, Ovidiu
2018-01-01
Abstract Background and Aims Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. Methods At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. Key Results RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. Conclusions The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. PMID:29325077
Bateman, Richard M; Sramkó, Gábor; Paun, Ovidiu
2018-01-25
Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.
Blankers, T; Lübke, A K; Hennig, R M
2015-09-01
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive-dominance variation was estimated. Finally, phenotypic variance-covariance (P) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X-linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences. © 2015 European Society For Evolutionary Biology.
The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
van Doorn, G Sander; Dieckmann, Ulf
2006-11-01
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.
Natural selection and inheritance of breeding time and clutch size in the collared flycatcher.
Sheldon, B C; Kruuk, L E B; Merilä, J
2003-02-01
Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on laying date is partially constrained by underlying life-history trade-offs, and illustrate the difficulties in using purely phenotypic measures and incomplete fitness estimates to assess evolution of life-history trade-offs. We discuss some of the difficulties associated with understanding the evolution of laying date and clutch size in natural populations.
Cummins, Carla A; McInerney, James O
2011-12-01
Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.
NASA Astrophysics Data System (ADS)
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-10-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-01-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).
Meagher, Thomas R; Costich, Denise E
2004-01-01
Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614
Proshek, Benjamin; Dupuis, Julian R; Engberg, Anna; Davenport, Ken; Opler, Paul A; Powell, Jerry A; Sperling, Felix A H
2015-04-25
The Mormon Metalmark (Apodemia mormo) species complex occurs as isolated and phenotypically variable colonies in dryland areas across western North America. Lange's Metalmark, A. m. langei, one of the 17 subspecies taxonomically recognized in the complex, is federally listed under the U.S. Endangered Species Act of 1973. Metalmark taxa have traditionally been described based on phenotypic and ecological characteristics, and it is unknown how well this nomenclature reflects their genetic and evolutionary distinctiveness. Genetic variation in six microsatellite loci and mitochondrial cytochrome oxidase subunit I sequence was used to assess the population structure of the A. mormo species complex across 69 localities, and to evaluate A. m. langei's qualifications as an Evolutionarily Significant Unit. We discovered substantial genetic divergence within the species complex, especially across the Continental Divide, with population genetic structure corresponding more closely with geographic proximity and local isolation than with taxonomic divisions originally based on wing color and pattern characters. Lange's Metalmark was as genetically divergent as several other locally isolated populations in California, and even the unique phenotype that warranted subspecific and conservation status is reminiscent of the morphological variation found in some other populations. This study is the first genetic treatment of the A. mormo complex across western North America and potentially provides a foundation for reassessing the taxonomy of the group. Furthermore, these results illustrate the utility of molecular markers to aid in demarcation of biological units below the species level. From a conservation point of view, Apodemia mormo langei's diagnostic taxonomic characteristics may, by themselves, not support its evolutionary significance, which has implications for its formal listing as an Endangered Species.
Kim, Tane; Hao, Weilong
2014-09-27
The study of discrete characters is crucial for the understanding of evolutionary processes. Even though great advances have been made in the analysis of nucleotide sequences, computer programs for non-DNA discrete characters are often dedicated to specific analyses and lack flexibility. Discrete characters often have different transition rate matrices, variable rates among sites and sometimes contain unobservable states. To obtain the ability to accurately estimate a variety of discrete characters, programs with sophisticated methodologies and flexible settings are desired. DiscML performs maximum likelihood estimation for evolutionary rates of discrete characters on a provided phylogeny with the options that correct for unobservable data, rate variations, and unknown prior root probabilities from the empirical data. It gives users options to customize the instantaneous transition rate matrices, or to choose pre-determined matrices from models such as birth-and-death (BD), birth-death-and-innovation (BDI), equal rates (ER), symmetric (SYM), general time-reversible (GTR) and all rates different (ARD). Moreover, we show application examples of DiscML on gene family data and on intron presence/absence data. DiscML was developed as a unified R program for estimating evolutionary rates of discrete characters with no restriction on the number of character states, and with flexibility to use different transition models. DiscML is ideal for the analyses of binary (1s/0s) patterns, multi-gene families, and multistate discrete morphological characteristics.
Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta
1999-02-01
We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A. vitricola) are not conspecific. The enzyme patterns as a genotypic character and general morphology and conidial ornamentation types as phenotypic characters supported this conclusion. Therefore the name A. vitricola Ohtsuki, typified by the holotype strain IFO 8155, should be revived. Evolutionary affinities among Aspergillus species and related teleomorphs, including the xerophilic taxa, are discussed.
Coevolution of coloration and colour vision?
Lind, Olle; Henze, Miriam J; Kelber, Almut; Osorio, Daniel
2017-07-05
The evolutionary relationship between signals and animal senses has broad significance, with potential consequences for speciation, and for the efficacy and honesty of biological communication. Here we outline current understanding of the diversity of colour vision in two contrasting groups: the phylogenetically conservative birds, and the more variable butterflies. Evidence for coevolution of colour signals and vision exists in both groups, but is limited to observations of phenotypic differences between visual systems, which might be correlated with coloration. Here, to illustrate how one might interpret the evolutionary significance of such differences, we used colour vision modelling based on an avian eye to evaluate the effects of variation in three key characters: photoreceptor spectral sensitivity, oil droplet pigmentation and the proportions of different photoreceptor types. The models predict that physiologically realistic changes in any one character will have little effect, but complementary shifts in all three can substantially affect discriminability of three types of natural spectra. These observations about the adaptive landscape of colour vision may help to explain the general conservatism of photoreceptor spectral sensitivities in birds. This approach can be extended to other types of eye and spectra to inform future work on coevolution of coloration and colour vision.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.
Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O
2018-03-01
Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Polyandry and sex-specific gene expression
Mank, Judith E.; Wedell, Nina; Hosken, David J.
2013-01-01
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238
Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E
2013-01-01
Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.
Rice, Sean H
1998-06-01
Evolution can change the developmental processes underlying a character without changing the average expression of the character itself. This sort of change must occur in both the evolution of canalization, in which a character becomes increasingly buffered against genetic or developmental variation, and in the phenomenon of closely related species that show similar adult phenotypes but different underlying developmental patterns. To study such phenomena, I develop a model that follows evolution on a surface representing adult phenotype as a function of underlying developmental characters. A contour on such a "phenotype landscape" is a set of states of developmental characters that produce the same adult phenotype. Epistasis induces curvature of this surface, and degree of canalization is represented by the slope along a contour. I first discuss the geometric properties of phenotype landscapes, relating epistasis to canalization. I then impose a fitness function on the phenotype and model evolution of developmental characters as a function of the fitness function and the local geometry of the surface. This model shows how canalization evolves as a population approaches an optimum phenotype. It further shows that under some circumstances, "decanalization" can occur, in which the expression of adult phenotype becomes increasingly sensitive to developmental variation. This process can cause very similar populations to diverge from one another developmentally even when their adult phenotypes experience identical selection regimes. © 1998 The Society for the Study of Evolution.
Pervasive genetic integration directs the evolution of human skull shape.
Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter
2012-04-01
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Shields, E D
1996-01-01
The quantification of total tooth structure derived from X-rays of Vietnamese, Southern Chinese, Mongolians, Western Eskimos, and Peruvian pre-Inca (Huari Empire) populations was used to examine dental divergence and the morphogenetics of change. Multivariate derived distances between the samples helped identify a quasicontinuous web of ethnic groups with two binary clusters ensconced within the web. One cluster was composed of Mongolians, Western Eskimos, and pre-Inca, and the other group consisted of the Southern Chinese and Vietnamese. Mongolians entered the quasicontinuum from a divergent angle (externally influenced) from that of the Southeast Asians. The Chinese and pre-Inca formed the polar samples of the distance superstructure. The pre-Inca sample was the most isolated, its closest neighbor being the Western Eskimos. Univariate and multivariate analyses suggested that the pre-Inca, whose ancestors arrived in America perhaps approximately 30,000 years ago, was the least derived sample. Clearly, microevolutionary change occurred among the samples, but the dental phenotype was resistant to environmental developmental perturbations. An assessment of dental divergence and developmental biology suggested that the overall dental phenotype is a complex multigenic morphological character, and that the observed variation evolved through total genomic drift. The quantified dental phenotype is greater than its highly multigenic algorithm and its development homeostasis is tightly controlled, or canalized, by the deterministic organization of a complex nonlinear epigenetic milieu. The overall dental phenotype quantified here was selectively neutral and a good character to help reconstruct the sequence of human evolution, but if the outlying homeostatic threshold was or will be exceeded in antecedents and descendants, respectively, evolutionary saltation occurs.
The semaphorontic view of homology.
Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier
2015-11-01
The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.
Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W
2012-03-01
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.
Evolutionary stasis in Euphorbiaceae pollen: selection and constraints.
Matamoro-Vidal, A; Furness, C A; Gouyon, P-H; Wurdack, K J; Albert, B
2012-06-01
Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity
O'Meara, Brian C.; Smith, Stacey D.; Armbruster, W. Scott; Harder, Lawrence D.; Hardy, Christopher R.; Hileman, Lena C.; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A.; Stevens, Peter F.; Fenster, Charles B.; Diggle, Pamela K.
2016-01-01
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. PMID:27147092
Character displacement and the evolution of niche complementarity in a model biofilm community
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-01-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. PMID:25494960
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K
2016-05-11
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).
Kolbe, Jason J; Revell, Liam J; Szekely, Brian; Brodie, Edmund D; Losos, Jonathan B
2011-12-01
The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group. No Claim to original U.S. government works.
Dececchi, T Alex; Mabee, Paula M; Blackburn, David C
2016-01-01
Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications ('monographs') and those used in phylogenetic analyses ('matrices'). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life.
Dececchi, T. Alex; Mabee, Paula M.; Blackburn, David C.
2016-01-01
Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications (‘monographs’) and those used in phylogenetic analyses (‘matrices’). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life. PMID:27191170
The semaphorontic view of homology
Assis, Leandro C.S.; Rieppel, Olivier
2015-01-01
ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26175214
The evolution of cichlid fish egg-spots is linked with a cis-regulatory change
Santos, M. Emília; Braasch, Ingo; Boileau, Nicolas; Meyer, Britta S.; Sauteur, Loïc; Böhne, Astrid; Belting, Heinz-Georg; Affolter, Markus; Salzburger, Walter
2014-01-01
The origin of novel phenotypic characters is a key component in organismal diversification; yet, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we examine the origin of egg-spots, an evolutionary innovation of the most species-rich group of cichlids, the haplochromines, where these conspicuous male fin colour markings are involved in mating. Applying a combination of RNAseq, comparative genomics and functional experiments, we identify two novel pigmentation genes, fhl2a and fhl2b, and show that especially the more rapidly evolving b-paralog is associated with egg-spot formation. We further find that egg-spot bearing haplochromines, but not other cichlids, feature a transposable element in the cis-regulatory region of fhl2b. Using transgenic zebrafish, we finally demonstrate that this region shows specific enhancer activities in iridophores, a type of pigment cells found in egg-spots, suggesting that a cis-regulatory change is causally linked to the gain of expression in egg-spot bearing haplochromines. PMID:25296686
Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.
Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki
2014-11-25
Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry. Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.
Brower, Andrew V Z
1996-02-01
Mimicry has been a fundamental focus of research since the birth of evolutionary biology yet rarely has been studied from a phylogenetic perspective beyond the simple recognition that mimics are not similar due to common descent. The difficulty of finding characters to discern relationships among closely related and convergent taxa has challenged systematists for more than a century. The phenotypic diversity of wing pattens among mimetic Heliconius adds an additional twist to the problem, because single species contain more than a dozen radically different-looking geographical races even though the mimetic advantage is theoretically highest when all individuals within and between species appear the same. Mitochondrial DNA (mtDNA) offers an independent way to address these issues. In this study, Cytochrome Oxidase I and II sequences from multiple, parallel races of Heliconius erato and Heliconius melpomene are examined, to estimate intraspecific phylogeny and gauge sequence divergence and ages of clades among races within each species. Although phenotypes of sympatric races exhibit remarkable concordance between the two species, the mitochondrial cladograms show that the species have not shared a common evolutionary history. H. erato exhibits a basal split between trans- and cis-Andean groups of races, whereas H. melpomene originates in the Guiana Shield. Diverse races in either species appear to have evolved within the last 200,000 yr, and convergent phenotypes have evolved independently within as well as between species. These results contradict prior theories of the evolution of mimicry based on analysis of wing-pattern genetics. © 1996 The Society for the Study of Evolution.
The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection
Chen, Bor-Sen; Ho, Shih-Ju
2014-01-01
In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296
Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar
2012-01-01
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
Edwards, Shelley; Vanhooydonck, Bieke; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.
2012-01-01
Convergent evolution can explain similarity in morphology between species, due to selection on a fitness-enhancing phenotype in response to local environmental conditions. As selective pressures on body morphology may be strong, these have confounded our understanding of the evolutionary relationships between species. Within the speciose African radiation of lacertid lizards (Eremiadini), some species occupy a narrow habitat range (e.g. open habitat, cluttered habitat, strictly rupicolous, or strictly psammophilic), which may exert strong selective pressures on lizard body morphology. Here we show that the overall body plan is unrelated to shared ancestry in the African radiation of Eremiadini, but is instead coupled to habitat use. Comprehensive Bayesian and likelihood phylogenies using multiple representatives from all genera (2 nuclear, 2 mitochondrial markers) show that morphologically convergent species thought to represent sister taxa within the same genus are distantly related evolutionary lineages (Ichnotropis squamulosa and Ichnotropis spp.; Australolacerta rupicola and A. australis). Hierarchical clustering and multivariate analysis of morphological characters suggest that body, and head, width and height (stockiness), all of which are ecologically relevant with respect to movement through habitat, are similar between the genetically distant species. Our data show that convergence in morphology, due to adaptation to similar environments, has confounded the assignment of species leading to misidentification of the taxonomic position of I. squamulosa and the Australolacerta species. PMID:23251601
Poe, Steven
2005-01-01
The reconstruction of phylogeny requires homologous similarities across species. Characters that have been shown to evolve quickly or convergently in some species are often considered to be poor phylogenetic markers. Here I evaluate the phylogenetic utility of a set of morphological characters that are correlated with ecology and have been shown to evolve convergently in Anolis lizards in the Greater Antilles. Results of randomization tests suggest that these "ecomorph" characters are adequate phylogenetic markers, both for Anolis in general and for the Greater Antillean species for which ecomorphological convergence was originally documented. Explanations for this result include the presence of ecomorphologically similar species within evolutionary radiations within islands, some monophyly of ecomorphs across islands, and the existence of several species that defy ecomorphological characterization but share phylogenetic similarity in some ecomorph characters.
Evolutionary genetics of maternal effects
Wolf, Jason B.; Wade, Michael J.
2016-01-01
Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266
Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.
Funk, W Chris; Murphy, Melanie A
2010-02-01
Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004
Burns, Mercedes M.; Hedin, Marshal; Shultz, Jeffrey W.
2013-01-01
Explaining the rapid, species-specific diversification of reproductive structures and behaviors is a long-standing goal of evolutionary biology, with recent research tending to attribute reproductive phenotypes to the evolutionary mechanisms of female mate choice or intersexual conflict. Progress in understanding these and other possible mechanisms depends, in part, on reconstructing the direction, frequency and relative timing of phenotypic evolution of male and female structures in species-rich clades. Here we examine evolution of reproductive structures in the leiobunine harvestmen or “daddy long-legs” of eastern North America, a monophyletic group that includes species in which males court females using nuptial gifts and other species that are equipped for apparent precopulatory antagonism (i.e., males with long, hardened penes and females with sclerotized pregenital barriers). We used parsimony- and Bayesian likelihood-based analyses to reconstruct character evolution in categorical reproductive traits and found that losses of ancestral gift-bearing penile sacs are strongly associated with gains of female pregenital barriers. In most cases, both events occur on the same internal branch of the phylogeny. These coevolutionary changes occurred at least four times, resulting in clade-specific designs in the penis and pregenital barrier. The discovery of convergent origins and/or enhancements of apparent precopulatory antagonism among closely related species offers an unusual opportunity to investigate how major changes in reproductive morphology have occurred. We propose new hypotheses that attribute these enhancements to changes in ecology or life history that reduce the duration of breeding seasons, an association that is consistent with female choice, sexual conflict, and/or an alternative evolutionary mechanism. PMID:23762497
Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.
Planqué, R; Powell, S; Franks, N R; van den Berg, J B
2016-11-01
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Mao, Jin; Moore, Lisa R; Blank, Carrine E; Wu, Elvis Hsin-Hui; Ackerman, Marcia; Ranade, Sonali; Cui, Hong
2016-12-13
The large-scale analysis of phenomic data (i.e., full phenotypic traits of an organism, such as shape, metabolic substrates, and growth conditions) in microbial bioinformatics has been hampered by the lack of tools to rapidly and accurately extract phenotypic data from existing legacy text in the field of microbiology. To quickly obtain knowledge on the distribution and evolution of microbial traits, an information extraction system needed to be developed to extract phenotypic characters from large numbers of taxonomic descriptions so they can be used as input to existing phylogenetic analysis software packages. We report the development and evaluation of Microbial Phenomics Information Extractor (MicroPIE, version 0.1.0). MicroPIE is a natural language processing application that uses a robust supervised classification algorithm (Support Vector Machine) to identify characters from sentences in prokaryotic taxonomic descriptions, followed by a combination of algorithms applying linguistic rules with groups of known terms to extract characters as well as character states. The input to MicroPIE is a set of taxonomic descriptions (clean text). The output is a taxon-by-character matrix-with taxa in the rows and a set of 42 pre-defined characters (e.g., optimum growth temperature) in the columns. The performance of MicroPIE was evaluated against a gold standard matrix and another student-made matrix. Results show that, compared to the gold standard, MicroPIE extracted 21 characters (50%) with a Relaxed F1 score > 0.80 and 16 characters (38%) with Relaxed F1 scores ranging between 0.50 and 0.80. Inclusion of a character prediction component (SVM) improved the overall performance of MicroPIE, notably the precision. Evaluated against the same gold standard, MicroPIE performed significantly better than the undergraduate students. MicroPIE is a promising new tool for the rapid and efficient extraction of phenotypic character information from prokaryotic taxonomic descriptions. However, further development, including incorporation of ontologies, will be necessary to improve the performance of the extraction for some character types.
The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community.
Bassar, Ronald D; Simon, Troy; Roberts, William; Travis, Joseph; Reznick, David N
2017-02-01
Species coexistence may result by chance when co-occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size-based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco-evolutionary feedbacks. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E
2015-02-14
The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.
Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.
Dowling, Damian K
2014-04-01
Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.
Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences
Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya
2016-01-01
Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. PMID:27289096
Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.
Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D
2017-10-01
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Chaos and unpredictability in evolution.
Doebeli, Michael; Ispolatov, Iaroslav
2014-05-01
The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
The locus of sexual selection: moving sexual selection studies into the post-genomics era.
Wilkinson, G S; Breden, F; Mank, J E; Ritchie, M G; Higginson, A D; Radwan, J; Jaquiery, J; Salzburger, W; Arriero, E; Barribeau, S M; Phillips, P C; Renn, S C P; Rowe, L
2015-04-01
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Wcislo, W T; Cane, J H
1996-01-01
Bees are phytophagous insects that exhibit recurrent ecological specializations related to factors generally different from those discussed for other phytophagous insects. Pollen specialists have undergone extensive radiations, and specialization is not always a derived state. Floral host associations are conserved in some bee lineages. In others, various species specialize on different host plants that are phenotypically similar in presenting predictably abundant floral resources. The nesting of solitary bees in localized areas influences the intensity of interactions with enemies and competitors. Abiotic factors do not always explain the intraspecific variation in the spatial distribution of solitary bees. Foods stored by bees attract many natural enemies, which may shape diverse facets of nesting and foraging behavior. Parasitism has evolved repeatedly in some, but not all, bee lineages. Available evidence suggests that cleptoparasitic lineages are most speciose in temperate zones. Female parasites frequently have a suite of characters that can be described as a masculinized feminine form. The evolution of resource specialization (including parasitism) in bees presents excellent opportunities to investigate phenotypic mechanisms responsible for evolutionary change.
Lichtenstein, J L L; Pruitt, J N
2015-06-01
Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Environmental change, phenotypic plasticity, and genetic compensation.
Grether, Gregory F
2005-10-01
When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.
Parachnowitsch, Amy L; Raguso, Robert A; Kessler, André
2012-08-01
Fragrance is a putatively important character in the evolution of flowering plants, but natural selection on scent is rarely studied and thus poorly understood. We characterized floral scent composition and emission in a common garden of Penstemon digitalis from three nearby source populations. We measured phenotypic selection on scent as well as floral traits more frequently examined, such as floral phenology, display size, corolla pigment, and inflorescence height. Scent differed among populations in a common garden, underscoring the potential for scent to be shaped by differential selection pressures. Phenotypic selection on flower number and display size was strong. However, selection favoured scent rather than flower size or colour, suggesting that smelling stronger benefits reproductive success in P. digitalis. Linalool was a direct target of selection and its high frequency in floral-scent bouquets suggests that further studies of both pollinator- and antagonist-mediated selection on this compound would further our understanding of scent evolution. Our results indicate that chemical dimensions of floral display are just as likely as other components to experience selective pressure in a nonspecialized flowering herb. Therefore, studies that integrate visual and chemical floral traits should better reflect the true nature of floral evolutionary ecology. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Character displacement and the evolution of niche complementarity in a model biofilm community.
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-02-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Feinberg, Andrew P; Irizarry, Rafael A
2010-01-26
Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.
Cosacov, Andrea; Sérsic, Alicia N; Sosa, Victoria; De-Nova, J Arturo; Nylinder, Stephan; Cocucci, Andrea A
2009-12-01
Biogeographical patterns and diversification processes in Andean and Patagonian flora are not yet well understood. Calceolaria is a highly diversified genus of these areas, representing one of the most specialized plant-pollinator systems because flowers produce nonvolatile oils, a very unusual floral reward. Phylogenetic analyses with molecular (ITS and matK) and morphological characters from 103 Calceolaria species were conducted to examine relationships, to understand biogeographic patterns, and to detect evolutionary patterns of floral and ecological characters. Total evidence analysis retrieved three major clades, which strongly correspond to the three previously recognized subgenera, although only subgenus Rosula was retrieved as a monophyletic group. A single historical event explains the expansion from the southern to central Andes, while different parallel evolutionary lines show a northward expansion from the central to northern Andes across the Huancabamba Deflection, an important geographical barrier in northern Peru. Polyploidy, acquisition of elaiophores, and a nototribic pollination mechanism are key aspects of the evolutionary history of Calceolaria. Pollination interactions were more frequently established with Centris than with Chalepogenus oil-collecting bee species. The repeated loss of the oil gland and shifts to pollen as the only reward suggest an evolutionary tendency from highly to moderately specialized pollination systems.
Levis, N A; Serrato-Capuchina, A; Pfennig, D W
2017-09-01
Ecological character displacement is considered crucial in promoting diversification, yet relatively little is known of its underlying mechanisms. We examined whether evolutionary shifts in gene expression plasticity ('genetic accommodation') mediate character displacement in spadefoot toads. Where Spea bombifrons and S. multiplicata occur separately in allopatry (the ancestral condition), each produces alternative, diet-induced, larval ecomorphs: omnivores, which eat detritus, and carnivores, which specialize on shrimp. By contrast, where these two species occur together in sympatry (the derived condition), selection to minimize competition for detritus has caused S. bombifrons to become nearly fixed for producing only carnivores, suggesting that character displacement might have arisen through an extreme form of genetic accommodation ('genetic assimilation') in which plasticity is lost. Here, we asked whether we could infer a signature of this process in regulatory changes of specific genes. In particular, we investigated whether genes that are normally expressed more highly in one morph ('biased' genes) have evolved reduced plasticity in expression levels among S. bombifrons from sympatry compared to S. bombifrons from allopatry. We reared individuals from sympatry vs. allopatry on detritus or shrimp and measured the reaction norms of nine biased genes. Although different genes displayed different patterns of gene regulatory evolution, the combined gene expression profiles revealed that sympatric individuals had indeed lost the diet-induced gene expression plasticity present in allopatric individuals. Our data therefore provide one of the few examples from natural populations in which genetic accommodation/assimilation can be traced to regulatory changes of specific genes. Such genetic accommodation might mediate character displacement in many systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L
2016-09-01
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Evolutionary Creation: Moving beyond the Evolution versus Creation Debate
ERIC Educational Resources Information Center
Lamoureux, Denis O.
2010-01-01
Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…
Protein interface classification by evolutionary analysis
2012-01-01
Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial), appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and bioinformatics. We made the corresponding software implementation available to the community as an easy-to-use graphical web interface at http://www.eppic-web.org. PMID:23259833
Osteological evidence of genetic divergence of lake trout (Salvelinus namaycush) in Lake Superior
Burnham-Curtis, Mary K.; Smith, Gerald R.
1994-01-01
Three phenotypes of Salvelinus namaycush in Lake Superior, the lean, siscowet, and bumper, are traditionally identified primarily by fat content and body shape. Their taxonomic status is in question because of intermediates as well as the possibility that the diagnostic characters are ecophenotypic. Two osteological characters, the dorsal opercular notch (first recorded by Agassiz in his description of the siscowet) and radii on the anterodorsal part of the supraethmoid, differ between most leans and siscowets. The notch in the opercle near its articulation with the hyomandibular bone is present in humpers, usually present in siscowets, and usually absent in leans. Radii on the anterodorsal surface of the supraethmoid bone usually are found in siscowets and humpers but usually are absent in leans. The correlations among these characters and other features of the phenotype indicate a significant level of differentiation between the three phenotypes. Available evidence suggests that the differentiation is genetic. The frequency of mixed phenotypes is evidence of limited gene flow among the phenotypes. The siscowet and humper phenotypes apparently originated in Lake Superior in postglacial time.
Parental effects and the evolution of phenotypic memory.
Kuijper, B; Johnstone, R A
2016-02-01
Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Tufto, Jarle
2015-08-01
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Automatic feature design for optical character recognition using an evolutionary search procedure.
Stentiford, F W
1985-03-01
An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.
Phylogenetic analyses of mode of larval development.
Hart, M
2000-12-01
Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.
Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Oladosu, Yusuff; Kashiani, Pedram
2017-03-01
Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications. Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield. Longer fruits, heavy fruits and a high number of fruits are variables that are related to higher yields of chili pepper under tropical conditions and hence could be used as a reliable indicator in indirect selection for yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Bass, Andrew H.; Chagnaud, Boris P.
2012-01-01
Acoustic signaling behaviors are widespread among bony vertebrates, which include the majority of living fishes and tetrapods. Developmental studies in sound-producing fishes and tetrapods indicate that central pattern generating networks dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment. Together, the evidence suggests that vocalization and its morphophysiological basis, including mechanisms of vocal–respiratory coupling that are widespread among tetrapods, are ancestral characters for bony vertebrates. Premotor-motor circuitry for pectoral appendages that function in locomotion and acoustic signaling develops in the same rh8-spinal compartment. Hence, vocal and pectoral phenotypes in fishes share both developmental origins and roles in acoustic communication. These findings lead to the proposal that the coupling of more highly derived vocal and pectoral mechanisms among tetrapods, including those adapted for nonvocal acoustic and gestural signaling, originated in fishes. Comparative studies further show that rh8 premotor populations have distinct neurophysiological properties coding for equally distinct behavioral attributes such as call duration. We conclude that neural network innovations in the spatiotemporal patterning of vocal and pectoral mechanisms of social communication, including forelimb gestural signaling, have their evolutionary origins in the caudal hindbrain of fishes. PMID:22723366
Understanding the individual to implement the ecosystem approach to fisheries management.
Ward, Taylor D; Algera, Dirk A; Gallagher, Austin J; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S; McKenzie, David J; Metcalfe, Julian D; Peck, Myron A; Vu, Maria; Cooke, Steven J
2016-01-01
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.
Understanding the individual to implement the ecosystem approach to fisheries management
Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J.
2016-01-01
Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. PMID:27293757
Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences.
Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya
2016-07-12
Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Phenotypic Evolution With and Beyond Genome Evolution.
Félix, M-A
2016-01-01
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. © 2016 Elsevier Inc. All rights reserved.
Mouse Models as Predictors of Human Responses: Evolutionary Medicine.
Uhl, Elizabeth W; Warner, Natalie J
Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.
Development and Evolution of Character Displacement
Pfennig, David W.; Pfennig, Karin S.
2012-01-01
Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement’s mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions. PMID:22257002
Marzluff, John
2017-01-01
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374
Transgressive Hybrids as Hopeful Monsters.
Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M
2013-06-01
The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.
Evolution and taxonomic split of the model grass Brachypodium distachyon
Catalán, Pilar; Müller, Jochen; Hasterok, Robert; Jenkins, Glyn; Mur, Luis A. J.; Langdon, Tim; Betekhtin, Alexander; Siwinska, Dorota; Pimentel, Manuel; López-Alvarez, Diana
2012-01-01
Background and Aims Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n = 10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species. Methods Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated. Key Results The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species. Conclusions The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes. PMID:22213013
The evolution of multivariate maternal effects.
Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart
2014-04-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.
The Evolution of Multivariate Maternal Effects
Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart
2014-01-01
There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346
Life history tradeoffs in cancer evolution
Boddy, Amy M.; Gatenby, Robert A.; Brown, Joel S.; Maley, Carlo C.
2014-01-01
Somatic evolution during cancer progression and therapy results in tumor cells that exhibit a wide range of phenotypes including rapid proliferation and quiescence. Evolutionary life history theory may help us understand the diversity of these phenotypes. Fast life history organisms reproduce rapidly while those with slow life histories show less fecundity and invest more resources in survival. Life history theory also provides an evolutionary framework for phenotypic plasticity with potential implications for understanding ‘cancer stem cells’. Life history theory suggests that different therapy dosing schedules could select for fast or slow life history cell phenotypes, with important clinical consequences. PMID:24213474
Evolution of plasticity and adaptive responses to climate change along climate gradients.
Kingsolver, Joel G; Buckley, Lauren B
2017-08-16
The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).
Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex.
Balhoff, James P; Dahdul, Wasila M; Dececchi, T Alexander; Lapp, Hilmar; Mabee, Paula M; Vision, Todd J
2014-01-01
Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators. We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave. With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.
The topology of evolutionary novelty and innovation in macroevolution
2017-01-01
Sewall Wright's fitness landscape introduced the concept of evolutionary spaces in 1932. George Gaylord Simpson modified this to an adaptive, phenotypic landscape in 1944 and since then evolutionary spaces have played an important role in evolutionary theory through fitness and adaptive landscapes, phenotypic and functional trait spaces, morphospaces and related concepts. Although the topology of such spaces is highly variable, from locally Euclidean to pre-topological, evolutionary change has often been interpreted as a search through a pre-existing space of possibilities, with novelty arising by accessing previously inaccessible or difficult to reach regions of a space. Here I discuss the nature of evolutionary novelty and innovation within the context of evolutionary spaces, and argue that the primacy of search as a conceptual metaphor ignores the generation of new spaces as well as other changes that have played important evolutionary roles. This article is part of the themed issue ‘Process and pattern in innovations from cells to societies’. PMID:29061895
NASA Astrophysics Data System (ADS)
Sánchez-Villagra, Marcelo R.; Geiger, Madeleine; Schneider, Richard A.
2016-06-01
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the `domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
A molecular signaling approach to linking intraspecific variation and macro-evolutionary patterns.
Swanson, Eli M; Snell-Rood, Emilie C
2014-11-01
Macro-evolutionary comparisons are a valued tool in evolutionary biology. Nevertheless, our understanding of how systems involved in molecular signaling change in concert with phenotypic diversification has lagged. We argue that integrating our understanding of the evolution of molecular signaling systems with phylogenetic comparative methods is an important step toward understanding the processes linking variation among individuals with variation among species. Focusing mostly on the endocrine system, we discuss how the complexity and mechanistic nature of molecular signaling systems may influence the application and interpretation of macro-evolutionary comparisons. We also detail five hypotheses concerning the role that physiological mechanisms can play in shaping macro-evolutionary patterns, and discuss ways in which these hypotheses could influence phenotypic diversification. Finally, we review a series of tools able to analyze the complexity of physiological systems and the way they change in concert with the phenotypes for which they coordinate development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
25S ribosomal RNA homologies of basidiomycetous yeasts: taxonomic and phylogenetic implications
NASA Technical Reports Server (NTRS)
Baharaeen, S.; Vishniac, H. S.
1984-01-01
Genera, families, and possibly orders of basidiomycetous yeasts can be defined by 25S rRNA homology and correlated phenotypic characters. The teleomorphic genera Filobasidium, Leucosporidium, and Rhodosporidium have greater than 96 relative binding percent (rb%) intrageneric 25S rRNA homology and significant intergeneric separation from each other and from Filobasidiella. The anamorphic genus Cryptococcus can be defined by morphology (monopolar budding), colony color, and greater than 75 rb% intrageneric homology; Vanrija is heterogeneous. Agaricostilbum (Phragmobasidiomycetes, Auriculariales), Hansenula (Ascomycotera, Endomycota), Tremella (Phragmobasidiomycetes, Tremellales), and Ustilago (Ustomycota, Ustilaginales) appear equally unrelated to the Cryptococcus, Filobasidiella, and Rhodosporidium spp. used as probes. The Filobasidiaceae and Sporidiaceae, Filobasidiales and Sporidiales, form coherent homology groups which appear to have undergone convergent 25S rRNA evolution, since their relatedness is much greater than that indicated by 5S rRNA homology. Ribosomal RNA homologies do not appear to measure evolutionary distance.
Founder effects initiated rapid species radiation in Hawaiian cave planthoppers
Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D.; Howarth, Francis G.
2013-01-01
The Hawaiian Islands provide the venue of one of nature’s grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai‘i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles. PMID:23696661
Independent evolution of genomic characters during major metazoan transitions.
Simakov, Oleg; Kawashima, Takeshi
2017-07-15
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Gignac, P M; Santana, S E
2016-09-01
Over the past 40 years of research, two perspectives have dominated the study of ecomorphology at ontogenetic and evolutionary timescales. For key anatomical complexes (e.g., feeding apparatus, locomotor systems, sensory structures), morphological changes during ontogeny are often interpreted in functional terms and linked to their putative importance for fitness. Across larger timescales, morphological transformations in these complexes are examined through character stability or mutability during cladogenesis. Because the fittest organisms must pass through ontogenetic changes in size and shape, addressing transformations in morphology at different time scales, from life histories to macroevolution, has the potential to illuminate major factors contributing to phenotypic diversity. To date, most studies have relied on the assumption that organismal form is tightly constrained by the adult niche. Although this could be accurate for organisms that rapidly reach and spend a substantial portion of their life history at the adult phenotype (e.g., birds, mammals), it may not always hold true for species that experience substantial growth after one or more major fitness filters during their ontogeny (e.g., some fishes, reptiles). In such circumstances, examining the adult phenotype as the primary result of selective processes may be erroneous as it likely obscures the developmental configuration of morphology that was most critical to early survival. Given this discrepancy-and its potential to mislead interpretations of how selection may shape a taxon's phenotype-this symposium addresses the question: how do we identify such ontogenetic "inertia," and how do we integrate developmental information into our phylogenetic, ecological, and functional interpretations of complex phenotypes? © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
EvolQG - An R package for evolutionary quantitative genetics
Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel
2016-01-01
We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352
Cavalier-Smith, T
2002-01-01
Prokaryotes constitute a single kingdom, Bacteria, here divided into two new subkingdoms: Negibacteria, with a cell envelope of two distinct genetic membranes, and Unibacteria, comprising the new phyla Archaebacteria and Posibacteria, with only one. Other new bacterial taxa are established in a revised higher-level classification that recognizes only eight phyla and 29 classes. Morphological, palaeontological and molecular data are integrated into a unified picture of large-scale bacterial cell evolution despite occasional lateral gene transfers. Archaebacteria and eukaryotes comprise the clade neomura, with many common characters, notably obligately co-translational secretion of N-linked glycoproteins, signal recognition particle with 7S RNA and translation-arrest domain, protein-spliced tRNA introns, eight-subunit chaperonin, prefoldin, core histones, small nucleolar ribonucleoproteins (snoRNPs), exosomes and similar replication, repair, transcription and translation machinery. Eubacteria (posibacteria and negibacteria) are paraphyletic, neomura having arisen from Posibacteria within the new subphylum Actinobacteria (possibly from the new class Arabobacteria, from which eukaryotic cholesterol biosynthesis probably came). Replacement of eubacterial peptidoglycan by glycoproteins and adaptation to thermophily are the keys to neomuran origins. All 19 common neomuran character suites probably arose essentially simultaneously during the radical modification of an actinobacterium. At least 11 were arguably adaptations to thermophily. Most unique archaebacterial characters (prenyl ether lipids; flagellar shaft of glycoprotein, not flagellin; DNA-binding protein lob; specially modified tRNA; absence of Hsp90) were subsequent secondary adaptations to hyperthermophily and/or hyperacidity. The insertional origin of protein-spliced tRNA introns and an insertion in proton-pumping ATPase also support the origin of neomura from eubacteria. Molecular co-evolution between histones and DNA-handling proteins, and in novel protein initiation and secretion machineries, caused quantum evolutionary shifts in their properties in stem neomura. Proteasomes probably arose in the immediate common ancestor of neomura and Actinobacteria. Major gene losses (e.g. peptidoglycan synthesis, hsp90, secA) and genomic reduction were central to the origin of archaebacteria. Ancestral archaebacteria were probably heterotrophic, anaerobic, sulphur-dependent hyperthermoacidophiles; methanogenesis and halophily are secondarily derived. Multiple lateral gene transfers from eubacteria helped secondary archaebacterial adaptations to mesophily and genome re-expansion. The origin from a drastically altered actinobacterium of neomura, and the immediately subsequent simultaneous origins of archaebacteria and eukaryotes, are the most extreme and important cases of quantum evolution since cells began. All three strikingly exemplify De Beer's principle of mosaic evolution: the fact that, during major evolutionary transformations, some organismal characters are highly innovative and change remarkably swiftly, whereas others are largely static, remaining conservatively ancestral in nature. This phenotypic mosaicism creates character distributions among taxa that are puzzling to those mistakenly expecting uniform evolutionary rates among characters and lineages. The mixture of novel (neomuran or archaebacterial) and ancestral eubacteria-like characters in archaebacteria primarily reflects such vertical mosaic evolution, not chimaeric evolution by lateral gene transfer. No symbiogenesis occurred. Quantum evolution of the basic neomuran characters, and between sister paralogues in gene duplication trees, makes many sequence trees exaggerate greatly the apparent age of archaebacteria. Fossil evidence is compelling for the extreme antiquity of eubacteria [over 3500 million years (My)] but, like their eukaryote sisters, archaebacteria probably arose only 850 My ago. Negibacteria are the most ancient, radiating rapidly into six phyla. Evidence from molecular sequences, ultrastructure, evolution of photosynthesis, envelope structure and chemistry and motility mechanisms fits the view that the cenancestral cell was a photosynthetic negibacterium, specifically an anaerobic green non-sulphur bacterium, and that the universal tree is rooted at the divergence between sulphur and non-sulphur green bacteria. The negibacterial outer membrane was lost once only in the history of life, when Posibacteria arose about 2800 My ago after their ancestors diverged from Cyanobacteria.
Animal evolution: stiff or squishy notochord origins?
Hejnol, Andreas; Lowe, Christopher J
2014-12-01
The notochord is considered an evolutionary novelty and one of the defining characters of chordates. A new study of an annelid challenges this view and proposes an earlier evolutionary origin in the most recent common ancestor of chordates and annelids. Copyright © 2014 Elsevier Ltd. All rights reserved.
DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.
2013-01-01
Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim. PMID:23922810
Evolutionary inevitability of sexual antagonism.
Connallon, Tim; Clark, Andrew G
2014-02-07
Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.
Formation of dominant mode by evolution in biological systems
NASA Astrophysics Data System (ADS)
Furusawa, Chikara; Kaneko, Kunihiko
2018-04-01
A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.
Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.
Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling
2016-05-01
Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular phylogenetics, vocalizations, and species limits in Celeus woodpeckers (Aves: Picidae).
Benz, Brett W; Robbins, Mark B
2011-10-01
Species limits and the evolutionary mechanisms that have shaped diversification of woodpeckers and allies (Picidae) remain obscure, as inter and intraspecific phylogenetic relationships have yet to be comprehensively resolved for most genera. Herein, we analyzed 5020 base pairs of nucleotide sequence data from the mitochondrial and nuclear genomes to reconstruct the evolutionary history of Celeus woodpeckers. Broad geographic sampling was employed to assess species limits in phenotypically variable lineages and provide a first look at the evolution of song and plumage traits in this poorly known Neotropical genus. Our results strongly support the monophyly of Celeus and reveal several novel relationships across a shallow phylogenetic topology. We confirm the close sister relationship between Celeus spectabilis and the enigmatic Celeus obrieni, both of which form a clade with Celeus flavus. The Mesoamerican Celeus castaneus was placed as sister to a Celeus undatus-grammicus lineage, with the species status of the latter drawn into question given the lack of substantial genetic, morphological, and vocal variation in these taxa. We recovered paraphyly in Celeus elegans; however, this result appears to be the consequence of mitochondrial introgression from Celeus lugubris considering the monophyly of elegans at the ß-FIBI7 locus. A second instance of paraphyly was observed in Celeus flavescens with deep genetic splits and substantial phenotypic variation indicating the presence of two distinct species in this broadly distributed lineage. As such, we advocate elevation of Celeus flavescens ochraceus to species status. Our analysis of Celeus vocalizations and plumage characters demonstrates a pattern of lability consistent with a relatively recent origin of the genus and potentially rapid speciation history. Copyright © 2011 Elsevier Inc. All rights reserved.
Dai, Peng; Shi, Xiaoqin; Liu, Deguang; Ge, Zhaohong; Wang, Da; Dai, Xinjia; Yi, Zhihao; Meng, Xiuxiang
2016-07-18
Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid.
Social traits, social networks and evolutionary biology.
Fisher, D N; McAdam, A G
2017-12-01
The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.
López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A
2016-02-01
Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Quantitative genetic models of sexual conflict based on interacting phenotypes.
Moore, Allen J; Pizzari, Tommaso
2005-05-01
Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.
The evolution of the animals: introduction to a Linnean tercentenary celebration.
Telford, Maximilian J; Littlewood, D Timothy J
2008-04-27
Celebrating 300 years since the birth of Carl Linnaeus (1707-1778), a meeting was held in June 2007 to review recent progress made in understanding the origins and evolutionary radiation of the animals. The year 2008 celebrates the 250th anniversary of the publication of the 10th edition of Linnaeus' Systema Naturae, generally considered to be the starting point of zoological nomenclature. With subsequent advances in comparative taxonomic and systematic studies, Darwin's discovery of evolution by natural selection, the birth of phylogenetic systematics, and the wider interest in biodiversity, it is salutary to consider that many of the major advances in our understanding of animal evolution have been made in recent years. Phylogenetic systematics, drawing from evidence provided by genotype, phenotype and an understanding of the link between them through comparative embryological and evolutionary developmental studies, has provided a wide consensus of the major branching patterns of the tree of life. More importantly, the integrated approaches discussed in the 16 contributions to this volume highlight the identity and nature of problematic taxa, the missing data, errors in existing analytical procedures and the promise of a wealth of additional characters from genomes that need to be accumulated and assessed in providing a definitive Systema Naturae.
Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae)
2011-01-01
Background We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories. Results We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states. Conclusions Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes. PMID:21672233
Phenotype adjustment promotes adaptive evolution in a game without conflict.
Yamaguchi, Sachi; Iwasa, Yoh
2015-06-01
Organisms may adjust their phenotypes in response to social and physical environments. Such phenotypic plasticity is known to help or retard adaptive evolution. Here, we study the evolutionary outcomes of adaptive phenotypic plasticity in an evolutionary game involving two players who have no conflicts of interest. A possible example is the growth and sex allocation of a lifelong pair of shrimps entrapped in the body of a sponge. We consider random pair formation, the limitation of total resources for growth, and the needs of male investment to fertilize eggs laid by the partner. We compare the following three different evolutionary dynamics: (1) No adjustment: each individual develops a phenotype specified by its own genotype; (2) One-player adjustment: the phenotype of the first player is specified by its own genotype, and the second player chooses the phenotype that maximizes its own fitness; (3) Two-player adjustment: the first player exhibits an initial phenotype specified by its own genotype, the second player chooses a phenotype given that of the first player, and finally, the first player readjusts its phenotype given that of the second player. We demonstrate that both one-player and two-player adjustments evolve to achieve maximum fitness. In contrast, the dynamics without adjustment fails in some cases to evolve outcomes with the highest fitness. For an intermediate range of male cost, the evolution of no adjustment realizes two hermaphrodites with equal size, whereas the one-player and two-player adjustments realize a small male and a large female. Copyright © 2015 Elsevier Inc. All rights reserved.
Evolutionary and plastic responses to climate change in terrestrial plant populations
Franks, Steven J; Weber, Jennifer J; Aitken, Sally N
2014-01-01
As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.
Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E
2017-06-01
The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mongiardino Koch, N; Ceccarelli, F S; Ojanguren-Affilastro, A A; Ramírez, M J
2017-04-01
Many palaeontological studies have investigated the evolution of entire body plans, generally relying on discrete character-taxon matrices. In contrast, macroevolutionary studies performed by neontologists have mostly focused on morphometric traits. Although these data types are very different, some studies have suggested that they capture common patterns. Nonetheless, the tests employed to support this claim have not explicitly incorporated a phylogenetic framework and may therefore be susceptible to confounding effects due to the presence of common phylogenetic structure. We address this question using the scorpion genus Brachistosternus Pocock 1893 as case study. We make use of a time-calibrated multilocus molecular phylogeny, and compile discrete and traditional morphometric data sets, both capturing the overall morphology of the organisms. We find that morphospaces derived from these matrices are significantly different, and that the degree of discordance cannot be replicated by simulations of random character evolution. Moreover, we find strong support for contrasting modes of evolution, with discrete characters being congruent with an 'early burst' scenario whereas morphometric traits suggest species-specific adaptations to have driven morphological evolution. The inferred macroevolutionary dynamics are therefore contingent on the choice of character type. Finally, we confirm that metrics of correlation fail to detect these profound differences given common phylogenetic structure in both data sets, and that methods incorporating a phylogenetic framework and accounting for expected covariance should be favoured. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Cole, J A
2016-09-01
In a dispersal-limited species that has evolved reproductive character displacement at a contact zone, a cline in mating behaviour may result if gene flow diffuses alleles out of the contact zone into allopatric populations. Prior work has found such a clinal pattern in the shield-back katydid Aglaothorax morsei, in which the male calling songs in a sympatric population have a displaced, short interpulse interval that increases in length with increasing distance from the contact zone. In this study, molecular phylogenetic and female preference data show that (1) sympatric populations result from secondary contact, (2) hybridization in sympatry has resulted in unidirectional mitochondrial introgression and (3) female preferences are consistent with reproductive character displacement and could generate a cline in mating behaviour. These data together suggest a history of reinforcement, generally considered rare in acoustically communicating insects; thus, Aglaothorax represents an important example of a rarely documented evolutionary process. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Initial implementation of a comparative data analysis ontology.
Prosdocimi, Francisco; Chisham, Brandon; Pontelli, Enrico; Thompson, Julie D; Stoltzfus, Arlin
2009-07-03
Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: "Operational Taxonomic Units" (OTUs), representing the entities to be compared; "character-state data" representing the observations compared among OTUs; "phylogenetic tree", representing the historical path of evolution among the entities; and "transitions", the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.
e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.
Karim, Sajjad; NourEldin, Hend Fakhri; Abusamra, Heba; Salem, Nada; Alhathli, Elham; Dudley, Joel; Sanderford, Max; Scheinfeldt, Laura B; Chaudhary, Adeel G; Al-Qahtani, Mohammed H; Kumar, Sudhir
2016-10-17
Genome-wide association studies (GWAS) have become a mainstay of biological research concerned with discovering genetic variation linked to phenotypic traits and diseases. Both discrete and continuous traits can be analyzed in GWAS to discover associations between single nucleotide polymorphisms (SNPs) and traits of interest. Associations are typically determined by estimating the significance of the statistical relationship between genetic loci and the given trait. However, the prioritization of bona fide, reproducible genetic associations from GWAS results remains a central challenge in identifying genomic loci underlying common complex diseases. Evolutionary-aware meta-analysis of the growing GWAS literature is one way to address this challenge and to advance from association to causation in the discovery of genotype-phenotype relationships. We have created an evolutionary GWAS resource to enable in-depth query and exploration of published GWAS results. This resource uses the publically available GWAS results annotated in the GRASP2 database. The GRASP2 database includes results from 2082 studies, 177 broad phenotype categories, and ~8.87 million SNP-phenotype associations. For each SNP in e-GRASP, we present information from the GRASP2 database for convenience as well as evolutionary information (e.g., rate and timespan). Users can, therefore, identify not only SNPs with highly significant phenotype-association P-values, but also SNPs that are highly replicated and/or occur at evolutionarily conserved sites that are likely to be functionally important. Additionally, we provide an evolutionary-adjusted SNP association ranking (E-rank) that uses cross-species evolutionary conservation scores and population allele frequencies to transform P-values in an effort to enhance the discovery of SNPs with a greater probability of biologically meaningful disease associations. By adding an evolutionary dimension to the GWAS results available in the GRASP2 database, our e-GRASP resource will enable a more effective exploration of SNPs not only by the statistical significance of trait associations, but also by the number of studies in which associations have been replicated, and the evolutionary context of the associated mutations. Therefore, e-GRASP will be a valuable resource for aiding researchers in the identification of bona fide, reproducible genetic associations from GWAS results. This resource is freely available at http://www.mypeg.info/egrasp .
Bown, T.M.; Fleagle, J.G.
1993-01-01
Fifty-two gnathic and dental characteristics were used to identify the taxonomy and to reconstruct the phylogeny of the Palaeothentidae. Analysis of sequencing of appearances of derived characters documents rampant convergencies at all taxonomic levels and considerable phenotypic plasticity in the organization of the palaeothentid dentition. Certain highly generalized character states survive for the duration of the family in some lineages, whereas others are phenotypically lost for a time and then reappear as a minor percentage of character variability. In general, replacement faunas of palaeothentids were morphologically more generalized than their antecendent forms. Dental character regression indicates that palaeothentids arose prior to the Deseadan from a relatively large-bodied marsupial having generalized tribosphenic molars with more or less bunodont cusps; probably an unknown member of the Didelphidae. -from Authors
Why Africa matters: evolution of Old World Salvia (Lamiaceae) in Africa
Will, Maria; Claßen-Bockhoff, Regine
2014-01-01
Background and Aims Salvia is the largest genus in Lamiaceae and it has recently been found to be non-monophyletic. Molecular data on Old World Salvia are largely lacking. In this study, we present data concerning Salvia in Africa. The focus is on the colonization of the continent, character evolution and the switch of pollination systems in the genus. Methods Maximum likelihood and Bayesian inference were used for phylogenetic reconstruction. Analyses were based on two nuclear markers [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and one plastid marker (rpl32-trnL). Sequence data were generated for 41 of the 62 African taxa (66 %). Mesquite was used to reconstruct ancestral character states for distribution, life form, calyx shape, stamen type and pollination syndrome. Key Results Salvia in Africa is non-monophyletic. Each of the five major regions in Africa, except Madagascar, was colonized at least twice, and floristic links between North African, south-west Asian and European species are strongly supported. The large radiation in Sub-Saharan Africa (23 species) can be traced back to dispersal from North Africa via East Africa to the Cape Region. Adaptation to bird pollination in southern Africa and Madagascar reflects parallel evolution. Conclusions The phenotypic diversity in African Salvia is associated with repeated introductions to the continent. Many important evolutionary processes, such as colonization, adaptation, parallelism and character transformation, are reflected in this comparatively small group. The data presented in this study can help to understand the evolution of Salvia sensu lato and other large genera. PMID:24966353
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
Zimmermann, Thalita G.; Andrade, Antonio C. S.; Richardson, David M.
2016-01-01
As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20–40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and deep shade, which limit its potential to become naturalized on sandy coastal plain. PMID:27339050
Zimmermann, Thalita G; Andrade, Antonio C S; Richardson, David M
2016-01-01
As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20-40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and deep shade, which limit its potential to become naturalized on sandy coastal plain. Published by Oxford University Press on behalf of the Annals of Botany Company.
Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.
Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J
2018-05-11
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.
Rittschof, C C; Robinson, G E
2016-01-01
The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.
Developmental mechanisms underlying variation in craniofacial disease and evolution.
Fish, Jennifer L
2016-07-15
Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-01-01
Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment. PMID:22839506
Peters, Ralph S; Meusemann, Karen; Petersen, Malte; Mayer, Christoph; Wilbrandt, Jeanne; Ziesmann, Tanja; Donath, Alexander; Kjer, Karl M; Aspöck, Ulrike; Aspöck, Horst; Aberer, Andre; Stamatakis, Alexandros; Friedrich, Frank; Hünefeld, Frank; Niehuis, Oliver; Beutel, Rolf G; Misof, Bernhard
2014-03-20
Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult's flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.
Hernández-Hernández, Tania; Hernández, Héctor M; De-Nova, J Arturo; Puente, Raul; Eguiarte, Luis E; Magallón, Susana
2011-01-01
Cactaceae is one of the most charismatic plant families because of the extreme succulence and outstanding diversity of growth forms of its members. Although cacti are conspicuous elements of arid ecosystems in the New World and are model systems for ecological and anatomical studies, the high morphological convergence and scarcity of phenotypic synapomorphies make the evolutionary relationships and trends among lineages difficult to understand. We performed phylogenetic analyses implementing parsimony ratchet and likelihood methods, using a concatenated matrix with 6148 bp of plastid and nuclear markers (trnK/matK, matK, trnL-trnF, rpl16, and ppc). We included 224 species representing approximately 85% of the family's genera. Likelihood methods were used to perform an ancestral character reconstruction within Cactoideae, the richest subfamily in terms of morphological diversity and species number, to evaluate possible growth form evolutionary trends. Our phylogenetic results support previous studies showing the paraphyly of subfamily Pereskioideae and the monophyly of subfamilies Opuntioideae and Cactoideae. After the early divergence of Blossfeldia, Cactoideae splits into two clades: Cacteae, including North American globose and barrel-shaped members, and core Cactoideae, including the largest diversity of growth forms distributed throughout the American continent. Para- or polyphyly is persistent in different parts of the phylogeny. Main Cactoideae clades were found to have different ancestral growth forms, and convergence toward globose, arborescent, or columnar forms occurred in different lineages. Our study enabled us to provide a detailed hypothesis of relationships among cacti lineages and represents the most complete general phylogenetic framework available to understand evolutionary trends within Cactaceae.
Urdy, S; Goudemand, N; Pantalacci, S
2016-01-01
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas. © 2016 Elsevier Inc. All rights reserved.
Genetic variation in heat-stress tolerance among South American Drosophila populations.
Fallis, Lindsey C; Fanara, Juan Jose; Morgan, Theodore J
2011-10-01
Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.
Recent advances in the evolutionary engineering of industrial biocatalysts.
Winkler, James D; Kao, Katy C
2014-12-01
Evolutionary engineering has been used to improve key industrial strain traits, such as carbon source utilization, tolerance to adverse environmental conditions, and resistance to chemical inhibitors, for many decades due to its technical simplicity and effectiveness. The lack of need for prior genetic knowledge underlying the phenotypes of interest makes this a powerful approach for strain development for even species with minimal genotypic information. While the basic experimental procedure for laboratory adaptive evolution has remained broadly similar for many years, a range of recent advances show promise for improving the experimental workflows for evolutionary engineering by accelerating the pace of evolution, simplifying the analysis of evolved mutants, and providing new ways of linking desirable phenotypes to selectable characteristics. This review aims to highlight some of these recent advances and discuss how they may be used to improve industrially relevant microbial phenotypes. Copyright © 2014 Elsevier Inc. All rights reserved.
On the information content of discrete phylogenetic characters.
Bordewich, Magnus; Deutschmann, Ina Maria; Fischer, Mareike; Kasbohm, Elisa; Semple, Charles; Steel, Mike
2017-12-16
Phylogenetic inference aims to reconstruct the evolutionary relationships of different species based on genetic (or other) data. Discrete characters are a particular type of data, which contain information on how the species should be grouped together. However, it has long been known that some characters contain more information than others. For instance, a character that assigns the same state to each species groups all of them together and so provides no insight into the relationships of the species considered. At the other extreme, a character that assigns a different state to each species also conveys no phylogenetic signal. In this manuscript, we study a natural combinatorial measure of the information content of an individual character and analyse properties of characters that provide the maximum phylogenetic information, particularly, the number of states such a character uses and how the different states have to be distributed among the species or taxa of the phylogenetic tree.
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis
Williams, Ben P; Johnston, Iain G; Covshoff, Sarah; Hibberd, Julian M
2013-01-01
C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: http://dx.doi.org/10.7554/eLife.00961.001 PMID:24082995
Everroad, R Craig; Wood, A Michelle
2012-09-01
In marine Synechococcus there is evidence for the adaptive evolution of spectrally distinct forms of the major light harvesting pigment phycoerythrin (PE). Recent research has suggested that these spectral forms of PE have a different evolutionary history than the core genome. However, a lack of explicit statistical testing of alternative hypotheses or for selection on these genes has made it difficult to evaluate the evolutionary relationships between spectral forms of PE or the role horizontal gene transfer (HGT) may have had in the adaptive phenotypic evolution of the pigment system in marine Synechococcus. In this work, PE phylogenies of picocyanobacteria with known spectral phenotypes, including newly co-isolated strains of marine Synechococcus from the Gulf of Mexico, were constructed to explore the diversification of spectral phenotype and PE evolution in this group more completely. For the first time, statistical evaluation of competing evolutionary hypotheses and tests for positive selection on the PE locus in picocyanobacteria were performed. Genes for PEs associated with specific PE spectral phenotypes formed strongly supported monophyletic clades within the PE tree with positive directional selection driving evolution towards higher phycourobilin (PUB) content. The presence of the PUB-lacking phenotype in PE-containing marine picocyanobacteria from cyanobacterial lineages identified as Cyanobium is best explained by HGT into this group from marine Synechococcus. Taken together, these data provide strong examples of adaptive evolution of a single phenotypic trait in bacteria via mutation, positive directional selection and horizontal gene transfer. Copyright © 2012 Elsevier Inc. All rights reserved.
Cancer heterogeneity and multilayer spatial evolutionary games.
Świerniak, Andrzej; Krześlak, Michał
2016-10-13
Evolutionary game theory (EGT) has been widely used to simulate tumour processes. In almost all studies on EGT models analysis is limited to two or three phenotypes. Our model contains four main phenotypes. Moreover, in a standard approach only heterogeneity of populations is studied, while cancer cells remain homogeneous. A multilayer approach proposed in this paper enables to study heterogeneity of single cells. In the extended model presented in this paper we consider four strategies (phenotypes) that can arise by mutations. We propose multilayer spatial evolutionary games (MSEG) played on multiple 2D lattices corresponding to the possible phenotypes. It enables simulation and investigation of heterogeneity on the player-level in addition to the population-level. Moreover, it allows to model interactions between arbitrary many phenotypes resulting from the mixture of basic traits. Different equilibrium points and scenarios (monomorphic and polymorphic populations) have been achieved depending on model parameters and the type of played game. However, there is a possibility of stable quadromorphic population in MSEG games for the same set of parameters like for the mean-field game. The model assumes an existence of four possible phenotypes (strategies) in the population of cells that make up tumour. Various parameters and relations between cells lead to complex analysis of this model and give diverse results. One of them is a possibility of stable coexistence of different tumour cells within the population, representing almost arbitrary mixture of the basic phenotypes. This article was reviewed by Tomasz Lipniacki, Urszula Ledzewicz and Jacek Banasiak.
The evolution of labile traits in sex- and age-structured populations.
Childs, Dylan Z; Sheldon, Ben C; Rees, Mark
2016-03-01
Many quantitative traits are labile (e.g. somatic growth rate, reproductive timing and investment), varying over the life cycle as a result of behavioural adaptation, developmental processes and plastic responses to the environment. At the population level, selection can alter the distribution of such traits across age classes and among generations. Despite a growing body of theoretical research exploring the evolutionary dynamics of labile traits, a data-driven framework for incorporating such traits into demographic models has not yet been developed. Integral projection models (IPMs) are increasingly being used to understand the interplay between changes in labile characters, life histories and population dynamics. One limitation of the IPM approach is that it relies on phenotypic associations between parents and offspring traits to capture inheritance. However, it is well-established that many different processes may drive these associations, and currently, no clear consensus has emerged on how to model micro-evolutionary dynamics in an IPM framework. We show how to embed quantitative genetic models of inheritance of labile traits into age-structured, two-sex models that resemble standard IPMs. Commonly used statistical tools such as GLMs and their mixed model counterparts can then be used for model parameterization. We illustrate the methodology through development of a simple model of egg-laying date evolution, parameterized using data from a population of Great tits (Parus major). We demonstrate how our framework can be used to project the joint dynamics of species' traits and population density. We then develop a simple extension of the age-structured Price equation (ASPE) for two-sex populations, and apply this to examine the age-specific contributions of different processes to change in the mean phenotype and breeding value. The data-driven framework we outline here has the potential to facilitate greater insight into the nature of selection and its consequences in settings where focal traits vary over the lifetime through ontogeny, behavioural adaptation and phenotypic plasticity, as well as providing a potential bridge between theoretical and empirical studies of labile trait variation. © 2016 The Authors Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Rossouw, Debra; Bagheri, Bahareh; Setati, Mathabatha Evodia; Bauer, Florian Franz
2015-01-01
Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function. PMID:26317200
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.
Kingston, S E; Martino, P; Melendy, M; Reed, F A; Carlon, D B
2018-03-01
A key component to understanding the evolutionary response to a changing climate is linking underlying genetic variation to phenotypic variation in stress response. Here, we use a genome-wide association approach (GWAS) to understand the genetic architecture of calcification rates under simulated climate stress. We take advantage of the genomic gradient across the blue mussel hybrid zone (Mytilus edulis and Mytilus trossulus) in the Gulf of Maine (GOM) to link genetic variation with variance in calcification rates in response to simulated climate change. Falling calcium carbonate saturation states are predicted to negatively impact many marine organisms that build calcium carbonate shells - like blue mussels. We sampled wild mussels and measured net calcification phenotypes after exposing mussels to a 'climate change' common garden, where we raised temperature by 3°C, decreased pH by 0.2 units and limited food supply by filtering out planktonic particles >5 μm, compared to ambient GOM conditions in the summer. This climate change exposure greatly increased phenotypic variation in net calcification rates compared to ambient conditions. We then used regression models to link the phenotypic variation with over 170 000 single nucleotide polymorphism loci (SNPs) generated by genotype by sequencing to identify genomic locations associated with calcification phenotype, and estimate heritability and architecture of the trait. We identified at least one of potentially 2-10 genomic regions responsible for 30% of the phenotypic variation in calcification rates that are potential targets of natural selection by climate change. Our simulations suggest a power of 13.7% with our study's average effective sample size of 118 individuals and rare alleles, but a power of >90% when effective sample size is 900. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Swain, Timothy D
2010-06-01
Two fundamental symbiosis-based trophic types are recognized among Zoanthidea (Cnidaria, Anthozoa): fixed carbon is either obtained directly from zooxanthellae photosymbionts or from environmental sources through feeding with the assistance of host-invertebrate behaviour and structure. Each trophic type is characteristic of the suborders of Zoanthidea and is associated with substantial distributional asymmetries: suborder Macrocnemina are symbionts of invertebrates and have global geographic and bathymetric distributions and suborder Brachycnemina are hosts of endosymbiotic zooxanthellae and are restricted to tropical photic zones. While exposure to solar radiation could explain the bathymetric asymmetry it does not explain the geographic asymmetry, nor is it clear why evolutionary transitions to the zooxanthellae-free state have apparently occurred within Macrocnemina but not within Brachycnemina. To better understand the transitions between symbiosis-based trophic types of Zoanthidea, a concatenated data set of nuclear and mitochondrial nucleotide sequences were used to test hypotheses of monophyly for groups defined by morphology and symbiosis, and to reconstruct the evolutionary transitions of morphological and symbiotic characters. The results indicate that the morphological characters that define Macrocnemina are plesiomorphic and the characters that define its subordinate taxa are homoplasious. Symbioses with invertebrates have ancient and recent transitions with a general pattern of stability in host associations through evolutionary time. The reduction in distribution of Zoanthidea is independent of the evolution of zooxanthellae symbiosis and consistent with hypotheses of the benefits of invertebrate symbioses, indicating that the ability to persist in most habitats may have been lost with the termination of symbioses with invertebrates.
NASA Astrophysics Data System (ADS)
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-06-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
NASA Astrophysics Data System (ADS)
Collins, S.
2010-07-01
Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.
Begum, Tina; Ghosh, Tapash Chandra
2014-10-05
To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
McNamara, K B; Simmons, L W
2017-09-01
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Directional selection effects on patterns of phenotypic (co)variation in wild populations
Patton, J. L.; Hubbe, A.; Marroig, G.
2016-01-01
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. PMID:27881744
Phenotypic convergence in bacterial adaptive evolution to ethanol stress.
Horinouchi, Takaaki; Suzuki, Shingo; Hirasawa, Takashi; Ono, Naoaki; Yomo, Tetsuya; Shimizu, Hiroshi; Furusawa, Chikara
2015-09-03
Bacterial cells have a remarkable ability to adapt to environmental changes, a phenomenon known as adaptive evolution. During adaptive evolution, phenotype and genotype dynamically changes; however, the relationship between these changes and associated constraints is yet to be fully elucidated. In this study, we analyzed phenotypic and genotypic changes in Escherichia coli cells during adaptive evolution to ethanol stress. Phenotypic changes were quantified by transcriptome and metabolome analyses and were similar among independently evolved ethanol tolerant populations, which indicate the existence of evolutionary constraints in the dynamics of adaptive evolution. Furthermore, the contribution of identified mutations in one of the tolerant strains was evaluated using site-directed mutagenesis. The result demonstrated that the introduction of all identified mutations cannot fully explain the observed tolerance in the tolerant strain. The results demonstrated that the convergence of adaptive phenotypic changes and diverse genotypic changes, which suggested that the phenotype-genotype mapping is complex. The integration of transcriptome and genome data provides a quantitative understanding of evolutionary constraints.
Reusch, Thorsten B H
2014-01-01
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551
Ecological transition predictably associated with gene degeneration.
Wessinger, Carolyn A; Rausher, Mark D
2015-02-01
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lessons from applied ecology: cancer control using an evolutionary double bind.
Gatenby, Robert A; Brown, Joel; Vincent, Thomas
2009-10-01
Because the metastatic cascade is largely governed by the ability of malignant cells to adapt and proliferate at the distant tissue site, we propose that disseminated cancers are analogous in many important ways to the evolutionary and ecological dynamics of exotic species. Although pests can be decimated through the application of chemical toxins, this strategy virtually never achieves robust control as evolution of resistant phenotypes typically permits population recovery to pretreatment levels. In general, biological strategies that introduce predators, parasitoids, or pathogens have achieved more durable control of pest populations even after emergence of resistant phenotypes. From this we propose that long term outcome from any treatment strategy for invasive pests, including cancer, is not limited by evolution of resistance, but rather by the phenotypic cost of that resistance. If a cancerous cell's adaptation to therapy is achieved by upregulating xenobiotic metabolism or a redundant signaling pathway, the required investment in resources is small, and the original malignant phenotype remains essentially intact. As a result, the cancer cells' initial high level of fitness is little changed and unconstrained proliferation will resume once resistance evolves. Robust population control is possible if resistance to therapy requires a substantial and costly phenotypic adaptation that also significantly reduces the organism's fitness in its original niche: an evolutionary double bind.
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Musser, Jacob M; Wagner, Günter P
2015-11-01
We elaborate a framework for investigating the evolutionary history of morphological characters. We argue that morphological character trees generated by phylogenetic analysis of transcriptomes provide a useful tool for identifying causal gene expression differences underlying the development and evolution of morphological characters. They also enable rigorous testing of different models of morphological character evolution and origination, including the hypothesis that characters originate via divergence of repeated ancestral characters. Finally, morphological character trees provide evidence that character transcriptomes undergo concerted evolution. We argue that concerted evolution of transcriptomes can explain the so-called "species signal" found in several recent comparative transcriptome studies. The species signal is the phenomenon that transcriptomes cluster by species rather than character type, even though the characters are older than the respective species. We suggest the species signal is a natural consequence of concerted gene expression evolution resulting from mutations that alter gene regulatory network interactions shared by the characters under comparison. Thus, character trees generated from transcriptomes allow us to investigate the variational independence, or individuation, of morphological characters at the level of genetic programs. © 2015 Wiley Periodicals, Inc.
Garland, Theodore
1988-03-01
Recent conceptual advances in physiological ecology emphasize the potential selective importance of whole-animal performance. Empirical studies of locomotor performance in reptiles have revealed surprising amounts of individual variation in speed and stamina. The present study is the first in a series examining the genetic basis of variation in locomotor performance, activity metabolism, and associated behaviors in garter snakes. Maximal sprint crawling speed, treadmill endurance, and antipredator displays (Arnold and Bennett, 1984; exhibited as snakes reached exhaustion on the treadmill) were measured for approximately six offspring (presumed to be full siblings) from each of 46 wild-caught gravid garter snakes (Thamnophis sirtalis). Each character was measured on two days; all were individually repeatable. Correlations of these characters with body mass, snout-vent length, age at testing, litter size, dam mass, and dam snout-vent length were removed by computing residuals from multiple-regression equations. These residuals were used in subsequent genetic analyses. Approximate coefficients of variation of residuals were 17% for speed, 48% for endurance, and 31% for antipredator displays. Broad-sense heritabilities were significant for all characters: speed h 2 = 0.58; stamina h 2 = 0.70; antipredator display h 2 = 0.42. All three residual characters showed positive and statistically significant phenotypic correlations (r = 0.19-0.36). Genetic correlations (estimated and tested by restricted maximum likelihood) among residuals were positive and highly significant between speed and endurance (0.58), but nonsignificant between speed and antipredator display (0.43), and between endurance and antipredator display (0.26). All environmental correlations were nonsignificant. These data suggest that, contrary to expectations based on previous physiological studies, there may be no necessary evolutionary trade-off between speed and stamina in these animals. This tentative conclusion will have important implications for future theoretical studies of the evolution of locomotor performance and associated antipredator behaviors. © 1988 The Society for the Study of Evolution.
Intraspecific competition favours niche width expansion in Drosophila melanogaster.
Bolnick, D I
2001-03-22
Ecologists have proposed that when interspecific competition is reduced, competition within a species becomes a potent evolutionary force leading to rapid diversification. This view reflects the observation that populations invading species-poor communities frequently evolve broader niches. Niche expansion can be associated with an increase in phenotypic variance (known as character release), with the evolution of polymorphisms, or with divergence into many species using distinct resources (adaptive radiation). The relationship between intraspecific competition and diversification is known from theory, and has been used as the foundation for some models of speciation. However, there has been little empirical proof that niches evolve in response to intraspecific competition. To test this hypothesis, I introduced cadmium-intolerant Drosophila melanogaster populations to environments containing both cadmium-free and cadmium-laced resources. Here I show that populations experiencing high competition adapted to cadmium more rapidly than low competition populations. This provides experimental confirmation that competition in a population can drive niche expansion onto new resources for which competition is less severe.
Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes
Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M.; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel
2017-01-01
Abstract Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. PMID:28204787
Chen, Bor-Sen; Yeh, Chin-Hsun
2017-12-01
We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.
Blotto, Boris L; Pereyra, Martin O; Faivovich, Julián; Dias, Pedro Henrique Dos Santos; Grant, Taran
2017-05-02
We studied the foot musculature of the fossorial family Odontophrynidae (composed of the genera Macrogenioglottus, Odontophrynus, and Proceratophrys) plus several outgroup taxa from Hyloidea and other burrowing taxa from across Anura. We found novel character-states supporting the monophyly of Odontophrynus, Proceratophrys, and Odontophrynus + Macrogenioglottus. The character-states observed in O. cultripes support conflicting phylogenetic positions within Odontophrynus. A comparison of some novel character-states with a diverse sample of burrowing taxa suggests that some modifications of the foot musculature might be involved in digging.
Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.
Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine
2008-05-01
Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).
Natural history collections as windows on evolutionary processes.
Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W
2016-02-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.
Co-niche construction between hosts and symbionts: ideas and evidence.
Borges, Renee M
2017-07-01
Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.
Natural history collections as windows on evolutionary processes
Holmes, Michael W.; Hammond, Talisin T.; Wogan, Guinevere O.U.; Walsh, Rachel E.; LaBarbera, Katie; Wommack, Elizabeth A.; Martins, Felipe M.; Crawford, Jeremy C.; Mack, Katya L.; Bloch, Luke M.; Nachman, Michael W.
2016-01-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics, and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the lab, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short time scales in response to presumably strong selective pressures. In some instances evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. PMID:26757135
Benedict, John C.; Smith, Selena Y.; Specht, Chelsea D.; Collinson, Margaret E.; Leong-Škorničková, Jana; Parkinson, Dilworth Y.; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. PMID:27594701
Why Africa matters: evolution of Old World Salvia (Lamiaceae) in Africa.
Will, Maria; Claßen-Bockhoff, Regine
2014-07-01
Salvia is the largest genus in Lamiaceae and it has recently been found to be non-monophyletic. Molecular data on Old World Salvia are largely lacking. In this study, we present data concerning Salvia in Africa. The focus is on the colonization of the continent, character evolution and the switch of pollination systems in the genus. Maximum likelihood and Bayesian inference were used for phylogenetic reconstruction. Analyses were based on two nuclear markers [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and one plastid marker (rpl32-trnL). Sequence data were generated for 41 of the 62 African taxa (66 %). Mesquite was used to reconstruct ancestral character states for distribution, life form, calyx shape, stamen type and pollination syndrome. Salvia in Africa is non-monophyletic. Each of the five major regions in Africa, except Madagascar, was colonized at least twice, and floristic links between North African, south-west Asian and European species are strongly supported. The large radiation in Sub-Saharan Africa (23 species) can be traced back to dispersal from North Africa via East Africa to the Cape Region. Adaptation to bird pollination in southern Africa and Madagascar reflects parallel evolution. The phenotypic diversity in African Salvia is associated with repeated introductions to the continent. Many important evolutionary processes, such as colonization, adaptation, parallelism and character transformation, are reflected in this comparatively small group. The data presented in this study can help to understand the evolution of Salvia sensu lato and other large genera. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mega-evolutionary dynamics of the adaptive radiation of birds.
Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H
2017-02-16
The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.
Templeton, A. R.; Sing, C. F.
1993-01-01
We previously developed an analytical strategy based on cladistic theory to identify subsets of haplotypes that are associated with significant phenotypic deviations. Our initial approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site data to estimate the evolutionary steps that interrelate the observed haplotypes to one another. The cladogram is then used to define a nested statistical design for identifying mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that a mutation responsible for a particular phenotypic effect is embedded within the evolutionary history that is represented by the cladogram. The power of this approach depends on the accuracy of the cladogram in portraying the evolutionary history of the DNA region. This accuracy can be diminished both by recombination and by uncertainty in the estimated cladogram topology. In a previous paper, we presented an algorithm for estimating the set of likely cladograms and recombination events. In this paper we present an algorithm for defining a nested statistical design under cladogram uncertainty and recombination. Given the nested design, phenotypic associations can be examined using either a nested analysis of variance (for haploids or homozygous strains) or permutation testing (for outcrossed, diploid gene regions). In this paper we also extend this analytical strategy to include categorical phenotypes in addition to quantitative phenotypes. Some worked examples are presented using Drosophila data sets. These examples illustrate that having some recombination may actually enhance the biological inferences that may derived from a cladistic analysis. In particular, recombination can be used to assign a physical localization to a given subregion for mutations responsible for significant phenotypic effects. PMID:8100789
Evolutionary branching under multi-dimensional evolutionary constraints.
Ito, Hiroshi; Sasaki, Akira
2016-10-21
The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding phylogenetic incongruence: lessons from phyllostomid bats
Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B
2012-01-01
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats. PMID:22891620
Hummel, Barbara; Hansen, Erik C; Yoveva, Aneliya; Aprile-Garcia, Fernando; Hussong, Rebecca; Sawarkar, Ritwick
2017-03-01
Understanding how genotypes are linked to phenotypes is important in biomedical and evolutionary studies. The chaperone heat-shock protein 90 (HSP90) buffers genetic variation by stabilizing proteins with variant sequences, thereby uncoupling phenotypes from genotypes. Here we report an unexpected role of HSP90 in buffering cis-regulatory variation affecting gene expression. By using the tripartite-motif-containing 28 (TRIM28; also known as KAP1)-mediated epigenetic pathway, HSP90 represses the regulatory influence of endogenous retroviruses (ERVs) on neighboring genes that are critical for mouse development. Our data based on natural variations in the mouse genome show that genes respond to HSP90 inhibition in a manner dependent on their genomic location with regard to strain-specific ERV-insertion sites. The evolutionary-capacitor function of HSP90 may thus have facilitated the exaptation of ERVs as key modifiers of gene expression and morphological diversification. Our findings add a new regulatory layer through which HSP90 uncouples phenotypic outcomes from individual genotypes.
Lane, Jeffrey E; McAdam, Andrew G; McFarlane, S Eryn; Williams, Cory T; Humphries, Murray M; Coltman, David W; Gorrell, Jamieson C; Boutin, Stan
2018-06-01
Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h 2 = 0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [β = -0.14 ± 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Quantification provides a conceptual basis for convergent evolution.
Speed, Michael P; Arbuckle, Kevin
2017-05-01
While much of evolutionary biology attempts to explain the processes of diversification, there is an important place for the study of phenotypic similarity across life forms. When similar phenotypes evolve independently in different lineages this is referred to as convergent evolution. Although long recognised, evolutionary convergence is receiving a resurgence of interest. This is in part because new genomic data sets allow detailed and tractable analysis of the genetic underpinnings of convergent phenotypes, and in part because of renewed recognition that convergence may reflect limitations in the diversification of life. In this review we propose that although convergent evolution itself does not require a new evolutionary framework, none the less there is room to generate a more systematic approach which will enable evaluation of the importance of convergent phenotypes in limiting the diversity of life's forms. We therefore propose that quantification of the frequency and strength of convergence, rather than simply identifying cases of convergence, should be considered central to its systematic comprehension. We provide a non-technical review of existing methods that could be used to measure evolutionary convergence, bringing together a wide range of methods. We then argue that quantification also requires clear specification of the level at which the phenotype is being considered, and argue that the most constrained examples of convergence show similarity both in function and in several layers of underlying form. Finally, we argue that the most important and impressive examples of convergence are those that pertain, in form and function, across a wide diversity of selective contexts as these persist in the likely presence of different selection pressures within the environment. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Lindenfors, P; Tullberg, B S
2006-07-01
The fact that characters may co-vary in organism groups because of shared ancestry and not always because of functional correlations was the initial rationale for developing phylogenetic comparative methods. Here we point out a case where similarity due to shared ancestry can produce an undesired effect when conducting an independent contrasts analysis. Under special circumstances, using a low sample size will produce results indicating an evolutionary correlation between characters where an analysis of the same pattern utilizing a larger sample size will show that this correlation does not exist. This is the opposite effect of increased sample size to that expected; normally an increased sample size increases the chance of finding a correlation. The situation where the problem occurs is when co-variation between the two continuous characters analysed is clumped in clades; e.g. when some phylogenetically conservative factors affect both characters simultaneously. In such a case, the correlation between the two characters becomes contingent on the number of clades sharing this conservative factor that are included in the analysis, in relation to the number of species contained within these clades. Removing species scattered evenly over the phylogeny will in this case remove the exact variation that diffuses the evolutionary correlation between the two characters - the variation contained within the clades sharing the conservative factor. We exemplify this problem by discussing a parallel in nature where the described problem may be of importance. This concerns the question of the presence or absence of Rensch's rule in primates.
Wood, D.A.; Meik, J.M.; Holycross, A.T.; Fisher, R.N.; Vandergast, A.G.
2008-01-01
Chionactis occipitalis (Western Shovel-nosed Snake) is a small colubrid snake inhabiting the arid regions of the Mojave, Sonoran, and Colorado deserts. Morphological assessments of taxonomy currently recognize four subspecies. However, these taxonomic proposals were largely based on weak morphological differentiation and inadequate geographic sampling. Our goal was to explore evolutionary relationships and boundaries among subspecies of C. occipitalis, with particular focus on individuals within the known range of C. o. klauberi (Tucson Shovel-nosed snake). Population sizes and range for C. o. klauberi have declined over the last 25 years due to habitat alteration and loss prompting a petition to list this subspecies as endangered. We examined the phylogeography, population structure, and subspecific taxonomy of C. occipitalis across its geographic range with genetic analysis of 1100 bases of mitochondrial DNA sequence and reanalysis of 14 morphological characters from 1543 museum specimens. We estimated the species gene phylogeny from 81 snakes using Bayesian inference and explored possible factors influencing genetic variation using landscape genetic analyses. Phylogenetic and population genetic analyses reveal genetic isolation and independent evolutionary trajectories for two primary clades. Our data indicate that diversification between these clades has developed as a result of both historical vicariance and environmental isolating mechanisms. Thus these two clades likely comprise 'evolutionary significant units' (ESUs). Neither molecular nor morphological data are concordant with the traditional C. occipitalis subspecies taxonomy. Mitochondrial sequences suggest specimens recognized as C. o. klauberi are embedded in a larger geographic clade whose range has expanded from western Arizona populations, and these data are concordant with clinal longitudinal variation in morphology. ?? 2007 Springer Science+Business Media B.V.
A phylogenetic test for adaptive convergence in rock-dwelling lizards.
Revell, Liam J; Johnson, Michele A; Schulte, James A; Kolbe, Jason J; Losos, Jonathan B
2007-12-01
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.
Floral evolution of Philodendron subgenus Meconostigma (Araceae).
de Oliveira, Letícia Loss; Calazans, Luana Silva Braucks; de Morais, Érica Barroso; Mayo, Simon Joseph; Schrago, Carlos Guerra; Sakuragui, Cassia Mônica
2014-01-01
Elucidating the evolutionary patterns of flower and inflorescence structure is pivotal to understanding the phylogenetic relationships of Angiosperms as a whole. The inflorescence morphology and anatomy of Philodendron subgenus Meconostigma, belonging to the monocot family Araceae, has been widely studied but the evolutionary relationships of subgenus Meconostigma and the evolution of its flower characters have hitherto remained unclear. This study examines gynoecium evolution in subgenus Meconostigma in the context of an estimated molecular phylogeny for all extant species of subgenus Meconostigma and analysis of ancestral character reconstructions of some gynoecial structures. The phylogenetic reconstructions of all extant Meconostigma species were conducted under a maximum likelihood approach based on the sequences of two chloroplast (trnk and matK) and two nuclear (ETS and 18S) markers. This topology was used to reconstruct the ancestral states of seven floral characters and to elucidate their evolutionary pattern in the Meconostigma lineage. Our phylogeny shows that Meconostigma is composed of two major clades, one comprising two Amazonian species and the other all the species from the Atlantic Forest and Cerrado biomes with one Amazonian species. The common ancestor of the species of subgenus Meconostigma probably possessed short stylar lobes, long stylar canals, a stylar body, a vascular plexus in the gynoecium and druses in the stylar parenchyma but it is uncertain whether raphide inclusions were present in the parenchyma. The ancestral lineage also probably possessed up to 10 ovary locules. The evolution of these characters seems to have occurred independently in some lineages. We propose that the morphological and anatomical diversity observed in the gynoecial structures of subgenus Meconostigma is the result of an ongoing process of fusion of floral structures leading to a reduction of energy wastage and increase in stigmatic surface.
Kim, Mara; Cooper, Brian A.; Venkat, Rohit; Phillips, Julie B.; Eidem, Haley R.; Hirbo, Jibril; Nutakki, Sashank; Williams, Scott M.; Muglia, Louis J.; Capra, J. Anthony; Petren, Kenneth; Abbot, Patrick; Rokas, Antonis; McGary, Kriston L.
2016-01-01
Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy. PMID:26567549
Williams' paradox and the role of phenotypic plasticity in sexual systems.
Leonard, Janet L
2013-10-01
As George Williams pointed out in 1975, although evolutionary explanations, based on selection acting on individuals, have been developed for the advantages of simultaneous hermaphroditism, sequential hermaphroditism and gonochorism, none of these evolutionary explanations adequately explains the current distribution of these sexual systems within the Metazoa (Williams' Paradox). As Williams further pointed out, the current distribution of sexual systems is explained largely by phylogeny. Since 1975, we have made a great deal of empirical and theoretical progress in understanding sexual systems. However, we still lack a theory that explains the current distribution of sexual systems in animals and we do not understand the evolutionary transitions between hermaphroditism and gonochorism. Empirical data, collected over the past 40 years, demonstrate that gender may have more phenotypic plasticity than was previously realized. We know that not only sequential hermaphrodites, but also simultaneous hermaphrodites have phenotypic plasticity that alters sex allocation in response to social and environmental conditions. A focus on phenotypic plasticity suggests that one sees a continuum in animals between genetically determined gonochorism on the one hand and simultaneous hermaphroditism on the other, with various types of sequential hermaphroditism and environmental sex determination as points along the spectrum. Here I suggest that perhaps the reason we have been unable to resolve Williams' Paradox is because the problem was not correctly framed. First, because, for example, simultaneous hermaphroditism provides reproductive assurance or dioecy ensures outcrossing does not mean that there are no other evolutionary paths that can provide adaptive responses to those selective pressures. Second, perhaps the question we need to ask is: What selective forces favor increased versus reduced phenotypic plasticity in gender expression? It is time to begin to look at the question of sexual system as one of understanding the timing and degree of phenotypic plasticity in gender expression in the life history in terms of selection acting on a continuum, rather than on a set of discrete sexual systems.
Mitochondria and the evolutionary roots of cancer
NASA Astrophysics Data System (ADS)
Davila, Alfonso F.; Zamorano, Pedro
2013-04-01
Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.
McLean, Bryan S; Helgen, Kristofer M; Goodwin, H Thomas; Cook, Joseph A
2018-03-01
Our understanding of mechanisms operating over deep timescales to shape phenotypic diversity often hinges on linking variation in one or few trait(s) to specific evolutionary processes. When distinct processes are capable of similar phenotypic signatures, however, identifying these drivers is difficult. We explored ecomorphological evolution across a radiation of ground-dwelling squirrels whose history includes convergence and constraint, two processes that can yield similar signatures of standing phenotypic diversity. Using four ecologically relevant trait datasets (body size, cranial, mandibular, and molariform tooth shape), we compared and contrasted variation, covariation, and disparity patterns in a new phylogenetic framework. Strong correlations existed between body size and two skull traits (allometry) and among skull traits themselves (integration). Inferred evolutionary modes were also concordant across traits (Ornstein-Uhlenbeck with two adaptive regimes). However, despite these broad similarities, we found divergent dynamics on the macroevolutionary landscape, with phenotypic disparity being differentially shaped by convergence and conservatism. Such among-trait heterogeneity in process (but not always pattern) reiterates the mosaic nature of morphological evolution, and suggests ground squirrel evolution is poorly captured by single process descriptors. Our results also highlight how use of single traits can bias macroevolutionary inference, affirming the importance of broader trait-bases in understanding phenotypic evolutionary dynamics. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-01-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2−/−, Spry4−/−, and Rsk2−/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents. PMID:26123406
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes.
Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel; Wegmann, Daniel
2017-11-01
Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Directional selection effects on patterns of phenotypic (co)variation in wild populations.
Assis, A P A; Patton, J L; Hubbe, A; Marroig, G
2016-11-30
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).
Phenotypic divergence despite low genetic differentiation in house sparrow populations.
Ben Cohen, Shachar; Dor, Roi
2018-01-10
Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.
Double-dealing behavior potentially promotes cooperation in evolutionary prisoner's dilemma games
NASA Astrophysics Data System (ADS)
Dai, Qionglin; Li, Haihong; Cheng, Hongyan; Li, Yuting; Yang, Junzhong
2010-11-01
We investigate the effects of double-dealing behavior on cooperation in evolutionary games. Each individual in a population has two attributes: character and action. One's action may be consistent with one's character or not. We provide analytical results by a mean-field description of evolutionary prisoner's dilemma games (PDGs). Moreover, we give numerical results on different networks, ranging from square lattices to scale-free networks (SFNs). Two important conclusions have been drawn from the results on SFNs. Firstly, if only non-influential individuals (those with low degrees) have chances of becoming double-dealers, cooperation is certain to deteriorate. Secondly, when influential individuals (those with high degrees) adopt double-dealing behavior moderately, cooperation would be enhanced, which is in opposition to the traditional belief. These results help us to understand better the social phenomenon of the existence of double-dealers. In addition to the PDG, other types of games including the snowdrift game, the stag-hunt game and the harmony game have also been studied on our model. The results for these three games are also presented, which are consistent with the results for the PDG qualitatively. Furthermore, we consider our model under the co-evolution framework, in which the probability of an individual changing into a double-dealer and the individual strategy both could evolve during the evolutionary process.
Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull.
Lü, Junchang; Unwin, David M; Jin, Xingsheng; Liu, Yongqing; Ji, Qiang
2010-02-07
The fossil record is a unique source of evidence for important evolutionary phenomena such as transitions between major clades. Frustratingly, relevant fossils are still comparatively rare, most transitions have yet to be documented in detail and the mechanisms that underpin such events, typified by rapid large scale changes and for which microevolutionary processes seem insufficient, are still unclear. A new pterosaur (Mesozoic flying reptile) from the Middle Jurassic of China, Darwinopterus modularis gen. et sp. nov., provides the first insights into a prominent, but poorly understood transition between basal, predominantly long-tailed pterosaurs and the more derived, exclusively short-tailed pterodactyloids. Darwinopterus exhibits a remarkable 'modular' combination of characters: the skull and neck are typically pterodactyloid, exhibiting numerous derived character states, while the remainder of the skeleton is almost completely plesiomorphic and identical to that of basal pterosaurs. This pattern supports the idea that modules, tightly integrated complexes of characters with discrete, semi-independent and temporally persistent histories, were the principal focus of natural selection and played a leading role in evolutionary transitions.
Quantifying rates of evolutionary adaptation in response to ocean acidification.
Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W
2011-01-01
The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.
Testing the phenotype-linked fertility hypothesis in the presence and absence of inbreeding.
Forstmeier, W; Ihle, M; Opatová, P; Martin, K; Knief, U; Albrechtová, J; Albrecht, T; Kempenaers, B
2017-05-01
The phenotype-linked fertility hypothesis suggests that females can judge male fertility by inspecting male phenotypic traits. This is because male sexually selected traits might correlate with sperm quality if both are sensitive to factors that influence male condition. A recent meta-analysis found little support for this hypothesis, suggesting little or no shared condition dependence. However, we recently reported that in captive zebra finches (Taeniopygia guttata) inbreeding had detrimental effects both on phenotypic traits and on measures of sperm quality, implying that variation in inbreeding could induce positive covariance between indicator traits and sperm quality. Therefore, we here assess empirically the average strength of correlations between phenotypic traits (courtship rate, beak colour, tarsus length) and measures of sperm quality (proportion of functional sperm, sperm velocity, sperm length) in populations of only outbred individuals and in mixed populations consisting of inbreds (F = 0.25) and outbreds (F = 0). As expected, phenotype sperm-trait correlations were stronger when the population contained a mix of inbred and outbred individuals. We also found unexpected heterogeneity between our two study populations, with correlations being considerably stronger in a domesticated population than in a recently wild-derived population. Correlations ranged from essentially zero among outbred-only wild-derived birds (mean Fisher's Zr ± SE = 0.03 ± 0.10) to moderately strong among domesticated birds of mixed inbreeding status (Zr ± SE = 0.38 ± 0.08). Our results suggest that, under some conditions, the phenotype-linked fertility hypothesis might apply. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio).
Howard, Richard D; Rohrer, Karl; Liu, Yiyang; Muir, William M
2015-05-01
Demonstrating relationships between sexual selection mechanisms and trait evolution is central to testing evolutionary theory. Using zebrafish, we found that wild-type males possessed a significant advantage in mate competition over transgenic RFP Glofish® males. In mating trials, wild-type males were aggressively superior to transgenic males in male-male chases and male-female chases; as a result, wild-type males sired 2.5× as many young as did transgenic males. In contrast, an earlier study demonstrated that female zebrafish preferred transgenic males as mates when mate competition was excluded experimentally. We tested the evolutionary consequence of this conflict between sexual selection mechanisms in a long-term study. The predicted loss of the transgenic phenotype was confirmed. More than 18,500 adults collected from 18 populations across 15 generations revealed that the frequency of the transgenic phenotype declined rapidly and was eliminated entirely in all but one population. Fitness component data for both sexes indicated that only male mating success differed between wild-type and transgenic individuals. Our predictive demographic model based on fitness components closely matched the rate of transgenic phenotype loss observed in the long-term study, thereby supporting its utility for studies assessing evolutionary outcomes of escaped or released genetically modified animals. © 2015 The Author(s).
Mega-evolutionary dynamics of the adaptive radiation of birds
Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.
2017-01-01
The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475
Benedict, John C; Smith, Selena Y; Specht, Chelsea D; Collinson, Margaret E; Leong-Škorničková, Jana; Parkinson, Dilworth Y; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Evolutionary change in physiological phenotypes along the human lineage
Vining, Alexander Q.; Nunn, Charles L.
2016-01-01
Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376
Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin
2015-04-21
Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.
Goswami, Anjali; Binder, Wendy J.; Meachen, Julie; O’Keefe, F. Robin
2015-01-01
Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change. PMID:25901310
Testing inferences in developmental evolution: the forensic evidence principle.
Larsson, Hans C E; Wagner, Günter P
2012-09-01
Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.
Rozengart, E V; Basova, N E; Moralev, S N
2012-01-01
For the second half of the XX century, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences was the center of the Russian cholinesterase investigations ("the Russian cholinesterase club"). The close cooperation with chemists-syntheticians of different scientific schools provided success and fruitfulness of this scientific search. All these years, there was preserved dualism of this investigation: a study of the mechanism of functioning and kinetics of cholinesterase catalysis as well as the comparative-enzymological character of studies of cholinesterases of the animals being at different levels of evolutionary development.
The case for character displacement in plants
Beans, Carolyn M
2014-01-01
The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species. PMID:24683467
Conservation Evo-Devo: Preserving Biodiversity by Understanding Its Origins.
Campbell, Calum S; Adams, Colin E; Bean, Colin W; Parsons, Kevin J
2017-10-01
Unprecedented rates of species extinction increase the urgency for effective conservation biology management practices. Thus, any improvements in practice are vital and we suggest that conservation can be enhanced through recent advances in evolutionary biology, specifically advances put forward by evolutionary developmental biology (i.e., evo-devo). There are strong overlapping conceptual links between conservation and evo-devo whereby both fields focus on evolutionary potential. In particular, benefits to conservation can be derived from some of the main areas of evo-devo research, namely phenotypic plasticity, modularity and integration, and mechanistic investigations of the precise developmental and genetic processes that determine phenotypes. Using examples we outline how evo-devo can expand into conservation biology, an opportunity which holds great promise for advancing both fields. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes
Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte
2016-01-01
Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251
Di Lellis, Maddalena A; Sereda, Sergej; Geißler, Anna; Picot, Adrien; Arnold, Petra; Lang, Stefanie; Troschinski, Sandra; Dieterich, Andreas; Hauffe, Torsten; Capowiez, Yvan; Mazzia, Christophe; Knigge, Thomas; Monsinjon, Tiphaine; Krais, Stefanie; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R
2014-11-01
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.
Climate change and mammals: evolutionary versus plastic responses.
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.
Harvest-induced evolution: insights from aquatic and terrestrial systems
Festa-Bianchet, Marco
2017-01-01
Commercial and recreational harvests create selection pressures for fitness-related phenotypic traits that are partly under genetic control. Consequently, harvesting can drive evolution in targeted traits. However, the quantification of harvest-induced evolutionary life history and phenotypic changes is challenging, because both density-dependent feedback and environmental changes may also affect these changes through phenotypic plasticity. Here, we synthesize current knowledge and uncertainties on six key points: (i) whether or not harvest-induced evolution is happening, (ii) whether or not it is beneficial, (iii) how it shapes biological systems, (iv) how it could be avoided, (v) its importance relative to other drivers of phenotypic changes, and (vi) whether or not it should be explicitly accounted for in management. We do this by reviewing findings from aquatic systems exposed to fishing and terrestrial systems targeted by hunting. Evidence from aquatic systems emphasizes evolutionary effects on age and size at maturity, while in terrestrial systems changes are seen in weapon size and date of parturition. We suggest that while harvest-induced evolution is likely to occur and negatively affect populations, the rate of evolutionary changes and their ecological implications can be managed efficiently by simply reducing harvest intensity. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920381
Climate change and mammals: evolutionary versus plastic responses
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made. PMID:24454546
Hoyal Cuthill, Jennifer F.
2015-01-01
Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650
Schwermann, Achim H; Dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas
2016-02-05
External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods.
Bertrand, J A M; Delahaie, B; Bourgeois, Y X C; Duval, T; García-Jiménez, R; Cornuault, J; Pujol, B; Thébaud, C; Milá, B
2016-04-01
Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST ) and phenotypic differentiation (PST ) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Reñé, Albert; Alacid, Elisabet; Ferrera, Isabel; Garcés, Esther
2017-01-01
Parasites are one of the ecologically most relevant groups of marine food webs, but their taxonomic and biological complexity hampers the assessment of their diversity and evolutionary trends. Moreover, the within-host processes that govern parasitoid infection, development and reproduction are often unknown. In this study, we describe a new species of a perkinsozoan endoparasitoid that infects the toxic dinoflagellate Dinophysis sacculus, by including observations of its morphology, ultrastructure, life-cycle development and phylogeny. The SSU rDNA sequence and main morphological features were also obtained for a second parasitoid species infecting the bloom-forming dinoflagellate Levanderina fissa. Phylogenetic analyses including the sequences obtained show that all known Perkinsozoa species infecting dinoflagellates cluster together. However, sequences of Parvilucifera prorocentri and those obtained in this study cluster at the base of the clade, while the rest of Parvilucifera representatives form a separated highly-supported cluster. These results, together with differing morphological characters like the formation of a germ-tube, the presence of trichocysts, or the heterochromatin presence in zoospores nucleus justify the erection of Dinovorax pyriformis gen. nov. et sp. nov., and Snorkelia prorocentri gen. nov. et comb. nov. (=Parvilucifera prorocentri). The morphological features and phylogenetic position of these parasitoids represent ancestral characters for the Perkinsozoa phylum, and also for Dinozoa clade, allowing the inference of the evolutionary framework of these Alveolata members. PMID:28970818
Environment determines evolutionary trajectory in a constrained phenotypic space
Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe
2017-01-01
Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136
Plastic and evolutionary responses to climate change in fish
Crozier, Lisa G; Hutchings, Jeffrey A
2014-01-01
The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549
Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.
Roff, D A; Fairbairn, D J
2011-09-01
This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Plastic and evolutionary responses to climate change in fish.
Crozier, Lisa G; Hutchings, Jeffrey A
2014-01-01
The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.
Interactions between plants and primates shape community diversity in a rainforest in Madagascar.
Herrera, James P
2016-07-01
Models of ecological community assembly predict how communities of interacting organisms may be shaped by abiotic and biotic factors. Competition and environmental filtering are the predominant factors hypothesized to explain community assembly. This study tested the effects of habitat, phylogenetic and phenotypic trait predictors on species co-occurrence patterns and abundances, with the endemic primates of Madagascar as an empirical system. The abundance of 11 primate species was estimated along gradients of elevation, food resource abundance and anthropogenic habitat disturbance at local scales in south-east Madagascar. Community composition was compared to null models to test for phylogenetic and functional structure, and the effects of phylogenetic relatedness of co-occurring species, their trait similarity and environmental variables on species' abundances were tested using mixed models and quantile regressions. Resource abundance was the strongest predictor of community structure. Where food tree abundance was high, closely related species with similar traits dominated communities. High-elevation communities with lower food tree abundance consisted of species that were distantly related and had divergent traits. Closely related species had dissimilar abundances where they co-occurred, partially driven by trait dissimilarity, indicating character displacement. By integrating local-scale variation in primate community composition, evolutionary relatedness and functional diversity, this study found strong evidence that community assembly in this system can be explained by competition and character displacement along ecological gradients. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Relaxed selection is a precursor to the evolution of phenotypic plasticity.
Hunt, Brendan G; Ometto, Lino; Wurm, Yannick; Shoemaker, DeWayne; Yi, Soojin V; Keller, Laurent; Goodisman, Michael A D
2011-09-20
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
Developmental plasticity and the origin of species differences
West-Eberhard, Mary Jane
2005-01-01
Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679
Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan
2014-01-01
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520
NASA Astrophysics Data System (ADS)
Yuniastuti, E.; Anggita, A.; Nandariyah; Sukaya
2018-03-01
The characteristics durian based on specific area gives a wide diversity of phenotype. This research objective was to build an inventory of the local durian of Ngrambe as well as to obtain potentially superior local durian as prospective parent trees. The research was conducted in Ngrambe sub-district, on October 2015 until April 2016 using the explorative descriptive method. The determination of sample point used the non-probability method of snowball sampling type. Primary data include the morphology of plant characters, trunks, leaves, flower, fruits and seeds and their superiority. The data of the research were analyzed using SIMQUAL (Similarity for Qualitative) function based on the DICE coefficient on NTSYS v.2.02. The data cluster and dendrogram analyses were determined by Unweighted Pair-Group Arithmetic Average (UPGMA) method. The result of DICE coefficient analyses of 58 local durian accession based on the phenotypic character of vegetative organs ranged from 0.84-1.0. The phenotypic character of the vegetative and generative organ from 3 local durian accession superior potential ranged from 0.7 to 0.8. In conclusion, the accession of local durian which were Miyem and Rusmiyati have advantage and potential as prospective parent trees.
[Tentative classification of the nematodes Trichostrongyloidea (author's transl)].
Durette-Desset, M C; Chabaud, A G
1977-01-01
Taking into consideration the evolution of different characters, and mainly the evolutionary pattern of the "synlophe", we propose to divide the Trichostrongyloidea into 8 families: Ollulanidae, Dictyocaulidae, Strongylacanthidae, Amidostomatidae, Molineidae, Heligmosomidae, Heligmonellidae and Trichostrongylidae.
Evolutionary change in physiological phenotypes along the human lineage.
Vining, Alexander Q; Nunn, Charles L
2016-01-01
Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Kappesser, Judith; de C Williams, Amanda C
2008-08-01
Observer underestimation of others' pain was studied using a concept from evolutionary psychology: a cheater detection mechanism from social contract theory, applied to relatives and friends of chronic pain patients. 127 participants estimated characters' pain intensity and fairness of behaviour after reading four vignettes describing characters suffering from pain. Four cues were systematically varied: the character continuing or stopping liked tasks; continuing or stopping disliked tasks; availability of medical evidence; and pain intensity as rated by characters. Results revealed that pain intensity and the two behavioural variables had an effect on pain estimates: high pain self-reports and stopping all tasks led to high pain estimates; pain was estimated to be lowest when characters stopped disliked but continued with liked tasks. This combination was also rated least fair. Results support the use of social contract theory as a theoretical framework to explore pain judgements.
Evolutionary patterns and processes in the radiation of phyllostomid bats
2011-01-01
Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were marked by stasis around a number of probable adaptive peaks. A considerable amount of cladogenesis and speciation in this period is likely to be the result of non-adaptive allopatric divergence or adaptations to peaks within major dietary categories. PMID:21605452
Evolutionary patterns and processes in the radiation of phyllostomid bats.
Monteiro, Leandro R; Nogueira, Marcelo R
2011-05-23
The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were marked by stasis around a number of probable adaptive peaks. A considerable amount of cladogenesis and speciation in this period is likely to be the result of non-adaptive allopatric divergence or adaptations to peaks within major dietary categories.
Engen, Steinar; Lande, Russell; Saether, Bernt-Erik
2011-10-01
We analyze weak fluctuating selection on a quantitative character in an age-structured population not subject to density regulation. We assume that early in the first year of life before selection, during a critical state of development, environments exert a plastic effect on the phenotype, which remains constant throughout the life of an individual. Age-specific selection on the character affects survival and fecundity, which have intermediate optima subject to temporal environmental fluctuations with directional selection in some age classes as special cases. Weighting individuals by their reproductive value, as suggested by Fisher, we show that the expected response per year in the weighted mean character has the same form as for models with no age structure. Environmental stochasticity generates stochastic fluctuations in the weighted mean character following a first-order autoregressive model with a temporally autocorrelated noise term and stationary variance depending on the amount of phenotypic plasticity. The parameters of the process are simple weighted averages of parameters used to describe age-specific survival and fecundity. The "age-specific selective weights" are related to the stable distribution of reproductive values among age classes. This allows partitioning of the change in the weighted mean character into age-specific components. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Brodersen, Jakob; Seehausen, Ole
2014-01-01
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys. PMID:25553061
Why don't zebras have machine guns? Adaptation, selection, and constraints in evolutionary theory.
Shanahan, Timothy
2008-03-01
In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.
Ullastres, Anna; Petit, Natalia; González, Josefa
2015-07-01
A major challenge of modern Biology is elucidating the functional consequences of natural mutations. Although we have a good understanding of the effects of laboratory-induced mutations on the molecular- and organismal-level phenotypes, the study of natural mutations has lagged behind. In this work, we explore the phenotypic space and the evolutionary history of a previously identified adaptive transposable element insertion. We first combined several tests that capture different signatures of selection to show that there is evidence of positive selection in the regions flanking FBti0019386 insertion. We then explored several phenotypes related to known phenotypic effects of nearby genes, and having plausible connections to fitness variation in nature. We found that flies with FBti0019386 insertion had a shorter developmental time and were more sensitive to stress, which are likely to be the adaptive effect and the cost of selection of this mutation, respectively. Interestingly, these phenotypic effects are not consistent with a role of FBti0019386 in temperate adaptation as has been previously suggested. Indeed, a global analysis of the population frequency of FBti0019386 showed that climatic variables explain well the FBti0019386 frequency patterns only in Australia. Finally, although FBti0019386 insertion could be inducing the formation of heterochromatin by recruiting HP1a (Heterochromatin Protein 1a) protein, the insertion is associated with upregulation of sra in adult females. Overall, our integrative approach allowed us to shed light on the evolutionary history, the relevant fitness effects, and the likely molecular mechanisms of an adaptive mutation and highlights the complexity of natural genetic variants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Finarelli, John A; Goswami, Anjali
2013-12-01
Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Larter, Maximilian; Dunbar-Wallis, Amy; Berardi, Andrea E; Smith, Stacey D
2018-06-07
The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of 7 key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr and Ans). Transitions between pigment types affecting floral hue (e.g. blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.
Winney, I S; Schroeder, J; Nakagawa, S; Hsu, Y-H; Simons, M J P; Sánchez-Tójar, A; Mannarelli, M-E; Burke, T
2018-01-01
How has evolution led to the variation in behavioural phenotypes (personalities) in a population? Knowledge of whether personality is heritable, and to what degree it is influenced by the social environment, is crucial to understanding its evolutionary significance, yet few estimates are available from natural populations. We tracked three behavioural traits during different life-history stages in a pedigreed population of wild house sparrows. Using a quantitative genetic approach, we demonstrated heritability in adult exploration, and in nestling activity after accounting for fixed effects, but not in adult boldness. We did not detect maternal effects on any traits, but we did detect a social brood effect on nestling activity. Boldness, exploration and nestling activity in this population did not form a behavioural syndrome, suggesting that selection could act independently on these behavioural traits in this species, although we found no consistent support for phenotypic selection on these traits. Our work shows that repeatable behaviours can vary in their heritability and that social context influences personality traits. Future efforts could separate whether personality traits differ in heritability because they have served specific functional roles in the evolution of the phenotype or because our concept of personality and the stability of behaviour needs to be revised. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
RAPID EVOLUTION CAUSED BY POLLINATOR LOSS IN MIMULUS GUTTATUS
Bodbyl Roels, Sarah A.; Kelly, John K.
2018-01-01
Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant–pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther–stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait “selfing syndrome” observed throughout angiosperms. PMID:21884055
Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.
2015-01-01
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016
Rapid evolution caused by pollinator loss in Mimulus guttatus.
Roels, Sarah A Bodbyl; Kelly, John K
2011-09-01
Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant-pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther-stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait "selfing syndrome" observed throughout angiosperms. © 2011 The Author(s).
Using creation science to demonstrate evolution? Senter's strategy revisited.
Wood, T C
2011-04-01
Senter's strategy of arguing against creationism using their own methodology focused on demonstrating a morphological continuum between birds and nonavian dinosaurs using classical multidimensional scaling (CMDS), a method used by some creationists to assign species to assist in the detection of phylogenetic 'discontinuities.' Because creationists do not typically use CMDS in the manner Senter used it, his results were re-examined using 'distance correlation,' a method used to assign species to 'created kinds.' Distance correlation using Senter's set of taxa and characters supports his conclusion of morphological continuity, but other sets of taxa with more characters do not. These results lessen the potential impact that Senter's strategy might have on creationism; however, it is possible that future fossil discoveries will provide stronger support for morphological continuity between dinosaurs and birds. © 2011 The Author. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Schwermann, Achim H; dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas
2016-01-01
External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods. DOI: http://dx.doi.org/10.7554/eLife.12129.001 PMID:26854367
Derryberry, Elizabeth P.; Claramunt, Santiago; Derryberry, Graham; Chesser, R. Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J.V.; Brumfield, Robb T.
2011-01-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.
Population regulation and character displacement in a seasonal environment.
Goldberg, Emma E; Lande, Russell; Price, Trevor D
2012-06-01
Competition has negative effects on population size and also drives ecological character displacement, that is, evolutionary divergence to utilize different portions of the resource spectrum. Many species undergo an annual cycle composed of a lean season of intense competition for resources and a breeding season. We use a quantitative genetic model to study the effects of differential reproductive output in the summer or breeding season on character displacement in the winter or nonbreeding season. The model is developed with reference to the avian family of Old World leaf warblers (Phylloscopidae), which breed in the temperate regions of Eurasia and winter in tropical and subtropical regions. Empirical evidence implicates strong winter density-dependent regulation driven by food shortage, but paradoxically, the relative abundance of each species appears to be determined by conditions in the summer. We show how population regulation in the two seasons becomes linked, with higher reproductive output by one species in the summer resulting in its evolution to occupy a larger portion of niche space in the winter. We find short-term ecological processes and longer-term evolutionary processes to have comparable effects on a species population size. This modeling approach can also be applied to other differential effects of productivity across seasons.
Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity
Bartlett, Madelaine E.; Whipple, Clinton J.
2013-01-01
Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420
Michalik, Peter; Ramírez, Martín J
2014-07-01
The male reproductive system and spermatozoa of spiders are known for their high structural diversity. Spider spermatozoa are flagellate and males transfer them to females in a coiled and encapsulated state using their modified pedipalps. Here, we provide a detailed overview of the present state of knowledge of the primary male reproductive system, sperm morphology and the structural diversity of seminal fluids with a focus on functional and evolutionary implications. Secondly, we conceptualized characters for the male genital system, spermiogenesis and spermatozoa for the first time based on published and new data. In total, we scored 40 characters for 129 species from 56 families representing all main spider clades. We obtained synapomorphies for several taxa including Opisthothelae, Araneomorphae, Dysderoidea, Scytodoidea, Telemidae, Linyphioidea, Mimetidae, Synotaxidae and the Divided Cribellum Clade. Furthermore, we recovered synspermia as a synapomorphy for ecribellate Haplogynae and thus propose Synspermiata as new name for this clade. We hope that these data will not only contribute to future phylogenetic studies but will also stimulate much needed evolutionary studies of reproductive systems in spiders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetic Architecture of Parallel Pelvic Reduction in Ninespine Sticklebacks
Shikano, Takahito; Laine, Veronika N.; Herczeg, Gábor; Vilkki, Johanna; Merilä, Juha
2013-01-01
Teleost fish genomes are known to be evolving faster than those of other vertebrate taxa. Thus, fish are suited to address the extent to which the same vs. different genes are responsible for similar phenotypic changes in rapidly evolving genomes of evolutionary independent lineages. To gain insights into the genetic basis and evolutionary processes behind parallel phenotypic changes within and between species, we identified the genomic regions involved in pelvic reduction in Northern European ninespine sticklebacks (Pungitius pungitius) and compared them to those of North American ninespine and threespine sticklebacks (Gasterosteus aculeatus). To this end, we conducted quantitative trait locus (QTL) mapping using 283 F2 progeny from an interpopulation cross. Phenotypic analyses indicated that pelvic reduction is a recessive trait and is inherited in a simple Mendelian fashion. Significant QTL for pelvic spine and girdle lengths were identified in the region of the Pituitary homeobox transcription factor 1 (Pitx1) gene, also responsible for pelvic reduction in threespine sticklebacks. The fact that no QTL was observed in the region identified in the mapping study of North American ninespine sticklebacks suggests that an alternative QTL for pelvic reduction has emerged in this species within the past 1.6 million years after the split between Northern European and North American populations. In general, our study provides empirical support for the view that alternative genetic mechanisms that lead to similar phenotypes can evolve over short evolutionary time scales. PMID:23979937
Sex in an Evolutionary Perspective: Just Another Reaction Norm
Nylin, Sören
2010-01-01
It is common to refer to all sorts of clear-cut differences between the sexes as something that is biologically almost inevitable. Although this does not reflect the status of evolutionary theory on sex determination and sexual dimorphism, it is probably a common view among evolutionary biologists as well, because of the impact of sexual selection theory. To get away from thinking about biological sex and traits associated with a particular sex as something static, it should be recognized that in an evolutionary perspective sex can be viewed as a reaction norm, with sex attributes being phenotypically plastic. Sex determination itself is fundamentally plastic, even when it is termed “genetic”. The phenotypic expression of traits that are statistically associated with a particular sex always has a plastic component. This plasticity allows for much more variation in the expression of traits according to sex and more overlap between the sexes than is typically acknowledged. Here we review the variation and frequency of evolutionary changes in sex, sex determination and sex roles and conclude that sex in an evolutionary time-frame is extremely variable. We draw on recent findings in sex determination mechanisms, empirical findings of morphology and behaviour as well as genetic and developmental models to explore the concept of sex as a reaction norm. From this point of view, sexual differences are not expected to generally fall into neat, discrete, pre-determined classes. It is important to acknowledge this variability in order to increase objectivity in evolutionary research. PMID:21170116
NASA Astrophysics Data System (ADS)
Petrie, K. L.; Meyer, J. R.
2017-07-01
A novel mechanism of innovation bridges fitness valleys by violating the one gene-one phenotype dogma. Protein products of a single gene partition into populations, some of which carry out a new function and some the old, avoiding tradeoffs.
Inferring Arthropod Phylogeny: Fossils and their Interaction with Other Data Sources.
Edgecombe, Gregory D
2017-09-01
The past five years have witnessed a renewed interest in discrete morphological characters as a source of phylogenetic data, after a decade or more of their dismissal in favor of molecules-only approaches. This has stemmed in large part from refinements in total evidence dating, which requires morphological character matrices for extinct and extant taxa as well as temporal data from fossils. The unique contribution of palaeontology is stem groups, revealing the sequence of character acquisition in long-branch terminals and otherwise unknown character combinations and/or character states in extinct phenotypes. The origin of mandibles exemplifies an integrative approach to analyzing the origin of a complex phenotypic feature using molecular, anatomical, and palaeontological data: (1) transcriptomics defends a single origin of mandibles in the clade Mandibulata; (2) Cambrian fossils inform on morphological changes in the gnathal appendages in the mandibulate stem group; (3) molecular dating, calibrated by fossils in novel modes of exceptional preservation, draws the mandibulate crown group into the early Cambrian and constrains the timing of character evolution; and (4) functional studies in extant taxa identify genes that specify mandibular identity from a maxilla and, ultimately, a trunk limb-like precursor, as predicted by the serial similarity of these appendages in Cambrian stem-group fossils. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Meishan is a famous Chinese indigenous pig breed known for its extremely high fecundity. To explore if Meishan has unique evolutionary process and genome characteristics differing from other pig breeds, we systematically analyzed its genetic divergence, and demographic history by large-scale reseque...
Maternal source of variability in the embryo development of an annual killifish.
Polačik, M; Smith, C; Reichard, M
2017-04-01
Organisms inhabiting unpredictable environments often evolve diversified reproductive bet-hedging strategies, expressed as production of multiple offspring phenotypes, thereby avoiding complete reproductive failure. To cope with unpredictable rainfall, African annual killifish from temporary savannah pools lay drought-resistant eggs that vary widely in the duration of embryo development. We examined the sources of variability in the duration of individual embryo development, egg production and fertilization rate in Nothobranchius furzeri. Using a quantitative genetics approach (North Carolina type II design), we found support for maternal effects rather than polyandrous mating as the primary source of the variability in the duration of embryo development. The number of previously laid eggs appeared to serve as an internal physiological cue initiating a shift from rapid-to-slow embryo developmental mode. In annual killifish, extensive phenotypic variability in progeny traits is adaptive, as the conditions experienced by parents have limited relevance to the offspring generation. In contrast to genetic control, with high phenotypic expression and heritability, maternal control of traits under natural selection prevents standing genetic diversity from potentially detrimental effects of selection in fluctuating environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
The evolutionary legacy of size-selective harvesting extends from genes to populations
Uusi-Heikkilä, Silva; Whiteley, Andrew R; Kuparinen, Anna; Matsumura, Shuichi; Venturelli, Paul A; Wolter, Christian; Slate, Jon; Primmer, Craig R; Meinelt, Thomas; Killen, Shaun S; Bierbach, David; Polverino, Giovanni; Ludwig, Arne; Arlinghaus, Robert
2015-01-01
Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size. PMID:26136825
Evolutionary origins and diversification of proteobacterial mutualists.
Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E
2014-01-22
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.
A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia.
Frisch, Dagmar; Morton, Philip K; Chowdhury, Priyanka Roy; Culver, Billy W; Colbourne, John K; Weider, Lawrence J; Jeyasingh, Punidan D
2014-03-01
For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long-term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while 'ancient' genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre- and post-industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change. © 2014 John Wiley & Sons Ltd/CNRS.
Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research
SCHMIDT, KAREN L.; COHN, JEFFREY F.
2007-01-01
The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989
Hall, F. Scott; Perona, Maria T. G.
2012-01-01
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448
Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.
Rubin, Ilan N; Doebeli, Michael
2017-12-21
Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NOBAI: a web server for character coding of geometrical and statistical features in RNA structure
Knudsen, Vegeir; Caetano-Anollés, Gustavo
2008-01-01
The Numeration of Objects in Biology: Alignment Inferences (NOBAI) web server provides a web interface to the applications in the NOBAI software package. This software codes topological and thermodynamic information related to the secondary structure of RNA molecules as multi-state phylogenetic characters, builds character matrices directly in NEXUS format and provides sequence randomization options. The web server is an effective tool that facilitates the search for evolutionary history embedded in the structure of functional RNA molecules. The NOBAI web server is accessible at ‘http://www.manet.uiuc.edu/nobai/nobai.php’. This web site is free and open to all users and there is no login requirement. PMID:18448469
López-Álvarez, Diana; Zubair, Hassan; Beckmann, Manfred; Draper, John
2017-01-01
Abstract Background and Aims Morphological traits in combination with metabolite fingerprinting were used to investigate inter- and intraspecies diversity within the model annual grasses Brachypodium distachyon, Brachypodium stacei and Brachypodium hybridum. Methods Phenotypic variation of 15 morphological characters and 2219 nominal mass (m/z) signals generated using flow infusion electrospray ionization–mass spectrometry (FIE–MS) were evaluated in individuals from a total of 174 wild populations and six inbred lines, and 12 lines, of the three species, respectively. Basic statistics and multivariate principal component analysis and discriminant analysis were used to differentiate inter- and intraspecific variability of the two types of variable, and their association was assayed with the rcorr function. Key Results Basic statistics and analysis of variance detected eight phenotypic characters [(stomata) leaf guard cell length, pollen grain length, (plant) height, second leaf width, inflorescence length, number of spikelets per inflorescence, lemma length, awn length] and 434 tentatively annotated metabolite signals that significantly discriminated the three species. Three phenotypic traits (pollen grain length, spikelet length, number of flowers per inflorescence) might be genetically fixed. The three species showed different metabolomic profiles. Discriminant analysis significantly discriminated the three taxa with both morphometric and metabolome traits and the intraspecific phenotypic diversity within B. distachyon and B. stacei. The populations of B. hybridum were considerably less differentiated. Conclusions Highly explanatory metabolite signals together with morphological characters revealed concordant patterns of differentiation of the three taxa. Intraspecific phenotypic diversity was observed between northern and southern Iberian populations of B. distachyon and between eastern Mediterranean/south-western Asian and western Mediterranean populations of B. stacei. Significant association was found for pollen grain length and lemma length and ten and six metabolomic signals, respectively. These results would guide the selection of new germplasm lines of the three model grasses in ongoing genome-wide association studies. PMID:28040672
[Differentiation of Staphylococcus aureus isolates based on phenotypical characters].
Miedzobrodzki, Jacek; Małachowa, Natalia; Markiewski, Tomasz; Białecka, Anna; Kasprowicz, Andrzej
2008-06-30
Typing of Staphylococcus aureus isolates is a necessary procedure for monitoring the transmission of S. aureus among carriers and in epidemiology. Evaluation of the range of relationship among isolates rely on epidemiological markers and is possible because of the clonal character of S. aureus species. Effective typing shows the scheme of transmission of infection in a selected area, enables identifying the reservoir of the microorganism, and may enhance effective eradication. A set of typing methods for use in analyses of epidemiological correlations and the identification of S. aureus isolates is presented. The following methods of typing are described: biotyping, serotyping, antibiogram, protein electrophoresis, cell protein profiles (proteom), immunoblotting, multilocus enzyme electrophoresis (MLEE), zymotyping, and standard species identification of S. aureus in the diagnostic laboratory. Phenotyping methods for S. aureus isolates used in the past and today in epidemiological investigations and in analyses of correlations among S. aureus isolates are presented in this review. The presented methods use morphological characteristics, physiological properties, and chemical structures of the bacteria as criteria for typing. The precision of these standard methods is not always satisfactory as S. aureus strains with atypical biochemical characters have evolved recently. Therefore it is essential to introduce additional typing procedures using molecular biology methods without neglecting phenotypic methods.
Approaches to Macroevolution: 1. General Concepts and Origin of Variation.
Jablonski, David
2017-01-01
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Santangelo, James S; Johnson, Marc T J; Ness, Rob W
2018-05-16
Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover ( Trifolium repens ) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation. © 2018 The Author(s).
Contingency, convergence and hyper-astronomical numbers in biological evolution.
Louis, Ard A
2016-08-01
Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endocrine regulation of predator-induced phenotypic plasticity.
Dennis, Stuart R; LeBlanc, Gerald A; Beckerman, Andrew P
2014-11-01
Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).
Natural Variation of Model Mutant Phenotypes in Ciona intestinalis
Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena
2008-01-01
Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552
Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F
2013-11-01
Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.
The Emotional Foundations of High Moral Intelligence
ERIC Educational Resources Information Center
Narvaez, Darcia
2010-01-01
Moral intelligence is grounded in emotion and reason. Neuroscientific and clinical research illustrate how early life co-regulation with caregivers influences emotion, cognition, and moral character. Triune ethics theory (Narvaez, 2008) integrates neuroscientific, evolutionary, and developmental findings to explain differences in moral…
Integrating genomics into evolutionary medicine.
Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi
2014-12-01
The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.
The emotion system promotes diversity and evolvability
Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J.; Aksnes, Dag L.; Mangel, Marc; Jørgensen, Christian
2014-01-01
Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels. PMID:25100697
The emotion system promotes diversity and evolvability.
Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J; Aksnes, Dag L; Mangel, Marc; Jørgensen, Christian
2014-09-22
Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels.
An invasive plant alters phenotypic selection on the vegetative growth of a native congener.
Beans, Carolyn M; Roach, Deborah A
2015-02-01
The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.
Burress, E D; Holcomb, J M; Tan, M; Armbruster, J W
2017-03-01
Ecological opportunity is often regarded as a key factor that explains why diversity is unevenly distributed across life. Colonization of novel environments or adaptive zones may promote diversification. North American minnows exhibit an ancestral benthic-to-pelagic habitat shift that coincided with a burst in diversification. Here, we evaluate the phenotypic and ecological implications of this habitat shift by assessing craniofacial and dietary traits among 34 species and testing for morphology-diet covariation, convergence and adaptive optima. There were several instances of morphology-diet covariation such as correlations between mouth angle and the consumption of terrestrial insects and between relative gut length and the consumption of algae. After accounting for size and phylogenetic nonindependence, benthic species had longer heads, longer snouts, eyes positioned higher on their head, smaller mouth angles and longer digestive tracts than pelagic minnows. Benthic minnows also consumed more algae but less terrestrial insects, by volume, than pelagic minnows. Lastly, there were three distinct evolutionary regimes and more convergence in morphology and dietary characteristics than expected under a Brownian motion model of evolution. These findings indicate that colonization of the pelagic zone by minnows involved myriad phenotypic and dietary changes associated with exploitation of terrestrial subsidies. Thus, minnows exhibit phenotype-dietary covariation, an expansion of ecological roles and a burst in diversification rates in response to the ecological opportunity afforded by the colonization of a novel habitat. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Evolutionary Determinants of Cancer
Greaves, Mel
2015-01-01
‘Nothing in biology makes sense except in the light of evolution’ Th. Dobzhansky, 1973 Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as complex, dynamic and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints facilitating increasing complexity and longevity of species. But our own has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. PMID:26193902
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability
Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino
2012-01-01
Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419
Phylogeny and phylogeography of Old World fruit bats in the Cynopterus brachyotis complex.
Campbell, Polly; Schneider, Christopher J; Adnan, Adura M; Zubaid, Akbar; Kunz, Thomas H
2004-12-01
Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.
EvoluZion: A Computer Simulator for Teaching Genetic and Evolutionary Concepts
ERIC Educational Resources Information Center
Zurita, Adolfo R.
2017-01-01
EvoluZion is a forward-in-time genetic simulator developed in Java and designed to perform real time simulations on the evolutionary history of virtual organisms. These model organisms harbour a set of 13 genes that codify an equal number of phenotypic features. These genes change randomly during replication, and mutant genes can have null,…
Badyaev, Alexander V; Potticary, Ahva L; Morrison, Erin S
2017-08-01
Evolution of adaptation requires both generation of novel phenotypic variation and retention of a locally beneficial subset of this variation. Such retention can be facilitated by genetic assimilation, the accumulation of genetic and molecular mechanisms that stabilize induced phenotypes and assume progressively greater control over their reliable production. A particularly strong inference into genetic assimilation as an evolutionary process requires a system where it is possible to directly evaluate the extent to which an induced phenotype is progressively incorporated into preexisting developmental pathways. Evolution of diet-dependent pigmentation in birds-where external carotenoids are coopted into internal metabolism to a variable degree before being integrated with a feather's developmental processes-provides such an opportunity. Here we combine a metabolic network view of carotenoid evolution with detailed empirical study of feather modifications to show that the effect of physical properties of carotenoids on feather structure depends on their metabolic modification, their environmental recurrence, and biochemical redundancy, as predicted by the genetic assimilation hypothesis. Metabolized carotenoids caused less stochastic variation in feather structure and were more closely integrated with feather growth than were dietary carotenoids of the same molecular weight. These patterns were driven by the recurrence of organism-carotenoid associations: commonly used dietary carotenoids and biochemically redundant derived carotenoids caused less stochastic variation in feather structure than did rarely used or biochemically unique compounds. We discuss implications of genetic assimilation processes for the evolutionary diversification of diet-dependent animal coloration.
Urban Evolutionary Ecology and the Potential Benefits of Implementing Genomics.
Schell, Christopher J
2018-02-14
Urban habitats are quickly becoming exceptional models to address adaptation under rapid environmental change, given the expansive temporal and spatial scales with which anthropogenic landscape conversion occurs. Urban ecologists in the last 10-15 years have done an extraordinary job of highlighting phenotypic patterns that correspond with urban living, as well as delineating urban population structure using traditional genetic markers. The underpinning genetic mechanisms that govern those phenotypic patterns, however, are less well established. Moreover, the power of traditional molecular studies is constrained by the number of markers being evaluated, which limits the potential to assess fine-scale population structure potentially common in urban areas. With the recent proliferation of low-cost, high-throughput sequencing methods, we can begin to address an emerging question in urban ecology: are species adapted to local optima within cities or are they expressing latent phenotypic plasticity? Here, I provide a comprehensive review of previous urban ecological studies, with special focus on the molecular ecology and phenotypic adjustments documented in urban terrestrial and amphibious fauna. I subsequently pinpoint areas in the literature that could benefit from a genomic investigation and briefly discuss the suitability of specific techniques in addressing eco-evolutionary questions within urban ecology. Though many challenges exist with implementing genomics into urban ecology, such studies provide an exceptional opportunity to advance our understanding of eco-evolutionary processes in metropolitan areas. © The American Genetic Association 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Castañeda, Luis E.; Nespolo, Roberto F.
2013-01-01
A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567
NASA Astrophysics Data System (ADS)
Chisholm, Rebecca H.; Lorenzi, Tommaso; Desvillettes, Laurent; Hughes, Barry D.
2016-08-01
Epigenetic mechanisms are increasingly recognised as integral to the adaptation of species that face environmental changes. In particular, empirical work has provided important insights into the contribution of epigenetic mechanisms to the persistence of clonal species, from which a number of verbal explanations have emerged that are suited to logical testing by proof-of-concept mathematical models. Here, we present a stochastic agent-based model and a related deterministic integrodifferential equation model for the evolution of a phenotype-structured population composed of asexually-reproducing and competing organisms which are exposed to novel environmental conditions. This setting has relevance to the study of biological systems where colonising asexual populations must survive and rapidly adapt to hostile environments, like pathogenesis, invasion and tumour metastasis. We explore how evolution might proceed when epigenetic variation in gene expression can change the reproductive capacity of individuals within the population in the new environment. Simulations and analyses of our models clarify the conditions under which certain evolutionary paths are possible and illustrate that while epigenetic mechanisms may facilitate adaptation in asexual species faced with environmental change, they can also lead to a type of "epigenetic load" and contribute to extinction. Moreover, our results offer a formal basis for the claim that constant environments favour individuals with low rates of stochastic phenotypic variation. Finally, our model provides a "proof of concept" of the verbal hypothesis that phenotypic stability is a key driver in rescuing the adaptive potential of an asexual lineage and supports the notion that intense selection pressure can, to an extent, offset the deleterious effects of high phenotypic instability and biased epimutations, and steer an asexual population back from the brink of an evolutionary dead end.
Kratochwil, Claudius F; Sefton, Maggie M; Liang, Yipeng; Meyer, Axel
2017-11-23
The Midas cichlid species complex (Amphilophus spp.) is widely known among evolutionary biologists as a model system for sympatric speciation and adaptive phenotypic divergence within extremely short periods of time (a few hundred generations). The repeated parallel evolution of adaptive phenotypes in this radiation, combined with their near genetic identity, makes them an excellent model for studying phenotypic diversification. While many ecological and evolutionary studies have been performed on Midas cichlids, the molecular basis of specific phenotypes, particularly adaptations, and their underlying coding and cis-regulatory changes have not yet been studied thoroughly. For the first time in any New World cichlid, we use Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus). By adapting existing microinjection protocols, we established an effective protocol for transgenesis in Midas cichlids. Embryos were injected with a Tol2 plasmid construct that drives enhanced green fluorescent protein (eGFP) expression under the control of the ubiquitin promoter. The transgene was successfully integrated into the germline, driving strong ubiquitous expression of eGFP in the first transgenic Midas cichlid line. Additionally, we show transient expression of two further transgenic constructs, ubiquitin::tdTomato and mitfa::eGFP. Transgenesis in Midas cichlids will facilitate further investigation of the genetic basis of species-specific traits, many of which are adaptations. Transgenesis is a versatile tool not only for studying regulatory elements such as promoters and enhancers, but also for testing gene function through overexpression of allelic gene variants. As such, it is an important first step in establishing the Midas cichlid as a powerful model for studying adaptive coding and non-coding changes in an ecological and evolutionary context.
Figueredo, Carmen Julia; Casas, Alejandro; Colunga-GarcíaMarín, Patricia; Nassar, Jafet M; González-Rodríguez, Antonio
2014-09-16
Agave inaequidens and A. hookeri are anciently used species for producing the fermented beverage 'pulque', food and fiber in central Mexico. A. inaequidens is wild and cultivated and A. hookeri only cultivated, A. inaequidens being its putative wild relative. We analysed purposes and mechanisms of artificial selection and phenotypic divergences between wild and managed populations of A. inaequidens and between them and A. hookeri, hypothesizing phenotypic divergence between wild and domesticated populations of A. inaequidens in characters associated to domestication, and that A. hookeri would be phenotypically similar to cultivated A. inaequidens. We studied five wild and five cultivated populations of A. inaequidens, and three cultivated populations of A. hookeri. We interviewed agave managers documenting mechanisms of artificial selection, and measured 25 morphological characters. Morphological similarity and differentiation among plants and populations were analysed through multivariate methods and ANOVAs. People recognized 2-8 variants of A. inaequidens; for cultivation they select young plants collected in wild areas recognized as producing the best quality mescal agaves. Also, they collect seeds of the largest and most vigorous plants, sowing seeds in plant beds and then transplanting the most vigorous plantlets into plantations. Multivariate methods classified separately the wild and cultivated populations of A. inaequidens and these from A. hookeri, mainly because of characters related with plant and teeth size. The cultivated plants of A. inaequidens are significantly bigger with larger teeth than wild plants. A. hookeri are also significatly bigger plants with larger leaves but lower teeth density and size than A. inaequidens. Some cultivated plants of A. inaequidens were classified as A. hookeri, and nearly 10% of A. hookeri as cultivated A. inaequidens. Wild and cultivated populations of A. inaequidens differed in 13 characters, whereas A. hookeri differed in 23 characters with wild populations and only in 6 characters with cultivated populations of A. inaequidens. Divergence between wild and cultivated populations of A. inaequidens reflect artificial selection. A. hookeri is similar to the cultivated A. inaequidens, which supports the hypothesis that A. hookeri could be the extreme of a domestication gradient of a species complex.
USDA-ARS?s Scientific Manuscript database
The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...
Derryberry, Elizabeth P; Claramunt, Santiago; Derryberry, Graham; Chesser, R Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J V; Brumfield, Robb T
2011-10-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Stec, Daniel; Morek, Witold; Gąsiorek, Piotr; Kaczmarek, Łukasz; Michalczyk, Łukasz
2016-12-15
Nearly a half of known eutardigrade species lay ornamented eggs. The ornamentation is thought to provide attachment of the egg to the substrate and protection for the developing embryo, but from the taxonomic point of view chorion morphology may also provide key characters for species differentiation and identification, especially between closely related taxa. Nonetheless, despite the evolutionary and taxonomic importance of the egg shell, the determinants of its morphology are very poorly, if at all, understood. Here, we combine morphological, molecular and experimental approaches in an attempt to separate the genetic and environmental factors that shape egg chorion morphology in Ramazzottius subanomalus (Biserov, 1985). Our integrative study, based on a population of R. subanomalus isolated from a single moss sample, revealed (1) remarkable variation in egg shell morphology, but (2) relatively little variation in animal morphometric traits, and (3) genetic differentiation, expressed as two ITS-2 haplotypes, but no parallel polymorphism in COI. Although animals did not differ morphometrically between the haplotypes, eggs laid by haplotype 1 and 2 females exhibited highly statistically significant differences in all measured traits. The study demonstrates, for the first time, a correlation between phenotypic and genetic variability within a tardigrade species. The revealed congruence between genetic and morphological traits might be viewed as an example of incipient speciation that illustrates early evolutionary steps leading to species complexes that differ primarily in terms of egg shell morphology. Moreover, our data confirm the value of the ITS-2 fragment in distinguishing very closely related tardigrade lineages.
Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun
2011-05-20
Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.
2010-01-01
Background The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. Results We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). Conclusions We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI = 0.36; CIBEHAV = 0.45). PMID:20831809
Evolutionary rescue in vertebrates: evidence, applications and uncertainty
Vander Wal, E.; Garant, D.; Festa-Bianchet, M.; Pelletier, F.
2013-01-01
The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations. PMID:23209171
Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia
2017-01-01
Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with Lk Alt1 and 66% with Kl Alt1, suggests that Sc Alt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent Lk Alt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1 , while ScALT2 lost this role during diversification.
Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia
2017-01-01
Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1 and 66% with KlAlt1, suggests that ScAlt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent LkAlt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1, while ScALT2 lost this role during diversification. PMID:28694796
Tripp, Erin A; Manos, Paul S
2008-07-01
Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.
Ellis, Tom J; Field, David L
2016-06-01
Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gorelik, Gregory; Shackelford, Todd K
2014-08-27
In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.
Mantophasmatodea now in the Jurassic
NASA Astrophysics Data System (ADS)
Huang, Di-Ying; Nel, André; Zompro, Oliver; Waller, Alain
2008-10-01
The Mantophasmatodea is the most recently discovered insect order. The fossil records of all other ‘polyneopteran’ orders extend far in the past, but the current absence of pre-Cenozoic fossils of the Mantophasmatodea contradicts a long evolutionary history, which has to be assumed from the morphological distinctness of the group. In this paper, we report the first Mesozoic evidence of a mantophasmatodean from the Middle Jurassic of Daohugou, Inner Mongolia, China. Furthermore, the new fossil shares apomorphic characters with Cenozoic and recent Mantophasmatodea, suggesting a longer evolutionary history of this order.
ERIC Educational Resources Information Center
Flinn, Kathryn M.
2015-01-01
In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…
NASA Astrophysics Data System (ADS)
Gomes Rodrigues, Helder; Cornette, Raphaël; Clavel, Julien; Cassini, Guillermo; Bhullar, Bhart-Anjan S.; Fernández-Monescillo, Marcos; Moreno, Karen; Herrel, Anthony; Billet, Guillaume
2018-01-01
Understanding the mechanisms responsible for phenotypic diversification, and the associated underlying constraints and ecological factors represents a central issue in evolutionary biology. Mammals present a wide variety of sizes and shapes, and are characterized by a high number of morphological convergences that are hypothesized to reflect similar environmental pressures. Extinct South American notoungulates evolved in isolation from northern mammalian faunas in highly disparate environments. They present a wide array of skeletal phenotypes and convergences, such as ever-growing dentition. Here, we focused on the origins of the rostral diversity of notoungulates by quantifying the shape of 26 genera using three-dimensional geometric morphometric analysis. We tested the influence of allometry and phylogeny on rostral shape and evaluated rates of evolutionary change in the different clades. We found strong allometric and phylogenetic signals concerning the rostral shape of notoungulates. Despite convergent forms, we observed a diffuse diversification of rostral shape, with no significant evidence of influence by large-scaled environmental variation. This contrasts with the increase in dental crown height that occurred in four late-diverging families in response to similar environmental pressures. These results illustrate the importance of considering both biological components and evolutionary rates to better understand some aspects of phenotypic diversity.
Adaptive dynamics on an environmental gradient that changes over a geological time-scale.
Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko
2015-07-07
The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative systems biology across an evolutionary gradient within the Shewanella genus.
Konstantinidis, Konstantinos T; Serres, Margrethe H; Romine, Margaret F; Rodrigues, Jorge L M; Auchtung, Jennifer; McCue, Lee-Ann; Lipton, Mary S; Obraztsova, Anna; Giometti, Carol S; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M
2009-09-15
To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.
Evolution of egg coats: linking molecular biology and ecology.
Shu, Longfei; Suter, Marc J-F; Räsänen, Katja
2015-08-01
One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.
Seasonality and the evolutionary divergence of plant parasites.
Hamelin, Frédéric M; Castel, Magda; Poggi, Sylvain; Andrivon, Didier; Mailleret, Ludovic
2011-12-01
The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize on either the early or the late season. Accordingly, we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption of a trade-off between in-season transmission and inter-season survival, we found through an "evolutionary invasion analysis" that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and polycyclic diseases, or uni- and multivoltine life cycles).
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.
Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina
2015-10-01
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Genetic diversity in soybean genotypes using phenotypic characters and enzymatic markers.
Zambiazzi, E V; Bruzi, A T; Sales, A P; Borges, I M M; Guilherme, S R; Zuffo, A M; Lima, J G; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M
2017-09-21
The objective of this study was to evaluate the genetic diversity of soybean cultivars by adopting phenotypic traits and enzymatic markers, the relative contribution of agronomic traits to diversity, as well as diversity between the level of technology used in soybean cultivars and genetic breeding programs in which cultivars were inserted. The experiments were conducted on the field at the Center for Scientific and Technological Development in crop-livestock production and the Electrophoresis Laboratory of Lavras Federal University. The agronomic traits adopted were grain yield, plant height, first legume insertion, plant lodging, the mass of one thousand seeds, and days for complete maturation, in which the Euclidean distance, grouped by Tocher and UPGMA criteria, was obtained. After electrophorese gels for enzymatic systems, dehydrogenase alcohol, esterase, superoxide dismutase, and peroxidase were performed. The genetic similarity estimative was also obtained between genotypes by the Jaccard coefficient with subsequent grouping by the UPGMA method. The formation of two groups was shown using phenotypic characters in the genetic diversity study and individually discriminating the cultivar 97R73 RR. The character with the greatest contribution to the genetic divergence was grain yield with contribution higher than 90.0%. To obtain six different groups, individually discriminating the cultivars CG 8166 RR, FPS Jupiter RR, and BRS MG 780 RR, enzymatic markers were used. Cultivars carrying the RR technology presented more divergence than conventional cultivars and IPRO cultivars.
Stickleback fishes: Bridging the gap between population biology and paleobiology.
Bell, M A
1988-12-01
Integration of evolutionary mechanisms and phylogeny requires study of phenotypes that change in the fossil record and continue to evolve in extant populations. Pelvic reduction in the three-spined stickle-back has evolved rapidly in a Miocene fossil assemblage and in numerous extant isolated lake populations throughout its distribution. Although pelvic reduction is caused by selection, expression of reduced pelvic phenotypes is constrained by development and other factors. However, lineages with pelvis reduction rapidly go extinct while lineages that retain the fully formed pelvic girdle tend to persist. Existence of pelvic reduction since the Miocene has depended on an equilibrium between divergence and extinction. The phylogenetic topology resulting from this process differs greatly from the conventional view of evolutionary history, and could only be recognized by analysis of both extant populations and fossil material. If this phylogenetic topology is common, it may help to account for the different perceptions that population biologists and paleobiologists have of evolutionary tempo. Copyright © 1988. Published by Elsevier Ltd.
Brodersen, Jakob; Howeth, Jennifer G; Post, David M
2015-09-14
Intraspecific phenotypic variation can strongly impact community and ecosystem dynamics. Effects of intraspecific variation in keystone species have been shown to propagate down through the food web by altering the adaptive landscape for other species and creating a cascade of ecological and evolutionary change. However, similar bottom-up eco-evolutionary effects are poorly described. Here we show that life history diversification in a keystone prey species, the alewife (Alosa pseudoharengus), propagates up through the food web to promote phenotypic diversification in its native top predator, the chain pickerel (Esox niger), on contemporary timescales. The landlocking of alewife by human dam construction has repeatedly created a stable open water prey resource, novel to coastal lakes, that has promoted the parallel emergence of a habitat polymorphism in chain pickerel. Understanding how strong interactions propagate through food webs to influence diversification across multiple trophic levels is critical to understand eco-evolutionary interactions in complex natural ecosystems.
Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab
2015-09-04
A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.
2011-01-01
Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between Midas Cichlid species, its plasticity might be an important factor in Midas Cichlid speciation. The prevalence of pharyngeal jaw differentiation across the Cichlidae further suggests that adaptive phenotypic plasticity in this trait could play an important role in cichlid speciation in general. We discuss several possibilities how the adaptive radiation of Midas Cichlids might have been influenced in this respect. PMID:21529367
Muschick, Moritz; Barluenga, Marta; Salzburger, Walter; Meyer, Axel
2011-04-30
Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated--among other traits--between Midas Cichlid species, its plasticity might be an important factor in Midas Cichlid speciation. The prevalence of pharyngeal jaw differentiation across the Cichlidae further suggests that adaptive phenotypic plasticity in this trait could play an important role in cichlid speciation in general. We discuss several possibilities how the adaptive radiation of Midas Cichlids might have been influenced in this respect.
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).
Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T
2014-10-01
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Mutumi, Gregory L; Jacobs, David S; Winker, Henning
2017-06-01
Natural selection and drift can act on populations individually, simultaneously or in tandem and our understanding of phenotypic divergence depends on our ability to recognize the contribution of each. According to the quantitative theory of evolution, if an organism has diversified through neutral evolutionary processes (mutation and drift), variation of phenotypic characteristics between different geographic localities ( B ) should be directly proportional to the variation within localities ( W ), that is, B ∝ W . Significant deviations from this null model imply that non-neutral forces such as natural selection are acting on a phenotype. We investigated the relative contributions of drift and selection to intraspecific diversity using southern African horseshoe bats as a test case. We characterized phenotypic diversity across the distributional range of Rhinolophus simulator ( n = 101) and Rhinolophus swinnyi ( n = 125) using several traits associated with flight and echolocation. Our results suggest that geographic variation in both species was predominantly caused by disruptive natural selection ( B was not directly proportional to W ). Evidence for correlated selection (co-selection) among traits further confirmed that our results were not compatible with drift. Selection rather than drift is likely the predominant evolutionary process shaping intraspecific variation in traits that strongly impact fitness.
Vogt, Günter
2017-01-01
Abstract There is increasing evidence, particularly from plants, that epigenetic mechanisms can contribute to environmental adaptation and evolution. The present article provides an overview on this topic for animals and highlights the special suitability of clonal, invasive, hybrid, polyploid, and domesticated species for environmental and evolutionary epigenetics. Laboratory and field studies with asexually reproducing animals have shown that epigenetically diverse phenotypes can be produced from the same genome either by developmental stochasticity or environmental induction. The analysis of invasions revealed that epigenetic phenotype variation may help to overcome genetic barriers typically associated with invasions such as bottlenecks and inbreeding. Research with hybrids and polyploids established that epigenetic mechanisms are involved in consolidation of speciation by contributing to reproductive isolation and restructuring of the genome in the neo-species. Epigenetic mechanisms may even have the potential to trigger speciation but evidence is still meager. The comparison of domesticated animals and their wild ancestors demonstrated heritability and selectability of phenotype modulating DNA methylation patterns. Hypotheses, model predictions, and empirical results are presented to explain how epigenetic phenotype variation could facilitate adaptation and speciation. Clonal laboratory lineages, monoclonal invaders, and adaptive radiations of different evolutionary age seem particularly suitable to empirically test the proposed ideas. A respective research agenda is presented. PMID:29492304
Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha
2010-01-01
Background Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory. Results In the recently expanded northern range margins of this species, more than 10% of the Z. maha population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case. Conclusions Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level. PMID:20718993
Stability-based sorting: The forgotten process behind (not only) biological evolution.
Toman, Jan; Flegr, Jaroslav
2017-12-21
Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae?
Marek, Paul E.
2017-01-01
For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. PMID:29038750
Barron, J.A.
2003-01-01
Recently published diatom biochronologies provide accurate (to 0.1 m.y.) determination of the ages of appearances and disappearances of planktonic diatoms during the past 18 m.y. in the equatorial Pacific, North Pacific, and Southern Ocean. Comparisons of these records reveal the age of evolutionary appearance and extinction of species and their region of origin. Extinct planktonic diatom species have a mean longevity of 3.4 ?? 2.8 m.y. (SD, n = 53) in the equatorial Pacific, 2.5 ?? 2.1 m.y. (n = 52) in the North Pacific, and 2.9 ?? 2.3 m.y. (n = 38) in the Southern Ocean. The relatively large standard deviations are likely due to the inclusion of taxa that probably could be subdivided into two or more species. In the equatorial Pacific, evolutionary turnover of diatom species was relatively high between 18.0 and 6.0 Ma compared with the period after 6.0 Ma, presumably reflecting changing oceanic circulation and evolving water masses. In the North Pacific, evolutionary turnover peaked between 10.0 and 4.5 Ma, with increasing high-latitude cooling and enhanced provincialism. In the Southern Ocean, evolutionary turnover of endemic diatoms was greatest between 5.0 and 1.6 Ma, which provides evidence for the strong provincial character of Pliocene diatom assemblages. Taken as a whole, oceanic diatom assemblages became increasingly provincial in character during the late Miocene and Pliocene, as pole-to-equator thermal gradients increased and oceanic frontal systems were strengthened.
Mulder, Willem H; Crawford, Forrest W
2015-01-07
Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monte Carlo simulation of a simple gene network yields new evolutionary insights.
Andrecut, M; Cloud, D; Kauffman, S A
2008-02-07
Monte Carlo simulations of a genetic toggle switch show that its behavior can be more complex than analytic models would suggest. We show here that as a result of the interplay between frequent and infrequent reaction events, such a switch can have more stable states than an analytic model would predict, and that the number and character of these states depend to a large extent on the propensity of transcription factors to bind to and dissociate from promoters. The effects of gene duplications differ even more; in analytic models, these seem to result in the disappearance of bi-stability and thus a loss of the switching function, but a Monte Carlo simulation shows that they can result in the appearance of new stable states without the loss of old ones, and thus in an increase of the complexity of the switch's behavior which may facilitate the evolution of new cellular functions. These differences are of interest with respect to the evolution of gene networks, particularly in clonal lines of cancer cells, where the duplication of active genes is an extremely common event, and often seems to result in the appearance of viable new cellular phenotypes.
Nervous systems and scenarios for the invertebrate-to-vertebrate transition
Holland, Nicholas D.
2016-01-01
Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728
Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.
2006-01-01
Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935
Ergon, T; Ergon, R
2017-03-01
Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
Cunningham, Jessica J.; Brown, Joel S.; Vincent, Thomas L.
2015-01-01
Background and objective: Systemic therapy for metastatic cancer is currently determined exclusively by the site of tumor origin. Yet, there is increasing evidence that the molecular characteristics of metastases significantly differ from the primary tumor. We define the evolutionary dynamics of metastases that govern this molecular divergence and examine their potential contribution to variations in response to targeted therapies. Methodology: Darwinian interactions of transformed cells with the tissue microenvironments at primary and metastatic sites are analyzed using evolutionary game theory. Computational models simulate responses to targeted therapies in different organs within the same patient. Results: Tumor cells, although maximally fit at their primary site, typically have lower fitness on the adaptive landscapes offered by the metastatic sites due to organ-specific variations in mesenchymal properties and signaling pathways. Clinically evident metastases usually exhibit time-dependent divergence from the phenotypic mean of the primary population as the tumor cells evolve and adapt to their new circumstances. In contrast, tumors from different primary sites evolving on identical metastatic adaptive landscapes exhibit phenotypic convergence. Thus, metastases in the liver from different primary tumors and even in different hosts will evolve toward similar adaptive phenotypes. The combination of evolutionary divergence from the primary cancer phenotype and convergence towards similar adaptive strategies in the same tissue cause significant variations in treatment responses particularly for highly targeted therapies. Conclusion and implications: The results suggest that optimal therapies for disseminated cancer must take into account the site(s) of metastatic growth as well as the primary organ. PMID:25794501
Spatial structure of morphological and neutral genetic variation in Brook Trout
Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.
2015-01-01
Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.
Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W
2013-01-01
Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938
Monceau, Karine; Cézilly, Frank; Moreau, Jérôme; Motreuil, Sébastien; Wattier, Rémi
2013-01-01
Caribbean avifaunal biogeography has been mainly studied based on mitochondrial DNA. Here, we investigated both past and recent island differentiation and micro-evolutionary changes in the Zenaida Dove (Zenaida aurita) based on combined information from one mitochondrial (Cytochrome c Oxydase subunit I, COI) and 13 microsatellite markers and four morphological characters. This Caribbean endemic and abundant species has a large distribution, and two subspecies are supposed to occur: Z. a. zenaida in the Greater Antilles (GA) and Z. a. aurita in the Lesser Antilles (LA). Doves were sampled on two GA islands (Puerto Rico and the British Virgin Islands) and six LA islands (Saint Barthélemy, Guadeloupe, Les Saintes, Martinique, Saint Lucia and Barbados). Eleven COI haplotypes were observed that could be assembled in two distinct lineages, with six specific to GA, four to LA, the remaining one occurring in all islands. However, the level of divergence between those two lineages was too moderate to fully corroborate the existence of two subspecies. Colonisation of the studied islands appeared to be a recent process. However, both phenotypic and microsatellite data suggest that differentiation is already under way between all of them, partly associated with the existence of limited gene flow. No isolation by distance was observed. Differentiation for morphological traits was more pronounced than for neutral markers. These results suggest that despite recent colonisation, genetic drift and/or restricted gene flow are promoting differentiation for neutral markers. Variation in selective pressures between islands may explain the observed phenotypic differentiation. PMID:24349217
Jančúchová-Lásková, Jitka; Landová, Eva; Frynta, Daniel
2015-01-01
Hybridization between distinct species of animals and subsequent genetic introgression plays a considerable role in the speciation process and the emergence of adaptive characters. Fitness of between-species hybrids usually sharply decreases with the divergence time of the concerned species and the divergence depth, which still allows for a successful crossing differs among principal clades of vertebrates. Recently, a review of hybridization events among distinct lizard species revealed that lizards belong to vertebrates with a highly developed ability to hybridize. In spite of this, reliable reports of experimental hybridizations between genetically fairly divergent species are only exceptional. Here, we show the results of the crossing of two distinct allopatric species of eyelid geckos possessing temperature sex determination and lacking sex chromosomes: Eublepharis macularius distributed in Pakistan/Afghanistan area and E. angramainyu, which inhabits Mesopotamia and adjacent areas. We demonstrated that F1 hybrids were viable and fertile, and the introgression of E. angramainyu genes into the E. macularius genome can be enabled via a backcrossing. The examined hybrids (except those of the F2 generation) displayed neither malformations nor a reduced survival. Analyses of morphometric and coloration traits confirmed phenotypic distinctness of both parental species and their F1 hybrids. These findings contrast with long-term geographic and an evolutionary separation of the studied species. Thus, the occurrence of fertile hybrids of comparably divergent species, such as E. angramainyu and E. macularius, may also be expected in other taxa of squamates. This would violate the current estimates of species diversity in lizards. PMID:26633648
Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons
Verneau, Olivier; Catzeflis, François; Furano, Anthony V.
1998-01-01
Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then “age” as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5–6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, ≈2.7 Mya, produced at least five lineages in <0.3 My; a second began ≈1.2 Mya and may still be continuing. PMID:9736728
Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons.
Verneau, O; Catzeflis, F; Furano, A V
1998-09-15
Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then "age" as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5-6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, approximately 2.7 Mya, produced at least five lineages in <0.3 My; a second began approximately 1.2 Mya and may still be continuing.
Character convergence under competition for nutritionally essential resources.
Fox, Jeremy W; Vasseur, David A
2008-11-01
Resource competition is thought to drive divergence in resource use traits (character displacement) by generating selection favoring individuals able to use resources unavailable to others. However, this picture assumes nutritionally substitutable resources (e.g., different prey species). When species compete for nutritionally essential resources (e.g., different nutrients), theory predicts that selection drives character convergence. We used models of two species competing for two essential resources to address several issues not considered by existing theory. The models incorporated either slow evolutionary change in resource use traits or fast physiological or behavioral change. We report four major results. First, competition always generates character convergence, but differences in resource requirements prevent competitors from evolving identical resource use traits. Second, character convergence promotes coexistence. Competing species always attain resource use traits that allow coexistence, and adaptive trait change stabilizes the ecological equilibrium. In contrast, adaptation in allopatry never preadapts species to coexist in sympatry. Third, feedbacks between ecological dynamics and trait dynamics lead to surprising dynamical trajectories such as transient divergence in resource use traits followed by subsequent convergence. Fourth, under sufficiently slow trait change, ecological dynamics often drive one of the competitors to near extinction, which would prevent realization of long-term character convergence in practice.
Phylogenetics Exercise Using Inherited Human Traits
ERIC Educational Resources Information Center
Tuimala, Jarno
2006-01-01
A bioinformatics laboratory exercise based on inherited human morphological traits is presented. It teaches how morphological characters can be used to study the evolutionary history of humans using parsimony. The exercise can easily be used in a pen-and-paper laboratory, but if computers are available, a more versatile analysis can be carried…
A platform for evolving intelligently interactive adversaries.
Fogel, David B; Hays, Timothy J; Johnson, Douglas R
2006-07-01
Entertainment software developers face significant challenges in designing games with broad appeal. One of the challenges concerns creating nonplayer (computer-controlled) characters that can adapt their behavior in light of the current and prospective situation, possibly emulating human behaviors. This adaptation should be inherently novel, unrepeatable, yet within the bounds of realism. Evolutionary algorithms provide a suitable method for generating such behaviors. This paper provides background on the entertainment software industry, and details a prior and current effort to create a platform for evolving nonplayer characters with genetic and behavioral traits within a World War I combat flight simulator.
Evolutionary perspectives on wildlife disease: concepts and applications
Vander Wal, Eric; Garant, Dany; Pelletier, Fanie
2014-01-01
Wildlife disease has the potential to cause significant ecological, socioeconomic, and health impacts. As a result, all tools available need to be employed when host–pathogen dynamics merit conservation or management interventions. Evolutionary principles, such as evolutionary history, phenotypic and genetic variation, and selection, have the potential to unravel many of the complex ecological realities of infectious disease in the wild. Despite this, their application to wildlife disease ecology and management remains in its infancy. In this article, we outline the impetus behind applying evolutionary principles to disease ecology and management issues in the wild. We then introduce articles from this special issue on Evolutionary Perspectives on Wildlife Disease: Concepts and Applications, outlining how each is exemplar of a practical wildlife disease challenge that can be enlightened by applied evolution. Ultimately, we aim to bring new insights to wildlife disease ecology and its management using tools and techniques commonly employed in evolutionary ecology. PMID:25469154
Animal regeneration: ancestral character or evolutionary novelty?
Slack, Jonathan Mw
2017-09-01
An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Individual-based models for adaptive diversification in high-dimensional phenotype spaces.
Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael
2016-02-07
Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolutionary genomics of animal personality.
van Oers, Kees; Mueller, Jakob C
2010-12-27
Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future.
Replaying the tape of life in the twenty-first century.
Orgogozo, Virginie
2015-12-06
Should the tape of life be replayed, would it produce similar living beings? A classical answer has long been 'no', but accumulating data are now challenging this view. Repeatability in experimental evolution, in phenotypic evolution of diverse species and in the genes underlying phenotypic evolution indicates that despite unpredictability at the level of basic evolutionary processes (such as apparition of mutations), a certain kind of predictability can emerge at higher levels over long time periods. For instance, a survey of the alleles described in the literature that cause non-deleterious phenotypic differences among animals, plants and yeasts indicates that similar phenotypes have often evolved in distinct taxa through independent mutations in the same genes. Does this mean that the range of possibilities for evolution is limited? Does this mean that we can predict the outcomes of a replayed tape of life? Imagining other possible paths for evolution runs into four important issues: (i) resolving the influence of contingency, (ii) imagining living organisms that are different from the ones we know, (iii) finding the relevant concepts for predicting evolution, and (iv) estimating the probability of occurrence for complex evolutionary events that occurred only once during the evolution of life on earth.
Pyron, R Alexander; Burbrink, F T
2009-10-01
Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species.
The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology.
Thacker, Robert W; Díaz, Maria Cristina; Kerner, Adeline; Vignes-Lebbe, Régine; Segerdell, Erik; Haendel, Melissa A; Mungall, Christopher J
2014-01-01
Porifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards. The Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/. By standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.
Transformation and diversification in early mammal evolution.
Luo, Zhe-Xi
2007-12-13
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.
New evidence from China for the nature of the pterosaur evolutionary transition
NASA Astrophysics Data System (ADS)
Wang, Xiaoli; Jiang, Shunxing; Zhang, Junqiang; Cheng, Xin; Yu, Xuefeng; Li, Yameng; Wei, Guangjin; Wang, Xiaolin
2017-02-01
Pterosaurs are extinct flying reptiles, the first vertebrates to achieve powered flight. Our understanding of the evolutionary transition between basal, predominantly long-tailed forms to derived short-tailed pterodactyloids remained poor until the discovery of Wukongopterus and Darwinopterus in western Liaoning, China. In this paper we report on a new genus and species, Douzhanopterus zhengi, that has a reduced tail, 173% the length of the humerus, and a reduced fifth pedal digit, whose first phalange is ca. 20% the length of metatarsal III, both unique characters to Monofenestra. The morphological comparisons and phylogenetic analysis presented in this paper demonstrate that Douzhanopterus is the sister group to the ‘Painten pro-pterodactyloid’ and the Pterodactyloidea, reducing the evolutionary gap between long- and short-tailed pterosaurs.
Friis, Guillermo; Aleixandre, Pau; Rodríguez-Estrella, Ricardo; Navarro-Sigüenza, Adolfo G; Milá, Borja
2016-12-01
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates. © 2016 John Wiley & Sons Ltd.
Vedder, Oscar; Bouwhuis, Sandra; Sheldon, Ben C
2013-07-01
Predictions about the fate of species or populations under climate change scenarios typically neglect adaptive evolution and phenotypic plasticity, the two major mechanisms by which organisms can adapt to changing local conditions. As a consequence, we have little understanding of the scope for organisms to track changing environments by in situ adaptation. Here, we use a detailed individual-specific long-term population study of great tits (Parus major) breeding in Wytham Woods, Oxford, UK to parameterise a mechanistic model and thus directly estimate the rate of environmental change to which in situ adaptation is possible. Using the effect of changes in early spring temperature on temporal synchrony between birds and a critical food resource, we focus in particular on the contribution of phenotypic plasticity to population persistence. Despite using conservative estimates for evolutionary and reproductive potential, our results suggest little risk of population extinction under projected local temperature change; however, this conclusion relies heavily on the extent to which phenotypic plasticity tracks the changing environment. Extrapolating the model to a broad range of life histories in birds suggests that the importance of phenotypic plasticity for adjustment to projected rates of temperature change increases with slower life histories, owing to lower evolutionary potential. Understanding the determinants and constraints on phenotypic plasticity in natural populations is thus crucial for characterising the risks that rapidly changing environments pose for the persistence of such populations.
The evolution of transcriptional regulation in eukaryotes
NASA Technical Reports Server (NTRS)
Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.
2003-01-01
Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.
Neuroendocrine-Immune Circuits, Phenotypes, and Interactions
Ashley, Noah T.; Demas, Gregory E.
2016-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499
Neuroendocrine-immune circuits, phenotypes, and interactions.
Ashley, Noah T; Demas, Gregory E
2017-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Reciprocal preening and food sharing in colour-polymorphic nestling barn owls.
Roulin, A; Des Monstiers, B; Ifrid, E; Da Silva, A; Genzoni, E; Dreiss, A N
2016-02-01
Barn owl (Tyto alba) siblings preen and offer food items to one another, behaviours that can be considered prosocial because they benefit a conspecific by relieving distress or need. In experimental broods, we analysed whether such behaviours were reciprocated, preferentially exchanged between specific phenotypes, performed to avoid harassment and food theft or signals of hierarchy status. Three of the results are consistent with the hypothesis of direct reciprocity. First, food sharing was reciprocated in three-chick broods but not in pairs of siblings, that is when nestlings could choose a partner with whom to develop a reciprocating interaction. Second, a nestling was more likely to give a prey item to its sibling if the latter individual had preened the former. Third, siblings matched their investment in preening each other. Manipulation of age hierarchy showed that food stealing was directed towards older siblings but was not performed to compensate for a low level of cooperation received. Social behaviours were related to melanin-based coloration, suggesting that animals may signal their propensity to interact socially. The most prosocial phenotype (darker reddish) was also the phenotype that stole more food, and the effect of coloration on prosocial behaviour depended upon rank and sex, suggesting that colour-related prosociality is state dependent. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Rubalcaba, J G; Polo, V; Maia, R; Rubenstein, D R; Veiga, J P
2016-08-01
Although sexual selection is typically considered the predominant force driving the evolution of ritualized sexual behaviours, natural selection may also play an important and often underappreciated role. The use of green aromatic plants among nesting birds has been interpreted as a component of extended phenotype that evolved either via natural selection due to potential sanitary functions or via sexual selection as a signal of male attractiveness. Here, we compared both hypotheses using comparative methods in starlings, a group where this behaviour is widespread. We found that the use of green plants was positively related to male-biased size dimorphism and that it was most likely to occur among cavity-nesting species. These results suggest that this behaviour is likely favoured by sexual selection, but also related to its sanitary use in response to higher parasite loads in cavities. We speculate that the use of green plants in starlings may be facilitated by cavity nesting and was subsequently co-opted as a sexual signal by males. Our results represent an example of how an extended phenotypic component of males becomes sexually selected by females. Thus, both natural selection and sexual selection are necessary to fully understand the evolution of ritualized behaviours involved in courtship. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Character combinations, convergence and diversification in ectoparasitic arthropods.
Poulin, Robert
2009-08-01
Different lineages of organisms diversify over time at different rates, in part as a consequence of the characteristics of the species in these lineages. Certain suites of traits possessed by species within a clade may determine rates of diversification, with some particular combinations of characters acting synergistically to either limit or promote diversification; the most successful combinations may also emerge repeatedly in different clades via convergent evolution. Here, the association between species characters and diversification is investigated amongst 21 independent lineages of arthropods ectoparasitic on vertebrate hosts. Using nine characters (each with two to four states) that capture general life history strategy, transmission mode and host-parasite interaction, each lineage was described by the set of character states it possesses. The results show, firstly, that most possible pair-wise combinations of character states have been adopted at least once, sometimes several times independently by different lineages; thus, ectoparasitic arthropods have explored most of the life history character space available to them. Secondly, lineages possessing commonly observed combinations of character states are not necessarily the ones that have experienced the highest rates of diversification (measured as a clade's species-per-genus ratio). Thirdly, some specific traits are associated with higher rates of diversification. Using more than one host per generation, laying eggs away from the host and intermediate levels of fecundity are features that appear to have promoted diversification. These findings indicate that particular species characters may be evolutionary drivers of diversity, whose effects could also apply in other taxa.
Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L
2016-01-01
MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we intend MicrO to be a powerful new tool to increase the computing power of bioinformatics tools such as the automated text mining of prokaryotic taxonomic descriptions using natural language processing. We also intend MicrO to support the development of new bioinformatics tools that aim to develop new connections between microbial phenotypes and genotypes (i.e., the gene content in genomes). Future ontology development will include incorporation of pathogenic phenotypes and prokaryotic habitats.
Egg-laying environment modulates offspring responses to predation risk in an amphibian.
Tóth, Zoltán; Hettyey, Attila
2018-05-01
Predator-induced plasticity has been in the focus of evolutionary ecological research in the last decades, but the consequences of temporal variation in the presence of cues predicting offspring environment have remained controversial. This is partly due to the fact that the role of early environmental effects has scarcely been scrutinized in this context while also controlling for potential maternal effects. In this study, we investigated how past environmental conditions, that is different combinations of risky or safe adult (prenatal) and oviposition (early post-natal) environments, affected offspring's plastic responses in hatching time and locomotor activity to predation risk during development in the smooth newt (Lissotriton vulgaris). We found that females did not adjust their reproductive investment to the perceived level of risk in the adult environment, and this prenatal environment had generally negligible effect on offspring phenotype. However, when predator cues were absent during oviposition, larvae raised in the presence of predator cues delayed their hatching and exhibited a decreased activity compared to control larvae developing without predator cues, which responses are advantageous when predators pose a threat to hatched larvae. In the presence of predator cues during oviposition, the difference in hatching time persisted, but the difference in general locomotor activity disappeared between risk-exposed and control larvae. Our findings provide clear experimental evidence that fine-scale temporal variation in a predictive cue during and after egg-laying interactively affects offspring phenotype, and highlight the importance of the early post-natal environment, which may exert a substantial influence on progeny's phenotype also under natural conditions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Evolutionary genomics of yeast pathogens in the Saccharomycotina
Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina
2016-01-01
Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146
Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen
2015-02-01
Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have specific patterns and tissue-specificity, which are driven by aging and other cancer-inducing agents. This framework represents the logics of complex cancer biology as a myriad of phenotypic complexities governed by a limited set of underlying organizing principles. It therefore adds to our understanding of tumor evolution and tumorigenesis, and moreover, potential usefulness of predicting tumors' evolutionary paths and clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for cancer patients, as well as cancer risks for healthy individuals are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized treatment and personalized prevention of cancer. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Jacobsen, Elizabeth A.; LeSuer, William E.; Willetts, Lian; Zellner, Katie R.; Mazzolini, Kirea; Antonios, Nathalie; Beck, Brandon; Protheroe, Cheryl; Ochkur, Sergei I.; Colbert, Dana; Lacy, Paige; Moqbel, Redwan; Appleton, Judith; Lee, Nancy A.; Lee, James J.
2014-01-01
Background The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animals models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. Methods We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. Results Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyperresponsiveness in response to methacholine indistinguishable from eosinophilic wild type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon restoration of peripheral eosinophils. Conclusions Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses. PMID:24266710
Different effects of variation in Xanthium strumarium L. (Compositae) on two insect seed predators.
Hare, J Daniel; Futuyma, Douglas J
1978-01-01
To determine the relative importance of variation in several plant characters on susceptibility to herbivores, we examined patterns of seed predation by two monophagous insect species and patterns of variation in ten populations of the cocklebur, Xanthium strumarium. Multiple regression analysis disclosed that one seed predator was most influenced by plant chemical variation, the other was significantly influenced by both chemical and morphological variation, but variation in yet another character, general burr size, was most important in conferring resistance to both insects simultaneously. The plant populations differed most in this character. Although many of the plant characters were correlated with each other, those important in determining susceptibility to each insect species were uncorrelated and independent of those conferring resistance to both insects simultaneously.These results imply that ecological similar herbivores may be influenced by different aspects of plant variation, and that predictions of evolutionary responses of local plant populations to herbivory may require knowledge of the structure of local herbivore communities and the dynamics of their establishment.
Physical characteristics and evolutionary trends of continental rifts
NASA Technical Reports Server (NTRS)
Ramberg, I. B.; Morgan, P.
1984-01-01
Rifts may be defined as zones beneath which the entire lithosphere has ruptured in extension. They are widespread and occur in a variety of tectonic settings, and range up to 2,600 m.y. in age. The object of this review is to highlight characteristic features of modern and ancient rifts, to emphasize differences and similarities in order to help characterize evolutionary trends, to identify physical conditions favorable for initiation as well as termination of rifting, and to provide constraints for future modeling studies of rifting. Rifts are characterized on the basis of their structural, geomorphic, magmatic and geophysical features and the diverse character of these features and their evolutionary trends through time are discussed. Mechanisms of rifting are critically examined in terms of the physical characteristics and evolutionary trends of rifts, and it is concluded that while simple models can give valuable insight into specific processes of rifting, individual rifts can rarely, if ever, be characterized by well defined trends predicted by these models. More data are required to clearly define evolutionary trends, and the models require development to incorporate the effects of lithospheric heterogeneities and complex geologic histories.
Świerniak, Andrzej; Krześlak, Michał; Student, Sebastian; Rzeszowska-Wolny, Joanna
2016-09-21
Living cells, like whole living organisms during evolution, communicate with their neighbors, interact with the environment, divide, change their phenotypes, and eventually die. The development of specific ways of communication (through signaling molecules and receptors) allows some cellular subpopulations to survive better, to coordinate their physiological status, and during embryonal development to create tissues and organs or in some conditions to become tumors. Populations of cells cultured in vitro interact similarly, also competing for space and nutrients and stimulating each other to better survive or to die. The results of these intercellular interactions of different types seem to be good examples of biological evolutionary games, and have been the subjects of simulations by the methods of evolutionary game theory where individual cells are treated as players. Here we present examples of intercellular contacts in a population of living human cancer HeLa cells cultured in vitro and propose an evolutionary game theory approach to model the development of such populations. We propose a new technique termed Mixed Spatial Evolutionary Games (MSEG) which are played on multiple lattices corresponding to the possible cellular phenotypes which gives the possibility of simulating and investigating the effects of heterogeneity at the cellular level in addition to the population level. Analyses performed with MSEG suggested different ways in which cellular populations develop in the case of cells communicating directly and through factors released to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Swift, H F; Gómez Daglio, L; Dawson, M N
2016-06-01
Evolutionary inference can be complicated by morphological crypsis, particularly in open marine systems that may rapidly dissipate signals of evolutionary processes. These complications may be alleviated by studying systems with simpler histories and clearer boundaries, such as marine lakes-small bodies of seawater entirely surrounded by land. As an example, we consider the jellyfish Mastigias spp. which occurs in two ecotypes, one in marine lakes and one in coastal oceanic habitats, throughout the Indo-West Pacific (IWP). We tested three evolutionary hypotheses to explain the current distribution of the ecotypes: (H1) the ecotypes originated from an ancient divergence; (H2) the lake ecotype was derived recently from the ocean ecotype during a single divergence event; and (H3) the lake ecotype was derived from multiple, recent, independent, divergences. We collected specimens from 21 locations throughout the IWP, reconstructed multilocus phylogenetic and intraspecific relationships, and measured variation in up to 40 morphological characters. The species tree reveals three reciprocally monophyletic regional clades, two of which contain ocean and lake ecotypes, suggesting repeated, independent evolution of coastal ancestors into marine lake ecotypes, consistent with H3; hypothesis testing and an intraspecific haplotype network analysis of samples from Palau reaffirms this result. Phylogenetic character mapping strongly correlates morphology to environment rather than lineage (r=0.7512, p<0.00001). Considering also the deeper relationships among regional clades, morphological similarity in Mastigias spp. clearly results from three separate patterns of evolution: morphological stasis in ocean medusae, convergence of lake morphology across distinct species and parallelism between lake morphologies within species. That three evolutionary routes each result in crypsis illustrates the challenges of interpreting evolutionary processes from patterns of biogeography and diversity in the seas. Identifying cryptic species is only the first step in understanding these processes; an equally important second step is exploring and understanding the processes and patterns that create crypsis. Copyright © 2016 Elsevier Inc. All rights reserved.
Taxonomy of Penicillium section Citrina
Houbraken, J.; Frisvad, J.C.; Samson, R.A.
2011-01-01
Species of Penicillium section Citrina have a worldwide distribution and occur commonly in soils. The section is here delimited using a combination of phenotypic characters and sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA (ITS) and partial RPB2 sequences. Species assigned to section Citrina share the production of symmetrically biverticillate conidiophores, flask shaped phialides (7.0–9.0 μm long) and relatively small conidia (2.0–3.0 μm diam). Some species can produce greyish-brown coloured cleistothecia containing flanged ascospores. In the present study, more than 250 isolates presumably belonging to section Citrina were examined using a combined analysis of phenotypic and physiological characters, extrolite profiles and ITS, β-tubulin and/or calmodulin sequences. Section Citrina includes 39 species, and 17 of those are described here as new. The most important phenotypic characters for distinguishing species are growth rates and colony reverse colours on the agar media CYA, MEA and YES; shape, size and ornamentation of conidia and the production of sclerotia or cleistothecia. Temperature-growth profiles were made for all examined species and are a valuable character characters for species identification. Species centered around P. citrinum generally have a higher maximum growth temperature (33–36 °C) than species related to P. westlingii (27–33 °C). Extrolite patterns and partial calmodulin and β-tubulin sequences can be used for sequence based identification and resolved all species. In contrast, ITS sequences were less variable and only 55 % of the species could be unambiguously identified with this locus. Taxonomic novelties: Penicillium argentinense Houbraken, Frisvad & Samson, P. atrofulvum Houbraken, Frisvad & Samson, P. aurantiacobrunneum Houbraken, Frisvad & Samson, P. cairnsense Houbraken, Frisvad & Samson, P. christenseniae Houbraken, Frisvad & Samson, P. copticola Houbraken, Frisvad & Samson, P. cosmopolitanum Houbraken, Frisvad & Samson, P. neomiczynskii Cole, Houbraken, Frisvad & Samson, P. nothofagi Houbraken, Frisvad & Samson, P. pancosmium Houbraken, Frisvad & Samson, P. pasqualense Houbraken, Frisvad & Samson, P. quebecense Seifert, Houbraken, Frisvad & Samson, P. raphiae Houbraken, Frisvad & Samson, P. terrigenum Seifert, Houbraken, Frisvad & Samson, P. ubiquetum Houbraken, Frisvad & Samson, P. vancouverense Houbraken, Frisvad & Samson, P. wellingtonense Cole, Houbraken, Frisvad & Samson. PMID:22308046
Costly punishment and cooperation in the evolutionary snowdrift game
NASA Astrophysics Data System (ADS)
Xu, C.; Ji, M.; Yap, Yee Jiun; Zheng, Da-Fang; Hui, P. M.
2011-05-01
The role of punishments in promoting cooperation is an important issue. We incorporate costly punishments into the snowdrift game (SG) by introducing a third punishing (P) character, and study the effects. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on the initial fractions of the characters, α, β, and the cost-to-benefit ratio r in the SG, the three-character system evolves into a steady state consisting either only of C and P characters or only of C and D characters, in a well-mixed population. The former situation represents an enhancement in cooperation relative to the SG, while the latter is similar to the SG. The dynamics in approaching these different steady states are found to be different. Analytically, the key features in the dynamics and the steady states observed in simulations are captured by a set of differential equations. The sensitivity to the initial distribution of characters is studied by depicting the flow in a phase portrait and analyzing the nature of fixed points. The analysis also shows the role of P-character agents in preventing a system from invasion by D-character agents. Starting from a population consisting only of C and P agents, a D-character agent intended to invade the system cannot survive when the initial fraction of P agents is greater than r/β. Our model, defined intentionally as a simulation algorithm, can be readily generalized to incorporate many interesting effects, such as those in a networked population.
Armbruster, W. Scott
2014-01-01
Plant reproduction by means of flowers has long been thought to promote the success and diversification of angiosperms. It remains unclear, however, how this success has come about. Do flowers, and their capacity to have specialized functions, increase speciation rates or decrease extinction rates? Is floral specialization fundamental or incidental to the diversification? Some studies suggest that the conclusions we draw about the role of flowers in the diversification and increased phenotypic disparity (phenotypic diversity) of angiosperms depends on the system. For orchids, for example, specialized pollination may have increased speciation rates, in part because in most orchids pollen is packed in discrete units so that pollination is precise enough to contribute to reproductive isolation. In most plants, however, granular pollen results in low realized pollination precision, and thus key innovations involving flowers more likely reflect reduced extinction rates combined with opportunities for evolution of greater phenotypic disparity (phenotypic diversity) and occupation of new niches. Understanding the causes and consequences of the evolution of specialized flowers requires knowledge of both the selective regimes and the potential fitness trade-offs in using more than one pollinator functional group. The study of floral function and flowering-plant diversification remains a vibrant evolutionary field. Application of new methods, from measuring natural selection to estimating speciation rates, holds much promise for improving our understanding of the relationship between floral specialization and evolutionary success. PMID:24790124
Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies
2017-07-01
Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems. © 2017 by the Ecological Society of America.
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mate choice theory and the mode of selection in sexual populations.
Carson, Hampton L
2003-05-27
Indirect new data imply that mate and/or gamete choice are major selective forces driving genetic change in sexual populations. The system dictates nonrandom mating, an evolutionary process requiring both revised genetic theory and new data on heritability of characters underlying Darwinian fitness. Successfully reproducing individuals represent rare selections from among vigorous, competing survivors of preadult natural selection. Nonrandom mating has correlated demographic effects: reduced effective population size, inbreeding, low gene flow, and emphasis on deme structure. Characters involved in choice behavior at reproduction appear based on quantitative trait loci. This variability serves selection for fitness within the population, having only an incidental relationship to the origin of genetically based reproductive isolation between populations. The claim that extensive hybridization experiments with Drosophila indicate that selection favors a gradual progression of "isolating mechanisms" is flawed, because intra-group random mating is assumed. Over deep time, local sexual populations are strong, independent genetic systems that use rich fields of variable polygenic components of fitness. The sexual reproduction system thus particularizes, in small subspecific populations, the genetic basis of the grand adaptive sweep of selective evolutionary change, much as Darwin proposed.
Phylogeny of Selaginellaceae: There is value in morphology after all!
Weststrand, Stina; Korall, Petra
2016-12-01
The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).
Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.
Hu, X H; Wang, M H; Tan, T; Li, J R; Yang, H; Leach, L; Zhang, R M; Luo, Z W
2007-03-01
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.
Dynamics of dental evolution in ornithopod dinosaurs.
Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J; Stubbs, Thomas L
2016-07-14
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.
The Principle of Stasis: Why drift is not a Zero-Cause Law.
Luque, Victor J
2016-06-01
This paper analyses the structure of evolutionary theory as a quasi-Newtonian theory and the need to establish a Zero-Cause Law. Several authors have postulated that the special character of drift is because it is the default behaviour or Zero-Cause Law of evolutionary systems, where change and not stasis is the normal state of them. For these authors, drift would be a Zero-Cause Law, the default behaviour and therefore a constituent assumption impossible to change without changing the system. I defend that drift's causal and explanatory power prevents it from being considered as a Zero-Cause Law. Instead, I propose that the default behaviour of evolutionary systems is what I call the Principle of Stasis, which posits that an evolutionary system where there is no selection, drift, mutation, migration, etc., and therefore no difference-maker, will not undergo any change (it will remain in stasis). Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics of dental evolution in ornithopod dinosaurs
NASA Astrophysics Data System (ADS)
Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.
2016-07-01
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.
Aust, Shelly K; Ahrendsen, Dakota L; Kellar, P Roxanne
2015-01-01
Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth's biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species' evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and across varying ecosystems in order to build a database of phylogenetic diversity assessments that lead to a pool of results upon which a guide through the plethora of PD metrics may be prepared for use by ecologists and conservation planners.
Macé, Matthias; Crouau-Roy, Brigitte
2008-01-01
Background The early radiation of the Cetartiodactyla is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (Cetacea and Ruminantia). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields. Results and discussion We report a large interstitial insertion in the Y amelogenin locus in most of the Cetartiodactyla lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species. When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in Cetartiodactyla whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion. The 1 kbp Amel-Y amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region. Conclusion The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the Cetartiodactyla but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science. PMID:18925953
The effects of r- and K-selection on components of variance for two quantitative traits.
Long, T; Long, G
1974-03-01
The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.
The recognition and evaluation of homoplasy in primate and human evolution.
Lockwood, C A; Fleagle, J G
1999-01-01
Homoplasy has been a prominent issue in primate systematics and phylogeny for as long as people have been studying human evolution. In the past, homoplasy, in the form of parallel evolution, was often considered the dominant theme in primate evolution. Today, it receives blame for difficulties in phylogenetic analysis, but is essential in the study of adaptation. This paper reviews the history of study of homoplasy, methods of defining homoplasy, and methodological and biological factors that generate homoplasy. A post hoc definition of homology and homoplasy, based on patterns of character distributions and their congruence or incongruence on a cladogram, is the most consistent method of recognizing these phenomena. Defined this way, homology and homoplasy are mutually exclusive. However, when different levels of analysis are examined, it is seen that homoplasy at one level, such as adult phenotype, often exists simultaneously with homology at a different level, such as developmental process. Thus, in some cases, patterns of homoplasy may point to underlying similarities that reflect the shared heritage of a particular clade. This is an old concept that is being renewed on the strength of recent trends in developmental biology. Factors that influence homoplasy include character definition and a host of biological factors, such as developmental constraints, allometry, and adaptation. These interact with one another to provide explanations of homoplastic patterns. Because of the repetition of events, explanations of homoplastic features are often more reliable than those for homologous features, and serve as effective tests for hypotheses of evolutionary process. In some cases, particular explanations of homoplasy lead to generalizations about the likelihood of homoplasy in a type of structure. The structure may be adaptive or highly epigenetic, or it may belong to an anatomical system considered to be more prone to homoplasy than others. However, our review shows that these generalizations are usually based on theory, and contradictory expectations can be developed under different theoretical models. More rigorous empirical studies are necessary to discover what, if any, generalizations can be made about the likelihood of homoplasy in different types of characters.
Population-genetics approach to the genetics of human behaviour.
Bulaeva, K B; Isaichev, S A; Pavlova, T A
1990-04-01
Invariant values of inheritance factors within and between different populations can show the existence of and measure the degree of genetic determination of behavioural characters. The absence of inbred depression of quantitative behavioural characters in isolated populations of highland inhabitants of Daghestan is demonstrated by means of comparative analysis of the mean population values of psychophysiological characters in outbred, moderately isolated, and extremely isolated (and inbred) populations. The absence of pronounced adverse effects of inbred marriages, known as the 'Daghestan phenomenon', is explained by the antiquity of the native populations and the severe ecological conditions under which these populations live which have led to elimination of carriers of hereditary diseases and other detrimental phenotypes.
NASA Astrophysics Data System (ADS)
Vereshchaka, A. L.
1997-11-01
Four populations (a total of 677 specimens) of the hydrothermal shrimp species Rimicaris exoculata from three Mid-Atlantic Ridge vent fields were studied: Broken Spur (29°N), TAG (26°N), and "14-45" (14°N). Five morphological characters were analysed: number of dorsolateral spines on telson, telative carapace width, relative abdominal length, presence of "abnormal telson", and fat content. Dependences of each character upon shrimp size were analysed. Division of the shrimp ontogenesis on the basis of general morphology is proposed. Phenotypic analysis based upon five selected characters revealed statistically significant divergence between two populations within the same vent field TAG. Probable causes of observed divergence are discussed.
Voss, J D; Goodson, M S; Leon, J C
2018-05-01
We propose the idea of "phenotype diffusion," which is a rapid convergence of an observed trait in some human and animal populations. The words phenotype and diffusion both imply observations independent of mechanism as phenotypes are observed traits with multiple possible genetic mechanisms and diffusion is an observed state of being widely distributed. Recognizing shared changes in phenotype in multiple species does not by itself reveal a particular mechanism such as a shared exposure, shared adaptive need, particular stochastic process or a transmission pathway. Instead, identifying phenotype diffusion suggests the mechanism should be explored to help illuminate the ways human and animal health are connected and new opportunities for optimizing these links. Using the plurality of obesity epidemics across multiple species as a prototype for shared changes in phenotype, the goal of this review was to explore eco-evolutionary theories that could inform further investigation. First, evolutionary changes described by hologenome evolution, pawnobe evolution, transposable element (TE) thrust and the drifty gene hypothesis will be discussed within the context of the selection asymmetries among human and animal populations. Secondly, the ecology of common source exposures (bovine milk, xenohormesis and "obesogens"), niche evolution and the hygiene hypothesis will be summarized. Finally, we synthesize these considerations. For example, many agricultural breeds have been aggressively selected for weight gain, microbiota (e.g., adenovirus 36, toxoplasmosis) associated with (or infecting) these breeds cause experimental weight gain in other animals, and these same microbes are associated with human obesity. We propose applications of phenotype diffusion could include zoonotic biosurveillance, biocontainment, antibiotic stewardship and environmental priorities. The One Health field is focused on the connections between the health of humans, animals and the environment, and so identification of phenotype diffusion is highly relevant for practitioners (public health officials, physicians and veterinarians) in this field. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.
2016-01-01
Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so increase evolvability. PMID:26937652
Warner, Daniel A
2014-11-01
Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable phenotypic diversity observed within populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Spatial storage effect promotes biodiversity during adaptive radiation.
Tan, Jiaqi; Rattray, Jennifer B; Yang, Xian; Jiang, Lin
2017-07-12
Many ecological communities are enormously diverse. Variation in environmental conditions over time and space provides opportunities for temporal and spatial storage effects to operate, potentially promoting species coexistence and biodiversity. While several studies have provided empirical evidence supporting the significance of the temporal storage effect for coexistence, empirical tests of the role of the spatial storage effect are rare. In particular, we know little about how the spatial storage effect contributes to biodiversity over evolutionary timescales. Here, we report the first experimental study on the role of the spatial storage effect in the maintenance of biodiversity in evolving metacommunities, using the bacterium Pseudomonas fluorescens SBW25 as a laboratory model of adaptive radiation. We found that intercommunity spatial heterogeneity promoted phenotypic diversity of P. fluorescens in the presence of dispersal among local communities, by allowing the spatial storage effect to operate. Mechanistically, greater niche differences among P. fluorescens phenotypes arose in metacommunities with intercommunity spatial heterogeneity, facilitating negative frequency-dependent selection, and thus, the coexistence among P. fluorescens phenotypes. These results highlight the importance of the spatial storage effect for biodiversity over evolutionary timescales. © 2017 The Author(s).
Heritability Analyses of IQ Scores: Science or Numerology?
ERIC Educational Resources Information Center
Layzer, David
1974-01-01
Examines limitations of the heritability concept and heritability analysis, and discusses a conventional application of heritability analysis, IQ scores as measurements of a phenotypic character, the heritability of IQ, and the relationship of IQ and race. (JR)
Baranzelli, M C; Sérsic, A N; Cocucci, A A
2014-04-01
Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
NASA Technical Reports Server (NTRS)
Achenbach-Richter, L.; Gupta, R.; Zillig, W.; Woese, C. R.
1988-01-01
The sequence of the 16S ribosomal RNA gene from the archaebacterium Thermococcus celer shows the organism to be related to the methanogenic archaebacteria rather than to its phenotypic counterparts, the extremely thermophilic archaebacteria. This conclusion turns on the position of the root of the archaebacterial phylogenetic tree, however. The problems encountered in rooting this tree are analyzed in detail. Under conditions that suppress evolutionary noise both the parsimony and evolutionary distance methods yield a root location (using a number of eubacterial or eukaryotic outgroup sequences) that is consistent with that determined by an "internal rooting" method, based upon an (approximate) determination of relative evolutionary rates.
Hastings, A.; Hom, C. L.
1989-01-01
We demonstrate that, in a model incorporating weak Gaussian stabilizing selection on n additively determined characters, at most n loci are polymorphic at a stable equilibrium. The number of characters is defined to be the number of independent components in the Gaussian selection scheme. We also assume linkage equilibrium, and that either the number of loci is large enough that the phenotypic distribution in the population can be approximated as multivariate Gaussian or that selection is weak enough that the mean fitness of the population can be approximated using only the mean and the variance of the characters in the population. Our results appear to rule out antagonistic pleiotropy without epistasis as a major force in maintaining additive genetic variation in a uniform environment. However, they are consistent with the maintenance of variability by genotype-environment interaction if a trait in different environments corresponds to different characters and the number of different environments exceeds the number of polymorphic loci that affect the trait. PMID:2767424
Krieger, Nancy
2013-01-01
How we think about biology--in historical, ecological, and societal context--matters for framing causes of and solutions to health inequities. Drawing on new insights from ecological evolutionary developmental biology and ecosocial theory, I question dominant gene-centric and ultimately static approaches to conceptualizing biology, using the example of the breast cancer estrogen receptor (ER). Analyzed in terms of its 4 histories--societal, individual (life course), tumor (cellular pathology), and evolutionary--the ER is revealed as a flexible characteristic of cells, tumors, individuals, and populations, with magnitudes of health inequities tellingly changing over time. This example suggests our science will likely be better served by conceptualizing disease and its biomarkers, along with changing magnitudes of health inequities, as embodied history--that is, emergent embodied phenotype, not innate biology.
Evolutionary genomics of dog domestication.
Wayne, Robert K; vonHoldt, Bridgett M
2012-02-01
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.
Worden, R P
1995-09-07
An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change.
Simon, Troy N.; Bassar, Ronald D.; Binderup, Andrew J.; Flecker, Alex S.; Freeman, Mary C.; Gilliam, James F.; Marshall, Michael C.; Thomas, Steve A.; Travis, Joseph; Reznick, David N.; Pringle, Catherine M.
2017-01-01
While previous studies have shown that evolutionary divergence alters ecological processes in small-scale experiments, a major challenge is to assess whether such evolutionary effects are important in natural ecosystems at larger spatial scales. At the landscape scale, across eight streams in the Caroni drainage, we found that the presence of locally adapted populations of guppies (Poecilia reticulata) is associated with reduced algal biomass and increased invertebrate biomass, while the opposite trends were true in streams with experimentally introduced populations of non-locally adapted guppies. Exclusion experiments conducted in two separate reaches of a single stream showed that guppies with locally adapted phenotypes significantly reduced algae with no effect on invertebrates, while non-adapted guppies had no effect on algae but significantly reduced invertebrates. These divergent effects of phenotype on stream ecosystems are comparable in strength to the effects of abiotic factors (e.g., light) known to be important drivers of ecosystem condition. They also corroborate the results of previous experiments conducted in artificial streams. Our results demonstrate that local adaptation can produce phenotypes with significantly different effects in natural ecosystems at a landscape scale, within a tropical watershed, despite high variability in abiotic factors: five of the seven physical and chemical parameters measured across the eight study streams varied by more than one order of magnitude. Our findings suggest that ecosystem structure is, in part, an evolutionary product and not simply an ecological pattern.
The place of development in mathematical evolutionary theory.
Rice, Sean H
2012-09-01
Development plays a critical role in structuring the joint offspring-parent phenotype distribution. It thus must be part of any truly general evolutionary theory. Historically, the offspring-parent distribution has often been treated in such a way as to bury the contribution of development, by distilling from it a single term, either heritability or additive genetic variance, and then working only with this term. I discuss two reasons why this approach is no longer satisfactory. First, the regression of expected offspring phenotype on parent phenotype can easily be nonlinear, and this nonlinearity can have a pronounced impact on the response to selection. Second, even when the offspring-parent regression is linear, it is nearly always a function of the environment, and the precise way that heritability covaries with the environment can have a substantial effect on adaptive evolution. Understanding these complexities of the offspring-parent distribution will require understanding of the developmental processes underlying the traits of interest. I briefly discuss how we can incorporate such complexity into formal evolutionary theory, and why it is likely to be important even for traits that are not traditionally the focus of evo-devo research. Finally, I briefly discuss a topic that is widely seen as being squarely in the domain of evo-devo: novelty. I argue that the same conceptual and mathematical framework that allows us to incorporate developmental complexity into simple models of trait evolution also yields insight into the evolution of novel traits. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Evolving the future: Toward a science of intentional change
Wilson, David Sloan; Hayes, Steven C.; Biglan, Anthony; Embry, Dennis D.
2015-01-01
Humans possess great capacity for behavioral and cultural change, but our ability to manage change is still limited. This article has two major objectives: first, to sketch a basic science of intentional change centered on evolution; second, to provide examples of intentional behavioral and cultural change from the applied behavioral sciences, which are largely unknown to the basic sciences community. All species have evolved mechanisms of phenotypic plasticity that enable them to respond adaptively to their environments. Some mechanisms of phenotypic plasticity count as evolutionary processes in their own right. The human capacity for symbolic thought provides an inheritance system having the same kind of combinatorial diversity as does genetic recombination and antibody formation. Taking these propositions seriously allows an integration of major traditions within the basic behavioral sciences, such as behaviorism, social constructivism, social psychology, cognitive psychology, and evolutionary psychology, which are often isolated and even conceptualized as opposed to one another. The applied behavioral sciences include well-validated examples of successfully managing behavioral and cultural change at scales ranging from individuals to small groups to large populations. However, these examples are largely unknown beyond their disciplinary boundaries, for lack of a unifying theoretical framework. Viewed from an evolutionary perspective, they are examples of managing evolved mechanisms of phenotypic plasticity, including open-ended processes of variation and selection. Once the many branches of the basic and applied behavioral sciences become conceptually unified, we are closer to a science of intentional change than one might think. PMID:24826907
Fukami, Hironobu; Chen, Chaolun Allen; Budd, Ann F; Collins, Allen; Wallace, Carden; Chuang, Yao-Yang; Chen, Chienhsun; Dai, Chang-Feng; Iwao, Kenji; Sheppard, Charles; Knowlton, Nancy
2008-09-16
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ss-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.
Computer vision cracks the leaf code
Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas
2016-01-01
Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664
Eco-Evolutionary Genomics of Chromosomal Inversions.
Wellenreuther, Maren; Bernatchez, Louis
2018-05-03
Chromosomal inversions have long fascinated evolutionary biologists due to their suppression of recombination, which can protect co-adapted alleles. Emerging research documents that inversions are commonly linked to spectacular phenotypes and have a pervasive role in eco-evolutionary processes, from mating systems, social organisation, environmental adaptation, and reproductive isolation to speciation. Studies also reveal that inversions are taxonomically widespread, with many being old and large, and that balancing selection is commonly facilitating their maintenance. This challenges the traditional view that the role of balancing selection in maintaining variation is relatively minor. The ubiquitous importance of inversions in ecological and evolutionary processes suggests that structural variation should be better acknowledged and integrated in studies pertaining to the molecular basis of adaptation and speciation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genetic analysis of growth curves for a woody perennial species, Pinus taeda L.
D.P. Gwaze; F.E. Bridgwater; C.G. Williams
2002-01-01
Inheritance of growth curves is critical for understanding evolutionary change and formulating efficient breeding plans, yet has received limited attention. Growth curves, like other characters that change in concert with development, often have higher heritability than age-specific traits. This study compared genetic parameters of height-growth curves with those of...
USDA-ARS?s Scientific Manuscript database
Salmonella enterica is a major cause of food-borne illness in the US, leading to more deaths than any other food-related pathogen. This is an extremely diverse bacterial species consisting of six subspecies and over 2500 named serovars. Examining the evolutionary history within Salmonella with techn...
A. Ammarellou; M.E. Smith; M.A. Tajick; J.M. Trappe
2011-01-01
Desert truffles, hypogeous Pezizales (Ascomycota), are difficult to identify due to evolutionary convergence of morphological characters among taxa that share a similar habitat and mode of spore dispersal. In this paper we document the presence of Picoa lefebvrei (Pat.) Maire (=Phaeangium lefebvrei) in Iran and use phylogenetic...
Smýkal, Petr; K Varshney, Rajeev; K Singh, Vikas; Coyne, Clarice J; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas
2016-12-01
This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.
Herath, B; Dochtermann, N A; Johnson, J I; Leonard, Z; Bowsher, J H
2015-12-01
Many exaggerated and novel traits are strongly influenced by sexual selection. Although sexual selection is a powerful evolutionary force, underlying genetic interactions can constrain evolutionary outcomes. The relative strength of selection vs. constraint has been a matter of debate for the evolution of male abdominal appendages in sepsid flies. These abdominal appendages are involved in courtship and mating, but their function has not been directly tested. We performed mate choice experiments to determine whether sexual selection acts on abdominal appendages in the sepsid Themira biloba. We tested whether appendage bristle length influenced successful insemination by surgically trimming the bristles. Females paired with males that had shortened bristles laid only unfertilized eggs, indicating that long bristles are necessary for successful insemination. We also tested whether the evolution of bristle length was constrained by phenotypic correlations with other traits. Analyses of phenotypic covariation indicated that bristle length was highly correlated with other abdominal appendage traits, but was not correlated with abdominal sternite size. Thus, abdominal appendages are not exaggerated traits like many sexual ornaments, but vary independently from body size. At the same time, strong correlations between bristle length and appendage length suggest that selection on bristle length is likely to result in a correlated increase in appendage length. Bristle length is under sexual selection in T. biloba and has the potential to evolve independently from abdomen size. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Piperno, Dolores R.
2017-01-01
The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881
Increased genetic variation and evolutionary potential drive the success of an invasive grass.
Lavergne, Sébastien; Molofsky, Jane
2007-03-06
Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination.
Zietsch, Brendan P; Miller, Geoffrey F; Bailey, J Michael; Martin, Nicholas G
2011-08-01
The criteria for "female orgasmic disorder" (FOD) assume that low rates of orgasm are dysfunctional, implying that high rates are functional. Evolutionary theories about the function of female orgasm predict correlations of orgasm rates with sexual attitudes and behavior and other fitness-related traits. To test hypothesized evolutionary functions of the female orgasm. We examined such correlations in a community sample of 2,914 adult female Australian twins who reported their orgasm rates during masturbation, intercourse, and other sexual activities, and who completed demographic, personality, and sexuality questionnaires. Orgasm rates during intercourse, other sex, and masturbation. Although orgasm rates showed high variance across women and substantial heritability, they were largely phenotypically and genetically independent of other important traits. We found zero to weak phenotypic correlations between all three orgasm rates and all other 19 traits examined, including occupational status, social class, educational attainment, extraversion, neuroticism, psychoticism, impulsiveness, childhood illness, maternal pregnancy stress, marital status, political liberalism, restrictive attitudes toward sex, libido, lifetime number of sex partners, risky sexual behavior, masculinity, orientation toward uncommitted sex, age of first intercourse, and sexual fantasy. Furthermore, none of the correlations had significant genetic components. These findings cast doubt on most current evolutionary theories about female orgasm's adaptive functions, and on the validity of FOD as a psychiatric construct. © 2011 International Society for Sexual Medicine.
Many-to-one form-to-function mapping weakens parallel morphological evolution.
Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E
2017-11-01
Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping." Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Chebib, Jobran; Guillaume, Frédéric
2017-10-01
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Evolution of advertisement calls in African clawed frogs
Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.
2014-01-01
Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737
Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
Pozner, Raúl; Zanotti, Christian; Johnson, Leigh A
2012-01-01
Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.
Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.
2017-02-01
Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.
Chase, Mark W.; Kim, Joo-Hwan
2013-01-01
Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071
Wei, Ran; Yan, Yue-Hong; Harris, AJ; Kang, Jong-Soo; Shen, Hui; Zhang, Xian-Chun
2017-01-01
Abstract The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. PMID:28854625
Bossuyt, Franky; Milinkovitch, Michel C.
2000-01-01
Recent studies have reported that independent adaptive radiations can lead to identical ecomorphs. Our phylogenetic analyses of nuclear and mitochondrial DNA sequences here indicate that a major radiation of ranid frogs on Madagascar produced morphological, physiological, and developmental characters that are remarkably similar to those that independently evolved on the Indian subcontinent. We demonstrate further that, in several cases, adult and larval stages each evolved sets of characters which are not only convergent between independent lineages, but also allowed both developmental stages to invade the same adaptive zone. It is likely that such covariations are produced by similar selective pressures on independent larval and adult characters rather than by genetic or functional linkage. We briefly discuss why larval/adult covariations might constitute an important evolutionary phenomenon in species for which more than one developmental stage potentially has access to multiple environmental conditions. PMID:10841558
How fluctuating competition and phenotypic plasticity mediate species divergence.
Pfennig, David W; Murphy, Peter J
2002-06-01
Causal evidence linking resource competition to species divergence is scarce. In this study, we coupled field observations with experiments to ask if the degree of character displacement reflects the intensity of competition between two closely related spadefoot toads (Spea bombifrons and S. multiplicata). Tadpoles of both species develop into either a small-headed omnivorous morph, which feeds mostly on detritus, or a large-headed carnivorous morph, which specializes on and whose phenotype is induced by fairy shrimp. Previously, we found that S. multiplicata are inferior competitors for fairy shrimp and are less likely to develop into carnivores in sympatry with S. bombifrons. We compared four key trophic characters in S. multiplicata across natural ponds where the frequency of S. bombifrons varied. We found that S. multiplicata became increasingly more omnivore-like as the relative abundance of S. bombifrons increased. Moreover, in controlled laboratory populations, S. multiplicata became increasingly more omnivore-like and S. bombifrons became increasingly more carnivore-like as we increased the relative abundance of the other species. Phenotypic plasticity helped mediate this divergence: S. multiplicata became increasingly less likely to eat shrimp and develop into carnivores in the presence of S. bombifrons, a superior predator on shrimp. However, divergence also reflected differences in canalized traits: When reared under common conditions, S. multiplicata tadpoles became increasingly less likely to produce carnivores as their natal pond decreased in elevation. Presumably, this pattern reflected selection against carnivores in lower-elevation ponds, because S. bombifrons became increasingly more common with decreasing elevation. Local genetic adaptation to the presence of S. bombifrons was remarkably fine grained, with differences in carnivore production detected between populations a few kilometers apart. Our results suggest that the degree of character displacement potentially reflects the intensity of competition between interacting species and that both phenotypic plasticity and fine-scale genetic differentiation can mediate this response. Moreover, these results provide causal evidence linking resource competition to species divergence.
Introduction to Focus Issue: Genetic Interactions
NASA Astrophysics Data System (ADS)
Segrè, Daniel; Marx, Christopher J.
2010-06-01
The perturbation of a gene in an organism's genome often causes changes in the organism's observable properties or phenotypes. It is not obvious a priori whether the simultaneous perturbation of two genes produces a phenotypic change that is easily predictable from the changes caused by individual perturbations. In fact, this is often not the case: the nonlinearity and interdependence between genetic variants in determining phenotypes, also known as epistasis, is a prevalent phenomenon in biological systems. This focus issue presents recent developments in the study of epistasis and genetic interactions, emphasizing the broad implications of this phenomenon in evolutionary biology, functional genomics, and human diseases.
Lande, Russell
2009-07-01
Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
The Evolution of Phenotypic Switching in Subdivided Populations
Carja, Oana; Liberman, Uri; Feldman, Marcus W.
2014-01-01
Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012
Slater, Graham J; Harmon, Luke J; Wegmann, Daniel; Joyce, Paul; Revell, Liam J; Alfaro, Michael E
2012-03-01
In recent years, a suite of methods has been developed to fit multiple rate models to phylogenetic comparative data. However, most methods have limited utility at broad phylogenetic scales because they typically require complete sampling of both the tree and the associated phenotypic data. Here, we develop and implement a new, tree-based method called MECCA (Modeling Evolution of Continuous Characters using ABC) that uses a hybrid likelihood/approximate Bayesian computation (ABC)-Markov-Chain Monte Carlo approach to simultaneously infer rates of diversification and trait evolution from incompletely sampled phylogenies and trait data. We demonstrate via simulation that MECCA has considerable power to choose among single versus multiple evolutionary rate models, and thus can be used to test hypotheses about changes in the rate of trait evolution across an incomplete tree of life. We finally apply MECCA to an empirical example of body size evolution in carnivores, and show that there is no evidence for an elevated rate of body size evolution in the pinnipeds relative to terrestrial carnivores. ABC approaches can provide a useful alternative set of tools for future macroevolutionary studies where likelihood-dependent approaches are lacking. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Rapid contemporary evolution and clonal food web dynamics
Jones, Laura E.; Becks, Lutz; Ellner, Stephen P.; Hairston, Nelson G.; Yoshida, Takehito; Fussmann, Gregor F.
2009-01-01
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species. PMID:19414472
Mini-review: Strategies for Variation and Evolution of Bacterial Antigens
Foley, Janet
2015-01-01
Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts. PMID:26288700
Nervous systems and scenarios for the invertebrate-to-vertebrate transition.
Holland, Nicholas D
2016-01-05
Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).
Beaulieu, Jeremy M; O'Meara, Brian C; Donoghue, Michael J
2013-09-01
The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades, it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000 species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very widespread flowering plant clade.
Cook, G M
1999-12-01
The 1890s and the first decades of the twentieth century saw a vigorous debate about the mechanisms of evolutionary change. On one side, August Weismann defended the selectionist hypothesis; on the other, Herbert Spencer defended neo-Lamarckian theory. Supporters of Spencer, notably the American paleontologist and evolutionary theorist Henry Fairfield Osborn, recognized that the questions raised by Weismann and Spencer could only be settled experimentally. They called for the application of experimental methods, and the establishment of a new institution for the purpose of confirming the inheritance of acquired characters. To a great extent, the experimental program championed by Osborn and others was implemented and, although it failed to reveal soft inheritance and was soon eclipsed by Mendelian and chromosomal genetics, it did make significant and lasting contributions to evolutionary biology. Thus the importance of methodological and institutional innovation and theoretical pluralism to the progress of science is illustrated and underscored.
College students' perceptions of peers with autism spectrum disorder.
Matthews, Nicole L; Ly, Agnes R; Goldberg, Wendy A
2015-01-01
Little is known about peer attitudes toward college students with autism spectrum disorder (ASD). Affective, behavioral, and cognitive attitudes toward vignette characters displaying behaviors characteristic of ASD were examined among 224 four-year university students who were randomly assigned to one of three labeling conditions for the primary vignette characters: high functioning autism (HFA), typical college student, or no label. Students in the HFA label condition reported more positive behavioral and cognitive attitudes toward the vignette characters than students in the no label condition. Male students and students with lower scores on the Broad Autism Phenotype Questionnaire reported more positive attitudes across study conditions. These experimental results suggest that knowledge of a diagnosis might improve attitudes toward college students with ASD.
Pérez-Rodríguez, Rodolfo; Domínguez-Domínguez, Omar; de León, Gerardo Pérez Ponce; Doadrio, Ignacio
2009-01-01
Background The genus Algansea is one of the most representative freshwater fish groups in central Mexico due to its wide geographic distribution and unusual level of endemicity. Despite the small number of species, this genus has had an unsettled taxonomic history due to high levels of intraspecific morphological variation. Moreover, several phylogenetic hypotheses among congeners have been proposed but have had the following shortcomings: the use of homoplasious morphological characters, the use of character codification and polarisation methods that lacked objectivity, and incomplete taxonomic sampling. In this study, a phylogenetic analysis among species of Algansea is presented. This analysis is based upon two molecular markers, the mitochondrial gene cytochrome b and the first intron of the ribosomal protein S7 gene. Results Bayesian analysis based on a combined matrix (cytochrome b and first intron S7) showed that Algansea is a monophyletic group and that Agosia chrysogaster is the sister group. Divergence times dated the origin of the genus around 16.6 MYA, with subsequent cladogenetic events occurring between 6.4 and 2.8 MYA. When mapped onto the molecular phylogenetic hypothesis, the character states of three morphological characters did not support previous hypotheses on the evolution of morphological traits in the genus Algansea, whereas the character states of the remaining six characters partially corroborated those hypotheses. Conclusion Monophyly of the genus Algansea was corroborated in this study. Tree topology shows the genus consists of three main lineages: Central-Eastern, Western, and Southern clades. However, the relationships among these clades remained unresolved. Congruence found between the available geological and climatic history and the divergence times made it possible to infer the biogeographical history of Algansea, which suggested that vicariance events were responsible for the evolutionary history of the genus. Interestingly, this pattern was shared with other members of the freshwater fish fauna of central Mexico. In addition, molecular data also show that some morphological traits alleged to represent synapomorphies in previous studies were actually homoplasies. Others traits were corroborated as synapomorphies, particularly in those species of a subgroup corresponding with the Central-Eastern clade within Algansea; this corroboration is interpreted as a result of evolutionary adaptations. PMID:19735558
Predicting evolutionary rescue via evolving plasticity in stochastic environments
Baskett, Marissa L.
2016-01-01
Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests. PMID:27655762
Chaos and the (un)predictability of evolution in a changing environment
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-01-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104
Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.
Culumber, Zachary W; Tobler, Michael
2018-05-01
The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Evo-devo of human adolescence: beyond disease models of early puberty
2013-01-01
Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891
Pancreatic cancer biology and genetics from an evolutionary perspective
Makohon-Moore, Alvin; Iacobuzio-Donahue, Christine A.
2017-01-01
Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (hereafter referred to as pancreatic cancer) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease. In this Review we gather the wide-ranging aspects of pancreatic cancer research into a single concept rooted in Darwinian evolution, with the goal of identifying novel insights and opportunities for study. PMID:27444064
Evidence of Adaptive Evolutionary Divergence during Biological Invasion
Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole
2012-01-01
Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region. PMID:23152900
Coral snakes predict the evolution of mimicry across New World snakes.
Davis Rabosky, Alison R; Cox, Christian L; Rabosky, Daniel L; Title, Pascal O; Holmes, Iris A; Feldman, Anat; McGuire, Jimmy A
2016-05-05
Batesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry. We also find that bidirectional transitions between mimetic and cryptic coloration are unexpectedly frequent over both long- and short-time scales, challenging traditional views of mimicry as a stable evolutionary 'end point' and suggesting that insect and snake mimicry may have different evolutionary dynamics.
Coral snakes predict the evolution of mimicry across New World snakes
Davis Rabosky, Alison R.; Cox, Christian L.; Rabosky, Daniel L.; Title, Pascal O.; Holmes, Iris A.; Feldman, Anat; McGuire, Jimmy A.
2016-01-01
Batesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry. We also find that bidirectional transitions between mimetic and cryptic coloration are unexpectedly frequent over both long- and short-time scales, challenging traditional views of mimicry as a stable evolutionary ‘end point' and suggesting that insect and snake mimicry may have different evolutionary dynamics. PMID:27146100
Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition
Munteanu, Andreea; Solé, Ricard V.
2008-01-01
Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype) into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles. PMID:19023404
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gene–culture coevolution and the nature of human sociality
Gintis, Herbert
2011-01-01
Human characteristics are the product of gene–culture coevolution, which is an evolutionary dynamic involving the interaction of genes and culture over long time periods. Gene–culture coevolution is a special case of niche construction. Gene–culture coevolution is responsible for human other-regarding preferences, a taste for fairness, the capacity to empathize and salience of morality and character virtues. PMID:21320901
Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish
Pasco-Viel, Emmanuel; Yang, Lei; Veran, Monette; Balter, Vincent; Mayden, Richard L.; Laudet, Vincent; Viriot, Laurent
2014-01-01
Evolutionary radiations, especially adaptive radiations, have been widely studied but mainly for recent events such as in cichlid fish or Anolis lizards. Here, we investigate the radiation of the subfamily Cyprininae, which includes more than 1300 species and is estimated to have originated from Southeast Asia around 55 Ma. In order to decipher a potential adaptive radiation, within a solid phylogenetic framework, we investigated the trophic apparatus, and especially the pharyngeal dentition, as teeth have proved to be important markers of ecological specialization. We compared two tribes within Cyprininae, Poropuntiini and Labeonini, displaying divergent dental patterns, as well as other characters related to their trophic apparatus. Our results suggest that the anatomy of the trophic apparatus and diet are clearly correlated and this explains the difference in dental patterns observed between these two tribes. Our results illustrate the diversity of mechanisms that account for species diversity in this very diverse clade: diversification of dental characters from an ancestral pattern on the one hand, conservation of a basal synapomorphy leading to ecological specialization on the other hand. By integrating morphological, ecological and phylogenetic analyses, it becomes possible to investigate ancient radiation events that have shaped the present diversity of species. PMID:24523268
Story Immersion in a Health Videogame for Childhood Obesity Prevention.
Lu, Amy Shirong; Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom
2012-02-15
Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Eighty-seven 10-12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, "Escape from Diab" (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. African-American and Hispanic participants reported higher immersion scores than Caucasian participants ( P = 0.01). Story immersion correlated positively ( P values < 0.03) with an increase in Fruit and Vegetable Preference ( r = 0.27), Intrinsic Motivation for Water ( r = 0.29), Vegetable Self-Efficacy ( r = 0.24), and Physical Activity Self-Efficacy ( r = 0.32). Ethnic similarity between videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors.
Evolutionary potential of marine phytoplankton under ocean acidification.
Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A
2014-01-01
Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.
Aristide, Leandro; Rosenberger, Alfred L; Tejedor, Marcelo F; Perez, S Ivan
2015-01-01
Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis). Copyright © 2013 Elsevier Inc. All rights reserved.
High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test
Kikuchi, David W.; Pfennig, David W.
2010-01-01
In Batesian mimicry, a harmless species (the ‘mimic’) resembles a dangerous species (the ‘model’) and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry. PMID:19955153
High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test.
Kikuchi, David W; Pfennig, David W
2010-04-07
In Batesian mimicry, a harmless species (the 'mimic') resembles a dangerous species (the 'model') and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry.
Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus.
Emmanuelle, Jousselin; Gwenaelle, Genson; Armelle, Coeur d'acier
2010-09-28
Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids. Phylogenetic investigation and character reconstruction suggest that life cycle is evolutionary labile in the genus. Though ancestral character states can be ambiguous depending on optimization methods, all analyses suggest that transitions from monoecy on herbs towards heteroecy have occurred several times. Transitions from heteroecy towards monoecy, are also likely. There have been many shifts in feeding behaviour but we found no significant correlation between life cycle changes and changes in diet. The transitions from monoecy on herbs towards heteroecy observed in this study go against a widely accepted evolutionary scenario: aphids in the genus Brachycaudus seem to be able to recapture their supposedly ancestral woody host. This suggests that the determinants of host alternation are probably not as complicated as previously thought. Definitive proofs of the lability of life cycle in Brachycaudus will necessitate investigation of these determinants. Life cycle changes, whether corresponding to the loss or acquisition of a primary host, necessarily promote speciation, by inducing shifts of the reproductive phase on different plants. We suggest that the evolutionary lability of life cycle may have driven speciation events in the Brachycaudus genus.
Root phenotyping of new oilseed crop lesquerella germplasm
USDA-ARS?s Scientific Manuscript database
The utility of germplasm collections rely on the availability of associated characterization and evaluation data for researchers and germplasm users. The information enables users to select accessions with characters of interest thereby saving time and resources. Most germplasm collections in the US...
Hormone signaling and phenotypic plasticity in nematode development and evolution.
Sommer, Ralf J; Ogawa, Akira
2011-09-27
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Between “design” and “bricolage”: Genetic networks, levels of selection, and adaptive evolution
Wilkins, Adam S.
2007-01-01
The extent to which “developmental constraints” in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a “network perspective” may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed. PMID:17494754
Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.
Wilkins, Adam S
2007-05-15
The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.
A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin.
Whittington, A Carl; Mason, Andrew J; Rokyta, Darin R
2017-04-01
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Franks, Steven J; Kane, Nolan C; O'Hara, Niamh B; Tittes, Silas; Rest, Joshua S
2016-08-01
There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome-wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late-season drought in California. These ancestor-descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome-wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Genetic basis of between-individual and within-individual variance of docility.
Martin, J G A; Pirotta, E; Petelle, M B; Blumstein, D T
2017-04-01
Between-individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between-individual variance in mean trait and neglected variation in within-individual variance, or predictability of a trait. In fact, an important assumption of mixed-effects models used to estimate between-individual variance in mean traits is that within-individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow-bellied marmots (Marmota flaviventris) to estimate between-individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within-individual variance in a wild population. Our results indicate that equal within-individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Geographically multifarious phenotypic divergence during speciation
Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L
2013-01-01
Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669
Are palaeoscolecids ancestral ecdysozoans?
Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J
2010-01-01
The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.
The scope and strength of sex-specific selection in genome evolution.
Wright, A E; Mank, J E
2013-09-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D
2002-10-22
Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners.
Sex-specific evolution during the diversification of live-bearing fishes.
Culumber, Zachary W; Tobler, Michael
2017-08-01
Natural selection is often assumed to drive parallel functional diversification of the sexes. But males and females exhibit fundamental differences in their biology, and it remains largely unknown how sex differences affect macroevolutionary patterns. On microevolutionary scales, we understand how natural and sexual selection interact to give rise to sex-specific evolution during phenotypic diversification and speciation. Here we show that ignoring sex-specific patterns of functional trait evolution misrepresents the macroevolutionary adaptive landscape and evolutionary rates for 112 species of live-bearing fishes (Poeciliidae). Males and females of the same species evolve in different adaptive landscapes. Major axes of female morphology were correlated with environmental variables but not reproductive investment, while male morphological variation was primarily associated with sexual selection. Despite the importance of both natural and sexual selection in shaping sex-specific phenotypic diversification, species diversification was overwhelmingly associated with ecological divergence. Hence, the inter-predictability of mechanisms of phenotypic and species diversification may be limited in many systems. These results underscore the importance of explicitly addressing sex-specific diversification in empirical and theoretical frameworks of evolutionary radiations to elucidate the roles of different sources of selection and constraint.
Can compensatory culling offset undesirable evolutionary consequences of trophy hunting?
Mysterud, Atle; Bischof, Richard
2010-01-01
1. There is growing concern about the evolutionary consequences of human harvesting on phenotypic trait quality in wild populations. Undesirable consequences are especially likely with trophy hunting because of its strong bias for specific phenotypic trait values, such as large antlers in cervids and horns in bovids. Selective hunting can cause a decline in a trophy trait over time if it is heritable, thereby reducing the long-term sustainability of the activity itself. 2. How can we build a sustainable trophy hunting tradition without the negative trait-altering effects? We used an individual-based model to explore whether selective compensatory culling of 'low quality' individuals at an early life stage can facilitate sustainability, as suggested by information from managed game populations in eastern and central Europe. Our model was rooted in empirical data on red deer, where heritability of sexual ornaments has been confirmed and phenotypic quality can be assessed by antler size in individuals as young as 1 year. 3. Simulations showed that targeted culling of low-quality yearlings could counter the selective effects of trophy hunting on the distribution of the affected trait (e.g. antler or horn size) in prime-aged individuals. Assumptions of trait heritability and young-to-adult correlation were essential for compensation, but the model proved robust to various other assumptions and changes to input parameters. The simulation approach allowed us to verify responses as evolutionary changes in trait values rather than short-term consequences of altered age structure, density and viability selection. 4. We conclude that evolutionarily enlightened management may accommodate trophy hunting. This has far reaching implications as income from trophy hunting is often channelled into local conservation efforts and rural economies. As an essential follow-up, we recommend an analysis of the effects of trophy hunting in conjunction with compensatory culling on the phenotypic and underlying genetic variance of the trophy trait.
Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data.
Sansom, Robert S
2015-03-01
The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Wanke, S; Vanderschaeve, L; Mathieu, G; Neinhuis, C; Goetghebeur, P; Samain, M S
2007-06-01
The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states. The genus Peperomia is generally considered to have the most reduced flowers in Piperales but this study shows that this is only partially true. Verhuellia, with almost equally reduced flowers, is not part of or sister to Peperomia as expected, but is revealed as sister to all other Piperaceae in all analyses, putting character evolution in this family and in the perianthless Piperales in a different light. A robust phylogenetic analysis including all relevant taxa is presented as a framework for inferring patterns and processes of evolution in Piperales and Piperaceae. Verhuellia is a further example of how a molecular phylogenetic study can elucidate the relationships of an unplaced taxon. When more material becomes available, it will be possible to investigate character evolution in Piperales more thoroughly and to answer some evolutionary questions concerning Piperaceae.
Mess, Andrea
2003-09-01
The aim of this paper is to reconstruct the evolution of chorioallantoic placental characters in Rodentia. The analysis is based on pre-existing hypotheses of rodent relationships and the tracing of character evolution. Data on 64 rodent species of 49 genera are derived from the literature. New results refer to the hystricognath species Petromus typicus A. Smith, 1831 and Octodon degus (Molina, 1782). This comprehensive analysis confirms that the stem species pattern of Rodentia is characterised by a haemochorial placenta which is divided horizontally. Inside the placental labyrinth, fetal vessels and their trophoblastic external border build up a network through which the maternal blood flows. The trophoblastic tissue is one-layered, syncytial and possess a considerable surface extension. Within Rodentia, evolutionary transformations occurred on the macroscopic as well as the fine structural level. The results suggest that the stem species of Hystricognathi underwent transformations only on the macroscopic level, i.e., forming a ring-shaped arrangement of placental regions with centrally situated maternal arteries and the acquisition of a subplacenta. By contrast, in Muridae the chorioallantoic placenta shows derived features only in regard to the fine structure of the labyrinth, i.e. the interhaemal membrane is modified in composition, and the fetal capillary endothelium is fenestrated. Geomyoidea underwent transformations on both levels. Macroscopically, their placenta is modified into a hillock shape. Microscopically, the interhaemal membrane is formed by the cytotrophoblast. In addition to the mentioned transformations, some aspects of other fetal membrane differentiation in Rodentia are briefly discussed. Copyright 2003 Wiley-Liss, Inc.
Fukami, Hironobu; Chen, Chaolun Allen; Budd, Ann F.; Collins, Allen; Wallace, Carden; Chuang, Yao-Yang; Chen, Chienhsun; Dai, Chang-Feng; Iwao, Kenji; Sheppard, Charles; Knowlton, Nancy
2008-01-01
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ß-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent “robust” and “complex” clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils. PMID:18795098
Njunjić, Iva; Perrard, Adrien; Hendriks, Kasper; Schilthuizen, Menno; Perreau, Michel; Merckx, Vincent; Baylac, Michel; Deharveng, Louis
2018-01-01
The genus Anthroherpon Reitter, 1889 exhibits the most pronounced troglomorphic characters among Coleoptera, and represents one of the most spectacular radiations of subterranean beetles. However, radiation, diversification, and biogeography of this genus have never been studied in a phylogenetic context. This study provides a comprehensive evolutionary analysis of the Anthroherpon radiation, using a dated molecular phylogeny as a framework for understanding Anthroherpon diversification, reconstructing the ancestral range, and exploring troglomorphic diversity. Based on 16 species and 22 subspecies, i.e. the majority of Anthroherpon diversity, we reconstructed the phylogeny using Bayesian analysis of six loci, both mitochondrial and nuclear, comprising a total of 4143 nucleotides. In parallel, a morphometric analysis was carried out with 79 landmarks on the body that were subjected to geometric morphometrics. We optimized morphometric features to phylogeny, in order to recognize the way troglomorphy was expressed in different clades of the tree, and did character evolution analyses. Finally, we reconstructed the ancestral range of the genus using BioGeoBEARS. Besides further elucidating the suprageneric classification of the East-Mediterranean Leptodirini, our main findings also show that Anthroherpon dates back to the Early Miocene (ca. 22 MYA) and that the genus diversified entirely underground. Biogeographic reconstruction of the ancestral range shows the origin of the genus in the area comprising three high mountains in western Montenegro, which is in the accordance with the available data on the paleogeography of the Balkan Peninsula. Character evolution analysis indicates that troglomorphic morphometric traits in Anthroherpon mostly evolve neutrally but may diverge adaptively under syntopic competition.
The evolutionary history of colour polymorphism in Ischnura damselflies.
Sánchez-Guillén, Rosa A; Cordero-Rivera, Adolfo; Rivas-Torres, Anais; Wellenreuther, Maren; Bybee, Seth; Hansson, Bengt; Velasquez-Vélez, María I; Realpe, Emilio; Chávez-Ríos, Jesús R; Villalobos, Fabricio; Dumont, Henri
2018-05-10
A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In the present study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a colouration that is similar to the male, and two gynochrome morphs (infuscans and aurantiaca) with female-specific colouration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time, and (iv) tested for a correlation between colour and mating system. We found that the ances tral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time; characterised by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang
2018-01-01
The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Increased genetic variation and evolutionary potential drive the success of an invasive grass
Lavergne, Sébastien; Molofsky, Jane
2007-01-01
Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination. PMID:17360447
Laarits, T; Bordalo, P; Lemos, B
2016-08-01
Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Correlated evolution of personality, morphology and performance
Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian
2018-01-01
Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712
Modelling the influence of parental effects on gene-network evolution.
Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud
2018-05-01
Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
The extended evolutionary synthesis: its structure, assumptions and predictions
Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John
2015-01-01
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559
Beza-Beza, Cristian Fernando; Beck, James; Reyes-Castillo, Pedro; Jameson, Mary Liz
2017-01-01
Abstract Yumtaax Boucher (Coleoptera: Passalidae) is an endemic genus from the temperate sierras of Mexico and includes six narrowly distributed species. Yumtaax species have been assigned to several genera of Passalidae throughout history, and a phylogenetic approach is necessary to understand species delimitation and interspecific relationships. This study reconstructed the molecular phylogeny of six Yumtaax morphotypes using parsimony and Bayesian analysis of DNA sequence data from the ribosomal nuclear gene region 28S and the mitochondrial gene regions 12S and cytochrome oxidase I (COI) in addition to morphological characters. Analyses recovered two well-supported Yumtaax clades (the Yumtaax laticornis and Yumtaax imbellis clades) that are possible sister lineages. One synapomorphic morphological character state and the geographic isolation of the group provide corroborative evidence for monophyly. Molecular phylogenetic analyses and traditional morphological examinations also resulted in the discovery of two undescribed Yumtaax species and the discovery of two separate evolutionary lineages (cryptic species) within Yumtaax recticornis. As a result we describe three new species (Yumtaax veracrucensis Beza-Beza, Reyes-Castillo & Jameson, sp. n., Yumtaax cameliae Beza-Beza, Reyes-Castillo & Jameson, sp. n., and Yumtaax jimenezi Beza-Beza, Reyes-Castillo & Jameson, sp. n.), redescribe two species (Yumtaax recticornis [Burmeister 1847] and Yumtaax laticornis [Truqui 1857]), and provide a key to all nine Yumtaax species. This study is one of two studies to use molecular data to evaluate the evolutionary relationships of a genus of Bess Beetles (Passalidae), an ecologically important insect group exhibiting low morphological variability and heretofore lacking molecular phylogenetic study. PMID:28769637
Total phenolic levels in diverse garlics (Allium sativum L.)
USDA-ARS?s Scientific Manuscript database
Garlic (Allium sativum L.) is a specialty crop that is highly responsive to growth environment with respect to bulb size and coloration. Ten genetically diverse garlic cultivars were grown at twelve locations for two consecutive years. Soil characteristics and bulb phenotypic characters including ...