Evolutionary Computing Methods for Spectral Retrieval
NASA Technical Reports Server (NTRS)
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
Patton, Robert M; Cui, Xiaohui; Jiao, Yu; Potok, Thomas E
2008-01-01
The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage this information. To overcome this challenge, new methods of computing must be formulated, and scientist and engineers have looked to nature for inspiration in developing these new methods. Consequently, evolutionary computing has emerged as new paradigm for computing, and has rapidly demonstrated its ability to solve real-world problems where traditional techniques have failed. This field of work has now become quite broad and encompasses areas ranging from artificial life to neural networks. This chapter focuses specifically on two sub-areas of nature-inspired computing: Evolutionary Algorithms and Swarm Intelligence.
Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Guillaume, Alexandre
2011-01-01
A technique based on Evolutionary Computational Methods (ECMs) was developed that allows for the automated optimization of complex computationally modeled systems, such as autonomous systems. The primary technology, which enables the ECM to find optimal solutions in complex search spaces, derives from evolutionary algorithms such as the genetic algorithm and differential evolution. These methods are based on biological processes, particularly genetics, and define an iterative process that evolves parameter sets into an optimum. Evolutionary computation is a method that operates on a population of existing computational-based engineering models (or simulators) and competes them using biologically inspired genetic operators on large parallel cluster computers. The result is the ability to automatically find design optimizations and trades, and thereby greatly amplify the role of the system engineer.
Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F
2010-01-01
The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.
Practical advantages of evolutionary computation
NASA Astrophysics Data System (ADS)
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications
2005-06-16
dominance-compliant quality indicators suggested are heeded. Ziztler also supports this suggestion of having certain quality indicators and adver - tises that...of military targets within an urban environment. 7.1 Urban Environment One of the most adverse environments for targeting and maneuvering is urban...Defense Immune System: an artificial immune system for virus and computer intrusion detection. The approach vaccinates the system by evolving an
NASA Astrophysics Data System (ADS)
Piotrowski, Adam P.; Napiorkowski, Jarosław J.
2011-09-01
SummaryAlthough neural networks have been widely applied to various hydrological problems, including river flow forecasting, for at least 15 years, they have usually been trained by means of gradient-based algorithms. Recently nature inspired Evolutionary Computation algorithms have rapidly developed as optimization methods able to cope not only with non-differentiable functions but also with a great number of local minima. Some of proposed Evolutionary Computation algorithms have been tested for neural networks training, but publications which compare their performance with gradient-based training methods are rare and present contradictory conclusions. The main goal of the present study is to verify the applicability of a number of recently developed Evolutionary Computation optimization methods, mostly from the Differential Evolution family, to multi-layer perceptron neural networks training for daily rainfall-runoff forecasting. In the present paper eight Evolutionary Computation methods, namely the first version of Differential Evolution (DE), Distributed DE with Explorative-Exploitative Population Families, Self-Adaptive DE, DE with Global and Local Neighbors, Grouping DE, JADE, Comprehensive Learning Particle Swarm Optimization and Efficient Population Utilization Strategy Particle Swarm Optimization are tested against the Levenberg-Marquardt algorithm - probably the most efficient in terms of speed and success rate among gradient-based methods. The Annapolis River catchment was selected as the area of this study due to its specific climatic conditions, characterized by significant seasonal changes in runoff, rapid floods, dry summers, severe winters with snowfall, snow melting, frequent freeze and thaw, and presence of river ice - conditions which make flow forecasting more troublesome. The overall performance of the Levenberg-Marquardt algorithm and the DE with Global and Local Neighbors method for neural networks training turns out to be superior to other
Algorithmic Mechanism Design of Evolutionary Computation
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777
Statistical methods for evolutionary trees.
Edwards, A W F
2009-09-01
In 1963 and 1964, L. L. Cavalli-Sforza and A. W. F. Edwards introduced novel methods for computing evolutionary trees from genetical data, initially for human populations from blood-group gene frequencies. The most important development was their introduction of statistical methods of estimation applied to stochastic models of evolution.
EVOLUTIONARY COMPUTING PROJECT
C. BARRETT; C. REIDYS
2000-09-01
This report summarizes LDRD-funded mathematical research related to computer simulation, inspired in part by combinatorial analysis of sequence to structure relationships of bio-molecules. Computer simulations calculate the interactions among many individual, local entities, thereby generating global dynamics. The objective of this project was to establish a mathematical basis for a comprehensive theory of computer simulations. This mathematical theory is intended to rigorously underwrite very large complex simulations, including simulation of bio- and socio-technical systems. We believe excellent progress has been made. Abstraction of three main ingredients of simulation forms the mathematical setting, called Sequential Dynamical Systems (SDS): (1) functions realized as data-local procedures represent entity state transformations, (2) a graph that expresses locality of the functions and which represents the dependencies among entities, and (3) an ordering, or schedule according to which the entities are evaluated, e.g., up-dated. The research spans algebraic foundations, formal dynamical systems, computer simulation, and theoretical computer science. The theoretical approach is also deeply related to theoretical issues in parallel compilation. Numerous publications were produced, follow-on projects have been identified and are being developed programmatically, and a new area in computational algebra, SDS, was produced.
Scalable computing for evolutionary genomics.
Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert
2012-01-01
Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project
Evolutionary Computing for Low-thrust Navigation
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Fink, Wolfgang; vonAllmed, Paul; Petropoulos, Anastassios E.; Russell, Ryan P.; Terrile, Richard J.
2005-01-01
The development of new mission concepts requires efficient methodologies to analyze, design and simulate the concepts before implementation. New mission concepts are increasingly considering the use of ion thrusters for fuel-efficient navigation in deep space. This paper presents parallel, evolutionary computing methods to design trajectories of spacecraft propelled by ion thrusters and to assess the trade-off between delivered payload mass and required flight time. The developed methods utilize a distributed computing environment in order to speed up computation, and use evolutionary algorithms to find globally Pareto-optimal solutions. The methods are coupled with two main traditional trajectory design approaches, which are called direct and indirect. In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. In the indirect approach, a thrust control problem is transformed into a costate control problem, and the initial values of the costate vector are optimized. The developed methods are applied to two problems: 1) an orbit transfer around the Earth and 2) a transfer between two distance retrograde orbits around Europa, the closest to Jupiter of the icy Galilean moons. The optimal solutions found with the present methods are comparable to other state-of-the-art trajectory optimizers and to analytical approximations for optimal transfers, while the required computational time is several orders of magnitude shorter than other optimizers thanks to an intelligent design of control vector discretization, advanced algorithmic parameterization, and parallel computing.
Optimizing a reconfigurable material via evolutionary computation
NASA Astrophysics Data System (ADS)
Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.
2015-08-01
Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.
From computers to cultivation: reconceptualizing evolutionary psychology
Barrett, Louise; Pollet, Thomas V.; Stulp, Gert
2014-01-01
Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on “cognitive integration” or the “extended mind hypothesis” in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human “mind-making” within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach. PMID:25161633
A Bright Future for Evolutionary Methods in Drug Design.
Le, Tu C; Winkler, David A
2015-08-01
Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery.
Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.
Menges, Achim
2012-03-01
Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.
Evolutionary Computation Applied to the Tuning of MEMS Gyroscopes
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Fink, Wolfgang; Ferguson, Michael I.; Peay, Chris; Oks, Boris; Terrile, Richard; Yee, Karl
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation.
Using Evolutionary Computation on GPS Position Correction
2014-01-01
More and more devices are equipped with global positioning system (GPS). However, those handheld devices with consumer-grade GPS receivers usually have low accuracy in positioning. A position correction algorithm is therefore useful in this case. In this paper, we proposed an evolutionary computation based technique to generate a correction function by two GPS receivers and a known reference location. Locating one GPS receiver on the known location and combining its longitude and latitude information and exact poisoning information, the proposed technique is capable of evolving a correction function by such. The proposed technique can be implemented and executed on handheld devices without hardware reconfiguration. Experiments are conducted to demonstrate performance of the proposed technique. Positioning error could be significantly reduced from the order of 10 m to the order of 1 m. PMID:24578657
Regulatory RNA design through evolutionary computation and strand displacement.
Rostain, William; Landrain, Thomas E; Rodrigo, Guillermo; Jaramillo, Alfonso
2015-01-01
The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.
Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred
2008-01-01
Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained
Evolutionary Cell Computing: From Protocells to Self-Organized Computing
NASA Technical Reports Server (NTRS)
Colombano, Silvano; New, Michael H.; Pohorille, Andrew; Scargle, Jeffrey; Stassinopoulos, Dimitris; Pearson, Mark; Warren, James
2000-01-01
On the path from inanimate to animate matter, a key step was the self-organization of molecules into protocells - the earliest ancestors of contemporary cells. Studies of the properties of protocells and the mechanisms by which they maintained themselves and reproduced are an important part of astrobiology. These studies also have the potential to greatly impact research in nanotechnology and computer science. Previous studies of protocells have focussed on self-replication. In these systems, Darwinian evolution occurs through a series of small alterations to functional molecules whose identities are stored. Protocells, however, may have been incapable of such storage. We hypothesize that under such conditions, the replication of functions and their interrelationships, rather than the precise identities of the functional molecules, is sufficient for survival and evolution. This process is called non-genomic evolution. Recent breakthroughs in experimental protein chemistry have opened the gates for experimental tests of non-genomic evolution. On the basis of these achievements, we have developed a stochastic model for examining the evolutionary potential of non-genomic systems. In this model, the formation and destruction (hydrolysis) of bonds joining amino acids in proteins occur through catalyzed, albeit possibly inefficient, pathways. Each protein can act as a substrate for polymerization or hydrolysis, or as a catalyst of these chemical reactions. When a protein is hydrolyzed to form two new proteins, or two proteins are joined into a single protein, the catalytic abilities of the product proteins are related to the catalytic abilities of the reactants. We will demonstrate that the catalytic capabilities of such a system can increase. Its evolutionary potential is dependent upon the competition between the formation of bond-forming and bond-cutting catalysts. The degree to which hydrolysis preferentially affects bonds in less efficient, and therefore less well
Bi-directional evolutionary level set method for topology optimization
NASA Astrophysics Data System (ADS)
Zhu, Benliang; Zhang, Xianmin; Fatikow, Sergej; Wang, Nianfeng
2015-03-01
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.
Protein 3D structure computed from evolutionary sequence variation.
Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2011-01-01
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations.
Mapping an expanding territory: computer simulations in evolutionary biology.
Huneman, Philippe
2014-08-01
The pervasive use of computer simulations in the sciences brings novel epistemological issues discussed in the philosophy of science literature since about a decade. Evolutionary biology strongly relies on such simulations, and in relation to it there exists a research program (Artificial Life) that mainly studies simulations themselves. This paper addresses the specificity of computer simulations in evolutionary biology, in the context (described in Sect. 1) of a set of questions about their scope as explanations, the nature of validation processes and the relation between simulations and true experiments or mathematical models. After making distinctions, especially between a weak use where simulations test hypotheses about the world, and a strong use where they allow one to explore sets of evolutionary dynamics not necessarily extant in our world, I argue in Sect. 2 that (weak) simulations are likely to represent in virtue of the fact that they instantiate specific features of causal processes that may be isomorphic to features of some causal processes in the world, though the latter are always intertwined with a myriad of different processes and hence unlikely to be directly manipulated and studied. I therefore argue that these simulations are merely able to provide candidate explanations for real patterns. Section 3 ends up by placing strong and weak simulations in Levins' triangle, that conceives of simulations as devices trying to fulfil one or two among three incompatible epistemic values (precision, realism, genericity).
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
Tuning of MEMS Devices using Evolutionary Computation and Open-loop Frequency Response
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Fink, Wolfgang; Ferguson, Michael I.; Peay, Chris; Oks, Boris; Terrile, Richard; Yee, Karl
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation that has the capacity to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation.
Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Guillaume, Alexandre
2009-01-01
Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.
Computational complexity of ecological and evolutionary spatial dynamics.
Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu; Nowak, Martin A
2015-12-22
There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP).
Evolutionary adaptive eye tracking for low-cost human computer interaction applications
NASA Astrophysics Data System (ADS)
Shen, Yan; Shin, Hak Chul; Sung, Won Jun; Khim, Sarang; Kim, Honglak; Rhee, Phill Kyu
2013-01-01
We present an evolutionary adaptive eye-tracking framework aiming for low-cost human computer interaction. The main focus is to guarantee eye-tracking performance without using high-cost devices and strongly controlled situations. The performance optimization of eye tracking is formulated into the dynamic control problem of deciding on an eye tracking algorithm structure and associated thresholds/parameters, where the dynamic control space is denoted by genotype and phenotype spaces. The evolutionary algorithm is responsible for exploring the genotype control space, and the reinforcement learning algorithm organizes the evolved genotype into a reactive phenotype. The evolutionary algorithm encodes an eye-tracking scheme as a genetic code based on image variation analysis. Then, the reinforcement learning algorithm defines internal states in a phenotype control space limited by the perceived genetic code and carries out interactive adaptations. The proposed method can achieve optimal performance by compromising the difficulty in the real-time performance of the evolutionary algorithm and the drawback of the huge search space of the reinforcement learning algorithm. Extensive experiments were carried out using webcam image sequences and yielded very encouraging results. The framework can be readily applied to other low-cost vision-based human computer interactions in solving their intrinsic brittleness in unstable operational environments.
Crowd Computing as a Cooperation Problem: An Evolutionary Approach
NASA Astrophysics Data System (ADS)
Christoforou, Evgenia; Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A.; Sánchez, Angel
2013-05-01
Cooperation is one of the socio-economic issues that has received more attention from the physics community. The problem has been mostly considered by studying games such as the Prisoner's Dilemma or the Public Goods Game. Here, we take a step forward by studying cooperation in the context of crowd computing. We introduce a model loosely based on Principal-agent theory in which people (workers) contribute to the solution of a distributed problem by computing answers and reporting to the problem proposer (master). To go beyond classical approaches involving the concept of Nash equilibrium, we work on an evolutionary framework in which both the master and the workers update their behavior through reinforcement learning. Using a Markov chain approach, we show theoretically that under certain----not very restrictive—conditions, the master can ensure the reliability of the answer resulting of the process. Then, we study the model by numerical simulations, finding that convergence, meaning that the system reaches a point in which it always produces reliable answers, may in general be much faster than the upper bounds given by the theoretical calculation. We also discuss the effects of the master's level of tolerance to defectors, about which the theory does not provide information. The discussion shows that the system works even with very large tolerances. We conclude with a discussion of our results and possible directions to carry this research further.
Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization
Zhao, Qiangfu; Liu, Yong
2015-01-01
A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050
Kernel method based human model for enhancing interactive evolutionary optimization.
Pei, Yan; Zhao, Qiangfu; Liu, Yong
2015-01-01
A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly.
Exploring Evolutionary Patterns in Genetic Sequence: A Computer Exercise
ERIC Educational Resources Information Center
Shumate, Alice M.; Windsor, Aaron J.
2010-01-01
The increase in publications presenting molecular evolutionary analyses and the availability of comparative sequence data through resources such as NCBI's GenBank underscore the necessity of providing undergraduates with hands-on sequence analysis skills in an evolutionary context. This need is particularly acute given that students have been…
Visser, Marco D; McMahon, Sean M; Merow, Cory; Dixon, Philip M; Record, Sydne; Jongejans, Eelke
2015-03-01
Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1-S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.
Computational Methods for Crashworthiness
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Carden, Huey D. (Compiler)
1993-01-01
Presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Crashworthiness held at Langley Research Center on 2-3 Sep. 1992 are included. The presentations addressed activities in the area of impact dynamics. Workshop attendees represented NASA, the Army and Air Force, the Lawrence Livermore and Sandia National Laboratories, the aircraft and automotive industries, and academia. The workshop objectives were to assess the state-of-technology in the numerical simulation of crash and to provide guidelines for future research.
An Evolutionary Computation Approach to Examine Functional Brain Plasticity
Roy, Arnab; Campbell, Colin; Bernier, Rachel A.; Hillary, Frank G.
2016-01-01
One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength
Autonomous management of distributed information systems using evolutionary computation techniques
NASA Astrophysics Data System (ADS)
Oates, Martin J.
1999-03-01
can provide reliable and consistent performance. This paper investigates evolutionary computation techniques, comparing results from genetic algorithms, simulated annealing and hillclimbing. Major differential algorithm performance is found across different fitness criteria. Preliminary conclusions are that a genetic algorithm approach seems superior to hillclimbing or simulated annealing when more realistic (from a quality of service viewpoint) objective functions are used. Further, the genetic algorithm approach displays regions of adequate robustness to parameter variation, which is also critical from a maintained quality of service viewpoint.
Pérez-Figueroa, A; Cruz, F; Carvajal-Rodríguez, A; Rolán-Alvarez, E; Caballero, A
2005-01-01
Two rocky shore ecotypes of Littorina saxatilis from north-west Spain live at different shore levels and habitats and have developed an incomplete reproductive isolation through size assortative mating. The system is regarded as an example of sympatric ecological speciation. Several experiments have indicated that different evolutionary forces (migration, assortative mating and habitat-dependent selection) play a role in maintaining the polymorphism. However, an assessment of the combined contributions of these forces supporting the observed pattern in the wild is absent. A model selection procedure using computer simulations was used to investigate the contribution of the different evolutionary forces towards the maintenance of the polymorphism. The agreement between alternative models and experimental estimates for a number of parameters was quantified by a least square method. The results of the analysis show that the fittest evolutionary model for the observed polymorphism is characterized by a high gene flow, intermediate-high reproductive isolation between ecotypes, and a moderate to strong selection against the nonresident ecotypes on each shore level. In addition, a substantial number of additive loci contributing to the selected trait and a narrow hybrid definition with respect to the phenotype are scenarios that better explain the polymorphism, whereas the ecotype fitnesses at the mid-shore, the level of phenotypic plasticity, and environmental effects are not key parameters.
Directionality theory: a computational study of an entropic principle in evolutionary processes.
Kowald, Axel; Demetrius, Lloyd
2005-04-07
Analytical studies of evolutionary processes based on the demographic parameter entropy-a measure of the uncertainty in the age of the mother of a randomly chosen newborn-show that evolutionary changes in entropy are contingent on environmental constraints and can be characterized in terms of three tenets: (i) a unidirectional increase in entropy for populations subject to bounded growth constraints; (ii) a unidirectional decrease in entropy for large populations subject to unbounded growth constraints; (iii) random, non-directional change in entropy for small populations subject to unbounded growth constraints. This article aims to assess the robustness of these analytical tenets by computer simulation. The results of the computational study are shown to be consistent with the analytical predictions. Computational analysis, together with complementary empirical studies of evolutionary changes in entropy underscore the universality of the entropic principle as a model of the evolutionary process.
Determining basic characteristics of stars from evolutionary computations
NASA Astrophysics Data System (ADS)
Sichevskij, S. G.
2017-03-01
A technique for determining a star's radius from its atmospheric characteristics (effective temperature, surface gravity, and metallicity) is realized based on modernmodel computations of the stellar internal structure and evolution. The atmospheric characteristics can also be used to find the mass and luminosity of the star. The star's rate of evolution and the initial mass function are taken into account when determining the stellar characteristics, increasing the correctness of the results. Computations of stellar evolution of with and without the stellar rotation taken into account make it possible to remove ambiguity due to missing data on the star's rotational velocity. The results are checked and uncertainties estimated using stars occupying two heavily populated regions in the Hertzsprung-Russell diagram that have been well studied using various methods: the main sequence and red giant branch. Good agreement with the observations is achieved; there are almost no systematic deviations of the derived point estimates of the fundamental characteristics. The metallicities of the individual components of eclipsing variable stars are estimated using observational data on for such stars displaying lines of both components in their spectra. These metallicities were determined as a function of the stellar masses in a way that eliminates systematic deviations in the derived fundamental characteristics.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria
2008-05-08
Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.
NASA Astrophysics Data System (ADS)
Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria
2008-05-01
Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic.
Device-dependent screen optimization using evolutionary computing
NASA Astrophysics Data System (ADS)
Bartels, Rudi
2000-12-01
Most of the half toning algorithms are based on ideal imaging devices that can render perfect square pixels. In real printing environments this is not the case. Most imaging deices are a trade-off between the best quality and the highest speed. In this paper a screen will be designed for Agfa's newspaper-dedicated computer-to-plate imaging device Polaris.
Multi-Objective UAV Mission Planning Using Evolutionary Computation
2008-03-01
sors Applications and Demonstrations Division (AFRL/SNZ), specifically, the Virtual Combat Laboratory (AFRL/SNZW) at Wright Patterson Air Force Base...Chapman & Hall/Crc Computer and Information Sciences). Chapman & Hall/CRC, 2006. ISBN 1584886439. 8. de Castro, Leandro Nunes and Fernando Jos Von Zuben
Scalable Evolutionary Computation for Efficient Information Extraction from Remote Sensed Imagery
NASA Astrophysics Data System (ADS)
Almutairi, L. M.; Shetty, S.; Momm, H. G.
2014-11-01
Evolutionary computation, in the form of genetic programming, is used to aid information extraction process from high-resolution satellite imagery in a semi-automatic fashion. Distributing and parallelizing the task of evaluating all candidate solutions during the evolutionary process could significantly reduce the inherent computational cost of evolving solutions that are composed of multichannel large images. In this study, we present the design and implementation of a system that leverages cloud-computing technology to expedite supervised solution development in a centralized evolutionary framework. The system uses the MapReduce programming model to implement a distributed version of the existing framework in a cloud-computing platform. The proposed system has two major subsystems; (i) data preparation: the generation of random spectral indices; and (ii) distributed processing: the distributed implementation of genetic programming, which is used to spectrally distinguish the features of interest from the remaining image background in the cloud computing environment in order to improve scalability. The proposed system reduces response time by leveraging the vast computational and storage resources in a cloud computing environment. The results demonstrate that distributing the candidate solutions reduces the execution time by 91.58%. These findings indicate that such technology could be applied to more complex problems that involve a larger population size and number of generations.
Tuning of MEMS Gyroscope using Evolutionary Algorithm and "Switched Drive-Angle" Method
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Breuer, Luke; Peay, Chris; Oks, Boris; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David; Terrile, Rich; Yee, Karl
2006-01-01
We propose a tuning method for Micro-Electro-Mechanical Systems (MEMS) gyroscopes based on evolutionary computation that has the capacity to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. We present the results of an experiment to determine the speed and efficiency of an evolutionary algorithm applied to electrostatic tuning of MEMS micro gyros. The MEMS gyro used in this experiment is a pyrex post resonator gyro (PRG) in a closed-loop control system. A measure of the quality of tuning is given by the difference in resonant frequencies, or frequency split, for the two orthogonal rocking axes. The current implementation of the closed-loop platform is able to measure and attain a relative stability in the sub-millihertz range, leading to a reduction of the frequency split to less than 100 mHz.
Computational methods for remote homolog identification.
Wan, Xiu-Feng; Xu, Dong
2005-12-01
As more and more protein sequences are available, homolog identification becomes increasingly important for functional, structural, and evolutional studies of proteins. Many homologous proteins were separated a very long time ago in their evolutionary history and thus their sequences share low sequence identity. These remote homologs have become a research focus in bioinformatics over the past decade, and some significant advances have been achieved. In this paper, we provide a comprehensive review on computational techniques used in remote homolog identification based on different methods, including sequence-sequence comparison, and sequence-structure comparison, and structure-structure comparison. Other miscellaneous approaches are also summarized. Pointers to the online resources of these methods and their related databases are provided. Comparisons among different methods in terms of their technical approaches, their strengths, and limitations are followed. Studies on proteins in SARS-CoV are shown as an example for remote homolog identification application.
Supervised and unsupervised discretization methods for evolutionary algorithms
Cantu-Paz, E
2001-01-24
This paper introduces simple model-building evolutionary algorithms (EAs) that operate on continuous domains. The algorithms are based on supervised and unsupervised discretization methods that have been used as preprocessing steps in machine learning. The basic idea is to discretize the continuous variables and use the discretization as a simple model of the solutions under consideration. The model is then used to generate new solutions directly, instead of using the usual operators based on sexual recombination and mutation. The algorithms presented here have fewer parameters than traditional and other model-building EAs. They expect that the proposed algorithms that use multivariate models scale up better to the dimensionality of the problem than existing EAs.
EVOLUTIONARY SYSTEMATICS OF THE CHIMPANZEE: IMMUNODIFFUSION COMPUTER APPROACH.
man and gorilla, and shows increasingly more marked divergence from orangutan , gibbons, cercopithecoids, and ceboids. The method for constructing...the gibbon branch from the remaining hominoids, while the next most distant common ancestor separates the orangutan from man, chimpanzee, and gorilla...cercopithecoid-hominoid separation as 30 million years, the chimpanzee-man-gorilla separations were dated at about 6 million years, the orangutan at 14 million years, and the gibbon at about 19 million years. (Author)
The use of explicit building blocks in evolutionary computation
NASA Astrophysics Data System (ADS)
Sangkavichitr, Chalermsub; Chongstitvatana, Prabhas
2016-02-01
This paper proposes a new algorithm to identify and compose building blocks. Building blocks are interpreted as common subsequences between good individuals. The proposed algorithm can extract building blocks from a population explicitly. Explicit building blocks are identified from shared alleles among multiple chromosomes. These building blocks are stored in an archive. They are recombined to generate offspring. The additively decomposable problems and hierarchical decomposable problems are used to validate the algorithm. The results are compared with the Bayesian optimisation algorithm, the hierarchical Bayesian optimisation algorithm, and the chi-square matrix. This proposed algorithm is simple, effective, and fast. The experimental results confirm that building block identification is an important process that guides the recombination procedure to improve the solutions. In addition, the method efficiently solves hard problems.
Fatima, Kiran; Majeed, Hammad; Irshad, Humayun
2017-04-05
Meningioma subtypes classification is a real-world multiclass problem from the realm of neuropathology. The major challenge in solving this problem is the inherent complexity due to high intra-class variability and low inter-class variation in tissue samples. The development of computational methods to assist pathologists in characterization of these tissue samples would have great diagnostic and prognostic value. In this article, we proposed an optimized evolutionary framework for the classification of benign meningioma into four subtypes. This framework investigates the imperative role of RGB color channels for discrimination of tumor subtypes and compute structural, statistical and spectral phenotypes. An evolutionary technique, Genetic Algorithm, in combination with Support Vector Machine is applied to tune classifier parameters and to select the best possible combination of extracted phenotypes that improved the classification accuracy (94.88%) on meningioma histology dataset, provided by the Institute of Neuropathology, Bielefeld. These statistics show that computational framework can robustly discriminate four subtypes of benign meningioma and may aid pathologists in the diagnosis and classification of these lesions.
Nguyen, Thi-Hau; Ranwez, Vincent; Berry, Vincent; Scornavacca, Celine
2013-01-01
The genome content of extant species is derived from that of ancestral genomes, distorted by evolutionary events such as gene duplications, transfers and losses. Reconciliation methods aim at recovering such events and at localizing them in the species history, by comparing gene family trees to species trees. These methods play an important role in studying genome evolution as well as in inferring orthology relationships. A major issue with reconciliation methods is that the reliability of predicted evolutionary events may be questioned for various reasons: Firstly, there may be multiple equally optimal reconciliations for a given species tree-gene tree pair. Secondly, reconciliation methods can be misled by inaccurate gene or species trees. Thirdly, predicted events may fluctuate with method parameters such as the cost or rate of elementary events. For all of these reasons, confidence values for predicted evolutionary events are sorely needed. It was recently suggested that the frequency of each event in the set of all optimal reconciliations could be used as a support measure. We put this proposition to the test here and also consider a variant where the support measure is obtained by additionally accounting for suboptimal reconciliations. Experiments on simulated data show the relevance of event supports computed by both methods, while resorting to suboptimal sampling was shown to be more effective. Unfortunately, we also show that, unlike the majority-rule consensus tree for phylogenies, there is no guarantee that a single reconciliation can contain all events having above 50% support. In this paper, we detail how to rely on the reconciliation graph to efficiently identify the median reconciliation. Such median reconciliation can be found in polynomial time within the potentially exponential set of most parsimonious reconciliations.
Nguyen, Thi-Hau; Ranwez, Vincent; Berry, Vincent; Scornavacca, Celine
2013-01-01
The genome content of extant species is derived from that of ancestral genomes, distorted by evolutionary events such as gene duplications, transfers and losses. Reconciliation methods aim at recovering such events and at localizing them in the species history, by comparing gene family trees to species trees. These methods play an important role in studying genome evolution as well as in inferring orthology relationships. A major issue with reconciliation methods is that the reliability of predicted evolutionary events may be questioned for various reasons: Firstly, there may be multiple equally optimal reconciliations for a given species tree–gene tree pair. Secondly, reconciliation methods can be misled by inaccurate gene or species trees. Thirdly, predicted events may fluctuate with method parameters such as the cost or rate of elementary events. For all of these reasons, confidence values for predicted evolutionary events are sorely needed. It was recently suggested that the frequency of each event in the set of all optimal reconciliations could be used as a support measure. We put this proposition to the test here and also consider a variant where the support measure is obtained by additionally accounting for suboptimal reconciliations. Experiments on simulated data show the relevance of event supports computed by both methods, while resorting to suboptimal sampling was shown to be more effective. Unfortunately, we also show that, unlike the majority-rule consensus tree for phylogenies, there is no guarantee that a single reconciliation can contain all events having above 50% support. In this paper, we detail how to rely on the reconciliation graph to efficiently identify the median reconciliation. Such median reconciliation can be found in polynomial time within the potentially exponential set of most parsimonious reconciliations. PMID:24124449
Computational Modeling Method for Superalloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Gayda, John
1997-01-01
Computer modeling based on theoretical quantum techniques has been largely inefficient due to limitations on the methods or the computer needs associated with such calculations, thus perpetuating the notion that little help can be expected from computer simulations for the atomistic design of new materials. In a major effort to overcome these limitations and to provide a tool for efficiently assisting in the development of new alloys, we developed the BFS method for alloys, which together with the experimental results from previous and current research that validate its use for large-scale simulations, provide the ideal grounds for developing a computationally economical and physically sound procedure for supplementing the experimental work at great cost and time savings.
Computational Methods in Drug Discovery
Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens
2014-01-01
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236
Evolutionary method for finding communities in bipartite networks.
Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2011-06-01
An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.
Methods for computing color anaglyphs
NASA Astrophysics Data System (ADS)
McAllister, David F.; Zhou, Ya; Sullivan, Sophia
2010-02-01
A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.
Computational methods in drug discovery
Leelananda, Sumudu P
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed. PMID:28144341
Computational methods in drug discovery.
Leelananda, Sumudu P; Lindert, Steffen
2016-01-01
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Spirov, Alexander V.; Holloway, David M.
2010-01-01
A new approach to design a dynamic model of genes with multiple autonomous regulatory modules by evolutionary computations is proposed. The approach is based on Genetic Algorithms (GA), with new crossover operators especially designed for these purposes. The new operators use local homology between parental strings to preserve building blocks found by the algorithm. The approach exploits the subbasin-portal architecture of the fitness functions suitable for this kind of evolutionary modeling. This architecture is significant for Royal Road class fitness functions. Two real-life Systems Biology problems with such fitness functions are implemented here: evolution of the bacterial promoter rrnPl and of the enhancer of the Drosophila even-skipped gene. The effectiveness of the approach compared to standard GA is demonstrated on several benchmark and real-life tasks. PMID:20930945
Applying an instance selection method to an evolutionary neural classifier design
NASA Astrophysics Data System (ADS)
Khritonenko, Dmitrii; Stanovov, Vladimir; Semenkin, Eugene
2017-02-01
In this paper the application of an instance selection algorithm to the design of a neural classifier is considered. A number of existing instance selection methods are presented. A new wrapper-method, whose main difference compared to other approaches is an iterative procedure for selecting training subsets from the dataset, is described. The approach is based on using training subsample selection probabilities for every instance. The value of these probabilities depends on the classification success for each measurement. An evolutionary algorithm for the design of a neural classifier is presented, which was used to test the efficiency of the presented approach. The described approach has been implemented and tested on a set of classification problems. The testing has shown that the presented algorithm allows the computational complexity to be decreased and the quality of the obtained classifiers to be increased. Compared to analogues found in scientific literature, it was shown that the presented algorithm is an effective tool for classification problem solving.
Eirín-López, José M
2013-01-01
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment.
Recombination in viruses: mechanisms, methods of study, and evolutionary consequences.
Pérez-Losada, Marcos; Arenas, Miguel; Galán, Juan Carlos; Palero, Ferran; González-Candelas, Fernando
2015-03-01
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Computational methods for stellerator configurations
Betancourt, O.
1992-01-01
This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings.
Geometric methods in quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jun
Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Deep Space Network Scheduling Using Evolutionary Computational Methods
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.
2007-01-01
The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.
Computational Methods in Continuum Mechanics
1993-11-30
ftruet11ft bwalch.Aq 0.4.oiqn 04ta tou.MtC’ gahimtc" n matod .nAfitang In@ data 01#04141. OAd co0noIDW~ng And tft@nq the ~OIWCI&Qn of 1,onjt~omt .nd~ml...AD-A27S 560 DTIC\\3\\Ul3 10 S ELECTE1 FEB 9 1994 I c I £ COMPUTATIONAL METHODS IN CONTINUUM MECHANICS By Bolindra N . Borah N.C. A&T State University...PAGE 0me No 0.704-0158 io (reorovtnq burden ’Of .t..i e’iortion of Information is estimted to ’Adoraw 1O4 .0 e~o- * n th.n I~c ot.. "o.vw.n. q
NASA Astrophysics Data System (ADS)
Ma, Zhanshan (Sam)
In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three
Breen, Gerald-Mark; Matusitz, Jonathan
2010-01-01
Telemedicine, the use of advanced communication technologies in the healthcare context, has a rich history and a clear evolutionary course. In this paper, the authors identify telemedicine as operationally defined, the services and technologies it comprises, the direction telemedicine has taken, along with its increased acceptance in the healthcare communities. The authors also describe some of the key pitfalls warred with by researchers and activists to advance telemedicine to its full potential and lead to an unobstructed team of technicians to identify telemedicine's diverse utilities. A discussion and future directions section is included to provide fresh ideas to health communication and computer-mediated scholars wishing to delve into this area and make a difference to enhance public understanding of this field.
Breen, Gerald-Mark; Matusitz, Jonathan
2009-01-01
Telemedicine, the use of advanced communication technologies in the healthcare context, has a rich history and a clear evolutionary course. In this paper, the authors identify telemedicine as operationally defined, the services and technologies it comprises, the direction telemedicine has taken, along with its increased acceptance in the healthcare communities. The authors also describe some of the key pitfalls warred with by researchers and activists to advance telemedicine to its full potential and lead to an unobstructed team of technicians to identify telemedicine’s diverse utilities. A discussion and future directions section is included to provide fresh ideas to health communication and computer-mediated scholars wishing to delve into this area and make a difference to enhance public understanding of this field. PMID:20300559
Computational methods for image reconstruction.
Chung, Julianne; Ruthotto, Lars
2017-04-01
Reconstructing images from indirect measurements is a central problem in many applications, including the subject of this special issue, quantitative susceptibility mapping (QSM). The process of image reconstruction typically requires solving an inverse problem that is ill-posed and large-scale and thus challenging to solve. Although the research field of inverse problems is thriving and very active with diverse applications, in this part of the special issue we will focus on recent advances in inverse problems that are specific to deconvolution problems, the class of problems to which QSM belongs. We will describe analytic tools that can be used to investigate underlying ill-posedness and apply them to the QSM reconstruction problem and the related extensively studied image deblurring problem. We will discuss state-of-the-art computational tools and methods for image reconstruction, including regularization approaches and regularization parameter selection methods. We finish by outlining some of the current trends and future challenges. Copyright © 2016 John Wiley & Sons, Ltd.
An evolutionary method for synthesizing technological planning and architectural advance
NASA Astrophysics Data System (ADS)
Cole, Bjorn Forstrom
the appropriate technological antecedents are accounted for in developing the projection. The third chapter of the thesis compiles a series of observations and philosophical considerations into a series of research questions. Some research questions are then answered with further thought, observation, and reading, leading to conjectures on the problem. The remainder require some form of experimentation, and so are used to formulate hypotheses. Falsifiability conditions are then generated from those hypotheses, and used to get the development of experiments to be performed, in this case on a computer upon various conditions of use of a genetic algorithm. The fourth chapter of the thesis walks through the formulation of a method to attack the problem of strategically choosing an architecture. This method is designed to find the optimum architecture under multiple conditions, which is required for the ability to play the "what if" games typically undertaken in strategic situations. The chapter walks through a graph-based representation of architecture, provides the rationale for choosing a given technology forecasting technique, and lays out the implementation of the optimization algorithm, named Sindri, within a commercial analysis code, Pacelab. The fifth chapter of the thesis then tests the Sindri code. The first test applied is a series of standardized combinatorial spaces, which are meant to be analogous to test problems traditionally posed to optimizers (e.g., Rosenbrock's valley function). The results from this test assess the value of various operators used to transform the architecture graph in the course of conducting a genetic search. Finally, this method is employed on a test case involving the transition of a miniature helicopter from glow engine to battery propulsion, and finally to a design where the battery functions as both structure and power source. The final two chapters develop conclusions based on the body of work conducted within this thesis and
Optimization Methods for Computer Animation.
ERIC Educational Resources Information Center
Donkin, John Caldwell
Emphasizing the importance of economy and efficiency in the production of computer animation, this master's thesis outlines methodologies that can be used to develop animated sequences with the highest quality images for the least expenditure. It is assumed that if computer animators are to be able to fully exploit the available resources, they…
An evolutionary computational theory of prefrontal executive function in decision-making.
Koechlin, Etienne
2014-11-05
The prefrontal cortex subserves executive control and decision-making, that is, the coordination and selection of thoughts and actions in the service of adaptive behaviour. We present here a computational theory describing the evolution of the prefrontal cortex from rodents to humans as gradually adding new inferential Bayesian capabilities for dealing with a computationally intractable decision problem: exploring and learning new behavioural strategies versus exploiting and adjusting previously learned ones through reinforcement learning (RL). We provide a principled account identifying three inferential steps optimizing this arbitration through the emergence of (i) factual reactive inferences in paralimbic prefrontal regions in rodents; (ii) factual proactive inferences in lateral prefrontal regions in primates and (iii) counterfactual reactive and proactive inferences in human frontopolar regions. The theory clarifies the integration of model-free and model-based RL through the notion of strategy creation. The theory also shows that counterfactual inferences in humans yield to the notion of hypothesis testing, a critical reasoning ability for approximating optimal adaptive processes and presumably endowing humans with a qualitative evolutionary advantage in adaptive behaviour.
How quickly do brains catch up with bodies? A comparative method for detecting evolutionary lag.
Deaner, R O; Nunn, C L
1999-01-01
A trait may be at odds with theoretical expectation because it is still in the process of responding to a recent selective force. Such a situation can be termed evolutionary lag. Although many cases of evolutionary lag have been suggested, almost all of the arguments have focused on trait fitness. An alternative approach is to examine the prediction that trait expression is a function of the time over which the trait could evolve. Here we present a phylogenetic comparative method for using this 'time' approach and we apply the method to a long-standing lag hypothesis: evolutionary changes in brain size lag behind evolutionary changes in body size. We tested the prediction in primates that brain mass contrast residuals, calculated from a regression of pairwise brain mass contrasts on positive pairwise body mass contrasts, are correlated with the time since the paired species diverged. Contrary to the brain size lag hypothesis, time since divergence was not significantly correlated with brain mass contrast residuals. We found the same result when we accounted for socioecology, used alternative body mass estimates and used male rather than female values. These tests do not support the brain size lag hypothesis. Therefore, body mass need not be viewed as a suspect variable in comparative neuroanatomical studies and relative brain size should not be used to infer recent evolutionary changes in body size. PMID:10331289
Ahn, Insung; Son, Hyeon Seok
2012-02-01
In this study, we performed computer simulations to evaluate the changes of selection potentials of codons in influenza A/H1N1 from 1999 to 2009. We artificially generated the sequences by using the transition matrices of positively selected codons over time, and their similarities against the database of influenzavirus A genus were determined by BLAST search. This is the first approach to predict the evolutionary direction of influenza A virus (H1N1) by simulating the codon substitutions over time. We observed that the BLAST results showed the high similarities with pandemic influenza A/H1N1 in 2009, suggesting that the classical human-origin influenza A/H1N1 isolated before 2009 might contain some selection potentials of swine-origin viruses. Computer simulations using the time series codon substitution patterns resulted dramatic changes of BLAST results in influenza A/H1N1, providing a possibility of developing a method for predicting the viral evolution in silico.
COMPUTATIONAL METHODS FOR ASYNCHRONOUS BASINS
Dinwoodie, Ian H
2016-01-01
For a Boolean network we consider asynchronous updates and define the exclusive asynchronous basin of attraction for any steady state or cyclic attractor. An algorithm based on commutative algebra is presented to compute the exclusive basin. Finally its use for targeting desirable attractors by selective intervention on network nodes is illustrated with two examples, one cell signalling network and one sensor network measuring human mobility. PMID:28154501
Multiprocessor computer overset grid method and apparatus
Barnette, Daniel W.; Ober, Curtis C.
2003-01-01
A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.
Computational Methods for Biomolecular Electrostatics
Dong, Feng; Olsen, Brett; Baker, Nathan A.
2008-01-01
An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951
Computational methods in radionuclide dosimetry
NASA Astrophysics Data System (ADS)
Bardiès, M.; Myers, M. J.
1996-10-01
The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.
Computational and theoretical methods for protein folding.
Compiani, Mario; Capriotti, Emidio
2013-12-03
A computational approach is essential whenever the complexity of the process under study is such that direct theoretical or experimental approaches are not viable. This is the case for protein folding, for which a significant amount of data are being collected. This paper reports on the essential role of in silico methods and the unprecedented interplay of computational and theoretical approaches, which is a defining point of the interdisciplinary investigations of the protein folding process. Besides giving an overview of the available computational methods and tools, we argue that computation plays not merely an ancillary role but has a more constructive function in that computational work may precede theory and experiments. More precisely, computation can provide the primary conceptual clues to inspire subsequent theoretical and experimental work even in a case where no preexisting evidence or theoretical frameworks are available. This is cogently manifested in the application of machine learning methods to come to grips with the folding dynamics. These close relationships suggested complementing the review of computational methods within the appropriate theoretical context to provide a self-contained outlook of the basic concepts that have converged into a unified description of folding and have grown in a synergic relationship with their computational counterpart. Finally, the advantages and limitations of current computational methodologies are discussed to show how the smart analysis of large amounts of data and the development of more effective algorithms can improve our understanding of protein folding.
A Method to Compute Periodic Sums
2013-10-15
A method to compute periodic sums Nail A. Gumerov∗ and Ramani Duraiswami† Institute for Advanced Computer Studies University of Maryland, College...fast summa- tion algorithms, such as the fast multipole method (FMM), the periodized extension is usually treated via a different algorithm, Ewald...summation algorithm is presented in this paper. The method splits the periodized sum in to two parts. The first, comprising the contribution of all
Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing
NASA Astrophysics Data System (ADS)
Carro-Calvo, L.; Hoose, C.; Stengel, M.; Salcedo-Sanz, S.
2016-11-01
The phase partitioning between supercooled liquid water and ice in clouds in the temperature range between 0 and -37°C influences their optical properties and the efficiency of precipitation formation. Passive remote sensing observations provide long-term records of the cloud top phase at a high spatial resolution. Based on the assumption of a cumulative Gaussian distribution of the ice cloud fraction as a function of temperature, we quantify the cloud glaciation temperature (CGT) as the 50th percentile of the fitted distribution function and its variance for different cloud top pressure intervals, obtained by applying an evolutionary algorithm (EA). EAs are metaheuristics approaches for optimization, used in difficult problems where standard approaches are either not applicable or show poor performance. In this case, the proposed EA is applied to 4 years of Pathfinder Atmospheres-Extended (PATMOS-x) data, aggregated into boxes of 1° × 1° and vertical layers of 5.5 hPa. The resulting vertical profile of CGT shows a characteristic sickle shape, indicating low CGTs close to homogeneous freezing in the upper troposphere and significantly higher values in the midtroposphere. In winter, a pronounced land-sea contrast is found at midlatitudes, with lower CGTs over land. Among this and previous studies, there is disagreement on the sign of the land-sea difference in CGT, suggesting that it is strongly sensitive to the detected and analyzed cloud types, the time of the day, and the phase retrieval method.
Jia, Baolei; Jia, Xiaomeng; Hyun Kim, Kyung; Ji Pu, Zhong; Kang, Myung-Suk; Ok Jeon, Che
2017-01-01
Salicylaldehyde (SAL) dehydrogenase (SALD) is responsible for the oxidation of SAL to salicylate using nicotinamide adenine dinucleotide (NAD+) as a cofactor in the naphthalene degradation pathway. We report the use of a protein sequence similarity network to make functional inferences about SALDs. Network and phylogenetic analyses indicated that SALDs and the homologues are present in bacteria and fungi. The key residues in SALDs were analyzed by evolutionary methods and a molecular simulation analysis. The results showed that the catalytic residue is most highly conserved, followed by the residues binding NAD+ and then the residues binding SAL. A molecular simulation analysis demonstrated the binding energies of the amino acids to NAD+ and/or SAL and showed that a conformational change is induced by binding. A SALD from Alteromonas naphthalenivorans (SALDan) that undergoes trimeric oligomerization was characterized enzymatically. The results showed that SALDan could catalyze the oxidation of a variety of aromatic aldehydes. Site-directed mutagenesis of selected residues binding NAD+ and/or SAL affected the enzyme’s catalytic efficiency, but did not eliminate catalysis. Finally, the relationships among the evolution, catalytic mechanism, and functions of SALD are discussed. Taken together, this study provides an expanded understanding of the evolution, functions, and catalytic mechanism of SALD. PMID:28233868
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2016-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Computational Methods for Ideal Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Simulation methods for advanced scientific computing
Booth, T.E.; Carlson, J.A.; Forster, R.A.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.
An improved approximate-Bayesian model-choice method for estimating shared evolutionary history
2014-01-01
Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937
Spectral Methods for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zang, T. A.; Streett, C. L.; Hussaini, M. Y.
1994-01-01
As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral
General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models
de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael
2016-01-01
Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. PMID:27591750
General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.
de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael
2016-11-01
Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population.
Computational Chemistry Using Modern Electronic Structure Methods
ERIC Educational Resources Information Center
Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert
2007-01-01
Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.
Computational methods for global/local analysis
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.
1992-01-01
Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.
Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2014-01-01
The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy—molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the critical need to integrate these two disciplines. We first articulate the elements of these integrated approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. PMID:24952216
Dashtban, M; Balafar, Mohammadali
2017-03-01
Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset.
Synthesis of porous-acoustic absorbing systems by an evolutionary optimization method
NASA Astrophysics Data System (ADS)
Silva, F. I.; Pavanello, R.
2010-10-01
Topology optimization is frequently used to design structures and acoustic systems in a large range of engineering applications. In this work, a method is proposed for maximizing the absorbing performance of acoustic panels by using a coupled finite element model and evolutionary strategies. The goal is to find the best distribution of porous material for sound absorbing panels. The absorbing performance of the porous material samples in a Kundt tube is simulated using a coupled porous-acoustic finite element model. The equivalent fluid model is used to represent the foam material. The porous material model is coupled to a wave guide using a modal superposition technique. A sensitivity number indicating the optimum locations for porous material to be removed is derived and used in a numerical hard kill scheme. The sensitivity number is used to form an evolutionary porous material optimization algorithm which is verified through examples.
Hybridization of evolutionary algorithms and local search by means of a clustering method.
Martínez-Estudillo, Alfonso C; Hervás-Martínez, César; Martínez-Estudillo, Francisco J; García-Pedrajas, Nicolás
2006-06-01
This paper presents a hybrid evolutionary algorithm (EA) to solve nonlinear-regression problems. Although EAs have proven their ability to explore large search spaces, they are comparatively inefficient in fine tuning the solution. This drawback is usually avoided by means of local optimization algorithms that are applied to the individuals of the population. The algorithms that use local optimization procedures are usually called hybrid algorithms. On the other hand, it is well known that the clustering process enables the creation of groups (clusters) with mutually close points that hopefully correspond to relevant regions of attraction. Local-search procedures can then be started once in every such region. This paper proposes the combination of an EA, a clustering process, and a local-search procedure to the evolutionary design of product-units neural networks. In the methodology presented, only a few individuals are subject to local optimization. Moreover, the local optimization algorithm is only applied at specific stages of the evolutionary process. Our results show a favorable performance when the regression method proposed is compared to other standard methods.
Assessing Computational Methods of Cis-Regulatory Module Prediction
Su, Jing; Teichmann, Sarah A.; Down, Thomas A.
2010-01-01
Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we summarized and categorized them based on search strategy and input data requirements. Twelve representative methods were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE regions. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs. Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation of future CRM-prediction methods. PMID:21152003
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Methods of computing Campbell-Hausdorff formula
NASA Astrophysics Data System (ADS)
Sogo, Kiyoshi
2016-11-01
A new method computing Campbell-Hausdorff formula is proposed by using quantum moment-cumulant relations, which is given by Weyl ordering symmetrization of classical moment-cumulant relations. The method enables one to readily use symbolic language software to compute arbitrary terms in the formula, and explicit expressions up to the 6-th order are obtained by the way of illustration. Further the symmetry Codd(A, B) = Codd(B, A), Ceven(A, B) = - Ceven(B, A) is found and proved. The operator differential method by Knapp is also examined for the comparison.
Updated Panel-Method Computer Program
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1995-01-01
Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.
NASA Astrophysics Data System (ADS)
Brintaki, Athina N.
Modeling molecular structures is critical for understanding the principles that govern the behavior of molecules and for facilitating the exploration of potential pharmaceutical drugs and nanoscale designs. Biological molecules are flexible bodies that can adopt many different shapes (or conformations) until they reach a stable molecular state that is usually described by the minimum internal energy. A major challenge in modeling flexible molecules is the exponential explosion in computational complexity as the molecular size increases and many degrees of freedom are considered to represent the molecules' flexibility. This research work proposes a novel generic computational geometric approach called enhanced BioGeoFilter (g.eBGF) that geometrically interprets inter-atomic interactions to impose geometric constraints during molecular conformational search to reduce the time for identifying chemically-feasible conformations. Two new methods called Kinematics-Based Differential Evolution ( kDE) and Biological Differential Evolution ( BioDE) are also introduced to direct the molecular conformational search towards low energy (stable) conformations. The proposed kDE method kinematically describes a molecule's deformation mechanism while it uses differential evolution to minimize the intra-molecular energy. On the other hand, the proposed BioDE utilizes our developed g.eBGF data structure as a surrogate approximation model to reduce the number of exact evaluations and to speed the molecular conformational search. This research work will be extremely useful in enabling the modeling of flexible molecules and in facilitating the exploration of nanoscale designs through the virtual assembly of molecules. Our research work can also be used in areas such as molecular docking, protein folding, and nanoscale computer-aided design where rapid collision detection scheme for highly deformable objects is essential.
Computing discharge using the index velocity method
Levesque, Victor A.; Oberg, Kevin A.
2012-01-01
Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression
Method and system for benchmarking computers
Gustafson, John L.
1993-09-14
A testing system and method for benchmarking computer systems. The system includes a store containing a scalable set of tasks to be performed to produce a solution in ever-increasing degrees of resolution as a larger number of the tasks are performed. A timing and control module allots to each computer a fixed benchmarking interval in which to perform the stored tasks. Means are provided for determining, after completion of the benchmarking interval, the degree of progress through the scalable set of tasks and for producing a benchmarking rating relating to the degree of progress for each computer.
Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H
2014-12-01
In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone.
Xulvi-Brunet, Ramon; Campbell, Gregory W; Rajamani, Sudha; Jiménez, José I; Chen, Irene A
2016-08-15
In vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of specific desired biochemical functions. However, this is not the only benefit we can obtain from such selection experiments. Since selection from a random library yields an unprecedented, and sometimes comprehensive, view of how a particular biochemical function is distributed across sequence space, selection experiments also provide data for creating and analyzing molecular fitness landscapes, which directly map function (phenotypes) to sequence information (genotypes). Given the importance of understanding the relationship between sequence and functional activity, reliable methods to build and analyze fitness landscapes are needed. Here, we present some statistical methods to extract this information from pools of RNA molecules. We also provide new computational tools to construct and study molecular fitness landscapes.
Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...
Miranda, Eduardo Reck
2004-01-01
This paper introduces three approaches to using Evolutionary Computation (EC) in Music (namely, engineering, creative and musicological approaches) and discusses examples of representative systems that have been developed within the last decade, with emphasis on more recent and innovative works. We begin by reviewing engineering applications of EC in Music Technology such as Genetic Algorithms and Cellular Automata sound synthesis, followed by an introduction to applications where EC has been used to generate musical compositions. Next, we introduce ongoing research into EC models to study the origins of music and detail our own research work on modelling the evolution of melody.
An Efficient Method for Computing All Reducts
NASA Astrophysics Data System (ADS)
Bao, Yongguang; Du, Xiaoyong; Deng, Mingrong; Ishii, Naohiro
In the process of data mining of decision table using Rough Sets methodology, the main computational effort is associated with the determination of the reducts. Computing all reducts is a combinatorial NP-hard computational problem. Therefore the only way to achieve its faster execution is by providing an algorithm, with a better constant factor, which may solve this problem in reasonable time for real-life data sets. The purpose of this presentation is to propose two new efficient algorithms to compute reducts in information systems. The proposed algorithms are based on the proposition of reduct and the relation between the reduct and discernibility matrix. Experiments have been conducted on some real world domains in execution time. The results show it improves the execution time when compared with the other methods. In real application, we can combine the two proposed algorithms.
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Accurate method for computing correlated color temperature.
Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier
2016-06-27
For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 10^{6} K.
Efficient Methods to Compute Genomic Predictions
Technology Transfer Automated Retrieval System (TEKTRAN)
Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and simultaneously estimate thousands of marker effects. Algorithms were derived and computer programs tested on simulated data for 50,000 markers and 2,967 bulls. Accurate estimates of ...
Applying Human Computation Methods to Information Science
ERIC Educational Resources Information Center
Harris, Christopher Glenn
2013-01-01
Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…
Optimising operational amplifiers by evolutionary algorithms and gm/Id method
NASA Astrophysics Data System (ADS)
Tlelo-Cuautle, E.; Sanabria-Borbon, A. C.
2016-10-01
The evolutionary algorithm called non-dominated sorting genetic algorithm (NSGA-II) is applied herein in the optimisation of operational transconductance amplifiers. NSGA-II is accelerated by applying the gm/Id method to estimate reduced search spaces associated to widths (W) and lengths (L) of the metal-oxide-semiconductor field-effect-transistor (MOSFETs), and to guarantee their appropriate bias levels conditions. In addition, we introduce an integer encoding for the W/L sizes of the MOSFETs to avoid a post-processing step for rounding-off their values to be multiples of the integrated circuit fabrication technology. Finally, from the feasible solutions generated by NSGA-II, we introduce a second optimisation stage to guarantee that the final feasible W/L sizes solutions support process, voltage and temperature (PVT) variations. The optimisation results lead us to conclude that the gm/Id method and integer encoding are quite useful to accelerate the convergence of the evolutionary algorithm NSGA-II, while the second optimisation stage guarantees robustness of the feasible solutions to PVT variations.
Fitness distributions in evolutionary computation: motivation and examples in the continuous domain.
Chellapilla, K; Fogel, D B
1999-12-01
Evolutionary algorithms are, fundamentally, stochastic search procedures. Each next population is a probabilistic function of the current population. Various controls are available to adjust the probability mass function that is used to sample the space of candidate solutions at each generation. For example, the step size of a single-parent variation operator can be adjusted with a corresponding effect on the probability of finding improved solutions and the expected improvement that will be obtained. Examining these statistics as a function of the step size leads to a 'fitness distribution', a function that trades off the expected improvement at each iteration for the probability of that improvement. This paper analyzes the effects of adjusting the step size of Gaussian and Cauchy mutations, as well as a mutation that is a convolution of these two distributions. The results indicate that fitness distributions can be effective in identifying suitable parameter settings for these operators. Some comments on the utility of extending this protocol toward the general diagnosis of evolutionary algorithms is also offered.
Belciug, Smaranda; Gorunescu, Florin
2015-02-01
Scarce healthcare resources require carefully made policies ensuring optimal bed allocation, quality healthcare service, and adequate financial support. This paper proposes a complex analysis of the resource allocation in a hospital department by integrating in the same framework a queuing system, a compartmental model, and an evolutionary-based optimization. The queuing system shapes the flow of patients through the hospital, the compartmental model offers a feasible structure of the hospital department in accordance to the queuing characteristics, and the evolutionary paradigm provides the means to optimize the bed-occupancy management and the resource utilization using a genetic algorithm approach. The paper also focuses on a "What-if analysis" providing a flexible tool to explore the effects on the outcomes of the queuing system and resource utilization through systematic changes in the input parameters. The methodology was illustrated using a simulation based on real data collected from a geriatric department of a hospital from London, UK. In addition, the paper explores the possibility of adapting the methodology to different medical departments (surgery, stroke, and mental illness). Moreover, the paper also focuses on the practical use of the model from the healthcare point of view, by presenting a simulated application.
Computational Thermochemistry and Benchmarking of Reliable Methods
Feller, David F.; Dixon, David A.; Dunning, Thom H.; Dupuis, Michel; McClemore, Doug; Peterson, Kirk A.; Xantheas, Sotiris S.; Bernholdt, David E.; Windus, Theresa L.; Chalasinski, Grzegorz; Fosada, Rubicelia; Olguim, Jorge; Dobbs, Kerwin D.; Frurip, Donald; Stevens, Walter J.; Rondan, Nelson; Chase, Jared M.; Nichols, Jeffrey A.
2006-06-20
During the first and second years of the Computational Thermochemistry and Benchmarking of Reliable Methods project, we completed several studies using the parallel computing capabilities of the NWChem software and Molecular Science Computing Facility (MSCF), including large-scale density functional theory (DFT), second-order Moeller-Plesset (MP2) perturbation theory, and CCSD(T) calculations. During the third year, we continued to pursue the computational thermodynamic and benchmarking studies outlined in our proposal. With the issues affecting the robustness of the coupled cluster part of NWChem resolved, we pursued studies of the heats-of-formation of compounds containing 5 to 7 first- and/or second-row elements and approximately 10 to 14 hydrogens. The size of these systems, when combined with the large basis sets (cc-pVQZ and aug-cc-pVQZ) that are necessary for extrapolating to the complete basis set limit, creates a formidable computational challenge, for which NWChem on NWMPP1 is well suited.
Shifted power method for computing tensor eigenpairs.
Mayo, Jackson R.; Kolda, Tamara Gibson
2010-10-01
Recent work on eigenvalues and eigenvectors for tensors of order m {>=} 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax{sup m-1} = {lambda}x subject to {parallel}x{parallel} = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we showis guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-order power method. Additionally, using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by the method. Numerical examples are presented, including examples from an extension of the method to fnding complex eigenpairs.
Rogers, S W
1999-10-15
Because the brain does not usually leave direct evidence of its existence in the fossil record, our view of this structure in extinct species has relied upon inferences drawn from comparisons between parts of the skeleton that do fossilize or with modern-day relatives that survived extinction. However, soft-tissue structure preservation may indeed occasionally occur, particularly in the endocranial space. By applying modern imaging and analysis methods to such natural cranial "endocasts," we can now learn more than ever thought possible about the brains of extinct species. I will discuss one such example in which spiral computed tomography (CT) scanning analysis has been successfully applied to reveal preserved internal structures of a naturally occurring endocranial cast of Allosaurus fragilis, the dominant carnivorous dinosaur of the late Jurassic period. The ability to directly examine the neuroanatomy of an extinct dinosaur, whose modern-day relatives are birds and crocodiles, has exciting implications about Allosaurus' behavior, its adaptive responses to its environment, and its eventual extinction.
Computational Methods for MOF/Polymer Membranes.
Erucar, Ilknur; Keskin, Seda
2016-04-01
Metal-organic framework (MOF)/polymer mixed matrix membranes (MMMs) have received significant interest in the last decade. MOFs are incorporated into polymers to make MMMs that exhibit improved gas permeability and selectivity compared with pure polymer membranes. The fundamental challenge in this area is to choose the appropriate MOF/polymer combinations for a gas separation of interest. Even if a single polymer is considered, there are thousands of MOFs that could potentially be used as fillers in MMMs. As a result, there has been a large demand for computational studies that can accurately predict the gas separation performance of MOF/polymer MMMs prior to experiments. We have developed computational approaches to assess gas separation potentials of MOF/polymer MMMs and used them to identify the most promising MOF/polymer pairs. In this Personal Account, we aim to provide a critical overview of current computational methods for modeling MOF/polymer MMMs. We give our perspective on the background, successes, and failures that led to developments in this area and discuss the opportunities and challenges of using computational methods for MOF/polymer MMMs.
Afreen, Nazia; Naqvi, Irshad H.; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama
2016-01-01
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011–2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011–2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India. PMID:26977703
Afreen, Nazia; Naqvi, Irshad H; Broor, Shobha; Ahmed, Anwar; Kazim, Syed Naqui; Dohare, Ravins; Kumar, Manoj; Parveen, Shama
2016-03-01
Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.
Parallel computer methods for eigenvalue extraction
NASA Technical Reports Server (NTRS)
Akl, Fred
1988-01-01
A new numerical algorithm for the solution of large-order eigenproblems typically encountered in linear elastic finite element systems is presented. The architecture of parallel processing is used in the algorithm to achieve increased speed and efficiency of calculations. The algorithm is based on the frontal technique for the solution of linear simultaneous equations and the modified subspace eigenanalysis method for the solution of the eigenproblem. The advantages of this new algorithm in parallel computer architecture are discussed.
Analytic Method for Computing Instrument Pointing Jitter
NASA Technical Reports Server (NTRS)
Bayard, David
2003-01-01
A new method of calculating the root-mean-square (rms) pointing jitter of a scientific instrument (e.g., a camera, radar antenna, or telescope) is introduced based on a state-space concept. In comparison with the prior method of calculating the rms pointing jitter, the present method involves significantly less computation. The rms pointing jitter of an instrument (the square root of the jitter variance shown in the figure) is an important physical quantity which impacts the design of the instrument, its actuators, controls, sensory components, and sensor- output-sampling circuitry. Using the Sirlin, San Martin, and Lucke definition of pointing jitter, the prior method of computing the rms pointing jitter involves a frequency-domain integral of a rational polynomial multiplied by a transcendental weighting function, necessitating the use of numerical-integration techniques. In practice, numerical integration complicates the problem of calculating the rms pointing error. In contrast, the state-space method provides exact analytic expressions that can be evaluated without numerical integration.
Li, Ke; Deb, Kalyanmoy; Zhang, Qingfu; Zhang, Qiang
2016-11-08
Nondominated sorting (NDS), which divides a population into several nondomination levels (NDLs), is a basic step in many evolutionary multiobjective optimization (EMO) algorithms. It has been widely studied in a generational evolution model, where the environmental selection is performed after generating a whole population of offspring. However, in a steady-state evolution model, where a population is updated right after the generation of a new candidate, the NDS can be extremely time consuming. This is especially severe when the number of objectives and population size become large. In this paper, we propose an efficient NDL update method to reduce the cost for maintaining the NDL structure in steady-state EMO. Instead of performing the NDS from scratch, our method only updates the NDLs of a limited number of solutions by extracting the knowledge from the current NDL structure. Notice that our NDL update method is performed twice at each iteration. One is after the reproduction, the other is after the environmental selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art NDS methods, our proposed method avoids a significant amount of unnecessary comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last but not least, we find that our proposed method is also useful for the generational evolution model.
Delamination detection using methods of computational intelligence
NASA Astrophysics Data System (ADS)
Ihesiulor, Obinna K.; Shankar, Krishna; Zhang, Zhifang; Ray, Tapabrata
2012-11-01
Abstract Reliable delamination prediction scheme is indispensable in order to prevent potential risks of catastrophic failures in composite structures. The existence of delaminations changes the vibration characteristics of composite laminates and hence such indicators can be used to quantify the health characteristics of laminates. An approach for online health monitoring of in-service composite laminates is presented in this paper that relies on methods based on computational intelligence. Typical changes in the observed vibration characteristics (i.e. change in natural frequencies) are considered as inputs to identify the existence, location and magnitude of delaminations. The performance of the proposed approach is demonstrated using numerical models of composite laminates. Since this identification problem essentially involves the solution of an optimization problem, the use of finite element (FE) methods as the underlying tool for analysis turns out to be computationally expensive. A surrogate assisted optimization approach is hence introduced to contain the computational time within affordable limits. An artificial neural network (ANN) model with Bayesian regularization is used as the underlying approximation scheme while an improved rate of convergence is achieved using a memetic algorithm. However, building of ANN surrogate models usually requires large training datasets. K-means clustering is effectively employed to reduce the size of datasets. ANN is also used via inverse modeling to determine the position, size and location of delaminations using changes in measured natural frequencies. The results clearly highlight the efficiency and the robustness of the approach.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Numerical methods for problems in computational aeroacoustics
NASA Astrophysics Data System (ADS)
Mead, Jodi Lorraine
1998-12-01
A goal of computational aeroacoustics is the accurate calculation of noise from a jet in the far field. This work concerns the numerical aspects of accurately calculating acoustic waves over large distances and long time. More specifically, the stability, efficiency, accuracy, dispersion and dissipation in spatial discretizations, time stepping schemes, and absorbing boundaries for the direct solution of wave propagation problems are determined. Efficient finite difference methods developed by Tam and Webb, which minimize dispersion and dissipation, are commonly used for the spatial and temporal discretization. Alternatively, high order pseudospectral methods can be made more efficient by using the grid transformation introduced by Kosloff and Tal-Ezer. Work in this dissertation confirms that the grid transformation introduced by Kosloff and Tal-Ezer is not spectrally accurate because, in the limit, the grid transformation forces zero derivatives at the boundaries. If a small number of grid points are used, it is shown that approximations with the Chebyshev pseudospectral method with the Kosloff and Tal-Ezer grid transformation are as accurate as with the Chebyshev pseudospectral method. This result is based on the analysis of the phase and amplitude errors of these methods, and their use for the solution of a benchmark problem in computational aeroacoustics. For the grid transformed Chebyshev method with a small number of grid points it is, however, more appropriate to compare its accuracy with that of high- order finite difference methods. This comparison, for an order of accuracy 10-3 for a benchmark problem in computational aeroacoustics, is performed for the grid transformed Chebyshev method and the fourth order finite difference method of Tam. Solutions with the finite difference method are as accurate. and the finite difference method is more efficient than, the Chebyshev pseudospectral method with the grid transformation. The efficiency of the Chebyshev
Evolutionary Design in Biology
NASA Astrophysics Data System (ADS)
Wiese, Kay C.
Much progress has been achieved in recent years in molecular biology and genetics. The sheer volume of data in the form of biological sequences has been enormous and efficient methods for dealing with these huge amounts of data are needed. In addition, the data alone does not provide information on the workings of biological systems; hence much research effort has focused on designing mathematical and computational models to address problems from molecular biology. Often, the terms bioinformatics and computational biology are used to refer to the research fields concerning themselves with designing solutions to molecular problems in biology. However, there is a slight distinction between bioinformatics and computational biology: the former is concerned with managing the enormous amounts of biological data and extracting information from it, while the latter is more concerned with the design and development of new algorithms to address problems such as protein or RNA folding. However, the boundary is blurry, and there is no consistent usage of the terms. We will use the term bioinformatics to encompass both fields. To cover all areas of research in bioinformatics is beyond the scope of this section and we refer the interested reader to [2] for a general introduction. A large part of what bioinformatics is concerned about is evolution and function of biological systems on a molecular level. Evolutionary computation and evolutionary design are concerned with developing computational systems that "mimic" certain aspects of natural evolution (mutation, crossover, selection, fitness). Much of the inner workings of natural evolutionary systems have been copied, sometimes in modified format into evolutionary computation systems. Artificial neural networks mimic the functioning of simple brain cell clusters. Fuzzy systems are concerned with the "fuzzyness" in decision making, similar to a human expert. These three computational paradigms fall into the category of
Graves, Joseph L; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry
2016-10-15
Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. In order to facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes.Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training.
Graves, Joseph L.; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry
2016-01-01
Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. To facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus, we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes. Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training. PMID:27744353
Soft Computing Methods for Disulfide Connectivity Prediction
Márquez-Chamorro, Alfonso E.; Aguilar-Ruiz, Jesús S.
2015-01-01
The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods. PMID:26523116
Computational Statistical Methods for Social Network Models
Hunter, David R.; Krivitsky, Pavel N.; Schweinberger, Michael
2013-01-01
We review the broad range of recent statistical work in social network models, with emphasis on computational aspects of these methods. Particular focus is applied to exponential-family random graph models (ERGM) and latent variable models for data on complete networks observed at a single time point, though we also briefly review many methods for incompletely observed networks and networks observed at multiple time points. Although we mention far more modeling techniques than we can possibly cover in depth, we provide numerous citations to current literature. We illustrate several of the methods on a small, well-known network dataset, Sampson’s monks, providing code where possible so that these analyses may be duplicated. PMID:23828720
Review of Computational Stirling Analysis Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent its current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-Fl technique is presented in detail.
McCorkle, Douglas S.; Bryden, Kenneth M.
2011-01-01
Several recent reports and workshops have identified integrated computational engineering as an emerging technology with the potential to transform engineering design. The goal is to integrate geometric models, analyses, simulations, optimization and decision-making tools, and all other aspects of the engineering process into a shared, interactive computer-generated environment that facilitates multidisciplinary and collaborative engineering. While integrated computational engineering environments can be constructed from scratch with high-level programming languages, the complexity of these proposed environments makes this type of approach prohibitively slow and expensive. Rather, a high-level software framework is needed to provide the user with the capability to construct an application in an intuitive manner using existing models and engineering tools with minimal programming. In this paper, we present an exploratory open source software framework that can be used to integrate the geometric models, computational fluid dynamics (CFD), and optimization tools needed for shape optimization of complex systems. This framework is demonstrated using the multiphase flow analysis of a complete coal transport system for an 800 MW pulverized coal power station. The framework uses engineering objects and three-dimensional visualization to enable the user to interactively design and optimize the performance of the coal transport system.
High-Order Methods for Computational Physics
1999-03-01
the finite element space Vh such that Vj= 1,...,N: Rh( p )(xj,t) - p (Xýj,t) = 0, £ = 0,..., k, (2.34) where the points xj,t are the Gauss- Radau ...element refinement (h- p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com- putation of...work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementa- tion of the h- p finite element
A new method for the asteroseismic determination of the evolutionary state of red-giant stars
NASA Astrophysics Data System (ADS)
Elsworth, Yvonne; Hekker, Saskia; Basu, Sarbani; Davies, Guy R.
2017-04-01
Determining the ages of red-giant stars is a key problem in stellar astrophysics. One of the difficulties in this determination is to know the evolutionary state of the individual stars - i.e. have they started to burn Helium in their cores? That is the topic of this paper. Asteroseismic data provide a route to achieving this information. What we present here is a highly autonomous way of determining the evolutionary state from an analysis of the power spectrum of the light curve. The method is fast and efficient and can provide results for a large number of stars. It uses the structure of the dipole-mode oscillations, which have a mixed character in red-giant stars, to determine some measures that are used in the categorization. It does not require that all the individual components of any given mode be separately characterized. Some 6604 red-giant stars have been classified. Of these, 3566 are determined to be on the red-giant branch, 2077 are red-clump and 439 are secondary-clump stars. We do not specifically identify the low-metallicity, horizontal-branch stars. The difference between red-clump and secondary-clump stars is dependent on the manner in which Helium burning is first initiated. We discuss that the way the boundary between these classifications is set may lead to mis-categorization in a small number of stars. The remaining 522 stars were not classified either because they lacked sufficient power in the dipole modes (so-called depressed dipole modes) or because of conflicting values in the parameters.
Comparison of Methods of Height Anomaly Computation
NASA Astrophysics Data System (ADS)
Mazurova, E.; Lapshin, A.; Menshova, A.
2012-04-01
As of today, accurate determination of height anomaly is one of the most difficult problems of geodesy, even with sustainable perfection of mathematical methods, computer possibilities. The most effective methods of height anomaly computation are based on the methods of discrete linear transformations, such as the Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Fast Wavelet Transform (FWT). The main drawback of the classical FFT is weak localization in the time domain. If it is necessary to define the time interval of a frequency presence the STFT is used that allows one to detect the presence of any frequency signal and the interval of its presence. It expands the possibilities of the method in comparison with the classical Fourier Transform. However, subject to Heisenberg's uncertainty principle, it is impossible to tell precisely what frequency signal is present at a given moment of time (it is possible to speak only about the range of frequencies); and it is impossible to tell at what precisely moment of time the frequency signal is present (it is possible to speak only about a time span). A wavelet-transform gives the chance to reduce the influence of the Heisenberg's uncertainty principle on the obtained time-and-frequency representation of the signal. With its help low frequencies have more detailed representation relative to the time, and high frequencies - relative to the frequency. The paper summarizes the results of height anomaly calculations done by the FFT, STFT, FWT methods and represents 3-D models of calculation results. Key words: Fast Fourier Transform(FFT), Short-Time Fourier Transform (STFT), Fast Wavelet Transform(FWT), Heisenberg's uncertainty principle.
Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
Yu, Hai; Janiga, Gábor; Thévenin, Dominique
2016-04-01
An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps.
The emergence of mind and brain: an evolutionary, computational, and philosophical approach.
Mainzer, Klaus
2008-01-01
Modern philosophy of mind cannot be understood without recent developments in computer science, artificial intelligence (AI), robotics, neuroscience, biology, linguistics, and psychology. Classical philosophy of formal languages as well as symbolic AI assume that all kinds of knowledge must explicitly be represented by formal or programming languages. This assumption is limited by recent insights into the biology of evolution and developmental psychology of the human organism. Most of our knowledge is implicit and unconscious. It is not formally represented, but embodied knowledge, which is learnt by doing and understood by bodily interacting with changing environments. That is true not only for low-level skills, but even for high-level domains of categorization, language, and abstract thinking. The embodied mind is considered an emergent capacity of the brain as a self-organizing complex system. Actually, self-organization has been a successful strategy of evolution to handle the increasing complexity of the world. Genetic programs are not sufficient and cannot prepare the organism for all kinds of complex situations in the future. Self-organization and emergence are fundamental concepts in the theory of complex dynamical systems. They are also applied in organic computing as a recent research field of computer science. Therefore, cognitive science, AI, and robotics try to model the embodied mind in an artificial evolution. The paper analyzes these approaches in the interdisciplinary framework of complex dynamical systems and discusses their philosophical impact.
Computer-Aided Drug Design Methods.
Yu, Wenbo; MacKerell, Alexander D
2017-01-01
Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.
A new spectral method to compute FCN
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, C. L.
2014-12-01
Free core nutation (FCN) is a rotational modes of the earth with fluid core. All traditional theoretical methods produce FCN period near 460 days with PREM, while the precise observations (VLBI + SG tides) say it should be near 430 days. In order to fill this big gap, astronomers and geophysicists give various assumptions, e.g., increasing core-mantle-boundary (CMB) flattening by about 5%, a strong coupling between nutation and geomagnetic field near CMB, viscous coupling, or topographical coupling etc. Do we really need these unproved assumptions? or is it only the problem of these traditional theoretical methods themselves? Earth models (e.g. PREM) provide accurate and robust profiles of physical parameters, like density and Lame parameters, but their radial derivatives, which are also used in all traditional methods to calculate normal modes (e.g.. FCN), nutation and tides of non-rigid earth theoretically, are not so trustable as the parameters themselves. A new multiple layer spectral method is proposed and applied to the computation of normal modes, to avoid these problems. This new method can solve not only one order ellipsoid but also irregular asymmetric 3D earth model. Our primary result of the FCN period is 435 sidereal days.
Computational methods for optical molecular imaging
Chen, Duan; Wei, Guo-Wei; Cong, Wen-Xiang; Wang, Ge
2010-01-01
Summary A new computational technique, the matched interface and boundary (MIB) method, is presented to model the photon propagation in biological tissue for the optical molecular imaging. Optical properties have significant differences in different organs of small animals, resulting in discontinuous coefficients in the diffusion equation model. Complex organ shape of small animal induces singularities of the geometric model as well. The MIB method is designed as a dimension splitting approach to decompose a multidimensional interface problem into one-dimensional ones. The methodology simplifies the topological relation near an interface and is able to handle discontinuous coefficients and complex interfaces with geometric singularities. In the present MIB method, both the interface jump condition and the photon flux jump conditions are rigorously enforced at the interface location by using only the lowest-order jump conditions. This solution near the interface is smoothly extended across the interface so that central finite difference schemes can be employed without the loss of accuracy. A wide range of numerical experiments are carried out to validate the proposed MIB method. The second-order convergence is maintained in all benchmark problems. The fourth-order convergence is also demonstrated for some three-dimensional problems. The robustness of the proposed method over the variable strength of the linear term of the diffusion equation is also examined. The performance of the present approach is compared with that of the standard finite element method. The numerical study indicates that the proposed method is a potentially efficient and robust approach for the optical molecular imaging. PMID:20485461
A computational method for sharp interface advection
Bredmose, Henrik; Jasak, Hrvoje
2016-01-01
We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff
1992-01-01
The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.
Computational electromagnetic methods for transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Gomez, Luis J.
Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Domain decomposition methods in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Gropp, William D.; Keyes, David E.
1991-01-01
The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.
47 CFR 80.771 - Method of computing coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Method of computing coverage. 80.771 Section 80... STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.771 Method of computing coverage. Compute the +17 dBu contour as follows: (a) Determine the effective...
Mode, Charles J; Gallop, Robert J
2008-02-01
A case has made for the use of Monte Carlo simulation methods when the incorporation of mutation and natural selection into Wright-Fisher gametic sampling models renders then intractable from the standpoint of classical mathematical analysis. The paper has been organized around five themes. Among these themes was that of scientific openness and a clear documentation of the mathematics underlying the software so that the results of any Monte Carlo simulation experiment may be duplicated by any interested investigator in a programming language of his choice. A second theme was the disclosure of the random number generator used in the experiments to provide critical insights as to whether the generated uniform random variables met the criterion of independence satisfactorily. A third theme was that of a review of recent literature in genetics on attempts to find signatures of evolutionary processes such as natural selection, among the millions of segments of DNA in the human genome, that may help guide the search for new drugs to treat diseases. A fourth theme involved formalization of Wright-Fisher processes in a simple form that expedited the writing of software to run Monte Carlo simulation experiments. Also included in this theme was the reporting of several illustrative Monte Carlo simulation experiments for the cases of two and three alleles at some autosomal locus, in which attempts were to made to apply the theory of Wright-Fisher models to gain some understanding as to how evolutionary signatures may have developed in the human genome and those of other diploid species. A fifth theme was centered on recommendations that more demographic factors, such as non-constant population size, be included in future attempts to develop computer models dealing with signatures of evolutionary process in genomes of various species. A brief review of literature on the incorporation of demographic factors into genetic evolutionary models was also included to expedite and
Computational Evaluation of the Traceback Method
ERIC Educational Resources Information Center
Kol, Sheli; Nir, Bracha; Wintner, Shuly
2014-01-01
Several models of language acquisition have emerged in recent years that rely on computational algorithms for simulation and evaluation. Computational models are formal and precise, and can thus provide mathematically well-motivated insights into the process of language acquisition. Such models are amenable to robust computational evaluation,…
Amino acid sequence and structural comparison of BACE1 and BACE2 using evolutionary trace method.
Mirsafian, Hoda; Mat Ripen, Adiratna; Merican, Amir Feisal; Bin Mohamad, Saharuddin
2014-01-01
Beta-amyloid precursor protein cleavage enzyme 1 (BACE1) and beta-amyloid precursor protein cleavage enzyme 2 (BACE2), members of aspartyl protease family, are close homologues and have high similarity in their protein crystal structures. However, their enzymatic properties differ leading to disparate clinical consequences. In order to identify the residues that are responsible for such differences, we used evolutionary trace (ET) method to compare the amino acid conservation patterns of BACE1 and BACE2 in several mammalian species. We found that, in BACE1 and BACE2 structures, most of the ligand binding sites are conserved which indicate their enzymatic property of aspartyl protease family members. The other conserved residues are more or less randomly localized in other parts of the structures. Four group-specific residues were identified at the ligand binding site of BACE1 and BACE2. We postulated that these residues would be essential for selectivity of BACE1 and BACE2 biological functions and could be sites of interest for the design of selective inhibitors targeting either BACE1 or BACE2.
Carbogim, Fábio da Costa; de Oliveira, Larissa Bertacchini; Püschel, Vilanice Alves de Araújo
2016-01-01
ABSTRACT Objective: to analyze the concept of critical thinking (CT) in Rodger's evolutionary perspective. Method: documentary research undertaken in the Cinahl, Lilacs, Bdenf and Dedalus databases, using the keywords of 'critical thinking' and 'Nursing', without limitation based on year of publication. The data were analyzed in accordance with the stages of Rodger's conceptual model. The following were included: books and articles in full, published in Portuguese, English or Spanish, which addressed CT in the teaching and practice of Nursing; articles which did not address aspects related to the concept of CT were excluded. Results: the sample was made up of 42 works. As a substitute term, emphasis is placed on 'analytical thinking', and, as a related factor, decision-making. In order, the most frequent preceding and consequent attributes were: ability to analyze, training of the student nurse, and clinical decision-making. As the implications of CT, emphasis is placed on achieving effective results in care for the patient, family and community. Conclusion: CT is a cognitive skill which involves analysis, logical reasoning and clinical judgment, geared towards the resolution of problems, and standing out in the training and practice of the nurse with a view to accurate clinical decision-making and the achieving of effective results. PMID:27598376
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
An evolutionary computing approach for parameter estimation investigation of a model for cholera.
Akman, Olcay; Schaefer, Elsa
2015-01-01
We consider the problem of using time-series data to inform a corresponding deterministic model and introduce the concept of genetic algorithms (GA) as a tool for parameter estimation, providing instructions for an implementation of the method that does not require access to special toolboxes or software. We give as an example a model for cholera, a disease for which there is much mechanistic uncertainty in the literature. We use GA to find parameter sets using available time-series data from the introduction of cholera in Haiti and we discuss the value of comparing multiple parameter sets with similar performances in describing the data.
Computational Studies of Protein Hydration Methods
NASA Astrophysics Data System (ADS)
Morozenko, Aleksandr
It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully
Computational and design methods for advanced imaging
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.
This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.
Priedigkeit, Nolan; Wolfe, Nicholas; Clark, Nathan L.
2015-01-01
Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting “disease map” network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks. PMID:25679399
Active Processor Scheduling Using Evolutionary Algorithms
2002-12-01
xiii Active Processor Scheduling Using Evolutionary Algorithms I. Introduction A distributed system offers the ability to run applications across...calculations are made. This model is sometimes referred to as a form of the island model of evolutionary computation because each population is evolved... Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation , New York: Kluwer Academic Publishers, 2002
Computational structural mechanics methods research using an evolving framework
NASA Technical Reports Server (NTRS)
Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.
1990-01-01
Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.
Evolutionary stability on graphs
Ohtsuki, Hisashi; Nowak, Martin A.
2008-01-01
Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs. We obtain analytical conditions for regular graphs of degree k > 2. Those theoretical predictions are compared with computer simulations for random regular graphs and for lattices. We study three different update rules: birth-death (BD), death-birth (DB), and imitation (IM) updating. Evolutionary stability on sparse graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We provide a geometrical interpretation of the ESS condition on graphs. PMID:18295801
Method of performing computational aeroelastic analyses
NASA Technical Reports Server (NTRS)
Silva, Walter A. (Inventor)
2011-01-01
Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.
Computational Methods Applied to Rational Drug Design.
Ramírez, David
2016-01-01
Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design.
Computational Methods Applied to Rational Drug Design
Ramírez, David
2016-01-01
Due to the synergic relationship between medical chemistry, bioinformatics and molecular simulation, the development of new accurate computational tools for small molecules drug design has been rising over the last years. The main result is the increased number of publications where computational techniques such as molecular docking, de novo design as well as virtual screening have been used to estimate the binding mode, site and energy of novel small molecules. In this work I review some tools, which enable the study of biological systems at the atomistic level, providing relevant information and thereby, enhancing the process of rational drug design. PMID:27708723
Parallel computation with the spectral element method
Ma, Hong
1995-12-01
Spectral element models for the shallow water equations and the Navier-Stokes equations have been successfully implemented on a data parallel supercomputer, the Connection Machine model CM-5. The nonstaggered grid formulations for both models are described, which are shown to be especially efficient in data parallel computing environment.
Rivera-Rivera, Carlos J.; Montoya-Burgos, Juan I.
2016-01-01
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. PMID:26912812
A method of billing third generation computer users
NASA Technical Reports Server (NTRS)
Anderson, P. N.; Hyter, D. R.
1973-01-01
A method is presented for charging users for the processing of their applications on third generation digital computer systems is presented. For background purposes, problems and goals in billing on third generation systems are discussed. Detailed formulas are derived based on expected utilization and computer component cost. These formulas are then applied to a specific computer system (UNIVAC 1108). The method, although possessing some weaknesses, is presented as a definite improvement over use of second generation billing methods.
Ideal and computer mathematics applied to meshfree methods
NASA Astrophysics Data System (ADS)
Kansa, E.
2016-10-01
Early numerical methods to solve ordinary and partial differential relied upon human computers who used mechanical devices. The algorithms used changed little over the evolution of electronic computers having only low order convergence rates. A meshfree scheme was developed for problems that converges exponentially using the latest computational science toolkit.
Soft computing methods in design of superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1995-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modeled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Soft Computing Methods in Design of Superalloys
NASA Technical Reports Server (NTRS)
Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.
1996-01-01
Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.
Statistical methods and computing for big data
Wang, Chun; Chen, Ming-Hui; Schifano, Elizabeth; Wu, Jing
2016-01-01
Big data are data on a massive scale in terms of volume, intensity, and complexity that exceed the capacity of standard analytic tools. They present opportunities as well as challenges to statisticians. The role of computational statisticians in scientific discovery from big data analyses has been under-recognized even by peer statisticians. This article summarizes recent methodological and software developments in statistics that address the big data challenges. Methodologies are grouped into three classes: subsampling-based, divide and conquer, and online updating for stream data. As a new contribution, the online updating approach is extended to variable selection with commonly used criteria, and their performances are assessed in a simulation study with stream data. Software packages are summarized with focuses on the open source R and R packages, covering recent tools that help break the barriers of computer memory and computing power. Some of the tools are illustrated in a case study with a logistic regression for the chance of airline delay. PMID:27695593
Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio
2009-01-01
Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate
Computing methods in applied sciences and engineering. VII
Glowinski, R.; Lions, J.L.
1986-01-01
The design of computers with fast memories, capable of up to one billion floating point operations per second, is important for the attempts being made to solve problems in Scientific Computing. The role of numerical algorithm designers is important due to the architectures and programming necessary to utilize the full potential of these machines. Efficient use of such computers requires sophisticated programming tools, and in the case of parallel computers algorithmic concepts have to be introduced. These new methods and concepts are presented.
Computational Methods for Analyzing Health News Coverage
ERIC Educational Resources Information Center
McFarlane, Delano J.
2011-01-01
Researchers that investigate the media's coverage of health have historically relied on keyword searches to retrieve relevant health news coverage, and manual content analysis methods to categorize and score health news text. These methods are problematic. Manual content analysis methods are labor intensive, time consuming, and inherently…
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
An experimental unification of reservoir computing methods.
Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D
2007-04-01
Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.
Discontinuous Galerkin Methods: Theory, Computation and Applications
Cockburn, B.; Karniadakis, G. E.; Shu, C-W
2000-12-31
This volume contains a survey article for Discontinuous Galerkin Methods (DGM) by the editors as well as 16 papers by invited speakers and 32 papers by contributed speakers of the First International Symposium on Discontinuous Galerkin Methods. It covers theory, applications, and implementation aspects of DGM.
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
12 CFR 227.25 - Unfair balance computation method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Unfair balance computation method. 227.25... Practices Rule § 227.25 Unfair balance computation method. (a) General rule. Except as provided in paragraph (b) of this section, a bank must not impose finance charges on balances on a consumer credit...
Overview of computational structural methods for modern military aircraft
NASA Technical Reports Server (NTRS)
Kudva, J. N.
1992-01-01
Computational structural methods are essential for designing modern military aircraft. This briefing deals with computational structural methods (CSM) currently used. First a brief summary of modern day aircraft structural design procedures is presented. Following this, several ongoing CSM related projects at Northrop are discussed. Finally, shortcomings in this area, future requirements, and summary remarks are given.
Domain identification in impedance computed tomography by spline collocation method
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1990-01-01
A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.
Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis
2015-01-01
DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245
Tseng, Z. Jack; Flynn, John J.
2015-01-01
Morphology serves as a ubiquitous proxy in macroevolutionary studies to identify potential adaptive processes and patterns. Inferences of functional significance of phenotypes or their evolution are overwhelmingly based on data from living taxa. Yet, correspondence between form and function has been tested in only a few model species, and those linkages are highly complex. The lack of explicit methodologies to integrate form and function analyses within a deep-time and phylogenetic context weakens inferences of adaptive morphological evolution, by invoking but not testing form–function linkages. Here, we provide a novel approach to test mechanical properties at reconstructed ancestral nodes/taxa and the strength and direction of evolutionary pathways in feeding biomechanics, in a case study of carnivorous mammals. Using biomechanical profile comparisons that provide functional signals for the separation of feeding morphologies, we demonstrate, using experimental optimization criteria on estimation of strength and direction of functional changes on a phylogeny, that convergence in mechanical properties and degree of evolutionary optimization can be decoupled. This integrative approach is broadly applicable to other clades, by using quantitative data and model-based tests to evaluate interpretations of function from morphology and functional explanations for observed macroevolutionary pathways. PMID:25994295
Evolutionary Phylogenetic Networks: Models and Issues
NASA Astrophysics Data System (ADS)
Nakhleh, Luay
Phylogenetic networks are special graphs that generalize phylogenetic trees to allow for modeling of non-treelike evolutionary histories. The ability to sequence multiple genetic markers from a set of organisms and the conflicting evolutionary signals that these markers provide in many cases, have propelled research and interest in phylogenetic networks to the forefront in computational phylogenetics. Nonetheless, the term 'phylogenetic network' has been generically used to refer to a class of models whose core shared property is tree generalization. Several excellent surveys of the different flavors of phylogenetic networks and methods for their reconstruction have been written recently. However, unlike these surveys, this chapte focuses specifically on one type of phylogenetic networks, namely evolutionary phylogenetic networks, which explicitly model reticulate evolutionary events. Further, this chapter focuses less on surveying existing tools, and addresses in more detail issues that are central to the accurate reconstruction of phylogenetic networks.
COMSAC: Computational Methods for Stability and Control. Part 1
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
Work on stability and control included the following reports:Introductory Remarks; Introduction to Computational Methods for Stability and Control (COMSAC); Stability & Control Challenges for COMSAC: a NASA Langley Perspective; Emerging CFD Capabilities and Outlook A NASA Langley Perspective; The Role for Computational Fluid Dynamics for Stability and Control:Is it Time?; Northrop Grumman Perspective on COMSAC; Boeing Integrated Defense Systems Perspective on COMSAC; Computational Methods in Stability and Control:WPAFB Perspective; Perspective: Raytheon Aircraft Company; A Greybeard's View of the State of Aerodynamic Prediction; Computational Methods for Stability and Control: A Perspective; Boeing TacAir Stability and Control Issues for Computational Fluid Dynamics; NAVAIR S&C Issues for CFD; An S&C Perspective on CFD; Issues, Challenges & Payoffs: A Boeing User s Perspective on CFD for S&C; and Stability and Control in Computational Simulations for Conceptual and Preliminary Design: the Past, Today, and Future?
Method for transferring data from an unsecured computer to a secured computer
Nilsen, Curt A.
1997-01-01
A method is described for transferring data from an unsecured computer to a secured computer. The method includes transmitting the data and then receiving the data. Next, the data is retransmitted and rereceived. Then, it is determined if errors were introduced when the data was transmitted by the unsecured computer or received by the secured computer. Similarly, it is determined if errors were introduced when the data was retransmitted by the unsecured computer or rereceived by the secured computer. A warning signal is emitted from a warning device coupled to the secured computer if (i) an error was introduced when the data was transmitted or received, and (ii) an error was introduced when the data was retransmitted or rereceived.
Assessment of gene order computing methods for Alzheimer's disease
2013-01-01
Background Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a nascent field in AD research. The field includes AD gene clustering by computing gene order which generates higher quality gene clustering patterns than most other clustering methods. However, there are few available gene order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the performances of current gene order computing methods with different distance formulas, and to identify additional features associated with gene order computation. Methods Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated gene orders were identified. Results Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when calculating gene order. In addition, the following features were revealed: different distance formulas generated a different quality of gene order, and the commonly used Pearson distance was not the best distance formula when used with both GA and ACO methods for AD microarray data. Conclusion Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated the best quality gene order computed by GA and ACO methods. PMID:23369541
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction.
The causal pie model: an epidemiological method applied to evolutionary biology and ecology.
Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette
2014-05-01
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.
Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark
2016-08-01
Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed.
Transonic Flow Computations Using Nonlinear Potential Methods
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
2000-01-01
This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
Computational Methods for Probabilistic Target Tracking Problems
2007-09-01
Undergraduate Students: Ms. Angela Edwards, Mr. Bryahn Ivery, Mr. Dustin Lupton, Mr. James Pender, Mr. Terrell Felder , Ms. Krystal Knight Under...two more graduate students, Mr. Ricardo Bernal and Ms Alisha Williams, and two more undergraduate students, Ms Krystal Knight and Mr. Terrell Felder ...Technical State University, April 24, 2006 “Using Tree Based Methods to Classify Messages”, Terrell A. Felder , Math Awareness Mini-Conference
Training in Methods in Computational Neuroscience
1989-11-14
this length of course in the future. Much improved over last’s years course was the existence of a a text: Methods in Neuronal Modeling, edited by...the Single Neuron a one-day workshop held on August 12, 1989 sponsored by the Office of Naval Research Participants: Thomas McKenna Office of Naval...IDAN SEGEV Introduction to cable theory; Rail’s model of neurons ; d3 / 2 law 11:15 am CLAY ARMSTRONG Relating stochastic single channels to
Multiscale methods for computational RNA enzymology
Panteva, Maria T.; Dissanayake, Thakshila; Chen, Haoyuan; Radak, Brian K.; Kuechler, Erich R.; Giambaşu, George M.; Lee, Tai-Sung; York, Darrin M.
2016-01-01
RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multi-dimensional “problem space” of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues and bond breaking/forming in the chemical steps of the reaction. The goal of this article is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics (MD) simulations, reference interaction site model (RISM) calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics (HREMD) and quantum mechanical/molecular mechanical (QM/MM) simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme (HDVr) and RNase A. PMID:25726472
Coarse-graining methods for computational biology.
Saunders, Marissa G; Voth, Gregory A
2013-01-01
Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems. This framework involves an integrated, iterative approach to couple information from different scales. The primary steps, which coincide with key areas of method development, include developing first-pass coarse-grained models guided by experimental results, performing numerous large-scale coarse-grained simulations, identifying important interactions that drive emergent behaviors, and finally reconnecting to the molecular scale by performing all-atom molecular dynamics simulations guided by the coarse-grained results. The coarse-grained modeling can then be extended and refined, with the entire loop repeated iteratively if necessary.
Multiscale methods for computational RNA enzymology.
Panteva, Maria T; Dissanayake, Thakshila; Chen, Haoyuan; Radak, Brian K; Kuechler, Erich R; Giambaşu, George M; Lee, Tai-Sung; York, Darrin M
2015-01-01
RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multidimensional "problem space" of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues, and bond breaking/forming in the chemical steps of the reaction. The goal of this chapter is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics simulations, reference interaction site model calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics, and quantum mechanical/molecular mechanical simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme and RNase A.
Gwinner, J; Thalhammer, M
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.
Testing and Validation of Computational Methods for Mass Spectrometry.
Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas
2016-03-04
High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.
Computer systems and methods for visualizing data
Stolte, Chris; Hanrahan, Patrick
2010-07-13
A method for forming a visual plot using a hierarchical structure of a dataset. The dataset comprises a measure and a dimension. The dimension consists of a plurality of levels. The plurality of levels form a dimension hierarchy. The visual plot is constructed based on a specification. A first level from the plurality of levels is represented by a first component of the visual plot. A second level from the plurality of levels is represented by a second component of the visual plot. The dataset is queried to retrieve data in accordance with the specification. The data includes all or a portion of the dimension and all or a portion of the measure. The visual plot is populated with the retrieved data in accordance with the specification.
Computer systems and methods for visualizing data
Stolte, Chris; Hanrahan, Patrick
2013-01-29
A method for forming a visual plot using a hierarchical structure of a dataset. The dataset comprises a measure and a dimension. The dimension consists of a plurality of levels. The plurality of levels form a dimension hierarchy. The visual plot is constructed based on a specification. A first level from the plurality of levels is represented by a first component of the visual plot. A second level from the plurality of levels is represented by a second component of the visual plot. The dataset is queried to retrieve data in accordance with the specification. The data includes all or a portion of the dimension and all or a portion of the measure. The visual plot is populated with the retrieved data in accordance with the specification.
Computational Simulations and the Scientific Method
NASA Technical Reports Server (NTRS)
Kleb, Bil; Wood, Bill
2005-01-01
As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.
Method to Compute CT System MTF
Kallman, Jeffrey S.
2016-05-03
The modulation transfer function (MTF) is the normalized spatial frequency representation of the point spread function (PSF) of the system. Point objects are hard to come by, so typically the PSF is determined by taking the numerical derivative of the system's response to an edge. This is the method we use, and we typically use it with cylindrical objects. Given a cylindrical object, we first put an active contour around it, as shown in Figure 1(a). The active contour lets us know where the boundary of the test object is. We next set a threshold (Figure 1(b)) and determine the center of mass of the above threshold voxels. For the purposes of determining the center of mass, each voxel is weighted identically (not by voxel value).
Computational methods to identify new antibacterial targets.
McPhillie, Martin J; Cain, Ricky M; Narramore, Sarah; Fishwick, Colin W G; Simmons, Katie J
2015-01-01
The development of resistance to all current antibiotics in the clinic means there is an urgent unmet need for novel antibacterial agents with new modes of action. One of the best ways of finding these is to identify new essential bacterial enzymes to target. The advent of a number of in silico tools has aided classical methods of discovering new antibacterial targets, and these programs are the subject of this review. Many of these tools apply a cheminformatic approach, utilizing the structural information of either ligand or protein, chemogenomic databases, and docking algorithms to identify putative antibacterial targets. Considering the wealth of potential drug targets identified from genomic research, these approaches are perfectly placed to mine this rich resource and complement drug discovery programs.
METHODOLOGICAL NOTES: Computer viruses and methods of combatting them
NASA Astrophysics Data System (ADS)
Landsberg, G. L.
1991-02-01
This article examines the current virus situation for personal computers and time-sharing computers. Basic methods of combatting viruses are presented. Specific recommendations are given to eliminate the most widespread viruses. A short description is given of a universal antiviral system, PHENIX, which has been developed.
47 CFR 80.771 - Method of computing coverage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Method of computing coverage. 80.771 Section 80.771 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.771...
Computer program uses characteristics method for free-jet investigation
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1967-01-01
Computer program computes the free-jet boundary contours and other flow properties within the exhaust plume from highly underexpanded nozzles operating in near-vacuum conditions. The calculations are made by the method of characteristics which makes use of three-dimensional irrotational equations of flow.
Computational methods for internal flows with emphasis on turbomachinery
NASA Technical Reports Server (NTRS)
Mcnally, W. D.; Sockol, P. M.
1981-01-01
Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.
Multimodal neuroimaging computing: the workflows, methods, and platforms.
Liu, Sidong; Cai, Weidong; Liu, Siqi; Zhang, Fan; Fulham, Michael; Feng, Dagan; Pujol, Sonia; Kikinis, Ron
The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.
Multimodal neuroimaging computing: the workflows, methods, and platforms.
Liu, Sidong; Cai, Weidong; Liu, Siqi; Zhang, Fan; Fulham, Michael; Feng, Dagan; Pujol, Sonia; Kikinis, Ron
2015-09-01
The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.
Computer based safety training: an investigation of methods
Wallen, E; Mulloy, K
2005-01-01
Background: Computer based methods are increasingly being used for training workers, although our understanding of how to structure this training has not kept pace with the changing abilities of computers. Information on a computer can be presented in many different ways and the style of presentation can greatly affect learning outcomes and the effectiveness of the learning intervention. Many questions about how adults learn from different types of presentations and which methods best support learning remain unanswered. Aims: To determine if computer based methods, which have been shown to be effective on younger students, can also be an effective method for older workers in occupational health and safety training. Methods: Three versions of a computer based respirator training module were developed and presented to manufacturing workers: one consisting of text only; one with text, pictures, and animation; and one with narration, pictures, and animation. After instruction, participants were given two tests: a multiple choice test measuring low level, rote learning; and a transfer test measuring higher level learning. Results: Participants receiving the concurrent narration with pictures and animation scored significantly higher on the transfer test than did workers receiving the other two types of instruction. There were no significant differences between groups on the multiple choice test. Conclusions: Narration with pictures and text may be a more effective method for training workers about respirator safety than other popular methods of computer based training. Further study is needed to determine the conditions for the effective use of this technology. PMID:15778259
Computer method for identification of boiler transfer functions
NASA Technical Reports Server (NTRS)
Miles, J. H.
1972-01-01
Iterative computer aided procedure was developed which provides for identification of boiler transfer functions using frequency response data. Method uses frequency response data to obtain satisfactory transfer function for both high and low vapor exit quality data.
Platform-independent method for computer aided schematic drawings
Vell, Jeffrey L [Slingerlands, NY; Siganporia, Darius M [Clifton Park, NY; Levy, Arthur J [Fort Lauderdale, FL
2012-02-14
A CAD/CAM method is disclosed for a computer system to capture and interchange schematic drawing and associated design information. The schematic drawing and design information are stored in an extensible, platform-independent format.
Method and computer program product for maintenance and modernization backlogging
Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M
2013-02-19
According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.
Review of parallel computing methods and tools for FPGA technology
NASA Astrophysics Data System (ADS)
Cieszewski, Radosław; Linczuk, Maciej; Pozniak, Krzysztof; Romaniuk, Ryszard
2013-10-01
Parallel computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated using parallel computing techniques. Specialized parallel computer architectures are used for accelerating speci c tasks. High-Energy Physics Experiments measuring systems often use FPGAs for ne-grained computation. FPGA combines many bene ts of both software and ASIC implementations. Like software, the mapped circuit is exible, and can be recon gured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This paper presents existing methods and tools for ne-grained computation implemented in FPGA using Behavioral Description and High Level Programming Languages.
Computer Simulation Methods for Defect Configurations and Nanoscale Structures
Gao, Fei
2010-01-01
This chapter will describe general computer simulation methods, including ab initio calculations, molecular dynamics and kinetic Monte-Carlo method, and their applications to the calculations of defect configurations in various materials (metals, ceramics and oxides) and the simulations of nanoscale structures due to ion-solid interactions. The multiscale theory, modeling, and simulation techniques (both time scale and space scale) will be emphasized, and the comparisons between computer simulation results and exprimental observations will be made.
Panel-Method Computer Code For Potential Flow
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steven K.
1992-01-01
Low-order panel method used to reduce computation time. Panel code PMARC (Panel Method Ames Research Center) numerically simulates flow field around or through complex three-dimensional bodies such as complete aircraft models or wind tunnel. Based on potential-flow theory. Facilitates addition of new features to code and tailoring of code to specific problems and computer-hardware constraints. Written in standard FORTRAN 77.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
Methods for operating parallel computing systems employing sequenced communications
Benner, R.E.; Gustafson, J.L.; Montry, G.R.
1999-08-10
A parallel computing system and method are disclosed having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system. 15 figs.
Methods for operating parallel computing systems employing sequenced communications
Benner, Robert E.; Gustafson, John L.; Montry, Gary R.
1999-01-01
A parallel computing system and method having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system.
Holmes, Tim; Zanker, Johannes M.
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the
Holmes, Tim; Zanker, Johannes M
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the
Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel
2015-01-01
For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.
Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.
Hikiri, Simon; Yoshidome, Takashi; Ikeguchi, Mitsunori
2016-12-13
The configurational entropy of solute molecules is a crucially important quantity to study various biophysical processes. Consequently, it is necessary to establish an efficient quantitative computational method to calculate configurational entropy as accurately as possible. In the present paper, we investigate the quantitative performance of the quasi-harmonic and related computational methods, including widely used methods implemented in popular molecular dynamics (MD) software packages, compared with the Clausius method, which is capable of accurately computing the change of the configurational entropy upon temperature change. Notably, we focused on the choice of the coordinate systems (i.e., internal or Cartesian coordinates). The Boltzmann-quasi-harmonic (BQH) method using internal coordinates outperformed all the six methods examined here. The introduction of improper torsions in the BQH method improves its performance, and anharmonicity of proper torsions in proteins is identified to be the origin of the superior performance of the BQH method. In contrast, widely used methods implemented in MD packages show rather poor performance. In addition, the enhanced sampling of replica-exchange MD simulations was found to be efficient for the convergent behavior of entropy calculations. Also in folding/unfolding transitions of a small protein, Chignolin, the BQH method was reasonably accurate. However, the independent term without the correlation term in the BQH method was most accurate for the folding entropy among the methods considered in this study, because the QH approximation of the correlation term in the BQH method was no longer valid for the divergent unfolded structures.
A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners
Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh
2013-01-01
Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results. PMID:24083133
Ankomah, Peter; Johnson, Paul J. T.; Levin, Bruce R.
2013-01-01
There are both pharmacodynamic and evolutionary reasons to use multiple rather than single antibiotics to treat bacterial infections; in combination antibiotics can be more effective in killing target bacteria as well as in preventing the emergence of resistance. Nevertheless, with few exceptions like tuberculosis, combination therapy is rarely used for bacterial infections. One reason for this is a relative dearth of the pharmaco-, population- and evolutionary dynamic information needed for the rational design of multi-drug treatment protocols. Here, we use in vitro pharmacodynamic experiments, mathematical models and computer simulations to explore the relative efficacies of different two-drug regimens in clearing bacterial infections and the conditions under which multi-drug therapy will prevent the ascent of resistance. We estimate the parameters and explore the fit of Hill functions to compare the pharmacodynamics of antibiotics of four different classes individually and in pairs during cidal experiments with pathogenic strains of Staphylococcus aureus and Escherichia coli. We also consider the relative efficacy of these antibiotics and antibiotic pairs in reducing the level of phenotypically resistant but genetically susceptible, persister, subpopulations. Our results provide compelling support for the proposition that the nature and form of the interactions between drugs of different classes, synergy, antagonism, suppression and additivity, has to be determined empirically and cannot be inferred from what is known about the pharmacodynamics or mode of action of these drugs individually. Monte Carlo simulations of within-host treatment incorporating these pharmacodynamic results and clinically relevant refuge subpopulations of bacteria indicate that: (i) the form of drug-drug interactions can profoundly affect the rate at which infections are cleared, (ii) two-drug therapy can prevent treatment failure even when bacteria resistant to single drugs are present
Method for implementation of recursive hierarchical segmentation on parallel computers
NASA Technical Reports Server (NTRS)
Tilton, James C. (Inventor)
2005-01-01
A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.
Methods and systems for providing reconfigurable and recoverable computing resources
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A method for optimizing the use of digital computing resources to achieve reliability and availability of the computing resources is disclosed. The method comprises providing one or more processors with a recovery mechanism, the one or more processors executing one or more applications. A determination is made whether the one or more processors needs to be reconfigured. A rapid recovery is employed to reconfigure the one or more processors when needed. A computing system that provides reconfigurable and recoverable computing resources is also disclosed. The system comprises one or more processors with a recovery mechanism, with the one or more processors configured to execute a first application, and an additional processor configured to execute a second application different than the first application. The additional processor is reconfigurable with rapid recovery such that the additional processor can execute the first application when one of the one more processors fails.
Calculating PI Using Historical Methods and Your Personal Computer.
ERIC Educational Resources Information Center
Mandell, Alan
1989-01-01
Provides a software program for determining PI to the 15th place after the decimal. Explores the history of determining the value of PI from Archimedes to present computer methods. Investigates Wallis's, Liebniz's, and Buffon's methods. Written for Tandy GW-BASIC (IBM compatible) with 384K. Suggestions for Apple II's are given. (MVL)
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Computer Subroutines for Analytic Rotation by Two Gradient Methods.
ERIC Educational Resources Information Center
van Thillo, Marielle
Two computer subroutine packages for the analytic rotation of a factor matrix, A(p x m), are described. The first program uses the Flectcher (1970) gradient method, and the second uses the Polak-Ribiere (Polak, 1971) gradient method. The calculations in both programs involve the optimization of a function of free parameters. The result is a…
Eco-Evo PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models
We synthesize how advances in computational methods and population genomics can be combined within an Ecological-Evolutionary (Eco-Evo) PVA model. Eco-Evo PVA models are powerful new tools for understanding the influence of evolutionary processes on plant and animal population pe...
An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment
Li, Hsu-Chih
2017-01-01
The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications. PMID:28316618
An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment.
Huang, Chien-Feng; Li, Hsu-Chih
2017-01-01
The advancement of information technology in financial applications nowadays have led to fast market-driven events that prompt flash decision-making and actions issued by computer algorithms. As a result, today's markets experience intense activity in the highly dynamic environment where trading systems respond to others at a much faster pace than before. This new breed of technology involves the implementation of high-speed trading strategies which generate significant portion of activity in the financial markets and present researchers with a wealth of information not available in traditional low-speed trading environments. In this study, we aim at developing feasible computational intelligence methodologies, particularly genetic algorithms (GA), to shed light on high-speed trading research using price data of stocks on the microscopic level. Our empirical results show that the proposed GA-based system is able to improve the accuracy of the prediction significantly for price movement, and we expect this GA-based methodology to advance the current state of research for high-speed trading and other relevant financial applications.
A Lanczos eigenvalue method on a parallel computer
NASA Technical Reports Server (NTRS)
Bostic, Susan W.; Fulton, Robert E.
1987-01-01
Eigenvalue analyses of complex structures is a computationally intensive task which can benefit significantly from new and impending parallel computers. This study reports on a parallel computer implementation of the Lanczos method for free vibration analysis. The approach used here subdivides the major Lanczos calculation tasks into subtasks and introduces parallelism down to the subtask levels such as matrix decomposition and forward/backward substitution. The method was implemented on a commercial parallel computer and results were obtained for a long flexible space structure. While parallel computing efficiency for the Lanczos method was good for a moderate number of processors for the test problem, the greatest reduction in time was realized for the decomposition of the stiffness matrix, a calculation which took 70 percent of the time in the sequential program and which took 25 percent of the time on eight processors. For a sample calculation of the twenty lowest frequencies of a 486 degree of freedom problem, the total sequential computing time was reduced by almost a factor of ten using 16 processors.
Computational methods to obtain time optimal jet engine control
NASA Technical Reports Server (NTRS)
Basso, R. J.; Leake, R. J.
1976-01-01
Dynamic Programming and the Fletcher-Reeves Conjugate Gradient Method are two existing methods which can be applied to solve a general class of unconstrained fixed time, free right end optimal control problems. New techniques are developed to adapt these methods to solve a time optimal control problem with state variable and control constraints. Specifically, they are applied to compute a time optimal control for a jet engine control problem.
A stochastic method for computing hadronic matrix elements
Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; ...
2014-01-24
In this study, we present a stochastic method for the calculation of baryon 3-point functions which is an alternative to the typically used sequential method offering more versatility. We analyze the scaling of the error of the stochastically evaluated 3-point function with the lattice volume and find a favorable signal to noise ratio suggesting that the stochastic method can be extended to large volumes providing an efficient approach to compute hadronic matrix elements and form factors.
The spectral-element method, Beowulf computing, and global seismology.
Komatitsch, Dimitri; Ritsema, Jeroen; Tromp, Jeroen
2002-11-29
The propagation of seismic waves through Earth can now be modeled accurately with the recently developed spectral-element method. This method takes into account heterogeneity in Earth models, such as three-dimensional variations of seismic wave velocity, density, and crustal thickness. The method is implemented on relatively inexpensive clusters of personal computers, so-called Beowulf machines. This combination of hardware and software enables us to simulate broadband seismograms without intrinsic restrictions on the level of heterogeneity or the frequency content.
A novel evolutionary approach to image enhancement filter design: method and applications.
Hong, Jin-Hyuk; Cho, Sung-Bae; Cho, Ung-Keun
2009-12-01
Image enhancement is an important issue in digital image processing. Various approaches have been developed to solve image enhancement problems, but most of them require deep expert knowledge to design appropriate image filters. To automatically design a filter, we propose a novel approach based on the genetic algorithm that optimizes a set of standard filters by determining their types and order. Moreover, the proposed method is able to manage various types of noise factors. We applied the proposed method to local and global image enhancement problems such as impulsive noise reduction, interpolation, and orientation enhancement. In terms of subjective and objective evaluations, the results show the superiority of the proposed method.
Software for computing eigenvalue bounds for iterative subspace matrix methods
NASA Astrophysics Data System (ADS)
Shepard, Ron; Minkoff, Michael; Zhou, Yunkai
2005-07-01
This paper describes software for computing eigenvalue bounds to the standard and generalized hermitian eigenvalue problem as described in [Y. Zhou, R. Shepard, M. Minkoff, Computing eigenvalue bounds for iterative subspace matrix methods, Comput. Phys. Comm. 167 (2005) 90-102]. The software discussed in this manuscript applies to any subspace method, including Lanczos, Davidson, SPAM, Generalized Davidson Inverse Iteration, Jacobi-Davidson, and the Generalized Jacobi-Davidson methods, and it is applicable to either outer or inner eigenvalues. This software can be applied during the subspace iterations in order to truncate the iterative process and to avoid unnecessary effort when converging specific eigenvalues to a required target accuracy, and it can be applied to the final set of Ritz values to assess the accuracy of the converged results. Program summaryTitle of program: SUBROUTINE BOUNDS_OPT Catalogue identifier: ADVE Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVE Computers: any computer that supports a Fortran 90 compiler Operating systems: any computer that supports a Fortran 90 compiler Programming language: Standard Fortran 90 High speed storage required:5m+5 working-precision and 2m+7 integer for m Ritz values No. of bits in a word: The floating point working precision is parameterized with the symbolic constant WP No. of lines in distributed program, including test data, etc.: 2452 No. of bytes in distributed program, including test data, etc.: 281 543 Distribution format: tar.gz Nature of physical problem: The computational solution of eigenvalue problems using iterative subspace methods has widespread applications in the physical sciences and engineering as well as other areas of mathematical modeling (economics, social sciences, etc.). The accuracy of the solution of such problems and the utility of those errors is a fundamental problem that is of
Fully consistent CFD methods for incompressible flow computations
NASA Astrophysics Data System (ADS)
Kolmogorov, D. K.; Shen, W. Z.; Sørensen, N. N.; Sørensen, J. N.
2014-06-01
Nowadays collocated grid based CFD methods are one of the most efficient tools for computations of the flows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure-velocity coupling on collocated grids use the so-called momentum interpolation method of Rhie and Chow [1]. As known, the method and some of its widely spread modifications result in solutions, which are dependent of time step at convergence. In this paper the magnitude of the dependence is shown to contribute about 0.5% into the total error in a typical turbulent flow computation. Nevertheless if coarse grids are used, the standard interpolation methods result in much higher non-consistent behavior. To overcome the problem, a recently developed interpolation method, which is independent of time step, is used. It is shown that in comparison to other time step independent method, the method may enhance the convergence rate of the SIMPLEC algorithm up to 25 %. The method is verified using turbulent flow computations around a NACA 64618 airfoil and the roll-up of a shear layer, which may appear in wind turbine wake.
Practical Use of Computationally Frugal Model Analysis Methods
Hill, Mary C.; Kavetski, Dmitri; Clark, Martyn; Ye, Ming; Arabi, Mazdak; Lu, Dan; Foglia, Laura; Mehl, Steffen
2015-03-21
Computationally frugal methods of model analysis can provide substantial benefits when developing models of groundwater and other environmental systems. Model analysis includes ways to evaluate model adequacy and to perform sensitivity and uncertainty analysis. Frugal methods typically require 10s of parallelizable model runs; their convenience allows for other uses of the computational effort. We suggest that model analysis be posed as a set of questions used to organize methods that range from frugal to expensive (requiring 10,000 model runs or more). This encourages focus on method utility, even when methods have starkly different theoretical backgrounds. We note that many frugal methods are more useful when unrealistic process-model nonlinearities are reduced. Inexpensive diagnostics are identified for determining when frugal methods are advantageous. Examples from the literature are used to demonstrate local methods and the diagnostics. We suggest that the greater use of computationally frugal model analysis methods would allow questions such as those posed in this work to be addressed more routinely, allowing the environmental sciences community to obtain greater scientific insight from the many ongoing and future modeling efforts
Practical Use of Computationally Frugal Model Analysis Methods
Hill, Mary C.; Kavetski, Dmitri; Clark, Martyn; ...
2015-03-21
Computationally frugal methods of model analysis can provide substantial benefits when developing models of groundwater and other environmental systems. Model analysis includes ways to evaluate model adequacy and to perform sensitivity and uncertainty analysis. Frugal methods typically require 10s of parallelizable model runs; their convenience allows for other uses of the computational effort. We suggest that model analysis be posed as a set of questions used to organize methods that range from frugal to expensive (requiring 10,000 model runs or more). This encourages focus on method utility, even when methods have starkly different theoretical backgrounds. We note that many frugalmore » methods are more useful when unrealistic process-model nonlinearities are reduced. Inexpensive diagnostics are identified for determining when frugal methods are advantageous. Examples from the literature are used to demonstrate local methods and the diagnostics. We suggest that the greater use of computationally frugal model analysis methods would allow questions such as those posed in this work to be addressed more routinely, allowing the environmental sciences community to obtain greater scientific insight from the many ongoing and future modeling efforts« less
Determinant Computation on the GPU using the Condensation Method
NASA Astrophysics Data System (ADS)
Anisul Haque, Sardar; Moreno Maza, Marc
2012-02-01
We report on a GPU implementation of the condensation method designed by Abdelmalek Salem and Kouachi Said for computing the determinant of a matrix. We consider two types of coefficients: modular integers and floating point numbers. We evaluate the performance of our code by measuring its effective bandwidth and argue that it is numerical stable in the floating point number case. In addition, we compare our code with serial implementation of determinant computation from well-known mathematical packages. Our results suggest that a GPU implementation of the condensation method has a large potential for improving those packages in terms of running time and numerical stability.
Numerical methods for solving ODEs on the infinity computer
NASA Astrophysics Data System (ADS)
Mazzia, F.; Sergeyev, Ya. D.; Iavernaro, F.; Amodio, P.; Mukhametzhanov, M. S.
2016-10-01
New algorithms for the numerical solution of Ordinary Differential Equations (ODEs) with initial conditions are proposed. They are designed for working on a new kind of a supercomputer - the Infinity Computer - that is able to deal numerically with finite, infinite and infinitesimal numbers. Due to this fact, the Infinity Computer allows one to calculate the exact derivatives of functions using infinitesimal values of the stepsize. As a consequence, the new methods are able to work with the exact values of the derivatives, instead of their approximations. Within this context, variants of one-step multi-point methods closely related to the classical Taylor formulae and to the Obrechkoff methods are considered. To get numerical evidence of the theoretical results, test problems are solved by means of the new methods and the results compared with the performance of classical methods.
Measuring coherence of computer-assisted likelihood ratio methods.
Haraksim, Rudolf; Ramos, Daniel; Meuwly, Didier; Berger, Charles E H
2015-04-01
Measuring the performance of forensic evaluation methods that compute likelihood ratios (LRs) is relevant for both the development and the validation of such methods. A framework of performance characteristics categorized as primary and secondary is introduced in this study to help achieve such development and validation. Ground-truth labelled fingerprint data is used to assess the performance of an example likelihood ratio method in terms of those performance characteristics. Discrimination, calibration, and especially the coherence of this LR method are assessed as a function of the quantity and quality of the trace fingerprint specimen. Assessment of the coherence revealed a weakness of the comparison algorithm in the computer-assisted likelihood ratio method used.
Practical Use of Computationally Frugal Model Analysis Methods.
Hill, Mary C; Kavetski, Dmitri; Clark, Martyn; Ye, Ming; Arabi, Mazdak; Lu, Dan; Foglia, Laura; Mehl, Steffen
2016-03-01
Three challenges compromise the utility of mathematical models of groundwater and other environmental systems: (1) a dizzying array of model analysis methods and metrics make it difficult to compare evaluations of model adequacy, sensitivity, and uncertainty; (2) the high computational demands of many popular model analysis methods (requiring 1000's, 10,000 s, or more model runs) make them difficult to apply to complex models; and (3) many models are plagued by unrealistic nonlinearities arising from the numerical model formulation and implementation. This study proposes a strategy to address these challenges through a careful combination of model analysis and implementation methods. In this strategy, computationally frugal model analysis methods (often requiring a few dozen parallelizable model runs) play a major role, and computationally demanding methods are used for problems where (relatively) inexpensive diagnostics suggest the frugal methods are unreliable. We also argue in favor of detecting and, where possible, eliminating unrealistic model nonlinearities-this increases the realism of the model itself and facilitates the application of frugal methods. Literature examples are used to demonstrate the use of frugal methods and associated diagnostics. We suggest that the strategy proposed in this paper would allow the environmental sciences community to achieve greater transparency and falsifiability of environmental models, and obtain greater scientific insight from ongoing and future modeling efforts.
An Accurate and Efficient Method of Computing Differential Seismograms
NASA Astrophysics Data System (ADS)
Hu, S.; Zhu, L.
2013-12-01
Inversion of seismic waveforms for Earth structure usually requires computing partial derivatives of seismograms with respect to velocity model parameters. We developed an accurate and efficient method to calculate differential seismograms for multi-layered elastic media, based on the Thompson-Haskell propagator matrix technique. We first derived the partial derivatives of the Haskell matrix and its compound matrix respect to the layer parameters (P wave velocity, shear wave velocity and density). We then derived the partial derivatives of surface displacement kernels in the frequency-wavenumber domain. The differential seismograms are obtained by using the frequency-wavenumber double integration method. The implementation is computationally efficient and the total computing time is proportional to the time of computing the seismogram itself, i.e., independent of the number of layers in the model. We verified the correctness of results by comparing with differential seismograms computed using the finite differences method. Our results are more accurate because of the analytical nature of the derived partial derivatives.
Woods, Kristina N.; Pfeffer, Juergen
2016-01-01
It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein’s function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function. PMID:26337549
A comparative study of computational methods in cosmic gas dynamics
NASA Technical Reports Server (NTRS)
Van Albada, G. D.; Van Leer, B.; Roberts, W. W., Jr.
1982-01-01
Many theoretical investigations of fluid flows in astrophysics require extensive numerical calculations. The selection of an appropriate computational method is, therefore, important for the astronomer who has to solve an astrophysical flow problem. The present investigation has the objective to provide an informational basis for such a selection by comparing a variety of numerical methods with the aid of a test problem. The test problem involves a simple, one-dimensional model of the gas flow in a spiral galaxy. The numerical methods considered include the beam scheme, Godunov's method (G), the second-order flux-splitting method (FS2), MacCormack's method, and the flux corrected transport methods of Boris and Book (1973). It is found that the best second-order method (FS2) outperforms the best first-order method (G) by a huge margin.
Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.
2003-01-01
Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.
Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.
2004-01-01
Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.
Computer controlled fluorometer device and method of operating same
Kolber, Zbigniew; Falkowski, Paul
1990-01-01
A computer controlled fluorometer device and method of operating same, said device being made to include a pump flash source and a probe flash source and one or more sample chambers in combination with a light condenser lens system and associated filters and reflectors and collimators, as well as signal conditioning and monitoring means and a programmable computer means and a software programmable source of background irradiance that is operable according to the method of the invention to rapidly, efficiently and accurately measure photosynthetic activity by precisely monitoring and recording changes in fluorescence yield produced by a controlled series of predetermined cycles of probe and pump flashes from the respective probe and pump sources that are controlled by the computer means.
Computational Methods for CLIP-seq Data Processing.
Reyes-Herrera, Paula H; Ficarra, Elisa
2014-01-01
RNA-binding proteins (RBPs) are at the core of post-transcriptional regulation and thus of gene expression control at the RNA level. One of the principal challenges in the field of gene expression regulation is to understand RBPs mechanism of action. As a result of recent evolution of experimental techniques, it is now possible to obtain the RNA regions recognized by RBPs on a transcriptome-wide scale. In fact, CLIP-seq protocols use the joint action of CLIP, crosslinking immunoprecipitation, and high-throughput sequencing to recover the transcriptome-wide set of interaction regions for a particular protein. Nevertheless, computational methods are necessary to process CLIP-seq experimental data and are a key to advancement in the understanding of gene regulatory mechanisms. Considering the importance of computational methods in this area, we present a review of the current status of computational approaches used and proposed for CLIP-seq data.
Computational Methods for CLIP-seq Data Processing
Reyes-Herrera, Paula H; Ficarra, Elisa
2014-01-01
RNA-binding proteins (RBPs) are at the core of post-transcriptional regulation and thus of gene expression control at the RNA level. One of the principal challenges in the field of gene expression regulation is to understand RBPs mechanism of action. As a result of recent evolution of experimental techniques, it is now possible to obtain the RNA regions recognized by RBPs on a transcriptome-wide scale. In fact, CLIP-seq protocols use the joint action of CLIP, crosslinking immunoprecipitation, and high-throughput sequencing to recover the transcriptome-wide set of interaction regions for a particular protein. Nevertheless, computational methods are necessary to process CLIP-seq experimental data and are a key to advancement in the understanding of gene regulatory mechanisms. Considering the importance of computational methods in this area, we present a review of the current status of computational approaches used and proposed for CLIP-seq data. PMID:25336930
Computer controlled fluorometer device and method of operating same
Kolber, Z.; Falkowski, P.
1990-07-17
A computer controlled fluorometer device and method of operating same, said device being made to include a pump flash source and a probe flash source and one or more sample chambers in combination with a light condenser lens system and associated filters and reflectors and collimators, as well as signal conditioning and monitoring means and a programmable computer means and a software programmable source of background irradiance that is operable according to the method of the invention to rapidly, efficiently and accurately measure photosynthetic activity by precisely monitoring and recording changes in fluorescence yield produced by a controlled series of predetermined cycles of probe and pump flashes from the respective probe and pump sources that are controlled by the computer means. 13 figs.
Solving evolutionary-type differential equations and physical problems using the operator method
NASA Astrophysics Data System (ADS)
Zhukovsky, K. V.
2017-01-01
We present a general operator method based on the advanced technique of the inverse derivative operator for solving a wide range of problems described by some classes of differential equations. We construct and use inverse differential operators to solve several differential equations. We obtain operator identities involving an inverse derivative operator, integral transformations, and generalized forms of orthogonal polynomials and special functions. We present examples of using the operator method to construct solutions of equations containing linear and quadratic forms of a pair of operators satisfying Heisenberg-type relations and solutions of various modifications of partial differential equations of the Fourier heat conduction type, Fokker-Planck type, Black-Scholes type, etc. We demonstrate using the operator technique to solve several physical problems related to the charge motion in quantum mechanics, heat propagation, and the dynamics of the beams in accelerators.
Computational biology in the cloud: methods and new insights from computing at scale.
Kasson, Peter M
2013-01-01
The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.
Job-shop scheduling with a combination of evolutionary and heuristic methods
NASA Astrophysics Data System (ADS)
Patkai, Bela; Torvinen, Seppo
1999-08-01
Since almost all of the scheduling problems are NP-hard-- cannot be solved in polynomial time--those companies that need a realistic scheduling system face serious limitations of available methods for finding an optimal schedule, especially if the given environment requires adaptation to dynamic variations. Exact methods do find an optimal schedule, but the size of the problem they can solve is very limited, excluding this way the required scalability. The solution presented in this paper is a simple, multi-pass heuristic method, which aims to avoid the limitations of other well-known formulations. Even though the dispatching rules are fast and provide near-optimal solutions in most cases, they are severely limited in efficiency--especially in case the schedule builder satisfies a significant number of constraints. That is the main motivation for adding a simplified genetic algorithm to the dispatching rules, which--due to its stochastic nature--belongs to heuristic, too. The scheduling problem is of a middle size Finnish factory, throughout the investigations their up-to-date manufacturing data has been used for the sake of realistic calculations.
Evolutionary analysis of apolipoprotein E by Maximum Likelihood and complex network methods
Benevides, Leandro de Jesus; de Carvalho, Daniel Santana; Andrade, Roberto Fernandes Silva; Bomfim, Gilberto Cafezeiro; Fernandes, Flora Maria de Campos
2016-01-01
Abstract Apolipoprotein E (apo E) is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL) and a group of high-density lipoproteins (HDL). Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML), and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1) and another with fish (C2), and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups. PMID:27560837
PSD computations using Welch's method. [Power Spectral Density (PSD)
Solomon, Jr, O M
1991-12-01
This report describes Welch's method for computing Power Spectral Densities (PSDs). We first describe the bandpass filter method which uses filtering, squaring, and averaging operations to estimate a PSD. Second, we delineate the relationship of Welch's method to the bandpass filter method. Third, the frequency domain signal-to-noise ratio for a sine wave in white noise is derived. This derivation includes the computation of the noise floor due to quantization noise. The signal-to-noise ratio and noise flood depend on the FFT length and window. Fourth, the variance the Welch's PSD is discussed via chi-square random variables and degrees of freedom. This report contains many examples, figures and tables to illustrate the concepts. 26 refs.
Interactive method for computation of viscous flow with recirculation
NASA Technical Reports Server (NTRS)
Brandeis, J.; Rom, J.
1981-01-01
An interactive method is proposed for the solution of two-dimensional, laminar flow fields with identifiable regions of recirculation, such as the shear-layer-driven cavity flow. The method treats the flow field as composed of two regions, with an appropriate mathematical model adopted for each region. The shear layer is computed by the compressible boundary layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes equations. The flow field is solved iteratively by matching the local solutions in the two regions. For this purpose a new matching method utilizing an overlap between the two computational regions is developed, and shown to be most satisfactory. Matching of the two velocity components, as well as the change in velocity with respect to depth is amply accomplished using the present approach, and the stagnation points corresponding to separation and reattachment of the dividing streamline are computed as part of the interactive solution. The interactive method is applied to the test problem of a shear layer driven cavity. The computational results are used to show the validity and applicability of the present approach.
Decluttering Methods for Computer-Generated Graphic Displays
NASA Technical Reports Server (NTRS)
Schultz, E. Eugene, Jr.
1986-01-01
Symbol simplification and contrasting enhance viewer's ability to detect particular symbol. Report describes experiments designed to indicate how various decluttering methods affect viewer's abilities to distinguish essential from nonessential features on computer-generated graphic displays. Results indicate partial removal of nonessential graphic features through symbol simplification effective in decluttering as total removal of nonessential graphic features.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
EQUILIBRIUM AND NONEQUILIBRIUM FOUNDATIONS OF FREE ENERGY COMPUTATIONAL METHODS
C. JARZYNSKI
2001-03-01
Statistical mechanics provides a rigorous framework for the numerical estimation of free energy differences in complex systems such as biomolecules. This paper presents a brief review of the statistical mechanical identities underlying a number of techniques for computing free energy differences. Both equilibrium and nonequilibrium methods are covered.
Trajectory optimization using parallel shooting method on parallel computer
Wirthman, D.J.; Park, S.Y.; Vadali, S.R.
1995-03-01
The efficiency of a parallel shooting method on a parallel computer for solving a variety of optimal control guidance problems is studied. Several examples are considered to demonstrate that a speedup of nearly 7 to 1 is achieved with the use of 16 processors. It is suggested that further improvements in performance can be achieved by parallelizing in the state domain. 10 refs.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
Ordering Methods for Sparse Matrices and Vector Computers.
1986-08-15
H.D. Simon, "Incomplete LU Preconditioners for Conjugate-Gradient-Type Iterative Methods," Eighth SPE Symposium on Reservoir Simulation , Dallas, Texas...Computing). H. D. Simon, Incomplete LU Preconditioners for Conjugate-Gradient-Type Iterative Methods, Proceedings of the Eighth SPE Symposium on Reservoir ... Simulation , Dallas, Texas, February 1985. RECENT PRESENTATIONS AT PROFESSIONAL MEETINGS C. Ashcraft, "The Solution of Banded Systems of Equations in
Stress intensity estimates by a computer assisted photoelastic method
NASA Technical Reports Server (NTRS)
Smith, C. W.
1977-01-01
Following an introductory history, the frozen stress photoelastic method is reviewed together with analytical and experimental aspects of cracks in photoelastic models. Analytical foundations are then presented upon which a computer assisted frozen stress photoelastic technique is based for extracting estimates of stress intensity factors from three-dimensional cracked body problems. The use of the method is demonstrated for two currently important three-dimensional crack problems.
Revisiting Seismic Tomography Through Direct Methods and High Performance Computing
NASA Astrophysics Data System (ADS)
Ishii, M.; Bogiatzis, P.; Davis, T. A.
2015-12-01
Over the last two decades, the rapid increase in data availability and computational power significantly increased the number of data and model parameters that can be investigated in seismic tomography problems. Often, the model space consists of 105-106 unknown parameters and there are comparable numbers of observations, making direct computational methods such as the singular value decomposition prohibitively expensive or impossible, leaving iterative solvers as the only alternative option. Among the disadvantages of the iterative algorithms is that the inverse of the matrix that defines the system is not explicitly formed. As a consequence, the model resolution and covariance matrices, that are crucial for the quantitative assessment of the uncertainty of the tomographic models, cannot be computed. Despite efforts in finding computationally affordable approximations of these matrices, challenges remain, and approaches such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high performance computing resources, we demonstrate that direct methods are becoming feasible for large seismic tomography problems, and apply the technique to obtain a regional P-wave tomography model and its full resolution matrix with 267,520 parameters. Furthermore, we show that the structural analysis of the forward operators of the seismic tomography problems can provide insights into the inverse problem, and allows us to determine and exploit approximations that yield accurate solutions.
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
Digital data storage systems, computers, and data verification methods
Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.
2005-12-27
Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.
The ensemble switch method for computing interfacial tensions
Schmitz, Fabian; Virnau, Peter
2015-04-14
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
The ensemble switch method for computing interfacial tensions.
Schmitz, Fabian; Virnau, Peter
2015-04-14
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
An effective method for computing the noise in biochemical networks
Zhang, Jiajun; Nie, Qing; He, Miao; Zhou, Tianshou
2013-01-01
We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost. PMID:23464139
Computational Methods for Structural Mechanics and Dynamics, part 1
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.
A Computationally Efficient Method for Polyphonic Pitch Estimation
NASA Astrophysics Data System (ADS)
Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio
2009-12-01
This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.
Method of computer-aided measurement in a shooting range
NASA Astrophysics Data System (ADS)
Liu, Chanlao; Zhang, Yun; Xiong, Rensheng; Sun, Yishang
2000-10-01
In the view of the blindness of photoelectric measurement scheme argument and the danger of live shell measurement in shooting range, this paper provided a computer aided measurement method guiding the measurement scheme argument and equipment researching and producing and driving the measurement process visiblization and standardization. The computer aided measurement in shooting range can be divided into the mathematical simulation of targets moving, the mathematical simulation of measurement method, the mathematical simulation of photoelectric system, the animated displaying of measurement process, and so on. By adding random jamming, Gaussian white noise and so on, the live measurement environment and condition was built. By using mathematical discretization, the time series pictures was obtained. By controlling the time changing and time unifying of several equipment, the animated displaying of measurement process was built. The programming language was MATLAB. The method was proved through simulating the intersection measurement trajectory of antiaircraft gun's shell successfully.
Computation of Pressurized Gas Bearings Using CE/SE Method
NASA Technical Reports Server (NTRS)
Cioc, Sorin; Dimofte, Florin; Keith, Theo G., Jr.; Fleming, David P.
2003-01-01
The space-time conservation element and solution element (CE/SE) method is extended to compute compressible viscous flows in pressurized thin fluid films. This numerical scheme has previously been used successfully to solve a wide variety of compressible flow problems, including flows with large and small discontinuities. In this paper, the method is applied to calculate the pressure distribution in a hybrid gas journal bearing. The formulation of the problem is presented, including the modeling of the feeding system. the numerical results obtained are compared with experimental data. Good agreement between the computed results and the test data were obtained, and thus validate the CE/SE method to solve such problems.
Recknagel, Friedrich; Orr, Philip T; Cao, Hongqing
2014-01-01
Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured variables as inputs as well as models using electronically measurable variables only as inputs forecasted accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed bloom events with 0.45≤r(2)>0.61 and 0.4≤r(2)>0.57, respectively. The models also revealed relationships and thresholds triggering bloom events that provide valuable information on synergism between water quality conditions and population dynamics of C. raciborskii. Best performing models based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of 206-280mSm(-1) as threshold above which fast growth and high abundances of C. raciborskii have been observed for the three lakes. Best models based on electronically measurable variables for the Lakes Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5-32.7°C within which fast growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii. Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010 resulted in predictive models with 0.61≤r(2)>0.65 whereby again similar levels of EC and WT have been discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r(2)=0.75 for an in situ data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by 1 day. These time lags have been discovered by a systematic screening of all possible combinations of time lags between 0 and 10 days for all electronically measurable variables. The so
Computational methods in metabolic engineering for strain design.
Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L
2015-08-01
Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms.
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.
Fast calculation method for computer-generated cylindrical holograms.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2008-07-01
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.
Methods for library-scale computational protein design.
Johnson, Lucas B; Huber, Thaddaus R; Snow, Christopher D
2014-01-01
Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engineering of improved protein variants with diverse sequences. This chapter discusses the background and merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design are presented in the context of example design calculations for cellobiohydrolase II. Second, localized design methods are discussed in the context of an example design calculation intended to shift the substrate specificity of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.
Evolutionary behavioral genetics
Zietsch, Brendan P.; de Candia, Teresa R; Keller, Matthew C.
2014-01-01
We describe the scientific enterprise at the intersection of evolutionary psychology and behavioral genetics—a field that could be termed Evolutionary Behavioral Genetics—and how modern genetic data is revolutionizing our ability to test questions in this field. We first explain how genetically informative data and designs can be used to investigate questions about the evolution of human behavior, and describe some of the findings arising from these approaches. Second, we explain how evolutionary theory can be applied to the investigation of behavioral genetic variation. We give examples of how new data and methods provide insight into the genetic architecture of behavioral variation and what this tells us about the evolutionary processes that acted on the underlying causal genetic variants. PMID:25587556
Investigation of Ultrasonic Wave Scattering Effects using Computational Methods
NASA Astrophysics Data System (ADS)
Campbell Leckey, Cara Ann
2011-12-01
Advances in computational power and expanded access to computing clusters has made mathematical modeling of complex wave effects possible. We have used multi-core and cluster computing to implement analytical and numerical models of ultrasonic wave scattering in fluid and solid media (acoustic and elastic waves). We begin by implementing complicated analytical equations that describe the force upon spheres immersed in inviscid and viscous fluids due to an incident plane wave. Two real-world applications of acoustic force upon spheres are investigated using the mathematical formulations: emboli removal from cardiopulmonary bypass circuits using traveling waves and the micromanipulation of algal cells with standing waves to aid in biomass processing for algae biofuels. We then move on to consider wave scattering situations where analytical models do not exist: scattering of acoustic waves from multiple scatterers in fluids and Lamb wave scattering in solids. We use a numerical method called finite integration technique (FIT) to simulate wave behavior in three dimensions. The 3D simulations provide insight into experimental results for situations where 2D simulations would not be sufficient. The diverse set of scattering situations explored in this work show the broad applicability of the underlying principles and the computational tools that we have developed. Overall, our work shows that the movement towards better availability of large computational resources is opening up new ways to investigate complicated physics phenomena.
Practical methods to improve the development of computational software
Osborne, A. G.; Harding, D. W.; Deinert, M. R.
2013-07-01
The use of computation has become ubiquitous in science and engineering. As the complexity of computer codes has increased, so has the need for robust methods to minimize errors. Past work has show that the number of functional errors is related the number of commands that a code executes. Since the late 1960's, major participants in the field of computation have encouraged the development of best practices for programming to help reduce coder induced error, and this has lead to the emergence of 'software engineering' as a field of study. Best practices for coding and software production have now evolved and become common in the development of commercial software. These same techniques, however, are largely absent from the development of computational codes by research groups. Many of the best practice techniques from the professional software community would be easy for research groups in nuclear science and engineering to adopt. This paper outlines the history of software engineering, as well as issues in modern scientific computation, and recommends practices that should be adopted by individual scientific programmers and university research groups. (authors)
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Domain decomposition methods for the parallel computation of reacting flows
NASA Technical Reports Server (NTRS)
Keyes, David E.
1988-01-01
Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.
Applications of meshless methods for damage computations with finite strains
NASA Astrophysics Data System (ADS)
Pan, Xiaofei; Yuan, Huang
2009-06-01
Material defects such as cavities have great effects on the damage process in ductile materials. Computations based on finite element methods (FEMs) often suffer from instability due to material failure as well as large distortions. To improve computational efficiency and robustness the element-free Galerkin (EFG) method is applied in the micro-mechanical constitute damage model proposed by Gurson and modified by Tvergaard and Needleman (the GTN damage model). The EFG algorithm is implemented in the general purpose finite element code ABAQUS via the user interface UEL. With the help of the EFG method, damage processes in uniaxial tension specimens and notched specimens are analyzed and verified with experimental data. Computational results reveal that the damage which takes place in the interior of specimens will extend to the exterior and cause fracture of specimens; the damage is a fast procedure relative to the whole tensing process. The EFG method provides more stable and robust numerical solution in comparing with the FEM analysis.
Advanced Computational Aeroacoustics Methods for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Edmane (Technical Monitor); Tam, Christopher
2003-01-01
Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff
1992-01-01
The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.
A framework for evolutionary systems biology
Loewe, Laurence
2009-01-01
Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications. PMID:19239699
Beyond the Melnikov method: A computer assisted approach
NASA Astrophysics Data System (ADS)
Capiński, Maciej J.; Zgliczyński, Piotr
2017-01-01
We present a Melnikov type approach for establishing transversal intersections of stable/unstable manifolds of perturbed normally hyperbolic invariant manifolds (NHIMs). The method is based on a new geometric proof of the normally hyperbolic invariant manifold theorem, which establishes the existence of a NHIM, together with its associated invariant manifolds and bounds on their first and second derivatives. We do not need to know the explicit formulas for the homoclinic orbits prior to the perturbation. We also do not need to compute any integrals along such homoclinics. All needed bounds are established using rigorous computer assisted numerics. Lastly, and most importantly, the method establishes intersections for an explicit range of parameters, and not only for perturbations that are 'small enough', as is the case in the classical Melnikov approach.
Computational methods for efficient structural reliability and reliability sensitivity analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.
1993-01-01
This paper presents recent developments in efficient structural reliability analysis methods. The paper proposes an efficient, adaptive importance sampling (AIS) method that can be used to compute reliability and reliability sensitivities. The AIS approach uses a sampling density that is proportional to the joint PDF of the random variables. Starting from an initial approximate failure domain, sampling proceeds adaptively and incrementally with the goal of reaching a sampling domain that is slightly greater than the failure domain to minimize over-sampling in the safe region. Several reliability sensitivity coefficients are proposed that can be computed directly and easily from the above AIS-based failure points. These probability sensitivities can be used for identifying key random variables and for adjusting design to achieve reliability-based objectives. The proposed AIS methodology is demonstrated using a turbine blade reliability analysis problem.
Computer processing improves hydraulics optimization with new methods
Gavignet, A.A.; Wick, C.J.
1987-12-01
In current practice, pressure drops in the mud circulating system and the settling velocity of cuttings are calculated with simple rheological models and simple equations. Wellsite computers now allow more sophistication in drilling computations. In this paper, experimental results on the settling velocity of spheres in drilling fluids are reported, along with rheograms done over a wide range of shear rates. The flow curves are fitted to polynomials and general methods are developed to predict friction losses and settling velocities as functions of the polynomial coefficients. These methods were incorporated in a software package that can handle any rig configuration system, including riser booster. Graphic displays show the effect of each parameter on the performance of the circulating system.
Characterization of Meta-Materials Using Computational Electromagnetic Methods
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Shin, Joon
2005-01-01
An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.
Precise computations of chemotactic collapse using moving mesh methods
NASA Astrophysics Data System (ADS)
Budd, C. J.; Carretero-González, R.; Russell, R. D.
2005-01-01
We consider the problem of computing blow-up solutions of chemotaxis systems, or the so-called chemotactic collapse. In two spatial dimensions, such solutions can have approximate self-similar behaviour, which can be very challenging to verify in numerical simulations [cf. Betterton and Brenner, Collapsing bacterial cylinders, Phys. Rev. E 64 (2001) 061904]. We analyse a dynamic (scale-invariant) remeshing method which performs spatial mesh movement based upon equidistribution. Using a suitably chosen monitor function, the numerical solution resolves the fine detail in the asymptotic solution structure, such that the computations are seen to be fully consistent with the asymptotic description of the collapse phenomenon given by Herrero and Velázquez [Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996) 583-623]. We believe that the methods we construct are ideally suited to a large number of problems in mathematical biology for which collapse phenomena are expected.
Computational methods. [Calculation of dynamic loading to offshore platforms
Maeda, H. . Inst. of Industrial Science)
1993-02-01
With regard to the computational methods for hydrodynamic forces, first identification of marine hydrodynamics in offshore technology is discussed. Then general computational methods, the state of the arts and uncertainty on flow problems in offshore technology in which developed, developing and undeveloped problems are categorized and future works follow. Marine hydrodynamics consists of water surface and underwater fluid dynamics. Marine hydrodynamics covers, not only hydro, but also aerodynamics such as wind load or current-wave-wind interaction, hydrodynamics such as cavitation, underwater noise, multi-phase flow such as two-phase flow in pipes or air bubble in water or surface and internal waves, and magneto-hydrodynamics such as propulsion due to super conductivity. Among them, two key words are focused on as the identification of marine hydrodynamics in offshore technology; they are free surface and vortex shedding.
Computational Methods for Sparse Solution of Linear Inverse Problems
2009-03-01
methods from harmonic analysis [5]. For example, natural images can be approximated with relatively few wavelet coefficients. As a consequence, in many...performed efficiently. For example, the cost of these products is O(N logN) when Φ is constructed from Fourier or wavelet bases. For algorithms that...stream community has proposed efficient algorithms for computing near-optimal histograms and wavelet -packet approximations from compressive samples [4
Computational Methods for Failure Analysis and Life Prediction
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)
1993-01-01
This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.
Improved diffraction computation with a hybrid C-RCWA-method
NASA Astrophysics Data System (ADS)
Bischoff, Joerg
2009-03-01
The Rigorous Coupled Wave Approach (RCWA) is acknowledged as a well established diffraction simulation method in electro-magnetic computing. Its two most essential applications in the semiconductor industry are in optical scatterometry and optical lithography simulation. In scatterometry, it is the standard technique to simulate spectra or diffraction responses for gratings to be characterized. In optical lithography simulation, it is an effective alternative to supplement or even to replace the FDTD for the calculation of light diffraction from thick masks as well as from wafer topographies. Unfortunately, the RCWA shows some serious disadvantages particularly for the modelling of grating profiles with shallow slopes and multilayer stacks with many layers such as extreme UV masks with large number of quarter wave layers. Here, the slicing may become a nightmare and also the computation costs may increase dramatically. Moreover, the accuracy is suffering due to the inadequate staircase approximation of the slicing in conjunction with the boundary conditions in TM polarization. On the other hand, the Chandezon Method (C-Method) solves all these problems in a very elegant way, however, it fails for binary patterns or gratings with very steep profiles where the RCWA works excellent. Therefore, we suggest a combination of both methods as plug-ins in the same scattering matrix coupling frame. The improved performance and the advantages of this hybrid C-RCWA-Method over the individual methods is shown with some relevant examples.
A hierarchical method for molecular docking using cloud computing.
Kang, Ling; Guo, Quan; Wang, Xicheng
2012-11-01
Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein-ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.
Interval sampling methods and measurement error: a computer simulation.
Wirth, Oliver; Slaven, James; Taylor, Matthew A
2014-01-01
A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments.
Experiences using DAKOTA stochastic expansion methods in computational simulations.
Templeton, Jeremy Alan; Ruthruff, Joseph R.
2012-01-01
Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.
A Review of Computational Methods for Predicting Drug Targets.
Huang, Guohua; Yan, Fengxia; Tan, Duoduo
2016-11-14
Drug discovery and development is not only a time-consuming and labor-intensive process but also full of risk. Identifying targets of small molecules helps evaluate safety of drugs and find new therapeutic applications. The biotechnology measures a wide variety of properties related to drug and targets from different perspectives, thus generating a large body of data. This undoubtedly provides a solid foundation to explore relationships between drugs and targets. A large number of computational techniques have recently been developed for drug target prediction. In this paper, we summarize these computational methods and classify them into structure-based, molecular activity-based, side-effect-based and multi-omics-based predictions according to the used data for inference. The multi-omics-based methods are further grouped into two types: classifier-based and network-based predictions. Furthermore，the advantages and limitations of each type of methods are discussed. Finally, we point out the future directions of computational predictions for drug targets.
NASA Astrophysics Data System (ADS)
Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Koo, Ki-Young
2016-04-01
This article presents an effective method for structural damage identification. The damage diagnosis problem is introduced as an optimization problem which is based on computing static displacements by the flexibility matrix. By utilizing this matrix, the complexity of the static displacement measurements in real cases can be overcome. The optimization problem is solved by a fast evolutionary optimization strategy, named the cuckoo optimization algorithm. The performance of the presented method was demonstrated by studying the benchmark problem provided by the IASC-ASCE Task Group on Structural Health Monitoring, and a numerical example of a frame. Moreover, the robustness of the presented approach was investigated in the presence of some prevalent modelling errors, and also when noisy and incomplete modal data are available. Finally, the efficiency of the proposed method was verified by an experimental study of a five-storey shear building structure. All the obtained results show the good performance of the presented method.
Use of boundary element methods in field emission computations
Hartman, R.L.; Mackie, W.A.; Davis, P.R.
1994-03-01
The boundary element method is well suited to deal with some potential field problems encountered in the context of field emission. A boundary element method is presented in the specific case of three-dimensional problems with azimuthal symmetry. As a check, computed results are displayed for well-known theoretical examples. The code is then employed to calculate current from a field emission tip and from the same tip with a protrusion. Finally an extension of the boundary element code is employed to calculate space-charge effects on emitted current. 13 refs., 5 figs., 1 tab.
Rapid methods and computer assisted diagnosis in medical microbiology.
Heizmann, W R
1991-01-01
Rapid diagnosis and reporting in medical microbiology is becoming more and more important. In recent years, introduction of automated instruments as well as of computer assisted diagnosis contributed to this aim. These methods, however, are very expensive. A more cost efficient and simple to perform method for rapid diagnosis is the use of specific fluorogenic substrates incorporated into culture media (solid or liquid) for identification of the most important pathogens, e.g. Escherichia coli. Investigation of Fluorocult ECD agar and Columbia agar revealed a high sensitivity (85%) and an excellent specificity (greater than 99%) of fluorescence in combination with a positive indole reaction for identification of E. coli.
Computer method for identification of boiler transfer functions
NASA Technical Reports Server (NTRS)
Miles, J. H.
1971-01-01
An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function to the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.
Video meteor detection filtering using soft computing methods
NASA Astrophysics Data System (ADS)
Silađi, E.; Vida, D.; Nyarko, K.
2015-01-01
In this paper we present the current progress and results from the filtering of Croatian Meteor Network video meteor detections using soft computing methods such as neural networks and support vector machines (SVMs). The goal is to minimize the number of false-positives while preserving the real meteor detections. This is achieved by pre-processing the data to extract meteor movement parameters and then recognizing patterns distinct to meteors. The input data format is fully compliant with the CAMS meteor data standard, and as such the proposed method could be utilized by other meteor networks of the similar kind.
Computational Catalysis Using the Artificial Force Induced Reaction Method.
Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji
2016-04-19
The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately
COMPARISON OF CLASSIFICATION STRATEGIES BY COMPUTER SIMULATION METHODS.
NAVAL TRAINING, COMPUTER PROGRAMMING), (*NAVAL PERSONNEL, CLASSIFICATION), SELECTION, SIMULATION, CORRELATION TECHNIQUES , PROBABILITY, COSTS, OPTIMIZATION, PERSONNEL MANAGEMENT, DECISION THEORY, COMPUTERS
Graphics processing unit acceleration of computational electromagnetic methods
NASA Astrophysics Data System (ADS)
Inman, Matthew
The use of Graphical Processing Units (GPU's) for scientific applications has been evolving and expanding for the decade. GPU's provide an alternative to the CPU in the creation and execution of the numerical codes that are often relied upon in to perform simulations in computational electromagnetics. While originally designed purely to display graphics on the users monitor, GPU's today are essentially powerful floating point co-processors that can be programmed not only to render complex graphics, but also perform the complex mathematical calculations often encountered in scientific computing. Currently the GPU's being produced often contain hundreds of separate cores able to access large amounts of high-speed dedicated memory. By utilizing the power offered by such a specialized processor, it is possible to drastically speed up the calculations required in computational electromagnetics. This increase in speed allows for the use of GPU based simulations in a variety of situations that the computational time has heretofore been a limiting factor in, such as in educational courses. Many situations in teaching electromagnetics often rely upon simple examples of problems due to the simulation times needed to analyze more complex problems. The use of GPU based simulations will be shown to allow demonstrations of more advanced problems than previously allowed by adapting the methods for use on the GPU. Modules will be developed for a wide variety of teaching situations utilizing the speed of the GPU to demonstrate various techniques and ideas previously unrealizable.
Computational methods for drug design and discovery: focus on China.
Zheng, Mingyue; Liu, Xian; Xu, Yuan; Li, Honglin; Luo, Cheng; Jiang, Hualiang
2013-10-01
In the past decades, China's computational drug design and discovery research has experienced fast development through various novel methodologies. Application of these methods spans a wide range, from drug target identification to hit discovery and lead optimization. In this review, we firstly provide an overview of China's status in this field and briefly analyze the possible reasons for this rapid advancement. The methodology development is then outlined. For each selected method, a short background precedes an assessment of the method with respect to the needs of drug discovery, and, in particular, work from China is highlighted. Furthermore, several successful applications of these methods are illustrated. Finally, we conclude with a discussion of current major challenges and future directions of the field.
ALFRED: A Practical Method for Alignment-Free Distance Computation.
Thankachan, Sharma V; Chockalingam, Sriram P; Liu, Yongchao; Apostolico, Alberto; Aluru, Srinivas
2016-06-01
Alignment-free approaches are gaining persistent interest in many sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, especially for large-scale sequence datasets. Besides the widely used k-mer methods, the average common substring (ACS) approach has emerged to be one of the well-known alignment-free approaches. Two recent works further generalize this ACS approach by allowing a bounded number k of mismatches in the common substrings, relying on approximation (linear time) and exact computation, respectively. Albeit having a good worst-case time complexity [Formula: see text], the exact approach is complex and unlikely to be efficient in practice. Herein, we present ALFRED, an alignment-free distance computation method, which solves the generalized common substring search problem via exact computation. Compared to the theoretical approach, our algorithm is easier to implement and more practical to use, while still providing highly competitive theoretical performances with an expected run-time of [Formula: see text]. By applying our program to phylogenetic inference as a case study, we find that our program facilitates to exactly reconstruct the topology of the reference phylogenetic tree for a set of 27 primate mitochondrial genomes, at reasonably acceptable speed. ALFRED is implemented in C++ programming language and the source code is freely available online.
Approximation method to compute domain related integrals in structural studies
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2015-11-01
Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the
NASA Astrophysics Data System (ADS)
Kanta, L.; Berglund, E. Z.
2015-12-01
Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.
COMSAC: Computational Methods for Stability and Control. Part 2
NASA Technical Reports Server (NTRS)
Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)
2004-01-01
The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics.
Interpolated histogram method for area optimised median computation
NASA Astrophysics Data System (ADS)
Buch, Kaushal D.; Darji, Anand D.
2013-04-01
The article describes an area efficient algorithm for real-time approximate median computation on VLSI platforms. The improvement in performance and area optimisation are achieved through linear interpolation within a reduced number of histogram bins. In order to reduce the hardware utilisation further, an approximation technique for interpolation is also proposed. This approach extends the utility of the histogram method to data sets having a large dynamic range. The performance of the proposed algorithm in terms of mean squared error (MSE) and resource utilisation is provided and compared to that of the existing algorithms. This comparison indicates that more than 60% optimisation in resources is achieved with marginal compromise in the accuracy of the median. The proposed algorithm finds applications in the areas of image processing, time series analysis and median absolute deviation (MAD) computation.
Computational methods of the Advanced Fluid Dynamics Model
Bohl, W.R.; Wilhelm, D.; Parker, F.R.; Berthier, J.; Maudlin, P.J.; Schmuck, P.; Goutagny, L.; Ichikawa, S.; Ninokata, H.; Luck, L.B.
1987-01-01
To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development.
Unified computational method for design of fluid loop systems
NASA Astrophysics Data System (ADS)
Furukawa, Masao
1991-12-01
Various kinds of empirical formulas of Nusselt numbers, fanning friction factors, and pressure loss coefficients were collected and reviewed with the object of constructing a common basis of design calculations of pumped fluid loop systems. The practical expressions obtained after numerical modifications are listed in tables with identification numbers corresponding to configurations of the flow passages. Design procedure of a cold plate and of a space radiator are clearly shown in a series of mathematical relations coupled with a number of detailed expressions which are put in the tables in order of numerical computations. Weight estimate models and several pump characteristics are given in the tables as a result of data regression. A unified computational method based upon the above procedure is presented for preliminary design analyses of a fluid loop system consisting of cold plates, plane radiators, mechanical pumps, valves, and so on.
Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.
NASA Astrophysics Data System (ADS)
Battiti, Roberto
1990-01-01
This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from
Computation of multi-material interactions using point method
Zhang, Duan Z; Ma, Xia; Giguere, Paul T
2009-01-01
Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations
Using diagnostic radiology in human evolutionary studies
SPOOR, FRED; JEFFERY, NATHAN; ZONNEVELD, FRANS
2000-01-01
This paper reviews the application of medical imaging and associated computer graphics techniques to the study of human evolutionary history, with an emphasis on basic concepts and on the advantages and limitations of each method. Following a short discussion of plain film radiography and pluridirectional tomography, the principles of computed tomography (CT) and magnetic resonance imaging (MRI) and their role in the investigation of extant and fossil morphology are considered in more detail. The second half of the paper deals with techniques of 3-dimensional visualisation based on CT and MRI and with quantitative analysis of digital images. PMID:10999271
A modified Henyey method for computing radiative transfer hydrodynamics
NASA Technical Reports Server (NTRS)
Karp, A. H.
1975-01-01
The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.
On implicit Runge-Kutta methods for parallel computations
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
Implicit Runge-Kutta methods which are well-suited for parallel computations are characterized. It is claimed that such methods are first of all, those for which the associated rational approximation to the exponential has distinct poles, and these are called multiply explicit (MIRK) methods. Also, because of the so-called order reduction phenomenon, there is reason to require that these poles be real. Then, it is proved that a necessary condition for a q-stage, real MIRK to be A sub 0-stable with maximal order q + 1 is that q = 1, 2, 3, or 5. Nevertheless, it is shown that for every positive integer q, there exists a q-stage, real MIRK which is I-stable with order q. Finally, some useful examples of algebraically stable MIRKs are given.
Structure-based Methods for Computational Protein Functional Site Prediction
Dukka, B KC
2013-01-01
Due to the advent of high throughput sequencing techniques and structural genomic projects, the number of gene and protein sequences has been ever increasing. Computational methods to annotate these genes and proteins are even more indispensable. Proteins are important macromolecules and study of the function of proteins is an important problem in structural bioinformatics. This paper discusses a number of methods to predict protein functional site especially focusing on protein ligand binding site prediction. Initially, a short overview is presented on recent advances in methods for selection of homologous sequences. Furthermore, a few recent structural based approaches and sequence-and-structure based approaches for protein functional sites are discussed in details. PMID:24688745
A novel computational method for comparing vibrational circular dichroism spectra.
Shen, Jian; Zhu, Chengyue; Reiling, Stephan; Vaz, Roy
2010-08-01
A novel method, SimIR/VCD, for comparing experimental and calculated VCD (vibrational circular dichroism) spectra is developed, based on newly defined spectra similarities. With computationally optimized frequency scaling and shifting, a calculated spectrum can be easily identified to match an observed spectrum, which leads to an unbiased molecular chirality assignment. The time-consuming manual band-fitting work is greatly reduced. With (1S)-(-)-alpha-pinene as an example, it demonstrates that the calculated VCD similarity is correlated with VCD spectra matching quality and has enough sensitivity to identify variations in the spectra. The study also compares spectra calculated using different DFT methods and basis sets. Using this method should facilitate the spectra matching, reduce human error and provide a confidence measure in the chiral assignment using VCD spectroscopy.
Review methods for image segmentation from computed tomography images
Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi
2014-12-04
Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
Cai, Wei
2014-05-15
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.
Computational methods for long mean free path problems
NASA Astrophysics Data System (ADS)
Christlieb, Andrew Jason
This document describes work being done on particle transport in long mean free path environments. Two non statistical computational models are developed based on the method of propagators, which can have significant advantages in accuracy and efficiency over other methods. The first model has been developed primarily for charged particle transport and the second primarily for neutral particle transport. Both models are intended for application to transport in complex geometry using irregular meshes. The transport model for charged particles was inspired by the notion of obtaining a simulation that could handle complex geometry and resolve the bulk and sheath characteristics of a discharge, in a reasonable amount of computation time. The charged particle transport model has been applied in a self- consistent manner to the ion motion in a low density inductively coupled discharge. The electrons were assumed to have a Boltzmann density distribution for the computation of the electric field. This work assumes cylindrical geometry and focuses on charge exchange collisions as the primary ion collisional effect that takes place in the discharge. The results are compared to fluid simulations. The neutral transport model was constructed to solve the steady state Boltzmann equation on 3-D arbitrary irregular meshes. The neutral transport model was developed with the intent of investigating gas glow on the scale of micro-electrical-mechanical systems (MEMS), and is meant for tracking multiple species. The advantage of these methods is that the step size is determined by the mean free path of the particles rather than the mesh employed in the simulation.
A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data
NASA Technical Reports Server (NTRS)
Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.
2011-01-01
A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.
A multigrid nonoscillatory method for computing high speed flows
NASA Technical Reports Server (NTRS)
Li, C. P.; Shieh, T. H.
1993-01-01
A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Method and apparatus for managing transactions with connected computers
Goldsmith, Steven Y.; Phillips, Laurence R.; Spires, Shannon V.
2003-01-01
The present invention provides a method and apparatus that make use of existing computer and communication resources and that reduce the errors and delays common to complex transactions such as international shipping. The present invention comprises an agent-based collaborative work environment that assists geographically distributed commercial and government users in the management of complex transactions such as the transshipment of goods across the U.S.-Mexico border. Software agents can mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World-Wide Web to interface with human users.
Assessment of nonequilibrium radiation computation methods for hypersonic flows
NASA Technical Reports Server (NTRS)
Sharma, Surendra
1993-01-01
The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.
Compressive sampling in computed tomography: Method and application
NASA Astrophysics Data System (ADS)
Hu, Zhanli; Liang, Dong; Xia, Dan; Zheng, Hairong
2014-06-01
Since Donoho and Candes et al. published their groundbreaking work on compressive sampling or compressive sensing (CS), CS theory has attracted a lot of attention and become a hot topic, especially in biomedical imaging. Specifically, some CS based methods have been developed to enable accurate reconstruction from sparse data in computed tomography (CT) imaging. In this paper, we will review the progress in CS based CT from aspects of three fundamental requirements of CS: sparse representation, incoherent sampling and reconstruction algorithm. In addition, some potential applications of compressive sampling in CT are introduced.
Fan Flutter Computations Using the Harmonic Balance Method
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.
2009-01-01
An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
Experiences with the Lanczos method on a parallel computer
NASA Technical Reports Server (NTRS)
Bostic, Susan W.; Fulton, Robert E.
1987-01-01
A parallel computer implementation of the Lanczos method for the free-vibration analysis of structures is considered, and results for two example problems show substantial time-reduction over the sequential solutions. The major Lanczos calculation tasks are subdivided into subtasks, and parallelism is introduced at the subtask level. A speedup of 7.8 on eight processors was obtained for the decomposition step of the problem involving a 60-m three-longeron space mast, and a speedup of 14.6 on 16 processors was obtained for the decomposition step of the problem involving a blade-stiffened graphite-epoxy panel.
A new method to compute lunisolar perturbations in satellite motions
NASA Technical Reports Server (NTRS)
Kozai, Y.
1973-01-01
A new method to compute lunisolar perturbations in satellite motion is proposed. The disturbing function is expressed by the orbital elements of the satellite and the geocentric polar coordinates of the moon and the sun. The secular and long periodic perturbations are derived by numerical integrations, and the short periodic perturbations are derived analytically. The perturbations due to the tides can be included in the same way. In the Appendix, the motion of the orbital plane for a synchronous satellite is discussed; it is concluded that the inclination cannot stay below 7 deg.
Applications of Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.
2004-01-01
Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.
Computational methods for studying G protein-coupled receptors (GPCRs).
Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana
2016-01-01
The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level.
An experiment in hurricane track prediction using parallel computing methods
NASA Technical Reports Server (NTRS)
Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.
1994-01-01
The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.
Computation of Sound Propagation by Boundary Element Method
NASA Technical Reports Server (NTRS)
Guo, Yueping
2005-01-01
This report documents the development of a Boundary Element Method (BEM) code for the computation of sound propagation in uniform mean flows. The basic formulation and implementation follow the standard BEM methodology; the convective wave equation and the boundary conditions on the surfaces of the bodies in the flow are formulated into an integral equation and the method of collocation is used to discretize this equation into a matrix equation to be solved numerically. New features discussed here include the formulation of the additional terms due to the effects of the mean flow and the treatment of the numerical singularities in the implementation by the method of collocation. The effects of mean flows introduce terms in the integral equation that contain the gradients of the unknown, which is undesirable if the gradients are treated as additional unknowns, greatly increasing the sizes of the matrix equation, or if numerical differentiation is used to approximate the gradients, introducing numerical error in the computation. It is shown that these terms can be reformulated in terms of the unknown itself, making the integral equation very similar to the case without mean flows and simple for numerical implementation. To avoid asymptotic analysis in the treatment of numerical singularities in the method of collocation, as is conventionally done, we perform the surface integrations in the integral equation by using sub-triangles so that the field point never coincide with the evaluation points on the surfaces. This simplifies the formulation and greatly facilitates the implementation. To validate the method and the code, three canonic problems are studied. They are respectively the sound scattering by a sphere, the sound reflection by a plate in uniform mean flows and the sound propagation over a hump of irregular shape in uniform flows. The first two have analytical solutions and the third is solved by the method of Computational Aeroacoustics (CAA), all of which
Multigrid Methods for the Computation of Propagators in Gauge Fields
NASA Astrophysics Data System (ADS)
Kalkreuter, Thomas
Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.
Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.
29 CFR 779.342 - Methods of computing annual volume of sales.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Methods of computing annual volume of sales. 779.342... Establishments Computing Annual Dollar Volume and Combination of Exemptions § 779.342 Methods of computing annual... gross receipts from all sales of the establishment during a 12-month period. The methods of computing...
User's guide to SAC, a computer program for computing discharge by slope-area method
Fulford, Janice M.
1994-01-01
This user's guide contains information on using the slope-area program, SAC. SAC can be used to compute peak flood discharges from measurements of high-water marks along a stream reach. The Slope-area method used by the program is the U.S. Geological Survey (USGS) procedure presented in Techniques of Water Resources Investigations of the U.S. Geological Survey, beok 3, chapter A2, "Measurement of Peak Discharge by the Slope-Area Method." The program uses input files that have formats compatible with those used by the water-surface profile program (WSPRO) described in the Federal Highways Administration publication FHWA-IP-89-027. The guide briefly describes the slope-area method documents the input requirements and the output produced, and demonstrates use of SAC.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Computational analysis of methods for reduction of induced drag
NASA Technical Reports Server (NTRS)
Janus, J. M.; Chatterjee, Animesh; Cave, Chris
1993-01-01
The purpose of this effort was to perform a computational flow analysis of a design concept centered around induced drag reduction and tip-vortex energy recovery. The flow model solves the unsteady three-dimensional Euler equations, discretized as a finite-volume method, utilizing a high-resolution approximate Riemann solver for cell interface flux definitions. The numerical scheme is an approximately-factored block LU implicit Newton iterative-refinement method. Multiblock domain decomposition is used to partition the field into an ordered arrangement of blocks. Three configurations are analyzed: a baseline fuselage-wing, a fuselage-wing-nacelle, and a fuselage-wing-nacelle-propfan. Aerodynamic force coefficients, propfan performance coefficients, and flowfield maps are used to qualitatively access design efficacy. Where appropriate, comparisons are made with available experimental data.
Computational aeroacoustics applications based on a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Delorme, Philippe; Mazet, Pierre; Peyret, Christophe; Ventribout, Yoan
2005-09-01
CAA simulation requires the calculation of the propagation of acoustic waves with low numerical dissipation and dispersion error, and to take into account complex geometries. To give, at the same time, an answer to both challenges, a Discontinuous Galerkin Method is developed for Computational AeroAcoustics. Euler's linearized equations are solved with the Discontinuous Galerkin Method using flux splitting technics. Boundary conditions are established for rigid wall, non-reflective boundary and imposed values. A first validation, for induct propagation is realized. Then, applications illustrate: the Chu and Kovasznay's decomposition of perturbation inside uniform flow in term of independent acoustic and rotational modes, Kelvin-Helmholtz instability and acoustic diffraction by an air wing. To cite this article: Ph. Delorme et al., C. R. Mecanique 333 (2005).
Data graphing methods, articles of manufacture, and computing devices
Wong, Pak Chung; Mackey, Patrick S.; Cook, Kristin A.; Foote, Harlan P.; Whiting, Mark A.
2016-12-13
Data graphing methods, articles of manufacture, and computing devices are described. In one aspect, a method includes accessing a data set, displaying a graphical representation including data of the data set which is arranged according to a first of different hierarchical levels, wherein the first hierarchical level represents the data at a first of a plurality of different resolutions which respectively correspond to respective ones of the hierarchical levels, selecting a portion of the graphical representation wherein the data of the portion is arranged according to the first hierarchical level at the first resolution, modifying the graphical representation by arranging the data of the portion according to a second of the hierarchal levels at a second of the resolutions, and after the modifying, displaying the graphical representation wherein the data of the portion is arranged according to the second hierarchal level at the second resolution.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Hybrid Tuning of an Evolutionary Algorithm for Sensor Allocation
2011-06-01
13. SUPPLEMENTARY NOTES 2011 IEEE Conference on Evolutionary Computation , 5-8 June, New Orleans, LA. 14. ABSTRACT The application of evolutionary ...i.e. metrics) through multi-objective optimization and its capability to address non-linear classes of optimization problem. Evolutionary computation ...Yilmaz, B. N. Mcquay, H. Yu, A. S. Wu, and J. C. Sciortino, “Evolving sensor suites for enemy radar detection,” in Genetic and Evolutionary Computation
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Parallel computation of multigroup reactivity coefficient using iterative method
Susmikanti, Mike; Dewayatna, Winter
2013-09-09
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.
Applying Evolutionary Anthropology
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.
Investigating human evolutionary history
WOOD, BERNARD
2000-01-01
We rely on fossils for the interpretation of more than 95% of our evolutionary history. Fieldwork resulting in the recovery of fresh fossil evidence is an important component of reconstructing human evolutionary history, but advances can also be made by extracting additional evidence for the existing fossil record, and by improving the methods used to interpret the fossil evidence. This review shows how information from imaging and dental microstructure has contributed to improving our understanding of the hominin fossil record. It also surveys recent advances in the use of the fossil record for phylogenetic inference. PMID:10999269
Gontier, Nathalie
2010-09-01
Evolutionary epistemology can provide a unified scientific methodology that enables scholars to study the evolution of life as well as the evolution of cognition, science, culture and any other phenomenon displayed by living organisms. In this article, three heuristics are provided that allow for a thorough search for the units, levels and mechanisms of evolution. Contrary to previous approaches, units, levels and mechanisms are not identified by pointing out essential features, but rather ostensive definitions are preferred. That is, units are considered as such if a level of evolution and a mechanism of evolution is identifiable. Levels are levels if one can point out units that evolve at that level according to evolutionary mechanisms, and mechanisms are considered as such if one can point out units and levels where the mechanism is active.
Matching wind turbine rotors and loads: computational methods for designers
Seale, J.B.
1983-04-01
This report provides a comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications. The user must supply: (1) turbine aerodynamic efficiency as a function of tipspeed ratio; (2) mechanical load torque as a function of rotation speed; (3) useful delivered power as a function of incoming mechanical power; (4) site average windspeed and, for maximum accuracy, distribution data. The description of the data includes governing limits consistent with the capacities of components. The report develops, a step-by-step method for converting the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) a decision is made how turbine power is to be governed (it may self-govern) to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics come into play to predict longterm energy output. Most systems can be approximated by a graph-and-calculator approach: Computer-generated families of coefficient curves provide data for algebraic scaling formulas. The method leads not only to energy predictions, but also to insight into the processes being modeled. Direct use of a computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out witn in-depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps, including three different load-compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.
A computationally efficient spectral method for modeling core dynamics
NASA Astrophysics Data System (ADS)
Marti, P.; Calkins, M. A.; Julien, K.
2016-08-01
An efficient, spectral numerical method is presented for solving problems in a spherical shell geometry that employs spherical harmonics in the angular dimensions and Chebyshev polynomials in the radial direction. We exploit the three-term recurrence relation for Chebyshev polynomials that renders all matrices sparse in spectral space. This approach is significantly more efficient than the collocation approach and is generalizable to both the Galerkin and tau methodologies for enforcing boundary conditions. The sparsity of the matrices reduces the computational complexity of the linear solution of implicit-explicit time stepping schemes to O(N) operations, compared to O>(N2>) operations for a collocation method. The method is illustrated by considering several example problems of important dynamical processes in the Earth's liquid outer core. Results are presented from both fully nonlinear, time-dependent numerical simulations and eigenvalue problems arising from the investigation of the onset of convection and the inertial wave spectrum. We compare the explicit and implicit temporal discretization of the Coriolis force; the latter becomes computationally feasible given the sparsity of the differential operators. We find that implicit treatment of the Coriolis force allows for significantly larger time step sizes compared to explicit algorithms; for hydrodynamic and dynamo problems at an Ekman number of E=10-5, time step sizes can be increased by a factor of 3 to 16 times that of the explicit algorithm, depending on the order of the time stepping scheme. The implementation with explicit Coriolis force scales well to at least 2048 cores, while the implicit implementation scales to 512 cores.
Atomistic Method Applied to Computational Modeling of Surface Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo H.; Abel, Phillip B.
2000-01-01
The formation of surface alloys is a growing research field that, in terms of the surface structure of multicomponent systems, defines the frontier both for experimental and theoretical techniques. Because of the impact that the formation of surface alloys has on surface properties, researchers need reliable methods to predict new surface alloys and to help interpret unknown structures. The structure of surface alloys and when, and even if, they form are largely unpredictable from the known properties of the participating elements. No unified theory or model to date can infer surface alloy structures from the constituents properties or their bulk alloy characteristics. In spite of these severe limitations, a growing catalogue of such systems has been developed during the last decade, and only recently are global theories being advanced to fully understand the phenomenon. None of the methods used in other areas of surface science can properly model even the already known cases. Aware of these limitations, the Computational Materials Group at the NASA Glenn Research Center at Lewis Field has developed a useful, computationally economical, and physically sound methodology to enable the systematic study of surface alloy formation in metals. This tool has been tested successfully on several known systems for which hard experimental evidence exists and has been used to predict ternary surface alloy formation (results to be published: Garces, J.E.; Bozzolo, G.; and Mosca, H.: Atomistic Modeling of Pd/Cu(100) Surface Alloy Formation. Surf. Sci., 2000 (in press); Mosca, H.; Garces J.E.; and Bozzolo, G.: Surface Ternary Alloys of (Cu,Au)/Ni(110). (Accepted for publication in Surf. Sci., 2000.); and Garces, J.E.; Bozzolo, G.; Mosca, H.; and Abel, P.: A New Approach for Atomistic Modeling of Pd/Cu(110) Surface Alloy Formation. (Submitted to Appl. Surf. Sci.)). Ternary alloy formation is a field yet to be fully explored experimentally. The computational tool, which is based on
Buffa, Annalisa; Bochev, Pavel Blagoveston; Scovazzi, Guglielmo; Hughes, Thomas J. R.
2005-03-01
Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees-of-freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations.
Sangalli, Giancarlo; Buffa, Annalisa; Bochev, Pavel Blagoveston; Scovazzi, Guglielmo; Hughes, Thomas J. R.
2005-07-01
Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees-of-freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations.
ERIC Educational Resources Information Center
Bessey, Barbara L.; And Others
Graphical methods for displaying data, as well as available computer software and hardware, are reviewed. The authors have emphasized the types of graphs which are most relevant to the needs of the National Center for Education Statistics (NCES) and its readers. The following types of graphs are described: tabulations, stem-and-leaf displays,…
Computational Methods and Challenges for Large-Scale Circuit Mapping
Helmstaedter, Moritz; Mitra, Partha
2012-01-01
Summary The connectivity architecture of neuronal circuits is essential to understand how brains work, yet our knowledge about the neuronal wiring diagrams remains limited and partial. Technical breakthroughs in labeling and imaging methods starting more than a century ago have advanced knowledge in the field. However, the volume of data associated with imaging a whole brain or a significant fraction thereof, with electron or light microscopy, has only recently become amenable to digital storage and analysis. A mouse brain imaged at light microscopic resolution is about a terabyte of data, and 1 mm3 of the brain at EM resolution is about half a petabyte. This has given rise to a new field of research, computational analysis of large scale neuroanatomical data sets, with goals that include reconstructions of the morphology of individual neurons as well as entire circuits. The problems encountered include large data management, segmentation and 3D reconstruction, computational geometry and workflow management allowing for hybrid approaches combining manual and algorithmic processing. Here we review this growing field of neuronal data analysis with emphasis on reconstructing neurons from EM data cubes. PMID:22221862
Methods for increased computational efficiency of multibody simulations
NASA Astrophysics Data System (ADS)
Epple, Alexander
This thesis is concerned with the efficient numerical simulation of finite element based flexible multibody systems. Scaling operations are systematically applied to the governing index-3 differential algebraic equations in order to solve the problem of ill conditioning for small time step sizes. The importance of augmented Lagrangian terms is demonstrated. The use of fast sparse solvers is justified for the solution of the linearized equations of motion resulting in significant savings of computational costs. Three time stepping schemes for the integration of the governing equations of flexible multibody systems are discussed in detail. These schemes are the two-stage Radau IIA scheme, the energy decaying scheme, and the generalized-a method. Their formulations are adapted to the specific structure of the governing equations of flexible multibody systems. The efficiency of the time integration schemes is comprehensively evaluated on a series of test problems. Formulations for structural and constraint elements are reviewed and the problem of interpolation of finite rotations in geometrically exact structural elements is revisited. This results in the development of a new improved interpolation algorithm, which preserves the objectivity of the strain field and guarantees stable simulations in the presence of arbitrarily large rotations. Finally, strategies for the spatial discretization of beams in the presence of steep variations in cross-sectional properties are developed. These strategies reduce the number of degrees of freedom needed to accurately analyze beams with discontinuous properties, resulting in improved computational efficiency.
Search systems and computer-implemented search methods
Payne, Deborah A.; Burtner, Edwin R.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.
2017-03-07
Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.
Search systems and computer-implemented search methods
Payne, Deborah A.; Burtner, Edwin R.; Bohn, Shawn J.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.
2015-12-22
Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.
Methods and computer readable medium for improved radiotherapy dosimetry planning
Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.
2005-11-15
Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.
Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety
Broadhead, B.L.; Childs, R.L.; Rearden, B.T.
1999-09-20
Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community.
Modern wing flutter analysis by computational fluid dynamics methods
NASA Technical Reports Server (NTRS)
Cunningham, Herbert J.; Batina, John T.; Bennett, Robert M.
1988-01-01
The application and assessment of the recently developed CAP-TSD transonic small-disturbance code for flutter prediction is described. The CAP-TSD code has been developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures with favorable results. Generalized aerodynamic forces and flutter characteristics are calculated and compared with linear theory results and with experimental data for a 45 deg sweptback wing. These results are in good agreement with the experimental flutter data which is the first step toward validating CAP-TSD for general transonic aeroelastic applications. The paper presents these results and comparisons along with general remarks regarding modern wing flutter analysis by computational fluid dynamics methods.
Computing Correlations with Q-Sort Data for McQuitty's Pattern-Analytic Methods
ERIC Educational Resources Information Center
Lee, Jae-Won
1977-01-01
McQuitty has developed a number of pattern analytic methods that can be computed by hand, but the matrices of associations used in these methods cannot be so readily computed. A simplified but exact method of computing product moment correlations based on Q sort data for McQuitty's methods is described. (Author/JKS)
29 CFR 779.266 - Methods of computing annual volume of sales or business.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Methods of computing annual volume of sales or business... Apply; Enterprise Coverage Computing the Annual Volume § 779.266 Methods of computing annual volume of... lieu of calendar quarters in computing the annual volume. Once either basis has been adopted it must...
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
2016-01-01
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285
Matching wind turbine rotors and loads: Computational methods for designers
NASA Astrophysics Data System (ADS)
Seale, J. B.
1983-04-01
A comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications was reported. A method was developed to convert the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) it is decided how turbine power is to be governed to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics are used to predict longterm energy output. Most systems are approximated by a graph and calculator approach. The method leads to energy predictions, and to insight into modeled processes. A computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out with in depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps; including three different load compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.
Optimal pulse design in quantum control: A unified computational method
Li, Jr-Shin; Ruths, Justin; Yu, Tsyr-Yan; Arthanari, Haribabu; Wagner, Gerhard
2011-01-01
Many key aspects of control of quantum systems involve manipulating a large quantum ensemble exhibiting variation in the value of parameters characterizing the system dynamics. Developing electromagnetic pulses to produce a desired evolution in the presence of such variation is a fundamental and challenging problem in this research area. We present such robust pulse designs as an optimal control problem of a continuum of bilinear systems with a common control function. We map this control problem of infinite dimension to a problem of polynomial approximation employing tools from geometric control theory. We then adopt this new notion and develop a unified computational method for optimal pulse design using ideas from pseudospectral approximations, by which a continuous-time optimal control problem of pulse design can be discretized to a constrained optimization problem with spectral accuracy. Furthermore, this is a highly flexible and efficient numerical method that requires low order of discretization and yields inherently smooth solutions. We demonstrate this method by designing effective broadband π/2 and π pulses with reduced rf energy and pulse duration, which show significant sensitivity enhancement at the edge of the spectrum over conventional pulses in 1D and 2D NMR spectroscopy experiments. PMID:21245345
A Computational Method for Analyzing the Biomechanics of Heart Murmurs.
Zhu, Chi; Seo, Jung-Hee; Bakhshaee, Hani; Mittal, Rajat
2017-03-17
A computational framework consisting of a one-way coupled hemodynamic-acoustic method and a wave-decomposition based post-processing approach is developed to investigate the biomechanics of arterial bruits. This framework is then applied to studying the effect of the shear wave on the generation and propagation of bruits from a modeled stenosed artery. The blood flow in the artery is solved by an immersed boundary method (IBM) based incompressible flow solver. The sound generation and propagation in the blood volume is modeled by the linearized perturbed compressible equations, while the sound propagation through the surrounding tissue is modeled by the linear elastic wave equation. A decomposition method is employed to separate the acoustic signal into a compression/longitudinal component (curl free) and a shear/transverse component (divergence free), and the sound signals from cases with and without the shear modulus are monitored on the epidermal surface and are analyzed to reveal the influence of the shear wave. The results show that the compression wave dominates the detected sound signal in the immediate vicinity of the stenosis whereas the shear wave has more influence on surface signals further downstream of the stenosis. The implications of these results on cardiac auscultation are discussed.
Computational alanine scanning with linear scaling semiempirical quantum mechanical methods.
Diller, David J; Humblet, Christine; Zhang, Xiaohua; Westerhoff, Lance M
2010-08-01
Alanine scanning is a powerful experimental tool for understanding the key interactions in protein-protein interfaces. Linear scaling semiempirical quantum mechanical calculations are now sufficiently fast and robust to allow meaningful calculations on large systems such as proteins, RNA and DNA. In particular, they have proven useful in understanding protein-ligand interactions. Here we ask the question: can these linear scaling quantum mechanical methods developed for protein-ligand scoring be useful for computational alanine scanning? To answer this question, we assembled 15 protein-protein complexes with available crystal structures and sufficient alanine scanning data. In all, the data set contains Delta Delta Gs for 400 single point alanine mutations of these 15 complexes. We show that with only one adjusted parameter the quantum mechanics-based methods outperform both buried accessible surface area and a potential of mean force and compare favorably to a variety of published empirical methods. Finally, we closely examined the outliers in the data set and discuss some of the challenges that arise from this examination.
47 CFR 80.771 - Method of computing coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of computing coverage. Compute the +17 dBu contour as follows: (a) Determine the effective antenna... each point of +17 dBu field strength for all radials and draw the contour by connecting the...
47 CFR 80.771 - Method of computing coverage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of computing coverage. Compute the +17 dBu contour as follows: (a) Determine the effective antenna... each point of +17 dBu field strength for all radials and draw the contour by connecting the...
47 CFR 80.771 - Method of computing coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of computing coverage. Compute the +17 dBu contour as follows: (a) Determine the effective antenna... each point of +17 dBu field strength for all radials and draw the contour by connecting the...
An Introductory Course in Dental Computing and Research Methods.
ERIC Educational Resources Information Center
Joshi, Anil; Douglass, Chester W.
1992-01-01
A Harvard School of Dental Medicine introductory course in computer basics and providing computer-assisted instruction in scientific research methodology is described and evaluated. Most students found the coursework difficult, and only one-quarter found it relevant. Integration of computer science into content-area courses is recommended. (MSE)
Non-unitary probabilistic quantum computing circuit and method
NASA Technical Reports Server (NTRS)
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Turbopump Performance Improved by Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2002-01-01
The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
Gravitational stability computed through the limit equilibrium method revisited
NASA Astrophysics Data System (ADS)
Tinti, Stefano; Manucci, Anna
2006-01-01
The stability of slopes is a problem of great relevance for geologists and geophysicists as well as for geotechnical and geoenvironmental engineers. The classical approaches are the method of limit equilibrium, and the finite-element and finite-difference analyses of deformations. Since the former is computationally simpler and less expensive, it is more widely used in common practice, though it has some weakness points from a theoretical point of view. Essential in this technique is the definition and computation of the factor of safety F for the slope, a parameter indicating that the slope is stable, if it is larger than unity. The method is known to have not a unique solution, but it is common belief that the safety factors associated with all the solutions fulfilling the basic equilibrium equations do not differ more than 5-10 per cent from each other, which is a range of variability considered acceptable by most. Here the non-uniqueness of the solution is discussed, and it is shown that the magnitude range of F can be so large as to undermine the meaning of the safety factor criterion. The classical limit equilibrium methods based on the assumptions of cutting the sliding body into a set of vertical slices are revised, and the new concept of minimum lithostatic deviation (MLD) is introduced as a means to mitigate the effect of non-uniqueness. The paper suggests that the proper solution to the problem is the one that satisfies the equilibrium equations and minimizes the lithostatic deviation that is defined here as the ratio of the average intensity of the interslice forces and the total weight of the body. Accordingly, the factor of safety F associated with such a solution is suggested to be the value appropriate to evaluate the stability of the slope. Remarkably, the MLD principle gives us the means to introduce a completely revolutionary approach to study stability. We derive expressions that account for gravitational loading, and for additional effects such
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Gyrokinetic Theory and Computational Methods for Electromagnetic Perturbations in Tokamaks
NASA Astrophysics Data System (ADS)
Qin, H.; Tang, W. M.; Rewoldt, G.
1998-11-01
A general gyrokinetic formalism and computational methods have been developed for electromagnetic perturbations in toroidal plasmas. This formalism and the associated numerical code represent the first self-consistent, comprehensive, fully kinetic model for treating both MHD instabilities and electromagnetic drift waves(H. Qin, W. M. Tang, and G. Rewoldt, Phys. Plasmas 5), 1035 (1998). The gyrokinetic system of equations is derived by phase-space Lagrangian Lie perturbation methods. An important component missing from previous gyrokinetic theories, the gyrokinetic perpendicular dynamics, is identified and developed. The corresponding numerical code, KIN-2DEM, has been systematically benchmarked against the high-n FULL code, the PEST code, and the NOVA-K code for kinetic ballooning modes, internal kink modes, and TAEs, respectively. For the internal kink mode, it is found that kinetic effects due to trapped ions can significantly modify the γ vs. q0 curve. For the destabilization of the TAEs by energetic particles, comparisons have been made between the non-perturbative, fully kinetic KIN-2DEM results and the perturbative hybrid NOVA-K results.
Semi-coarsening multigrid methods for parallel computing
Jones, J.E.
1996-12-31
Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.
A stoichiometric calibration method for dual energy computed tomography
NASA Astrophysics Data System (ADS)
Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo
2014-04-01
The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic
Interactive computer methods for generating mineral-resource maps
Calkins, James Alfred; Crosby, A.S.; Huffman, T.E.; Clark, A.L.; Mason, G.T.; Bascle, R.J.
1980-01-01
Inasmuch as maps are a basic tool of geologists, the U.S. Geological Survey's CRIB (Computerized Resources Information Bank) was constructed so that the data it contains can be used to generate mineral-resource maps. However, by the standard methods used-batch processing and off-line plotting-the production of a finished map commonly takes 2-3 weeks. To produce computer-generated maps more rapidly, cheaply, and easily, and also to provide an effective demonstration tool, we have devised two related methods for plotting maps as alternatives to conventional batch methods. These methods are: 1. Quick-Plot, an interactive program whose output appears on a CRT (cathode-ray-tube) device, and 2. The Interactive CAM (Cartographic Automatic Mapping system), which combines batch and interactive runs. The output of the Interactive CAM system is final compilation (not camera-ready) paper copy. Both methods are designed to use data from the CRIB file in conjunction with a map-plotting program. Quick-Plot retrieves a user-selected subset of data from the CRIB file, immediately produces an image of the desired area on a CRT device, and plots data points according to a limited set of user-selected symbols. This method is useful for immediate evaluation of the map and for demonstrating how trial maps can be made quickly. The Interactive CAM system links the output of an interactive CRIB retrieval to a modified version of the CAM program, which runs in the batch mode and stores plotting instructions on a disk, rather than on a tape. The disk can be accessed by a CRT, and, thus, the user can view and evaluate the map output on a CRT immediately after a batch run, without waiting 1-3 days for an off-line plot. The user can, therefore, do most of the layout and design work in a relatively short time by use of the CRT, before generating a plot tape and having the map plotted on an off-line plotter.
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
ERIC Educational Resources Information Center
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
2006-02-01
International Journal of Computational Methods for...Fluids, in review. "* V. Prabhakar and J. N. Reddy, "Orthogonality of Modal Bases," International Journal of Computational Methods for Fluids...Least-Squares Finite Element Model for Incompressible Navier-Stokes Equations," International Journal of Computational Methods for Fluids, in review.
34 CFR 682.304 - Methods for computing interest benefits and special allowance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 3 2010-07-01 2010-07-01 false Methods for computing interest benefits and special...) PROGRAM Federal Payments of Interest and Special Allowance § 682.304 Methods for computing interest... shall use the average daily balance method to determine the balance on which the Secretary computes...
26 CFR 1.669(a)-3 - Tax computed by the exact throwback method.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Tax computed by the exact throwback method. 1... Taxable Years Beginning Before January 1, 1969 § 1.669(a)-3 Tax computed by the exact throwback method. (a... compute the tax, on amounts deemed distributed under section 666, by the exact throwback method...
26 CFR 1.167(b)-0 - Methods of computing depreciation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Methods of computing depreciation. 1.167(b)-0....167(b)-0 Methods of computing depreciation. (a) In general. Any reasonable and consistently applied method of computing depreciation may be used or continued in use under section 167. Regardless of...
An Evolutionary View of the Arms Race between Protein Kinase R and Large DNA Viruses
Carpentier, Kathryn S.
2016-01-01
To establish productive infections, viruses must counteract numerous cellular defenses that are poised to recognize viruses as nonself and to activate antiviral pathways. The opposing goals of host and viral factors lead to evolutionary arms races that can be illuminated by evolutionary and computational methods and tested in experimental models. Here we illustrate how this perspective has been contributing to our understanding of the interactions of the protein kinase R pathway with large DNA viruses. PMID:26792736
Mobile Detection of Fugitive Emissions using Computationally Optimized Geochemical Methods
NASA Astrophysics Data System (ADS)
Marshall, A. D.; Risk, D. A.; Lavoie, M.; Brooks, B. G.; Macintyre, C. M.; Baillie, J.; Laybolt, W. D.; Williams, J. P.; Goeckede, M.; Phillips, C. L.
2015-12-01
The grand challenge of surface leak monitoring is to detect and attribute even small leaks across large energy development sites, which often span hundreds of square kilometres. Ratio-based geochemical methods show great potential for near-surface leak detection and attribution in vehicle-based mobile surveys. Ratios are useful especially when applied to concentration anomalies that exceed the Ambient Background (ABG), because they preserve the ratio of emission, and allow for more definitive attribution. Predicting ABG is, however, difficult because its variance originates from many processes including atmospheric patterns, local vegetation, other natural factors, and human activity. Here we present a method of vehicle-based atmospheric leak detection. We have developed a signal conditioning process for accommodating a variable ABG throughout a survey dataset. ABG is the lowest value of a species within a time interval of variable length, and anomalies are detected when ratios of excess concentration (above ABG) exceed defined ratio limits based on expected sources. We computationally iterate through many configurations of ABG time interval and other parameters to find an optimized scenario. In surveys of CH4, δ13CH4, CO2 and H2S at a large energy development with active infrastructure, we compared our technique to a concentration threshold detection technique (2 ppm CH4), and a variation of our process where ABG is assumed to be the lowest dataset value. Across ~1500 km of survey data, our process detected 8 times more leak anomalies than did the threshold technique. The lowest value background technique detected a similar number of leak anomalies as the optimized ABG, but was oversensitive to combustion (CO2-rich) emissions. With the optimized scenarios we observed some persistent leak anomalies in as many as 50% of survey passes, throughout different seasons and wind conditions. Leak persistence showed no significant relationship to leak size. CO2-rich leaks
Spore: Spawning Evolutionary Misconceptions?
NASA Astrophysics Data System (ADS)
Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.
2010-10-01
The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.
Wagner, Günter P; Lynch, Vincent J
2010-01-26
How novel traits arise in organisms has long been a major problem in biology. Indeed, the sharpest critiques of Darwin's theory of evolution by natural selection often centered on explaining how novel body parts arose. In his response to The Origin of Species, St. George J. Mivart challenged Darwin to explain the origin of evolutionary novelties such as the mammary gland, asking if it was "conceivable that the young of any animal was ever saved from destruction by accidentally sucking a drop of scarcely nutritious fluid from an accidentally hypertrophied cutaneous gland of its mother?" It is only now that modern molecular and genomic tools are being brought to bear on this question that we are finally in a position to answer Mivart's challenge and explain one of the most fundamental questions of biology: how does novelty arise in evolution?
Lanczos eigensolution method for high-performance computers
NASA Technical Reports Server (NTRS)
Bostic, Susan W.
1991-01-01
The theory, computational analysis, and applications are presented of a Lanczos algorithm on high performance computers. The computationally intensive steps of the algorithm are identified as: the matrix factorization, the forward/backward equation solution, and the matrix vector multiples. These computational steps are optimized to exploit the vector and parallel capabilities of high performance computers. The savings in computational time from applying optimization techniques such as: variable band and sparse data storage and access, loop unrolling, use of local memory, and compiler directives are presented. Two large scale structural analysis applications are described: the buckling of a composite blade stiffened panel with a cutout, and the vibration analysis of a high speed civil transport. The sequential computational time for the panel problem executed on a CONVEX computer of 181.6 seconds was decreased to 14.1 seconds with the optimized vector algorithm. The best computational time of 23 seconds for the transport problem with 17,000 degs of freedom was on the the Cray-YMP using an average of 3.63 processors.
Validation of viscous and inviscid computational methods for turbomachinery components
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1986-01-01
An assessment of several three-dimensional computer codes used at the NASA Lewis Research Center is presented. Four flow situations are examined, for which both experimental data and computational results are available. The four flows form a basis for the evaluation of the computational procedures. It is concluded that transonic rotor flow at peak efficiency conditions may be calculated with a reasonable degree of accuracy, whereas, off-design conditions are not accurately determined. Duct flows and turbine cascade flows may also be computed with reasonable accuracy whereas radial inflow turbine flow remains a challenging problem.
Evolutionary pattern search algorithms
Hart, W.E.
1995-09-19
This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimental analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.
Recent advances in computational structural reliability analysis methods
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.
1993-01-01
The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.
Formulations and computational methods for contact problems in solid mechanics
NASA Astrophysics Data System (ADS)
Mirar, Anand Ramchandra
2000-11-01
A study of existing formulations and computational methods for contact problems is conducted. The purpose is to gain insights into the solution procedures and pinpoint their limitations so that alternate procedures can be developed. Three such procedures based on the augmented Lagrangian method (ALM) are proposed. Small-scale benchmark problems are solved analytically as well as numerically to study the existing and proposed methods. The variational inequality formulation for frictionless contact is studied using the two bar truss-wall problem in a closed form. Sub-differential formulation is investigated using the spring-wall contact and the truss-wall friction problems. A two-phase analytical procedure is developed for solving the truss-wall frictional contact benchmark problem. The variational equality formulation for contact problems is studied using the penalty method along with the Newton-Raphson procedure. Limitations of such procedures, mainly due to their dependence on the user defined parameters (i.e., the penalty values and the number of time steps), are identified. Based on the study it is concluded that alternate formulations need to be developed. Frictionless contact formulation is developed using the basic concepts of ALM from optimization theory. A new frictional contact formulation (ALM1) is then developed employing ALM. Automatic penalty update procedure is used to eliminate dependence of the solution on the penalty values. Dependence of the solution on the number of time steps in the existing as well as ALM1 formulations is attributed to a flaw in the return mapping procedure for friction. Another new frictional contact formulation (ALM2) is developed to eliminate the dependence of solution on the number of time steps along with the penalty values. Effectiveness of ALM2 is demonstrated by solving the two bar and five bar truss-wall problems. The solutions are compared with the analytical and existing formulations. Design sensitivity analysis of
Evaluating Computer Automated Scoring: Issues, Methods, and an Empirical Illustration
ERIC Educational Resources Information Center
Yang, Yongwei; Buckendahl, Chad W.; Juszkiewicz, Piotr J.; Bhola, Dennison S.
2005-01-01
With the continual progress of computer technologies, computer automated scoring (CAS) has become a popular tool for evaluating writing assessments. Research of applications of these methodologies to new types of performance assessments is still emerging. While research has generally shown a high agreement of CAS system generated scores with those…
Students' Attitudes towards Control Methods in Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Hintze, Hanne; And Others
1988-01-01
Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…
Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks
NASA Astrophysics Data System (ADS)
Qin, Hong
A general gyrokinetic formalism and appropriate computational methods have been developed for electromagnetic perturbations in toroidal plasmas. This formalism and associated numerical code represent the first self-consistent, comprehensive, fully kinetic model for treating both magnetohydrodynamic (MHD) instabilities and electromagnetic drift waves. The gyrokinetic system of equation is derived by phase- space Lagrangian Lie perturbation methods which enable applications to modes with arbitrary wavelength. An important component missing from previous electromagnetic gyrokinetic theories, the gyrokinetic perpendicular dynamics, is identified and developed in the present analysis. This is accomplished by introducing a new ``distribution function'' and an associated governing gyrokinetic equation. Consequently, the compressional Alfvén waves and cyclotron waves can be systematically treated. The new insights into the gyrokinetic perpendicular dynamics uncovered here clarify the understanding of the gyrokinetic approach-the real spirit of the gyrokinetic reduction is to decouple the gyromotion from the guiding center orbital motion, instead of averaging it out. The gyrokinetic perpendicular dynamics is in fact essential to the recovery of the MHD model from a fully kinetic derivation. In particular, it serves to generalize, in gyrokinetic framework, Spitzer's solution of the fluid/particle paradox to a broader regime of applicability. The gyrokinetic system is also shown to be reducible to a simpler form to deal with shear Alfvén waves. This consists of an appropriate form of the gyrokinetic equation governing the distribution function, the gyrokinetic Poisson equation, and a newly derived gyrokinetic moment equation. If all of the kinetic effects are neglected, the gyrokinetic moment equation is shown to recover the ideal MHD equation for shear Alfvén modes. In addition, a gyrokinetic Ohm's law, including both the perpendicular and the parallel components, is
Four-stage computational technology with adaptive numerical methods for computational aerodynamics
NASA Astrophysics Data System (ADS)
Shaydurov, V.; Liu, T.; Zheng, Z.
2012-10-01
Computational aerodynamics is a key technology in aircraft design which is ahead of physical experiment and complements it. Of course all three components of computational modeling are actively developed: mathematical models of real aerodynamic processes, numerical algorithms, and high-performance computing. The most impressive progress has been made in the field of computing, though with a considerable complication of computer architecture. Numerical algorithms are developed more conservative. More precisely, they are offered and theoretically justified for more simple mathematical problems. Nevertheless, computational mathematics now has amassed a whole palette of numerical algorithms that can provide acceptable accuracy and interface between modern mathematical models in aerodynamics and high-performance computers. A significant step in this direction was the European Project ADIGMA whose positive experience will be used in International Project TRISTAM for further movement in the field of computational technologies for aerodynamics. This paper gives a general overview of objectives and approaches intended to use and a description of the recommended four-stage computer technology.
Parallel Evolutionary Optimization for Neuromorphic Network Training
Schuman, Catherine D; Disney, Adam; Singh, Susheela; Bruer, Grant; Mitchell, John Parker; Klibisz, Aleksander; Plank, James
2016-01-01
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.
ERIC Educational Resources Information Center
Fritsch, Helmut; And Others
1989-01-01
The authors present reports of current research on distance education at the FernUniversitat in West Germany. Fritsch discusses adapting distance education techniques for small classes. Kuffner describes procedures for providing feedback to students using personalized computer-generated letters. Klute discusses using a computer with tutorial…
A Study into Advanced Guidance Laws Using Computational Methods
2011-12-01
computing aerodynamic forces % and moments. Except where noted, all dimensions in % MKS system. % Inputs...9] R. L. Shaw, Fighter Combat: Tactics and Maneuvering. Annapolis, MD: Naval Institute Press, 1988. [10] U. S. Shukla and P. R. Mahapatra
Asronomical refraction: Computational methods for all zenith angles
NASA Technical Reports Server (NTRS)
Auer, L. H.; Standish, E. M.
2000-01-01
It is shown that the problem of computing astronomical refraction for any value of the zenith angle may be reduced to a simple, nonsingular, numerical quadrature when the proper choice is made for the independent variable of integration.
Protein stability: computation, sequence statistics, and new experimental methods
Magliery, Thomas J.
2015-01-01
Calculating protein stability and predicting stabilizing mutations remain exceedingly difficult tasks, largely due to the inadequacy of potential functions, the difficulty of modeling entropy and the unfolded state, and challenges of sampling, particularly of backbone conformations. Yet, computational design has produced some remarkably stable proteins in recent years, apparently owing to near ideality in structure and sequence features. With caveats, computational prediction of stability can be used to guide mutation, and mutations derived from consensus sequence analysis, especially improved by recent co-variation filters, are very likely to stabilize without sacrificing function. The combination of computational and statistical approaches with library approaches, including new technologies such as deep sequencing and high throughput stability measurements, point to a very exciting near term future for stability engineering, even with difficult computational issues remaining. PMID:26497286
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
Sanfilippo, Antonio P [Richland, WA; Tratz, Stephen C [Richland, WA; Gregory, Michelle L [Richland, WA; Chappell, Alan R [Seattle, WA; Whitney, Paul D [Richland, WA; Posse, Christian [Seattle, WA; Baddeley, Robert L [Richland, WA; Hohimer, Ryan E [West Richland, WA
2011-10-11
Methods of defining ontologies, word disambiguation methods, computer systems, and articles of manufacture are described according to some aspects. In one aspect, a word disambiguation method includes accessing textual content to be disambiguated, wherein the textual content comprises a plurality of words individually comprising a plurality of word senses, for an individual word of the textual content, identifying one of the word senses of the word as indicative of the meaning of the word in the textual content, for the individual word, selecting one of a plurality of event classes of a lexical database ontology using the identified word sense of the individual word, and for the individual word, associating the selected one of the event classes with the textual content to provide disambiguation of a meaning of the individual word in the textual content.
An alternative computational method for finding the minimum-premium insurance portfolio
NASA Astrophysics Data System (ADS)
Katsikis, Vasilios N.
2016-06-01
In this article, we design a computational method, which differs from the standard linear programming techniques, for computing the minimum-premium insurance portfolio. The corresponding algorithm as well as a Matlab implementation are provided.
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to
The evolution of emergent computation.
Crutchfield, J P; Mitchell, M
1995-01-01
A simple evolutionary process can discover sophisticated methods for emergent information processing in decentralized spatially extended systems. The mechanisms underlying the resulting emergent computation are explicated by a technique for analyzing particle-based logic embedded in pattern-forming systems. Understanding how globally coordinated computation can emerge in evolution is relevant both for the scientific understanding of natural information processing and for engineering new forms of parallel computing systems. PMID:11607588
Recent advances in computational methods for nuclear magnetic resonance data processing.
Gao, Xin
2013-02-01
Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.
Progress Towards Computational Method for Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, C. L.; Anders, S. G.
2005-01-01
The compressible Reynolds-averaged Navier-Stokes equations are solved for circulation control airfoil flows. Numerical solutions are computed with both structured and unstructured grid solvers. Several turbulence models are considered, including the Spalart-Allmaras model with and without curvature corrections, the shear stress transport model of Menter, and the k-enstrophy model. Circulation control flows with jet momentum coefficients of 0.03, 0.10, and 0.226 are considered. Comparisons are made between computed and experimental pressure distributions, velocity profiles, Reynolds stress profiles, and streamline patterns. Including curvature effects yields the closest agreement with the measured data.
Method for simulating paint mixing on computer monitors
NASA Astrophysics Data System (ADS)
Carabott, Ferdinand; Lewis, Garth; Piehl, Simon
2002-06-01
Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.
Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution
ERIC Educational Resources Information Center
Subramanian, Venkat R.
2006-01-01
High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…
Multigrid Methods on Parallel Computers: A Survey on Recent Developments
1990-12-01
multi- color (red-black, four color etc.) order- ing of the grid points. Clearly, computation of defects, interpolation and restriction can be also...73716 72555 .984 85750 82919 95800 85206 .889 113086 97406 16406 16383 .999 22042 21845 23024 21853 .949 31668 29143 Table 6: Evaluated time
Computer-Graphics and the Literary Construct: A Learning Method.
ERIC Educational Resources Information Center
Henry, Avril
2002-01-01
Describes an undergraduate student module that was developed at the University of Exeter (United Kingdom) in which students made their own computer graphics to discover and to describe literary structures in texts of their choice. Discusses learning outcomes and refers to the Web site that shows students' course work. (Author/LRW)
New Methods of Mobile Computing: From Smartphones to Smart Education
ERIC Educational Resources Information Center
Sykes, Edward R.
2014-01-01
Every aspect of our daily lives has been touched by the ubiquitous nature of mobile devices. We have experienced an exponential growth of mobile computing--a trend that seems to have no limit. This paper provides a report on the findings of a recent offering of an iPhone Application Development course at Sheridan College, Ontario, Canada. It…
Computed tomography as a definitive method for diagnosing gastrointestinal lipomas
Heiken. J.P.; Forde, K.A; Gold, R.P.
1982-02-01
Four cases of gastrointestinal lipoma that were demonstrated by computed tomography (CT) are presented. Until now, definitive diagnosis of gastrointestinal lipomas has required fiberoptic endoscopy, biopsy, or surgical excision. The results of this study indicate that CT may become a definitive diagnostic examination for lipomas of the gastrointestinal tract.
Simple computer method provides contours for radiological images
NASA Technical Reports Server (NTRS)
Newell, J. D.; Keller, R. A.; Baily, N. A.
1975-01-01
Computer is provided with information concerning boundaries in total image. Gradient of each point in digitized image is calculated with aid of threshold technique; then there is invoked set of algorithms designed to reduce number of gradient elements and to retain only major ones for definition of contour.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, B.T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
NASA Astrophysics Data System (ADS)
Hirsch, Ch.; Periaux, J.; Onate, E.
A conference on computational fluid dynamics and numerical methods in engineering produced on topics that included turbulent flows, combustion, hypersonic reacting flows, atmospheric dispersion, multiphase flows, grid generation and adapation, numerical modeling of composite structures, shape optimization, semiconductors, and domain decomposition methods. For individual titles, see A95-87553 through A95-87567.
Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.
ERIC Educational Resources Information Center
Heald, Emerson F.
1978-01-01
Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)
Nishimaru, Eiji; Ichikawa, Katsuhiro; Hara, Takanori; Terakawa, Shoichi; Yokomachi, Kazushi; Fujioka, Chikako; Kiguchi, Masao; Ishifuro, Minoru
2012-01-01
Adaptive iterative reconstruction techniques (IRs) can decrease image noise in computed tomography (CT) and are expected to contribute to reduction of the radiation dose. To evaluate the performance of IRs, the conventional two-dimensional (2D) noise power spectrum (NPS) is widely used. However, when an IR provides an NPS value drop at all spatial frequency (which is similar to NPS changes by dose increase), the conventional method cannot evaluate the correct noise property because the conventional method does not correspond to the volume data natures of CT images. The purpose of our study was to develop a new method for NPS measurements that can be adapted to IRs. Our method utilized thick multi-planar reconstruction (MPR) images. The thick images are generally made by averaging CT volume data in a direction perpendicular to a MPR plane (e.g. z-direction for axial MPR plane). By using this averaging technique as a cutter for 3D-NPS, we can obtain adequate 2D-extracted NPS (eNPS) from 3D NPS. We applied this method to IR images generated with adaptive iterative dose reduction 3D (AIDR-3D, Toshiba) to investigate the validity of our method. A water phantom with 24 cm-diameters was scanned at 120 kV and 200 mAs with a 320-row CT (Acquilion One, Toshiba). From the results of study, the adequate thickness of MPR images for eNPS was more than 25.0 mm. Our new NPS measurement method utilizing thick MPR images was accurate and effective for evaluating noise reduction effects of IRs.
A method for computing the leading-edge suction in a higher-order panel method
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Manro, M. E.
1984-01-01
Experimental data show that the phenomenon of a separation induced leading edge vortex is influenced by the wing thickness and the shape of the leading edge. Both thickness and leading edge shape (rounded rather than point) delay the formation of a vortex. Existing computer programs used to predict the effect of a leading edge vortex do not include a procedure for determining whether or not a vortex actually exists. Studies under NASA Contract NAS1-15678 have shown that the vortex development can be predicted by using the relationship between the leading edge suction coefficient and the parabolic nose drag. The linear theory FLEXSTAB was used to calculate the leading edge suction coefficient. This report describes the development of a method for calculating leading edge suction using the capabilities of the higher order panel methods (exact boundary conditions). For a two dimensional case, numerical methods were developed using the double strength and downwash distribution along the chord. A Gaussian quadrature formula that directly incorporates the logarithmic singularity in the downwash distribution, at all panel edges, was found to be the best method.
Methods in Computational Neuroscience: Marine Biology Laboratory Student Projects
1988-11-01
models of hippocampal subsystems, a model of single CA3 and CAt pyramidal neurons was constructed with GENESIS. Biophysical and electrophysiological data...intrinsic to the hippocampus. The circuit included a CAl pyramidal cell and two inhibitory interneurons , one feed-forward, one feedback. Using known... electrophysiological results obtained from detailed experiments for this visual system, the neural network simulator GENESIS has been used during the Computational
Computational Methods for the Analysis of Array Comparative Genomic Hybridization
Chari, Raj; Lockwood, William W.; Lam, Wan L.
2006-01-01
Array comparative genomic hybridization (array CGH) is a technique for assaying the copy number status of cancer genomes. The widespread use of this technology has lead to a rapid accumulation of high throughput data, which in turn has prompted the development of computational strategies for the analysis of array CGH data. Here we explain the principles behind array image processing, data visualization and genomic profile analysis, review currently available software packages, and raise considerations for future software development. PMID:17992253
Managing expectations when publishing tools and methods for computational proteomics.
Martens, Lennart; Kohlbacher, Oliver; Weintraub, Susan T
2015-05-01
Computational tools are pivotal in proteomics because they are crucial for identification, quantification, and statistical assessment of data. The gateway to finding the best choice of a tool or approach for a particular problem is frequently journal articles, yet there is often an overwhelming variety of options that makes it hard to decide on the best solution. This is particularly difficult for nonexperts in bioinformatics. The maturity, reliability, and performance of tools can vary widely because publications may appear at different stages of development. A novel idea might merit early publication despite only offering proof-of-principle, while it may take years before a tool can be considered mature, and by that time it might be difficult for a new publication to be accepted because of a perceived lack of novelty. After discussions with members of the computational mass spectrometry community, we describe here proposed recommendations for organization of informatics manuscripts as a way to set the expectations of readers (and reviewers) through three different manuscript types that are based on existing journal designations. Brief Communications are short reports describing novel computational approaches where the implementation is not necessarily production-ready. Research Articles present both a novel idea and mature implementation that has been suitably benchmarked. Application Notes focus on a mature and tested tool or concept and need not be novel but should offer advancement from improved quality, ease of use, and/or implementation. Organizing computational proteomics contributions into these three manuscript types will facilitate the review process and will also enable readers to identify the maturity and applicability of the tool for their own workflows.
From Image Analysis to Computer Vision: Motives, Methods, and Milestones.
1998-07-01
images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision
Unconventional methods of imaging: computational microscopy and compact implementations
NASA Astrophysics Data System (ADS)
McLeod, Euan; Ozcan, Aydogan
2016-07-01
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
Computational Systems Biology in Cancer: Modeling Methods and Applications
Materi, Wayne; Wishart, David S.
2007-01-01
In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy. PMID:19936081
Advanced Computational Methods for Security Constrained Financial Transmission Rights
Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria; Zhou, Ning; Huang, Zhenyu
2012-07-26
Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulation of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.
Frequency response modeling and control of flexible structures: Computational methods
NASA Technical Reports Server (NTRS)
Bennett, William H.
1989-01-01
The dynamics of vibrations in flexible structures can be conventiently modeled in terms of frequency response models. For structural control such models capture the distributed parameter dynamics of the elastic structural response as an irrational transfer function. For most flexible structures arising in aerospace applications the irrational transfer functions which arise are of a special class of pseudo-meromorphic functions which have only a finite number of right half place poles. Computational algorithms are demonstrated for design of multiloop control laws for such models based on optimal Wiener-Hopf control of the frequency responses. The algorithms employ a sampled-data representation of irrational transfer functions which is particularly attractive for numerical computation. One key algorithm for the solution of the optimal control problem is the spectral factorization of an irrational transfer function. The basis for the spectral factorization algorithm is highlighted together with associated computational issues arising in optimal regulator design. Options for implementation of wide band vibration control for flexible structures based on the sampled-data frequency response models is also highlighted. A simple flexible structure control example is considered to demonstrate the combined frequency response modeling and control algorithms.
Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures
Bryson, David M.; Ofria, Charles
2013-01-01
We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a
Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Chen, Jen-Ping
2012-01-01
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.
Alex J. Dragt
2012-08-31
Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.
An historical survey of computational methods in optimal control.
NASA Technical Reports Server (NTRS)
Polak, E.
1973-01-01
Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.
Computation of nonparametric convex hazard estimators via profile methods
Jankowski, Hanna K.; Wellner, Jon A.
2010-01-01
This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females. PMID:20300560
A method of computational magnetohydrodynamics defining stable Scyllac equilibria
Betancourt, Octavio; Garabedian, Paul
1977-01-01
A computer code has been developed for the numerical calculation of sharp boundary equilibria of a toroidal plasma with diffuse pressure profile. This generalizes earlier work that was done separately on the sharp boundary and diffuse models, and it allows for large amplitude distortions of the plasma in three-dimensional space. By running the code, equilibria that are stable to the so-called m = 1, k = 0 mode have been found for Scyllac, which is a high beta toroidal confinement device of very large aspect ratio. PMID:16592383
Shielding analysis methods available in the scale computational system
Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.
1986-01-01
Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.
Predicted PAR1 inhibitors from multiple computational methods
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Jinfeng; Zhu, Tong; Zhang, Lujia; He, Xiao; Zhang, John Z. H.
2016-08-01
Multiple computational approaches are employed in order to find potentially strong binders of PAR1 from the two molecular databases: the Specs database containing more than 200,000 commercially available molecules and the traditional Chinese medicine (TCM) database. By combining the use of popular docking scoring functions together with detailed molecular dynamics simulation and protein-ligand free energy calculations, a total of fourteen molecules are found to be potentially strong binders of PAR1. The atomic details in protein-ligand interactions of these molecules with PAR1 are analyzed to help understand the binding mechanism which should be very useful in design of new drugs.
Introduction to Computational Methods for Stability and Control (COMSAC)
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Fremaux, C. Michael; Chambers, Joseph R.
2004-01-01
This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.
Lattice QCD computations: Recent progress with modern Krylov subspace methods
Frommer, A.
1996-12-31
Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.
Advanced Computational Methods for Thermal Radiative Heat Transfer
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Evolutionary status of Polaris
NASA Astrophysics Data System (ADS)
Fadeyev, Yu. A.
2015-05-01
Hydrodynamic models of short-period Cepheids were computed to determine the pulsation period as a function of evolutionary time during the first and third crossings of the instability strip. The equations of radiation hydrodynamics and turbulent convection for radial stellar pulsations were solved with the initial conditions obtained from the evolutionary models of Population I stars (X = 0.7, Z = 0.02) with masses from 5.2 to 6.5 M⊙ and the convective core overshooting parameter 0.1 ≤ αov ≤ 0.3. In Cepheids with period of 4 d the rate of pulsation period change during the first crossing of the instability strip is over 50 times larger than that during the third crossing. Polaris is shown to cross the instability strip for the first time and to be the fundamental mode pulsator. The best agreement between the predicted and observed rates of period change was obtained for the model with mass of 5.4 M⊙ and the overshooting parameter αov = 0.25. The bolometric luminosity and radius are L = 1.26 × 103 L⊙ and R = 37.5 R⊙, respectively. In the HR diagram, Polaris is located at the red edge of the instability strip.
Thermal radiation view factor: Methods, accuracy and computer-aided procedures
NASA Technical Reports Server (NTRS)
Kadaba, P. V.
1982-01-01
The computer aided thermal analysis programs which predicts the result of predetermined acceptable temperature range prior to stationing of these orbiting equipment in various attitudes with respect to the Sun and the Earth was examined. Complexity of the surface geometries suggests the use of numerical schemes for the determination of these viewfactors. Basic definitions and standard methods which form the basis for various digital computer methods and various numerical methods are presented. The physical model and the mathematical methods on which a number of available programs are built are summarized. The strength and the weaknesses of the methods employed, the accuracy of the calculations and the time required for computations are evaluated. The situations where accuracies are important for energy calculations are identified and methods to save computational times are proposed. Guide to best use of the available programs at several centers and the future choices for efficient use of digital computers are included in the recommendations.
Permeability computation on a REV with an immersed finite element method
Laure, P.; Puaux, G.; Silva, L.; Vincent, M.
2011-05-04
An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.
A low computation cost method for seizure prediction.
Zhang, Yanli; Zhou, Weidong; Yuan, Qi; Wu, Qi
2014-10-01
The dynamic changes of electroencephalograph (EEG) signals in the period prior to epileptic seizures play a major role in the seizure prediction. This paper proposes a low computation seizure prediction algorithm that combines a fractal dimension with a machine learning algorithm. The presented seizure prediction algorithm extracts the Higuchi fractal dimension (HFD) of EEG signals as features to classify the patient's preictal or interictal state with Bayesian linear discriminant analysis (BLDA) as a classifier. The outputs of BLDA are smoothed by a Kalman filter for reducing possible sporadic and isolated false alarms and then the final prediction results are produced using a thresholding procedure. The algorithm was evaluated on the intracranial EEG recordings of 21 patients in the Freiburg EEG database. For seizure occurrence period of 30 min and 50 min, our algorithm obtained an average sensitivity of 86.95% and 89.33%, an average false prediction rate of 0.20/h, and an average prediction time of 24.47 min and 39.39 min, respectively. The results confirm that the changes of HFD can serve as a precursor of ictal activities and be used for distinguishing between interictal and preictal epochs. Both HFD and BLDA classifier have a low computational complexity. All of these make the proposed algorithm suitable for real-time seizure prediction.
Yoshidome, Takashi; Ekimoto, Toru; Matubayasi, Nobuyuki; Harano, Yuichi; Kinoshita, Masahiro; Ikeguchi, Mitsunori
2015-05-07
The hydration free energy (HFE) is a crucially important physical quantity to discuss various chemical processes in aqueous solutions. Although an explicit-solvent computation with molecular dynamics (MD) simulations is a preferable treatment of the HFE, huge computational load has been inevitable for large, complex solutes like proteins. In the present paper, we propose an efficient computation method for the HFE. In our method, the HFE is computed as a sum of 〈UUV〉/2 (〈UUV〉 is the ensemble average of the sum of pair interaction energy between solute and water molecule) and the water reorganization term mainly reflecting the excluded volume effect. Since 〈UUV〉 can readily be computed through a MD of the system composed of solute and water, an efficient computation of the latter term leads to a reduction of computational load. We demonstrate that the water reorganization term can quantitatively be calculated using the morphometric approach (MA) which expresses the term as the linear combinations of the four geometric measures of a solute and the corresponding coefficients determined with the energy representation (ER) method. Since the MA enables us to finish the computation of the solvent reorganization term in less than 0.1 s once the coefficients are determined, the use of the MA enables us to provide an efficient computation of the HFE even for large, complex solutes. Through the applications, we find that our method has almost the same quantitative performance as the ER method with substantial reduction of the computational load.
Mapping methods for computationally efficient and accurate structural reliability
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1992-01-01
Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of: (1) deterministic structural analyses with fine (convergent) finite element meshes, (2) probabilistic structural analyses with coarse finite element meshes, (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes, and (4) a probabilistic mapping. The results show that the scatter of the probabilistic structural responses and structural reliability can be accurately predicted using a coarse finite element model with proper mapping methods. Therefore, large structures can be analyzed probabilistically using finite element methods.
Mapping methods for computationally efficient and accurate structural reliability
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1992-01-01
Mapping methods are developed to improve the accuracy and efficiency of probabilistic structural analyses with coarse finite element meshes. The mapping methods consist of the following: (1) deterministic structural analyses with fine (convergent) finite element meshes; (2) probabilistic structural analyses with coarse finite element meshes; (3) the relationship between the probabilistic structural responses from the coarse and fine finite element meshes; and (4) a probabilistic mapping. The results show that the scatter in the probabilistic structural responses and structural reliability can be efficiently predicted using a coarse finite element model and proper mapping methods with good accuracy. Therefore, large structures can be efficiently analyzed probabilistically using finite element methods.
Comparison of 3 Methods for Computing Loading Rate during Running.
Ueda, T; Hobara, H; Kobayashi, Y; Heldoorn, T A; Mochimaru, M; Mizoguchi, H
2016-12-01
Tibial stress fractures are among the most common and potentially serious overuse injuries in runners. The fractures are thought to be related in part, to excessive loading variables, such as vertical average loading rate (VALR) and vertical instantaneous loading rate (VILR). Although there are several methods for calculating loading rate in running, little is known about the differences between the results produced by these methods. The purpose of this study was to compare 3 previously published methods of calculating VALR and VILR during running. 9 male participants ran on a treadmill at 2.5, 3.0, and 3.5 m/s. VALR and VILR were calculated from vertical ground reaction force using 3 methods that differed by the period over which the loading rates were calculated; foot strike to first peak (method A), from 20 to 80% of the time to first peak (method B), and over the first 50 ms after foot strike (method C). There were significant differences among methods with regard to VALR, but not VILR. Therefore, the results of the present study suggest that VILR is preferable to VALR for consistent evaluation among methods, which make it more acceptable to make study comparisons.
Adaptive computational methods for SSME internal flow analysis
NASA Technical Reports Server (NTRS)
Oden, J. T.
1986-01-01
Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.
Edge Detection and Geometric Methods in Computer Vision,
1985-02-01
anid espcially Ltme differenit meanings of the 2 types of arrows. In thin notatiom,, rather thani sayinig "the funtion a f (a, y)" Ceotnetric Methods in...a generative grammar . In fact, the only possible structures are shown In ,ig. (level). .. . . . . ... , Geometric Methods in Vision Topological
Computational method for general multicenter electronic structure calculations.
Batcho, P F
2000-06-01
Here a three-dimensional fully numerical (i.e., chemical basis-set free) method [P. F. Batcho, Phys. Rev. A 57, 6 (1998)], is formulated and applied to the calculation of the electronic structure of general multicenter Hamiltonian systems. The numerical method is presented and applied to the solution of Schrödinger-type operators, where a given number of nuclei point singularities is present in the potential field. The numerical method combines the rapid "exponential" convergence rates of modern spectral methods with the multiresolution flexibility of finite element methods, and can be viewed as an extension of the spectral element method. The approximation of cusps in the wave function and the formulation of multicenter nuclei singularities are efficiently dealt with by the combination of a coordinate transformation and a piecewise variational spectral approximation. The complete system can be efficiently inverted by established iterative methods for elliptical partial differential equations; an application of the method is presented for atomic, diatomic, and triatomic systems, and comparisons are made to the literature when possible. In particular, local density approximations are studied within the context of Kohn-Sham density functional theory, and are presented for selected subsets of atomic and diatomic molecules as well as the ozone molecule.
Estimation of evolutionary distances between nucleotide sequences.
Zharkikh, A
1994-09-01
A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414-422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269-285, 1984) method is superior to others.
Yeast Ancestral Genome Reconstructions: The Possibilities of Computational Methods
NASA Astrophysics Data System (ADS)
Tannier, Eric
In 2006, a debate has risen on the question of the efficiency of bioinformatics methods to reconstruct mammalian ancestral genomes. Three years later, Gordon et al. (PLoS Genetics, 5(5), 2009) chose not to use automatic methods to build up the genome of a 100 million year old Saccharomyces cerevisiae ancestor. Their manually constructed ancestor provides a reference genome to test whether automatic methods are indeed unable to approach confident reconstructions. Adapting several methodological frameworks to the same yeast gene order data, I discuss the possibilities, differences and similarities of the available algorithms for ancestral genome reconstructions. The methods can be classified into two types: local and global. Studying the properties of both helps to clarify what we can expect from their usage. Both methods propose contiguous ancestral regions that come very close (> 95% identity) to the manually predicted ancestral yeast chromosomes, with a good coverage of the extant genomes.
This work introduces a computationally efficient alternative method for uncertainty propagation, the Stochastic Response Surface Method (SRSM). The SRSM approximates uncertainties in model outputs through a series expansion in normal random variables (polynomial chaos expansion)...
The Ulam Index: Methods of Theoretical Computer Science Help in Identifying Chemical Substances
NASA Technical Reports Server (NTRS)
Beltran, Adriana; Salvador, James
1997-01-01
In this paper, we show how methods developed for solving a theoretical computer problem of graph isomorphism are used in structural chemistry. We also discuss potential applications of these methods to exobiology: the search for life outside Earth.
A finite element method for the computation of transonic flow past airfoils
NASA Technical Reports Server (NTRS)
Eberle, A.
1980-01-01
A finite element method for the computation of the transonic flow with shocks past airfoils is presented using the artificial viscosity concept for the local supersonic regime. Generally, the classic element types do not meet the accuracy requirements of advanced numerical aerodynamics requiring special attention to the choice of an appropriate element. A series of computed pressure distributions exhibits the usefulness of the method.
29 CFR 4011.9 - Method and date of issuance of notice; computation of time.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Method and date of issuance of notice; computation of time. 4011.9 Section 4011.9 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION CERTAIN REPORTING AND DISCLOSURE REQUIREMENTS DISCLOSURE TO PARTICIPANTS § 4011.9 Method and date of issuance of notice; computation of...
29 CFR 794.123 - Method of computing annual volume of sales.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Method of computing annual volume of sales. 794.123 Section 794.123 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... of Sales § 794.123 Method of computing annual volume of sales. (a) Where the enterprise, during...
Standardized development of computer software. Part 1: Methods
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1976-01-01
This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change.
Computer capillaroscopy as a new cardiological diagnostics method
NASA Astrophysics Data System (ADS)
Gurfinkel, Youri I.; Korol, Oleg A.; Kufal, George E.
1998-04-01
The blood flow in capillary vessels plays an important role in sustaining the vital activity of the human organism. The computerized capillaroscope is used for the investigations of nailfold (eponychium) capillary blood flow. An important advantage of the instrument is the possibility of performing non-invasive investigations, i.e., without damage to skin or vessels and causing no pain or unpleasant sensations. The high-class equipment and software allow direct observation of capillary blood flow dynamics on a computer screen at a 700 - 1300 times magnification. For the first time in the clinical practice, it has become possible to precisely measure the speed of capillary blood flow, as well as the frequency of aggregate formation (glued together in clots of blood particles). In addition, provision is made for automatic measurement of capillary size and wall thickness and automatic recording of blood aggregate images for further visual study, documentation, and electronic database management.
Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Lee, Sang-Soo; Sharma, Garima; Yoon, Jeong Kyo; George Priya Doss, C; Song, Dong-Keun; Nam, Ju-Suk
2014-01-01
In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models.
NASA Technical Reports Server (NTRS)
Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)
2012-01-01
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.
Decluttering methods for high density computer-generated graphic displays
NASA Technical Reports Server (NTRS)
Schultz, E. E., Jr.; Nichols, D. A.; Curran, P. S.
1985-01-01
Several decluttering methods were compared with respect to the speed and accuracy of user performance which resulted. The presence of a map background was also manipulated. Partial removal of nonessential graphic features through symbol simplification was as effective a decluttering technique as was total removal of nonessential graphic features. The presence of a map background interacted with decluttering conditions when response time was the dependent measure. Results indicate that the effectiveness of decluttering methods depends upon the degree to which each method makes essential graphic information distinctive from nonessential information. Practical implications are discussed.
Computational solution of acoustic radiation problems by Kussmaul's boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, S. M.; Henwood, D. J.
1992-10-01
The problem of computing the properties of the acoustic field exterior to a vibrating surface for the complete wavenumber range by the boundary element method is considered. A particular computational method based on the Kussmaul formulation is described. The method is derived through approximating the surface by a set of planar triangles and approximating the surface functions by a constant on each element. The method is successfully applied to test problems and to the Ricardo crankcase simulation rig.
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1991-01-01
The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.
Alloy Surface Structure:. Computer Simulations Using the Bfs Method
NASA Astrophysics Data System (ADS)
Bozzolo, Guillermo; Ferrante, John
The use of semiempirical methods for modeling alloy properties has proven to be difficult and limited. The two primary approaches to this modeling, the embedded atom method and the phenomenological method of Miedema, have serious limitations in the range of materials studied and the degree of success in predicting properties of such systems. Recently, a new method has been developed by Bozzolo, Ferrante and Smith (BFS) which has had considerable success in predicting a wide range of alloy properties. In this work, we reference previous BFS applications to surface alloy formation and alloy surface structure, leading to the analysis of binary and ternary Ni-based alloy surfaces. We present Monte Carlo simulation results of thin films of NiAl and Ni-Al-Ti alloys, for a wide range of concentration of the Ti alloying addition. The composition of planes close to the surface as well as bulk features are discussed.
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
Computational Methods for Predictive Simulation of Stochastic Turbulence Systems
2015-11-05
Enter title and subtitle with volume number and part number, if applicable . On classified documents, enter the title classification in parentheses. 5a...accuracy, and range of applicability of non-intrusive methods, such as stochastic collocation methods, and intrusive techniques, such as stochastic...engineering flows) over a long time interval is not possible within time and resource constraints. Many applications central to predictive CFD today
Computation of Ripple Wave Parameters: A Comparison of Methods
NASA Astrophysics Data System (ADS)
Fernandez, D. M.; Vesecky, J. F.; Napolitano, D. J.; Khuri-Yakub, B. T.; Mann, J. A.
1992-04-01
Remote sensing of oceanic and atmospheric quantities, such as the waveheight spectrum and wind velocity, depend largely on the interaction of electromagnetic radar waves with ocean surface waves in the short gravity and capillary range. The propagation of such ripple waves upon the ocean surface is strongly affected by the presence of surface films which constitute the ocean microlayer. In order to understand the impact of surface films on oceanic and atmospheric remote sensing, it is necessary to have an accurate and, if possible, convenient model relating film properties with the propagation and damping of ripple waves. This study examines two different methods of obtaining the damping coefficient of short gravity and capillary waves. One method, developed by Bock and Mann, utilizes numerical techniques based on the modified Levich characteristic equation to accurately yield complex roots governing the propagation of Laplace transverse and Marangoni longitudinal waves on the air-sea interface. The other method, developed by Cini and Lombardini, involves finding an approximate analytical solution of the Levich equations using a perturbational technique. A comparison of the two methods yields tolerance ranges of various parameters, including frequency, modulus of surface dilational viscosity, and modulus of surface dilational elasticity, over which the two methods agree to 5-10%. To make our comparison concrete, we apply both methods to a specific surface film sample collected by Garret. Both theoretical results are compared to experimental results.
An assessment of precipitation adjustment and feedback computation methods
NASA Astrophysics Data System (ADS)
Richardson, T. B.; Samset, B. H.; Andrews, T.; Myhre, G.; Forster, P. M.
2016-10-01
The precipitation adjustment and feedback framework is a useful tool for understanding global and regional precipitation changes. However, there is no definitive method for making the decomposition. In this study we highlight important differences which arise in results due to methodological choices. The responses to five different forcing agents (CO2, CH4, SO4, black carbon, and solar insolation) are analyzed using global climate model simulations. Three decomposition methods are compared: using fixed sea surface temperature experiments (fSST), regressing transient climate change after an abrupt forcing (regression), and separating based on timescale using the first year of coupled simulations (YR1). The YR1 method is found to incorporate significant SST-driven feedbacks into the adjustment and is therefore not suitable for making the decomposition. Globally, the regression and fSST methods produce generally consistent results; however, the regression values are dependent on the number of years analyzed and have considerably larger uncertainties. Regionally, there are substantial differences between methods. The pattern of change calculated using regression reverses sign in many regions as the number of years analyzed increases. This makes it difficult to establish what effects are included in the decomposition. The fSST method provides a more clear-cut separation in terms of what physical drivers are included in each component. The fSST results are less affected by methodological choices and exhibit much less variability. We find that the precipitation adjustment is weakly affected by the choice of SST climatology.
NASA Technical Reports Server (NTRS)
Liu, D. D.; Kao, Y. F.; Fung, K. Y.
1989-01-01
A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications.
Computational methods to compute wavefront error due to aero-optic effects
NASA Astrophysics Data System (ADS)
Genberg, Victor; Michels, Gregory; Doyle, Keith; Bury, Mark; Sebastian, Thomas
2013-09-01
Aero-optic effects can have deleterious effects on high performance airborne optical sensors that must view through turbulent flow fields created by the aerodynamic effects of windows and domes. Evaluating aero-optic effects early in the program during the design stages allows mitigation strategies and optical system design trades to be performed to optimize system performance. This necessitates a computationally efficient means to evaluate the impact of aero-optic effects such that the resulting dynamic pointing errors and wavefront distortions due to the spatially and temporally varying flow field can be minimized or corrected. To this end, an aero-optic analysis capability was developed within the commercial software SigFit that couples CFD results with optical design tools. SigFit reads the CFD generated density profile using the CGNS file format. OPD maps are then created by converting the three-dimensional density field into an index of refraction field and then integrating along specified paths to compute OPD errors across the optical field. The OPD maps may be evaluated directly against system requirements or imported into commercial optical design software including Zemax® and Code V® for a more detailed assessment of the impact on optical performance from which design trades may be performed.
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki; Sakaguchi, Tatsuhiko; Pralomkarn, Theerayoth
To meet higher customer satisfaction and shorter production lead time, assembly lines are shifting to mixed-model assembly lines. Accordingly, sequencing is becoming an increasingly important operation scheduling that directly affects on efficiency of the entire process. In this study, such sequencing problem at the mixed-model assembly line has been formulated as a bi-objective integer programming problem so that decision making through trade-off analysis can bring about significant production improvements. Then we have developed a multi-objective analysis method by hybridizing conventional and recent meta-heuristic methods. After showing its generic idea, the car mixed-model assembly line sequencing problem is concerned as a case study. Certain measures are also introduced to quantitatively evaluate the performances of the method through comparison.
Computation of molecular electrostatics with boundary element methods.
Liang, J; Subramaniam, S
1997-01-01
In continuum approaches to molecular electrostatics, the boundary element method (BEM) can provide accurate solutions to the Poisson-Boltzmann equation. However, the numerical aspects of this method pose significant problems. We describe our approach, applying an alpha shape-based method to generate a high-quality mesh, which represents the shape and topology of the molecule precisely. We also describe an analytical method for mapping points from the planar mesh to their exact locations on the surface of the molecule. We demonstrate that derivative boundary integral formulation has numerical advantages over the nonderivative formulation: the well-conditioned influence matrix can be maintained without deterioration of the condition number when the number of the mesh elements scales up. Singular integrand kernels are characteristics of the BEM. Their accurate integration is an important issue. We describe variable transformations that allow accurate numerical integration. The latter is the only plausible integral evaluation method when using curve-shaped boundary elements. Images FIGURE 3 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:9336178
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
Computational methods of robust controller design for aerodynamic flutter suppression
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1981-01-01
The development of Riccati iteration, a tool for the design and analysis of linear control systems is examined. First, Riccati iteration is applied to the problem of pole placement and order reduction in two-time scale control systems. Order reduction, yielding a good approximation to the original system, is demonstrated using a 16th order linear model of a turbofan engine. Next, a numerical method for solving the Riccati equation is presented and demonstrated for a set of eighth order random examples. A literature review of robust controller design methods follows which includes a number of methods for reducing the trajectory and performance index sensitivity in linear regulators. Lastly, robust controller design for large parameter variations is discussed.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
The Role of Analytic Methods in Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Farassat, F.; Posey, J. W.
2003-01-01
As air traffic grows, annoyance produced by aircraft noise will grow unless new aircraft produce no objectionable noise outside airport boundaries. Such ultra-quiet aircraft must be of revolutionary design, having unconventional planforms and most likely with propulsion systems highly integrated with the airframe. Sophisticated source and propagation modeling will be required to properly account for effects of the airframe on noise generation, reflection, scattering, and radiation. It is tempting to say that since all the effects are included in the Navier-Stokes equations, time-accurate CFD can provide all the answers. Unfortunately, the computational time required to solve a full aircraft noise problem will be prohibitive for many years to come. On the other hand, closed form solutions are not available for such complicated problems. Therefore, a hybrid approach is recommended in which analysis is taken as far as possible without omitting relevant physics or geometry. Three examples are given of recently reported work in broadband noise prediction, ducted fan noise propagation and radiation, and noise prediction for complex three-dimensional jets.