Evolutionary Design and Simulation of a Tube Crawling Inspection Robot
NASA Technical Reports Server (NTRS)
Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.
Wertz, Annie E; Moya, Cristina
2018-05-30
Despite a shared recognition that the design of the human mind and the design of human culture are tightly linked, researchers in the evolutionary social sciences tend to specialize in understanding one at the expense of the other. The disciplinary boundaries roughly correspond to research traditions that focus more on natural selection and those that focus more on cultural evolution. In this paper, we articulate how two research traditions within the evolutionary social sciences-evolutionary psychology and cultural evolution-approach the study of design. We focus our analysis on the design of cognitive mechanisms that are the result of the interplay of genetic and cultural evolution. We aim to show how the approaches of these two research traditions can complement each other, and provide a framework for developing a wider range of testable hypotheses about cognitive design. To do so, we provide concrete illustrations of how this integrated approach can be used to interrogate cognitive design using examples from our own work on plant and symbolic group boundary cognition. We hope this recognition of different pathways to design will broaden the hypothesis space in the evolutionary social sciences and encourage methodological pluralism in the investigation of the mind. Copyright © 2018 Elsevier B.V. All rights reserved.
Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello
2004-01-01
This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.
Using Evolutionary Theory to Guide Mental Health Research.
Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W
2016-03-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.
Using Evolutionary Theory to Guide Mental Health Research
Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.
2016-01-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091
Are hotspots of evolutionary potential adequately protected in southern California?
Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.
2008-01-01
Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Underlying Principles of Natural Selection in Network Evolution: Systems Biology Approach
Chen, Bor-Sen; Wu, Wei-Sheng
2007-01-01
Systems biology is a rapidly expanding field that integrates diverse areas of science such as physics, engineering, computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical metabolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturbations. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for combining data from many organisms to shed light on the evolution and function of biological networks from the gene to the organismal level. Therefore, systems biology can build on decades of theoretical work in evolutionary biology, and at the same time evolutionary biology can use the systems biology approach to go in new uncharted directions. In this study, we present a review of how the post-genomics era is adopting comparative approaches and dynamic system methods to understand the underlying design principles of network evolution and to shape the nascent field of evolutionary systems biology. Finally, the application of evolutionary systems biology to robust biological network designs is also discussed from the synthetic biology perspective. PMID:19468310
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
NASA Astrophysics Data System (ADS)
Luo, Ya-Zhong; Zhang, Jin; Li, Hai-yang; Tang, Guo-Jin
2010-08-01
In this paper, a new optimization approach combining primer vector theory and evolutionary algorithms for fuel-optimal non-linear impulsive rendezvous is proposed. The optimization approach is designed to seek the optimal number of impulses as well as the optimal impulse vectors. In this optimization approach, adding a midcourse impulse is determined by an interactive method, i.e. observing the primer-magnitude time history. An improved version of simulated annealing is employed to optimize the rendezvous trajectory with the fixed-number of impulses. This interactive approach is evaluated by three test cases: coplanar circle-to-circle rendezvous, same-circle rendezvous and non-coplanar rendezvous. The results show that the interactive approach is effective and efficient in fuel-optimal non-linear rendezvous design. It can guarantee solutions, which satisfy the Lawden's necessary optimality conditions.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
NASA Astrophysics Data System (ADS)
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
Spirov, Alexander; Holloway, David
2013-07-15
This paper surveys modeling approaches for studying the evolution of gene regulatory networks (GRNs). Modeling of the design or 'wiring' of GRNs has become increasingly common in developmental and medical biology, as a means of quantifying gene-gene interactions, the response to perturbations, and the overall dynamic motifs of networks. Drawing from developments in GRN 'design' modeling, a number of groups are now using simulations to study how GRNs evolve, both for comparative genomics and to uncover general principles of evolutionary processes. Such work can generally be termed evolution in silico. Complementary to these biologically-focused approaches, a now well-established field of computer science is Evolutionary Computations (ECs), in which highly efficient optimization techniques are inspired from evolutionary principles. In surveying biological simulation approaches, we discuss the considerations that must be taken with respect to: (a) the precision and completeness of the data (e.g. are the simulations for very close matches to anatomical data, or are they for more general exploration of evolutionary principles); (b) the level of detail to model (we proceed from 'coarse-grained' evolution of simple gene-gene interactions to 'fine-grained' evolution at the DNA sequence level); (c) to what degree is it important to include the genome's cellular context; and (d) the efficiency of computation. With respect to the latter, we argue that developments in computer science EC offer the means to perform more complete simulation searches, and will lead to more comprehensive biological predictions. Copyright © 2013 Elsevier Inc. All rights reserved.
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
The kW power module evolution study: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
Using the Marshall Space Flight Center 25 kW Power Module (PM) reference design as a point of departure, the study defined evolutionary growth paths to 100 kW and above. A recommended development approach and initial configurations were described. Specific hardware changes from the reference design are recommended for the initial PM configuration to ensure evolutionary growth, improved replicability, and reduced cost. Certain functional changes are also recommended to enhance system capabilities.
Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.
1997-01-01
An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
1982-01-01
McDornel Douglas performed an Evolutionary Space Platform Concept Study for the Marshall Space Flight Center in the early 1980's. The 10-month study was designed to define, evaluate, and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the then current space platform concepts to an evolutionary goal of establishing a permanent-manned presence in space.
ERIC Educational Resources Information Center
Chitpin, Jeremy Sebastian; Chitpin, Stephanie
2017-01-01
Purpose: Through a series of critical discussions on Karl Popper's evolutionary analysis of learning and the non-authoritarian values it promotes, the purpose of this paper is to advocate a Popperian approach for building medical student knowledge. Specifically, it challenges positivist assumptions that permeate the design and management of many…
Modeling Tumor Clonal Evolution for Drug Combinations Design.
Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A
2016-03-01
Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.
Robust Design of Biological Circuits: Evolutionary Systems Biology Approach
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523
Robust design of biological circuits: evolutionary systems biology approach.
Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia
2011-01-01
Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.
Turbopump Performance Improved by Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2002-01-01
The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
From evolutionary computation to the evolution of things.
Eiben, Agoston E; Smith, Jim
2015-05-28
Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.
Design Mining Interacting Wind Turbines.
Preen, Richard J; Bull, Larry
2016-01-01
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria
NASA Astrophysics Data System (ADS)
Kowalczuk, Zdzisław; Białaszewski, Tomasz
2018-01-01
A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.
Perspective: Evolutionary design of granular media and block copolymer patterns
NASA Astrophysics Data System (ADS)
Jaeger, Heinrich M.; de Pablo, Juan J.
2016-05-01
The creation of new materials "by design" is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films.
Modeling Tumor Clonal Evolution for Drug Combinations Design
Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.
2016-01-01
Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907
An evolutionary morphological approach for software development cost estimation.
Araújo, Ricardo de A; Oliveira, Adriano L I; Soares, Sergio; Meira, Silvio
2012-08-01
In this work we present an evolutionary morphological approach to solve the software development cost estimation (SDCE) problem. The proposed approach consists of a hybrid artificial neuron based on framework of mathematical morphology (MM) with algebraic foundations in the complete lattice theory (CLT), referred to as dilation-erosion perceptron (DEP). Also, we present an evolutionary learning process, called DEP(MGA), using a modified genetic algorithm (MGA) to design the DEP model, because a drawback arises from the gradient estimation of morphological operators in the classical learning process of the DEP, since they are not differentiable in the usual way. Furthermore, an experimental analysis is conducted with the proposed model using five complex SDCE problems and three well-known performance metrics, demonstrating good performance of the DEP model to solve SDCE problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
Klaus, Gordon; Glette, Kyrre; Høvin, Mats
2013-05-01
We demonstrate the power of evolutionary robotics (ER) by comparing to a more traditional approach its performance and cost on the task of simulated robot locomotion. A novel quadruped robot is introduced, the legs of which - each having three non-coplanar degrees of freedom - are very maneuverable. Using a simplistic control architecture and a physics simulation of the robot, gaits are designed both by hand and using a highly parallel evolutionary algorithm (EA). It is found that the EA produces, in a small fraction of the time that takes to design by hand, gaits that travel at two to four times the speed of the hand-designed one. The flexibility of this approach is demonstrated by applying it across a range of differently configured simulators. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.
Shackelford, Todd K; Liddle, James R
2014-05-01
The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.
Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging
Zhang, Jingjing
2015-01-01
The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS
Jones, Matthew R.; Good, Jeffrey M.
2016-01-01
The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993
The role of evolutionary biology in research and control of liver flukes in Southeast Asia.
Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A
2016-09-01
Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.
The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia
Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.
2016-01-01
Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
NASA Astrophysics Data System (ADS)
Pini, Giovanni; Tuci, Elio
2008-06-01
In biology/psychology, the capability of natural organisms to learn from the observation/interaction with conspecifics is referred to as social learning. Roboticists have recently developed an interest in social learning, since it might represent an effective strategy to enhance the adaptivity of a team of autonomous robots. In this study, we show that a methodological approach based on artifcial neural networks shaped by evolutionary computation techniques can be successfully employed to synthesise the individual and social learning mechanisms for robots required to learn a desired action (i.e. phototaxis or antiphototaxis).
Biological Nature of Knowledge in the Learning Organisation
ERIC Educational Resources Information Center
Hall, William P.
2005-01-01
Purpose: To develop a biological approach to the analysis of learning organisations based on complexity theory, autopoiesis, and evolutionary epistemology. Design/methodology/approach: This paper synthesises ideas from disciplines ranging from physics, epistemology and philosophy of science to military affairs, to sketch a scientific framework in…
An evolutionary approach to financial history.
Ferguson, N
2009-01-01
Financial history is not conventionally thought of in evolutionary terms, but it should be. Traditional ways of thinking about finance, dating back to Hilferding, emphasize the importance of concentration and economies of scale. But these approaches overlook the rich "biodiversity" that characterizes the financial world. They also overlook the role of natural selection. To be sure, natural selection in the financial world is not exactly analogous to the processes first described by Darwin and elaborated on by modern biologists. There is conscious adaptation as well as random mutation. Moreover, there is something resembling "intelligent design" in finance, whereby regulators and legislators act in a quasidivine capacity, putting dinosaurs on life support. The danger is that such interventions in the natural processes of the market may ultimately distort the evolutionary process, by getting in the way of Schumpeter's "creative destruction."
Evolutionary Design of a Robotic Material Defect Detection System
NASA Technical Reports Server (NTRS)
Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)
2002-01-01
During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.
Inspection planning development: An evolutionary approach using reliability engineering as a tool
NASA Technical Reports Server (NTRS)
Graf, David A.; Huang, Zhaofeng
1994-01-01
This paper proposes an evolutionary approach for inspection planning which introduces various reliability engineering tools into the process and assess system trade-offs among reliability, engineering requirement, manufacturing capability and inspection cost to establish an optimal inspection plan. The examples presented in the paper illustrate some advantages and benefits of the new approach. Through the analysis, reliability and engineering impacts due to manufacturing process capability and inspection uncertainty are clearly understood; the most cost effective and efficient inspection plan can be established and associated risks are well controlled; some inspection reductions and relaxations are well justified; and design feedbacks and changes may be initiated from the analysis conclusion to further enhance reliability and reduce cost. The approach is particularly promising as global competitions and customer quality improvement expectations are rapidly increasing.
Baldominos, Alejandro; Saez, Yago; Isasi, Pedro
2018-04-23
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.
2018-01-01
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587
Maximizing ecological and evolutionary insight in bisulfite sequencing data sets
Lea, Amanda J.; Vilgalys, Tauras P.; Durst, Paul A.P.; Tung, Jenny
2017-01-01
Preface Genome-scale bisulfite sequencing approaches have opened the door to ecological and evolutionary studies of DNA methylation in many organisms. These approaches can be powerful. However, they introduce new methodological and statistical considerations, some of which are particularly relevant to non-model systems. Here, we highlight how these considerations influence a study’s power to link methylation variation with a predictor variable of interest. Relative to current practice, we argue that sample sizes will need to increase to provide robust insights. We also provide recommendations for overcoming common challenges and an R Shiny app to aid in study design. PMID:29046582
Applying Evolutionary Anthropology
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.
Generative Representations for Automated Design of Robots
NASA Technical Reports Server (NTRS)
Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.
2007-01-01
A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Evolutionary psychology and intelligence research.
Kanazawa, Satoshi
2010-01-01
This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative variation on a monomorphic design allows us to incorporate heritable individual differences in evolved adaptations. The Savanna-IQ Interaction Hypothesis, which is one consequence of the integration of evolutionary psychology and intelligence research, can potentially explain why less intelligent individuals enjoy TV more, why liberals are more intelligent than conservatives, and why night owls are more intelligent than morning larks, among many other findings. The general approach proposed here will allow us to integrate evolutionary psychology with any other aspect of differential psychology. Copyright 2010 APA, all rights reserved.
2003-03-01
within the Automated Cost Estimating Integrated Tools ( ACEIT ) software suite (version 5.x). With this capability, one can set cost targets or time...not allow the user to vary more than one decision variable. This limitation of the ACEIT approach thus hinders a holistic view when attempting to
An investigation of the needs and the design of an orbiting space station with growth capabilities
NASA Technical Reports Server (NTRS)
Dossey, J. R.; Trotti, G.
1977-01-01
An architectural approach to the evolutionary growth of an orbiting space station from a small manned satellite to a fully independent, self-sustainable space colony facility is presented. Social and environmental factors, ease of transportation via the space shuttle, and structural design are considered.
Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time.
Pinsky, Malin L; Saenz-Agudelo, Pablo; Salles, Océane C; Almany, Glenn R; Bode, Michael; Berumen, Michael L; Andréfouët, Serge; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge
2017-01-09
The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12-24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19-36 km) or 19 km (15-27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers
NASA Technical Reports Server (NTRS)
Tunstel, Edward
1999-01-01
Miniature rovers with articulated mobility mechanisms are being developed for planetary surface exploration on Mars and small solar system bodies. These vehicles are designed to be capable of autonomous recovery from overturning during surface operations. This paper describes a computational means of developing motion behaviors that achieve the autonomous recovery function. It proposes a control software design approach aimed at reducing the effort involved in developing self-righting behaviors. The approach is based on the integration of evolutionary computing with a dynamics simulation environment for evolving and evaluating motion behaviors. The automated behavior design approach is outlined and its underlying genetic programming infrastructure is described.
Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics
Trianni, Vito; López-Ibáñez, Manuel
2015-01-01
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. PMID:26295151
Reserve design for uncertain responses of coral reefs to climate change.
Mumby, Peter J; Elliott, Ian A; Eakin, C Mark; Skirving, William; Paris, Claire B; Edwards, Helen J; Enríquez, Susana; Iglesias-Prieto, Roberto; Cherubin, Laurent M; Stevens, Jamie R
2011-02-01
Rising sea temperatures cause mass coral bleaching and threaten reefs worldwide. We show how maps of variations in thermal stress can be used to help manage reefs for climate change. We map proxies of chronic and acute thermal stress and develop evidence-based hypotheses for the future response of corals to each stress regime. We then incorporate spatially realistic predictions of larval connectivity among reefs of the Bahamas and apply novel reserve design algorithms to create reserve networks for a changing climate. We show that scales of larval dispersal are large enough to connect reefs from desirable thermal stress regimes into a reserve network. Critically, we find that reserve designs differ according to the anticipated scope for phenotypic and genetic adaptation in corals, which remains uncertain. Attempts to provide a complete reserve design that hedged against different evolutionary outcomes achieved limited success, which emphasises the importance of considering the scope for adaptation explicitly. Nonetheless, 15% of reserve locations were selected under all evolutionary scenarios, making them a high priority for early designation. Our approach allows new insights into coral holobiont adaptation to be integrated directly into an adaptive approach to management. © 2010 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Ding, Zhongan; Gao, Chen; Yan, Shengteng; Yang, Canrong
2017-10-01
The power user electric energy data acquire system (PUEEDAS) is an important part of smart grid. This paper builds a multi-objective optimization model for the performance of the PUEEADS from the point of view of the combination of the comprehensive benefits and cost. Meanwhile, the Chebyshev decomposition approach is used to decompose the multi-objective optimization problem. We design a MOEA/D evolutionary algorithm to solve the problem. By analyzing the Pareto optimal solution set of multi-objective optimization problem and comparing it with the monitoring value to grasp the direction of optimizing the performance of the PUEEDAS. Finally, an example is designed for specific analysis.
Field-based optimal-design of an electric motor: a new sensitivity formulation
NASA Astrophysics Data System (ADS)
Barba, Paolo Di; Mognaschi, Maria Evelina; Lowther, David Alister; Wiak, Sławomir
2017-12-01
In this paper, a new approach to robust optimal design is proposed. The idea is to consider the sensitivity by means of two auxiliary criteria A and D, related to the magnitude and isotropy of the sensitivity, respectively. The optimal design of a switched-reluctance motor is considered as a case study: since the case study exhibits two design criteria, the relevant Pareto front is approximated by means of evolutionary computing.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Wu, Kai; Liu, Jing; Wang, Shuai
2016-01-01
Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy. PMID:27886244
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Jing; Wang, Shuai
2016-11-01
Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.
Algorithmic Mechanism Design of Evolutionary Computation.
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.
Algorithmic Mechanism Design of Evolutionary Computation
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Low-cost interferometric TDM technology for dynamic sensing applications
NASA Astrophysics Data System (ADS)
Bush, Jeff; Cekorich, Allen
2004-12-01
A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.
NASA Astrophysics Data System (ADS)
Frossard, Frédérique; Trifonova, Anna; Barajas Frutos, Mario
The isolation of rural communities creates special necessities for teachers and students in rural schools. The present article describes "Rural Virtual School", a Virtual Community of Practice (VCoP) in which Spanish teachers of rural schools share learning resources and teaching methodologies through social software applications. The article arrives to an evolutionary model, in which the use of the social software tools evolves together with the needs and the activities of the VCoP through the different stages of its lifetime. Currently, the community has reached a high level of maturity and, in order to keep its momentum, the members intentionally use appropriate technologies specially designed to enhance rich innovative educational approaches, through which they collaboratively generate creative practices.
Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K
2015-11-25
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.
Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.
Lion, Sébastien
2018-01-01
Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.
Evolutionary Design in Biological Physics and Materials Science
NASA Astrophysics Data System (ADS)
Yang, M.; Park, J.-M.; Deem, M. W.
In this chapter we provide a thorough discussion of the theoretical description of the multi-site approach to cancer vaccination. The discussion is somewhat demanding from a biological point of view. References to primary biological publications are given. A general reference on immunology is [1].
The Design and Implementation of Eco-Evolutionary PVA Models: An Integrative Approach Using HexSim
To persist into the future, species of conservation concern must remain both demographically and genetically viable. Developing mitigation and recovery strategies to ensure species’ viability necessitates the use of forecasting models that can incorporate ecological and/or...
A framework for evolutionary systems biology
Loewe, Laurence
2009-01-01
Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications. PMID:19239699
Faster Evolution of More Multifunctional Logic Circuits
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo
2005-01-01
A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.
Learning Strategies at Work and Professional Development
ERIC Educational Resources Information Center
Haemer, Hannah Deborah; Borges-Andrade, Jairo Eduardo; Cassiano, Simone Kelli
2017-01-01
Purpose: This paper aims to investigate the prediction of current and evolutionary perceptions of professional development through five learning strategies at work and through training and how individual and job characteristics predict those strategies. Design/methodology/approach: Variables were measured in a cross-sectional survey, with 962…
Design of Reflective, Photonic Shields for Atmospheric Reentry
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John
2010-01-01
We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.
Troiano, Luigi; Birtolo, Cosimo; Armenise, Roberto
2016-01-01
In many circumstances, concepts, ideas and emotions are mainly conveyed by colors. Color vision disorders can heavily limit the user experience in accessing Information Society. Therefore, color vision impairments should be taken into account in order to make information and services accessible to a broader audience. The task is not easy for designers that generally are not affected by any color vision disorder. In any case, the design of accessible user interfaces should not lead to to boring color schemes. The selection of appealing and harmonic color combinations should be preserved. In past research we investigated a generative approach led by evolutionary computing in supporting interface designers to make colors accessible to impaired users. This approach has also been followed by other authors. The contribution of this paper is to provide an experimental validation to the claim that this approach is actually beneficial to designers and users.
NASA Astrophysics Data System (ADS)
Kauffman, Rick, Jr.
Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural-/cognitive-focused learning goals. Chapter 5 explores the cognitive effects that "teaching evolution" has on the learner. This chapter examines the effects that a course on evolutionary theory has on university undergraduate students in understanding and applying evolution and how learning the evolutionary toolkit affects critical thinking skills and domain transfer of knowledge. The results demonstrate that a single course on evolutionary theory increases students' acceptance and understanding of evolution and science, and, in effect, increases critical thinking performance.
Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.
Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni
2017-08-14
Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.
Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective
ERIC Educational Resources Information Center
Hadjerrouit, Said
2005-01-01
In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…
ERIC Educational Resources Information Center
Nipkow, Karl Ernst
2002-01-01
Describes a sectoral and paradigmatic approach to evolutionary research. Argues that an evolutionary paradigm does not exist. Examines the socio-biological approach and that of a system-theoretical oriented general evolutionary theory. Utilizes the topics of cooperation, delimitation, and indoctrination to explain more promising ways of adoption.…
Designing and Implementing a Clinician Workstation
Tape, Thomas G.; Campbell, James R.
1993-01-01
We describe a simple approach to designing and quickly implementing a clinician workstation that helps practitioners access a variety of information resources. Using easy-to-use graphical tools, we installed a pilot workstation in our clinics. We were able to accommodate most of our users' needs and have a functional workstation installed in two months. This is the first step of an evolutionary process moving from separate tasks to full application integration.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
Elvik, Rune
2017-09-01
In several papers, Hauer (1988, 1989, 2000a, 2000b, 2016) has argued that the level of safety built into roads is unpremeditated, i.e. not the result of decisions based on knowledge of the safety impacts of design standards. Hauer has pointed out that the development of knowledge about the level of safety built into roads has been slow and remains incomplete even today. Based on these observations, this paper asks whether evolutionary theory can contribute to explaining the slow development of knowledge. A key proposition of evolutionary theory is that knowledge is discovered through a process of learning-by-doing; it is not necessarily produced intentionally by means of research or development. An unintentional discovery of knowledge is treacherous as far as road safety is concerned, since an apparently effective safety treatment may simply be the result of regression-to-the-mean. The importance of regression-to-the-mean was not fully understood until about 1980, and a substantial part of what was regarded as known at that time may have been based on studies not controlling for regression-to-the-mean. An attempt to provide an axiomatic foundation for designing a safe road system was made by Gunnarsson and Lindström (1970). This had the ambition of providing universal guidelines that would facilitate a preventive approach, rather than the reactive approach based on accident history (i.e. designing a system known to be safe, rather than reacting to events in a system of unknown safety). Three facts are notable about these principles. First, they are stated in very general terms and do not address many of the details of road design or traffic control. Second, they are not based on experience showing their effectiveness. Third, they are partial and do not address the interaction between elements of the road traffic system, in particular road user adaptation to system design. Another notable fact consistent with evolutionary theory, is that the safety margins built into various design elements have been continuously eroded by the development of bigger and faster motor vehicles, that can only be operated safely if roads are wider and straighter than they needed to be when motor vehicles were smaller and moved slower. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.
Barros, F C; Herrel, A; Kohlsdorf, T
2011-11-01
Habitat usage comprises interactions between ecological parameters and organismal capacities, and the selective pressures that ultimately determine the outcome of such processes in an evolutionary scale may be conflicting when the same morphological structure is recruited for different activities. Here, we investigate the roles of diet and locomotion in the evolution of cranial design in gymnophthalmid lizards and test the hypothesis that microhabitat use drives head shape evolution, particularly in head-first burrowers. Morphological factors were analysed in relation to continuous ecological indexes (prey hardness and substrate compactness) using conventional and phylogenetic approaches. Results suggest that the evolution of head morphology in Gymnophthalmidae was shaped under the influence of microhabitat use rather than diet: burrowers have shorter heads with lower rostral angulation, independently of the prey consumed. Food preferences appear to be relatively conserved throughout the phylogeny of the group, which may have permitted the extensive radiation of gymnophthalmids into fossorial microhabitats. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Evolutionary Optimization of Quadrifilar Helical and Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Stoica, Adrian; Clancy, Daniel (Technical Monitor)
2002-01-01
We present optimization results obtained for two type of antennas using evolutionary algorithms. A quadrifilar helical UHF antenna is currently flying aboard NASA's Mars Odyssey spacecraft and is due to reach final Martian orbit insertion in January, 2002. Using this antenna as a benchmark, we ran experiments employing a coevolutionary genetic algorithm to evolve a quadrifilar helical design in-situ - i.e., in the presence of a surrounding structure. Results show a 93% improvement at 400 MHz and a 48% improvement at 438 MHz in the average gain. The evolved antenna is also one-fourth the size. Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain and the inclusion of numerous parasitic elements. Our fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain.
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu
2017-06-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment
Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.
2018-01-01
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574
Promoting Sustainability in a College Café by Opposite-Sex Cashiers
ERIC Educational Resources Information Center
Tifferet, Sigal; Rosenblit, Niv; Shalev, Maya
2017-01-01
Purpose: People engage in green consumption for many reasons, both conscious and unconscious. This paper aims to draw on evolutionary psychology to propose that hard-wired mating strategies encourage both men and women to increase their green consumption in the presence of members of the opposite sex. Design/methodology/approach: Observations were…
Evolution of siderophore pathways in human pathogenic bacteria.
Franke, Jakob; Ishida, Keishi; Hertweck, Christian
2014-04-16
Ornibactin and malleobactin are hydroxamate siderophores employed by human pathogenic bacteria belonging to the genus Burkholderia. Similarities in their structures and corresponding biosynthesis gene clusters strongly suggest an evolutionary relationship. Through gene coexpression and targeted gene manipulations, the malleobactin pathway was successfully morphed into an ornibactin assembly line. Such an evolutionary-guided approach has been unprecedented for nonribosomal peptide synthetases. Furthermore, the timing of amino acid acylation before peptide assembly, the absolute configuration of the ornibactin side chain, and the function of the acyl transferase were elucidated. Beyond providing a proof of principle for the rational design of siderophore pathways, a compelling model for the evolution of virulence traits is presented.
Properties of Artifact Representations for Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
To achieve evolutionary design systems that scale to the levels achieved by man-made artifacts we can look to their characteristics of modularity, hierarchy and regularity to guide us. For this we focus on design representations, since they strongly determine the ability of evolutionary design systems to evolve artifacts with these characteristics. We identify three properties of design representations - combination, control-flow and abstraction - and discuss how they relate to hierarchy, modularity and regularity.
NASA Astrophysics Data System (ADS)
Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.
2012-04-01
The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.
Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred
2008-01-01
Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.
An evolutionary perspective on health psychology: new approaches and applications.
Tybur, Joshua M; Bryan, Angela D; Hooper, Ann E Caldwell
2012-12-20
Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.
Evolutionary principles and their practical application
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-01-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Argasinski, Krzysztof
2006-07-01
This paper contains the basic extensions of classical evolutionary games (multipopulation and density dependent models). It is shown that classical bimatrix approach is inconsistent with other approaches because it does not depend on proportion between populations. The main conclusion is that interspecific proportion parameter is important and must be considered in multipopulation models. The paper provides a synthesis of both extensions (a metasimplex concept) which solves the problem intrinsic in the bimatrix model. It allows us to model interactions among any number of subpopulations including density dependence effects. We prove that all modern approaches to evolutionary games are closely related. All evolutionary models (except classical bimatrix approaches) can be reduced to a single population general model by a simple change of variables. Differences between classic bimatrix evolutionary games and a new model which is dependent on interspecific proportion are shown by examples.
Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F
2010-01-01
The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
NASA Astrophysics Data System (ADS)
Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz
2017-12-01
This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.
Templeton, A. R.; Sing, C. F.
1993-01-01
We previously developed an analytical strategy based on cladistic theory to identify subsets of haplotypes that are associated with significant phenotypic deviations. Our initial approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site data to estimate the evolutionary steps that interrelate the observed haplotypes to one another. The cladogram is then used to define a nested statistical design for identifying mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that a mutation responsible for a particular phenotypic effect is embedded within the evolutionary history that is represented by the cladogram. The power of this approach depends on the accuracy of the cladogram in portraying the evolutionary history of the DNA region. This accuracy can be diminished both by recombination and by uncertainty in the estimated cladogram topology. In a previous paper, we presented an algorithm for estimating the set of likely cladograms and recombination events. In this paper we present an algorithm for defining a nested statistical design under cladogram uncertainty and recombination. Given the nested design, phenotypic associations can be examined using either a nested analysis of variance (for haploids or homozygous strains) or permutation testing (for outcrossed, diploid gene regions). In this paper we also extend this analytical strategy to include categorical phenotypes in addition to quantitative phenotypes. Some worked examples are presented using Drosophila data sets. These examples illustrate that having some recombination may actually enhance the biological inferences that may derived from a cladistic analysis. In particular, recombination can be used to assign a physical localization to a given subregion for mutations responsible for significant phenotypic effects. PMID:8100789
Artificial intelligence in peer review: How can evolutionary computation support journal editors?
Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica
2017-01-01
With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.
NASA Astrophysics Data System (ADS)
Horvath, Denis; Gazda, Juraj; Brutovsky, Branislav
Evolutionary species and quasispecies models provide the universal and flexible basis for a large-scale description of the dynamics of evolutionary systems, which can be built conceived as a constraint satisfaction dynamics. It represents a general framework to design and study many novel, technologically contemporary models and their variants. Here, we apply the classical quasispecies concept to model the emerging dynamic spectrum access (DSA) markets. The theory describes the mechanisms of mimetic transfer, competitive interactions between socioeconomic strata of the end-users, their perception of the utility and inter-operator switching in the variable technological environments of the operators offering the wireless spectrum services. The algorithmization and numerical modeling demonstrate the long-term evolutionary socioeconomic changes which reflect the end-user preferences and results of the majorization of their irrational decisions in the same manner as the prevailing tendencies which are embodied in the efficient market hypothesis.
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach
NASA Astrophysics Data System (ADS)
Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne
We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.
An evolutionary game approach for determination of the structural conflicts in signed networks
Tan, Shaolin; Lü, Jinhu
2016-01-01
Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581
Wang, Xiyin; Guo, Hui; Wang, Jinpeng; Lei, Tianyu; Liu, Tao; Wang, Zhenyi; Li, Yuxian; Lee, Tae-Ho; Li, Jingping; Tang, Haibao; Jin, Dianchuan; Paterson, Andrew H
2016-02-01
The 'apparently' simple genomes of many angiosperms mask complex evolutionary histories. The reference genome sequence for cotton (Gossypium spp.) revealed a ploidy change of a complexity unprecedented to date, indeed that could not be distinguished as to its exact dosage. Herein, by developing several comparative, computational and statistical approaches, we revealed a 5× multiplication in the cotton lineage of an ancestral genome common to cotton and cacao, and proposed evolutionary models to show how such a decaploid ancestor formed. The c. 70% gene loss necessary to bring the ancestral decaploid to its current gene count appears to fit an approximate geometrical model; that is, although many genes may be lost by single-gene deletion events, some may be lost in groups of consecutive genes. Gene loss following cotton decaploidy has largely just reduced gene copy numbers of some homologous groups. We designed a novel approach to deconvolute layers of chromosome homology, providing definitive information on gene orthology and paralogy across broad evolutionary distances, both of fundamental value and serving as an important platform to support further studies in and beyond cotton and genomics communities. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Cankorur-Cetinkaya, Ayca; Dias, Joao M. L.; Kludas, Jana; Slater, Nigel K. H.; Rousu, Juho; Dikicioglu, Duygu
2017-01-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257). PMID:28635591
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926
Kiranyaz, Serkan; Mäkinen, Toni; Gabbouj, Moncef
2012-10-01
In this paper, we propose a novel framework based on a collective network of evolutionary binary classifiers (CNBC) to address the problems of feature and class scalability. The main goal of the proposed framework is to achieve a high classification performance over dynamic audio and video repositories. The proposed framework adopts a "Divide and Conquer" approach in which an individual network of binary classifiers (NBC) is allocated to discriminate each audio class. An evolutionary search is applied to find the best binary classifier in each NBC with respect to a given criterion. Through the incremental evolution sessions, the CNBC framework can dynamically adapt to each new incoming class or feature set without resorting to a full-scale re-training or re-configuration. Therefore, the CNBC framework is particularly designed for dynamically varying databases where no conventional static classifiers can adapt to such changes. In short, it is entirely a novel topology, an unprecedented approach for dynamic, content/data adaptive and scalable audio classification. A large set of audio features can be effectively used in the framework, where the CNBCs make appropriate selections and combinations so as to achieve the highest discrimination among individual audio classes. Experiments demonstrate a high classification accuracy (above 90%) and efficiency of the proposed framework over large and dynamic audio databases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S
2016-09-15
Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rasheed, Nadia; Amin, Shamsudin H M
2016-01-01
Grounded language acquisition is an important issue, particularly to facilitate human-robot interactions in an intelligent and effective way. The evolutionary and developmental language acquisition are two innovative and important methodologies for the grounding of language in cognitive agents or robots, the aim of which is to address current limitations in robot design. This paper concentrates on these two main modelling methods with the grounding principle for the acquisition of linguistic ability in cognitive agents or robots. This review not only presents a survey of the methodologies and relevant computational cognitive agents or robotic models, but also highlights the advantages and progress of these approaches for the language grounding issue.
Rasheed, Nadia; Amin, Shamsudin H. M.
2016-01-01
Grounded language acquisition is an important issue, particularly to facilitate human-robot interactions in an intelligent and effective way. The evolutionary and developmental language acquisition are two innovative and important methodologies for the grounding of language in cognitive agents or robots, the aim of which is to address current limitations in robot design. This paper concentrates on these two main modelling methods with the grounding principle for the acquisition of linguistic ability in cognitive agents or robots. This review not only presents a survey of the methodologies and relevant computational cognitive agents or robotic models, but also highlights the advantages and progress of these approaches for the language grounding issue. PMID:27069470
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
Participatory design of a collaborative clinical trial protocol writing system.
Weng, Chunhua; McDonald, David W; Sparks, Dana; McCoy, Jason; Gennari, John H
2007-06-01
To explore concrete approaches to socio-technical design of collaborative healthcare information systems and to design a groupware technology for collaborative clinical trial protocol writing. We conducted "quick and dirty ethnography" through semi-structured interviews, observational studies, and work artifacts analysis to understand the group work for protocol development. We used participatory design through evolutionary prototyping to explore the feature space of a collaborative writing system. Our design strategies include role-based user advocacy, formative evaluation, and change management. Quick and dirty ethnography helped us efficiently understand relevant work practice, and participatory design helped us engage users into design and bring out their tacit work knowledge. Our approach that intertwined both techniques helped achieve a "work-informed and user-oriented" design. This research leads to a collaborative writing system that supports in situ communication, group awareness, and effective work progress tracking. The usability evaluation results have been satisfactory. The system design is being transferred to an organizational tool for daily use.
Islamic Medicine and Evolutionary Medicine: A Comparative Analysis
Saniotis, Arthur
2012-01-01
The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings’ susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration. PMID:23864992
Islamic medicine and evolutionary medicine: a comparative analysis.
Saniotis, Arthur
2012-01-01
The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.
Testing for a genetic response to sexual selection in a wild Drosophila population.
Gosden, T P; Thomson, J R; Blows, M W; Schaul, A; Chenoweth, S F
2016-06-01
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)-5,9-C27 : 2 . Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Space station needs, attributes and architectural options. Volume 1: Executive summary NASA
NASA Technical Reports Server (NTRS)
1983-01-01
The uses alignment plan was implemented. The existing data bank was used to define a large number of station requirements. Ten to 20 valid mission scenarios were developed. Architectural options as they are influenced by communications operations, subsystem evolvability, and required technology growth are defined. Costing of evolutionary concepts, alternative approaches, and options, was based on minimum design details.
Functional specification of the Performance Measurement (PM) module
NASA Technical Reports Server (NTRS)
Berliner, J. E.
1980-01-01
The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.
Ferentinos, Konstantinos P
2005-09-01
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
NASA Astrophysics Data System (ADS)
Ginting, E.; Tambunanand, M. M.; Syahputri, K.
2018-02-01
Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.
Controlled recovery of phylogenetic communities from an evolutionary model using a network approach
NASA Astrophysics Data System (ADS)
Sousa, Arthur M. Y. R.; Vieira, André P.; Prado, Carmen P. C.; Andrade, Roberto F. S.
2016-04-01
This works reports the use of a complex network approach to produce a phylogenetic classification tree of a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation through random mutations and population growth, but purposefully omits other realistic ingredients that are not strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set of parameters, controlling the mutation probability and the population of different species. Our results indicate that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the actual evolutionary history with a very high average degree of accuracy. This includes parameter values where the species originated by the evolutionary dynamics have modular structures. In the more general context of community identification in complex networks, our model offers a simple setting for evaluating the effects, on the efficiency of community formation and identification, of the underlying dynamics generating the network itself.
Design of an Evolutionary Approach for Intrusion Detection
2013-01-01
A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives, and a dataset can be represented in the form of labelled instances in terms of its features. PMID:24376390
Hanson-Smith, Victor; Johnson, Alexander
2016-07-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and "resurrect" (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.
Hanson-Smith, Victor; Johnson, Alexander
2016-01-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and “resurrect” (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server. PMID:27472806
Application of evolutionary computation in ECAD problems
NASA Astrophysics Data System (ADS)
Lee, Dae-Hyun; Hwang, Seung H.
1998-10-01
Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.
Bell-Curve Based Evolutionary Strategies for Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
2001-01-01
Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity.
Redding, David W; Mooers, Arne O
2015-01-01
The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Abbaszadeh, Peyman; Moradkhani, Hamid; Yan, Hongxiang
2018-01-01
Particle Filters (PFs) have received increasing attention by researchers from different disciplines including the hydro-geosciences, as an effective tool to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation using the PFs in hydrology has evolved since 2005 from the PF-SIR (sampling importance resampling) to PF-MCMC (Markov Chain Monte Carlo), and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and MCMC, the so-called EPFM. In this framework, the prior distribution undergoes an evolutionary process based on the designed mutation and crossover operators of GA. The merit of this approach is that the particles move to an appropriate position by using the GA optimization and then the number of effective particles is increased by means of MCMC, whereby the particle degeneracy is avoided and the particle diversity is improved. In this study, the usefulness and effectiveness of the proposed EPFM is investigated by applying the technique on a conceptual and highly nonlinear hydrologic model over four river basins located in different climate and geographical regions of the United States. Both synthetic and real case studies demonstrate that the EPFM improves both the state and parameter estimation more effectively and reliably as compared with the PF-MCMC.
Artificial intelligence in peer review: How can evolutionary computation support journal editors?
Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica
2017-01-01
With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors’ workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems. PMID:28931033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Configurable pattern-based evolutionary biclustering of gene expression data
2013-01-01
Background Biclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties. Results Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evolutionary Biclustering based in Expression Patterns). Conclusions We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology. PMID:23433178
How Can We Study the Evolution of Animal Minds?
Cauchoix, Maxime; Chaine, Alexis S.
2016-01-01
During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior. PMID:27014163
Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf
2014-03-01
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf
2014-01-01
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries. PMID:26430388
Art as behaviour--an ethological approach to visual and verbal art, music and architecture.
Sütterlin, Christa; Schiefenhövel, Wulf; Lehmann, Christian; Forster, Johanna; Apfelauer, Gerhard
2014-01-01
In recent years, the fine arts, architecture, music and literature have increasingly been examined from the vantage point of human ethology and evolutionary psychology. In 2011 the authors formed the research group 'Ethology of the Arts' concentrating on the evolution and biology of perception and behaviour. These novel approaches aim at a better understanding of the various facets represented by the arts by taking into focus possible phylogenetic adaptations, which have shaped the artistic capacities of our ancestors. Rather than culture specificity, which is stressed e.g. by cultural anthropology and numerous other disciplines, universal human tendencies to perceive, feel, think and behave are postulated. Artistic expressive behaviour is understood as an integral part of the human condition, whether expressed in ritual, visual, verbal or musical art. The Ethology of the Arts-group's research focuses on visual and verbal art, music and built environment/architecture and is designed to contribute to the incipient interdisciplinarity in the field of evolutionary art research.
Engineering aids for the design of survivable defense communications transmission capability
NASA Astrophysics Data System (ADS)
Stover, H. A.
1984-01-01
Adequate military communications are essential to the security of the United States, especially in the various stages of major wars. Enough communications must survive to make effective use of our military forces and weaponry, even in the face of a concerted enemy effort to destroy those communications. An evolutionary approach to provide survivability is recommended. It must be provided by the design engineer. Afterthought and modification must be replaced with foresight and design. The engineer must make survivability a criterion in every design decision. The design engineer needs help with the challenges and associated details of successfully accomplishing this. The author discusses and recommends development of convenient-to-use survivability engineering design tools to provide this help.
Bell-Curve Based Evolutionary Strategies for Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
2000-01-01
Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.
Pourhassan, Mojgan; Neumann, Frank
2018-06-22
The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.
A variational approach to niche construction.
Constant, Axel; Ramstead, Maxwell J D; Veissière, Samuel P L; Campbell, John O; Friston, Karl J
2018-04-01
In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. © 2018 The Authors.
A variational approach to niche construction
Ramstead, Maxwell J. D.; Veissière, Samuel P. L.; Campbell, John O.; Friston, Karl J.
2018-01-01
In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. PMID:29643221
A Systematic Bayesian Integration of Epidemiological and Genetic Data
Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin
2015-01-01
Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Holcomb, Robert S.
1993-01-01
A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.
Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki
2015-01-01
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Evolutionary Optimization of a Quadrifilar Helical Antenna
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)
2002-01-01
Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.
MDTS: automatic complex materials design using Monte Carlo tree search.
M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-01-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
MDTS: automatic complex materials design using Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-12-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John
2011-01-01
Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.
Using concepts from biology to improve problem-solving methods
NASA Astrophysics Data System (ADS)
Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.
2011-06-01
Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.
Evolutionary systems biology: historical and philosophical perspectives on an emerging synthesis.
O'Malley, Maureen A
2012-01-01
Systems biology (SB) is at least a decade old now and maturing rapidly. A more recent field, evolutionary systems biology (ESB), is in the process of further developing system-level approaches through the expansion of their explanatory and potentially predictive scope. This chapter will outline the varieties of ESB existing today by tracing the diverse roots and fusions that make up this integrative project. My approach is philosophical and historical. As well as examining the recent origins of ESB, I will reflect on its central features and the different clusters of research it comprises. In its broadest interpretation, ESB consists of five overlapping approaches: comparative and correlational ESB; network architecture ESB; network property ESB; population genetics ESB; and finally, standard evolutionary questions answered with SB methods. After outlining each approach with examples, I will examine some strong general claims about ESB, particularly that it can be viewed as the next step toward a fuller modern synthesis of evolutionary biology (EB), and that it is also the way forward for evolutionary and systems medicine. I will conclude with a discussion of whether the emerging field of ESB has the capacity to combine an even broader scope of research aims and efforts than it presently does.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
How Hierarchical Topics Evolve in Large Text Corpora.
Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao
2014-12-01
Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.
Integrated design of the CSI evolutionary structure: A verification of the design methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.
1993-01-01
One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.
Experimental results in evolutionary fault-recovery for field programmable analog devices
NASA Technical Reports Server (NTRS)
Zebulum, Ricardo S.; Keymeulen, Didier; Duong, Vu; Guo, Xin; Ferguson, M. I.; Stoica, Adrian
2003-01-01
This paper presents experimental results of fast intrinsic evolutionary design and evolutionary fault recovery of a 4-bit Digital to Analog Converter (DAC) using the JPL stand-alone board-level evolvable system (SABLES).
Evolutionary medicine: its scope, interest and potential
Stearns, Stephen C.
2012-01-01
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous. PMID:22933370
Evolutionary medicine: its scope, interest and potential.
Stearns, Stephen C
2012-11-07
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.
Diogo, Rui; Molnar, Julia
2016-06-01
Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and developmental biologists. © 2016 Wiley Periodicals, Inc.
Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso
2013-07-30
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.
Evolutionary psychology in the modern world: applications, perspectives, and strategies.
Roberts, S Craig; van Vugt, Mark; Dunbar, Robin I M
2012-12-20
An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.
Evolutionary origins of the endosperm in flowering plants
Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli
2002-01-01
The evolutionary origin of double fertilization and the resultant endosperm tissue in flowering plants remains a puzzle, despite over a century of research. The recent resurgence of approaches to evolutionary developmental biology combining comparative biology with phylogenetics provides new understanding of endosperm origins. PMID:12225592
How conservative are evolutionary anthropologists?: a survey of political attitudes.
Lyle, Henry F; Smith, Eric A
2012-09-01
The application of evolutionary theory to human behavior has elicited a variety of critiques, some of which charge that this approach expresses or encourages conservative or reactionary political agendas. In a survey of graduate students in psychology, Tybur, Miller, and Gangestad (Human Nature, 18, 313-328, 2007) found that the political attitudes of those who use an evolutionary approach did not differ from those of other psychology grad students. Here, we present results from a directed online survey of a broad sample of graduate students in anthropology that assays political views. We found that evolutionary anthropology graduate students were very liberal in their political beliefs, overwhelmingly voted for a liberal U.S. presidential candidate in the 2008 election, and identified with liberal political parties; in this, they were almost indistinguishable from non-evolutionary anthropology students. Our results contradict the view that evolutionary anthropologists hold conservative or reactionary political views. We discuss some possible reasons for the persistence of this view in terms of the sociology of science.
The Environmental Control and Life Support System (ECLSS) advanced automation project
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, Ray
1990-01-01
The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.
On Polymorphic Circuits and Their Design Using Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Lohn, Jason; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper introduces the concept of polymorphic electronics (polytronics) - referring to electronics with superimposed built-in functionality. A function change does not require switches/reconfiguration as in traditional approaches. Instead the change comes from modifications in the characteristics of devices involved in the circuit, in response to controls such as temperature, power supply voltage (VDD), control signals, light, etc. The paper illustrates polytronic circuits in which the control is done by temperature, morphing signals, and VDD respectively. Polytronic circuits are obtained by evolutionary design/evolvable hardware techniques. These techniques are ideal for the polytronics design, a new area that lacks design guidelines, know-how,- yet the requirements/objectives are easy to specify and test. The circuits are evolved/synthesized in two different modes. The first mode explores an unstructured space, in which transistors can be interconnected freely in any arrangement (in simulations only). The second mode uses a Field Programmable Transistor Array (FPTA) model, and the circuit topology is sought as a mapping onto a programmable architecture (these experiments are performed both in simulations and on FPTA chips). The experiments demonstrated the synthesis. of polytronic circuits by evolution. The capacity of storing/hiding "extra" functions provides for watermark/invisible functionality, thus polytronics may find uses in intelligence/security applications.
The avian egg exhibits general allometric invariances in mechanical design.
Juang, Jia-Yang; Chen, Pin-Yi; Yang, Da-Chang; Wu, Shang-Ping; Yen, An; Hsieh, Hsin-I
2017-10-27
The avian egg exhibits extraordinary diversity in size, shape and color, and has a key role in avian adaptive radiations. Despite extensive work, our understanding of the underlying principles that guide the "design" of the egg as a load-bearing structure remains incomplete, especially over broad taxonomic scales. Here we define a dimensionless number C, a function of egg weight, stiffness and dimensions, to quantify how stiff an egg is with respect to its weight after removing geometry-induced rigidity. We analyze eggs of 463 bird species in 36 orders across five orders of magnitude in body mass, and find that C number is nearly invariant for most species, including tiny hummingbirds and giant elephant birds. This invariance or "design guideline" dictates that evolutionary changes in shell thickness and Young's modulus, both contributing to shell stiffness, are constrained by changes in egg weight. Our analysis illuminates unique reproductive strategies of brood parasites, kiwis, and megapodes, and quantifies the loss of safety margin for contact incubation due to artificial selection and environmental toxins. Our approach provides a mechanistic framework for a better understanding of the mechanical design of the avian egg, and may provide clues to the evolutionary origin of contact incubation of amniote eggs.
Regulatory RNA design through evolutionary computation and strand displacement.
Rostain, William; Landrain, Thomas E; Rodrigo, Guillermo; Jaramillo, Alfonso
2015-01-01
The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.
Using Human Evolution to Teach Evolutionary Theory
ERIC Educational Resources Information Center
Besterman, Hugo; La Velle, Linda Baggott
2007-01-01
This paper discusses some traditional approaches to the teaching of evolutionary theory at pre-university level, criticising in particular some of the more commonly used models and exemplars. Curricular demands are described and an alternative approach is suggested, using the emerging story of human evolution. Recent discoveries help to illustrate…
Analytical Tools for Space Suit Design
NASA Technical Reports Server (NTRS)
Aitchison, Lindsay
2011-01-01
As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.
Ecology and evolution of plant–pollinator interactions
Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.
2009-01-01
Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881
Ecology and evolution of plant-pollinator interactions.
Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D
2009-06-01
Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.
Systems metabolic engineering strategies for the production of amino acids.
Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning
2017-06-01
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Prediction and Estimation of Scaffold Strength with different pore size
NASA Astrophysics Data System (ADS)
Muthu, P.; Mishra, Shubhanvit; Sri Sai Shilpa, R.; Veerendranath, B.; Latha, S.
2018-04-01
This paper emphasizes the significance of prediction and estimation of the mechanical strength of 3D functional scaffolds before the manufacturing process. Prior evaluation of the mechanical strength and structural properties of the scaffold will reduce the cost fabrication and in fact ease up the designing process. Detailed analysis and investigation of various mechanical properties including shear stress equivalence have helped to estimate the effect of porosity and pore size on the functionality of the scaffold. The influence of variation in porosity was examined by computational approach via finite element analysis (FEA) and ANSYS application software. The results designate the adequate perspective of the evolutionary method for the regulation and optimization of the intricate engineering design process.
A Philosophical Perspective on Evolutionary Systems Biology
Soyer, Orkun S.; Siegal, Mark L.
2015-01-01
Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
Pai, Priyadarshini P; Mondal, Sukanta
2016-10-01
Proteins interact with carbohydrates to perform various cellular interactions. Of the many carbohydrate ligands that proteins bind with, mannose constitute an important class, playing important roles in host defense mechanisms. Accurate identification of mannose-interacting residues (MIR) may provide important clues to decipher the underlying mechanisms of protein-mannose interactions during infections. This study proposes an approach using an ensemble of base classifiers for prediction of MIR using their evolutionary information in the form of position-specific scoring matrix. The base classifiers are random forests trained by different subsets of training data set Dset128 using 10-fold cross-validation. The optimized ensemble of base classifiers, MOWGLI, is then used to predict MIR on protein chains of the test data set Dtestset29 which showed a promising performance with 92.0% accurate prediction. An overall improvement of 26.6% in precision was observed upon comparison with the state-of-art. It is hoped that this approach, yielding enhanced predictions, could be eventually used for applications in drug design and vaccine development.
Adaptive design lessons from professional architects
NASA Astrophysics Data System (ADS)
Geiger, Ray W.; Snell, J. T.
1993-09-01
Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. In pursuing better ways to design cellular automata and qualification classifiers in a design process, we have found surprising success in exploring certain more esoteric approaches, e.g., the vision of interdisciplinary artistic discovery in and around creative problem solving. Our evaluation in research into vision and hybrid sensory systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and future oriented design practice. Discussion covers areas of case- based techniques of cognitive ergonomics, natural modeling sources, and an open architectural process of means/goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process.
[Evolutionary medicine: A new look on health and disease].
Bauduer, F
2017-03-01
Evolutionary medicine represents an innovative approach deriving from evolutionary biology. It includes the initial Darwin's view, its actualization in the light of progresses in genetics and also dissident theories (i.e. non gene-based) particularly epigenetics. This approach enables us to reconsider the pathophysiology of numerous diseases, as for instance, infection, and our so-called diseases of civilization especially obesity, type 2 diabetes, allergy or cancer. Evolutionary medicine may also improve our knowledge regarding inter-individual variation in susceptibility to disease or drugs. Furthermore, it points out the impact of our behaviors and environment on the genesis of a series of diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Cost-effective conservation of amphibian ecology and evolution
Campos, Felipe S.; Lourenço-de-Moraes, Ricardo; Llorente, Gustavo A.; Solé, Mirco
2017-01-01
Habitat loss is the most important threat to species survival, and the efficient selection of priority areas is fundamental for good systematic conservation planning. Using amphibians as a conservation target, we designed an innovative assessment strategy, showing that prioritization models focused on functional, phylogenetic, and taxonomic diversity can include cost-effectiveness–based assessments of land values. We report new key conservation sites within the Brazilian Atlantic Forest hot spot, revealing a congruence of ecological and evolutionary patterns. We suggest payment for ecosystem services through environmental set-asides on private land, establishing potential trade-offs for ecological and evolutionary processes. Our findings introduce additional effective area-based conservation parameters that set new priorities for biodiversity assessment in the Atlantic Forest, validating the usefulness of a novel approach to cost-effectiveness–based assessments of conservation value for other species-rich regions. PMID:28691084
ERIC Educational Resources Information Center
Moore, Gregory D.
2012-01-01
South Carolina biology Indicator 5.6 calls for students to "Summarize ways that scientists use data from a variety of sources to investigate and critically analyze aspects of evolutionary theory" (South Carolina Department of Education, 2006). Levinson and Sutton (2001) offered a sociocultural approach to policy that considers cultural…
2011-03-01
the actions of malicious and benign users of the Internet, as well as the engi- neering decisions giving rise to observed network topologies. Say and...with resilience, which is particularly important in the domain of quickly-evolving cyber threats. “Self-organization,” says Meadows, “is basically the...system design paradigm is to leverage the advantages of a distributed approach? What is meant by saying the witness conceptually rates the target
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft
NASA Technical Reports Server (NTRS)
Pullen, Samuel P.; Parkinson, Bradford W.
1994-01-01
This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.
Climate change and evolutionary adaptation.
Hoffmann, Ary A; Sgrò, Carla M
2011-02-24
Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.
A Bright Future for Evolutionary Methods in Drug Design.
Le, Tu C; Winkler, David A
2015-08-01
Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System
Barot, Sébastien; Blouin, Manuel; Fontaine, Sébastien; Jouquet, Pascal; Lata, Jean-Christophe; Mathieu, Jérôme
2007-01-01
Background Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Findings We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. Conclusion This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate “particularity” (empirical observations) and “generality” (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary. PMID:18043755
Automated Design of Quantum Circuits
NASA Technical Reports Server (NTRS)
Williams, Colin P.; Gray, Alexander G.
2000-01-01
In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Evolutionary Creation: Moving beyond the Evolution versus Creation Debate
ERIC Educational Resources Information Center
Lamoureux, Denis O.
2010-01-01
Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…
Using Evolutionary Data in Developing Phylogenetic Trees: A Scaffolded Approach with Authentic Data
ERIC Educational Resources Information Center
Davenport, K. D.; Milks, Kirstin Jane; Van Tassell, Rebecca
2015-01-01
Analyzing evolutionary relationships requires that students have a thorough understanding of evidence and of how scientists use evidence to develop these relationships. In this lesson sequence, students work in groups to process many different lines of evidence of evolutionary relationships between ungulates, then construct a scientific argument…
Predicting evolutionary responses to climate change in the sea.
Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J
2013-12-01
An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. © 2013 John Wiley & Sons Ltd/CNRS.
Pattern and Process in the Comparative Study of Convergent Evolution.
Mahler, D Luke; Weber, Marjorie G; Wagner, Catherine E; Ingram, Travis
2017-08-01
Understanding processes that have shaped broad-scale biodiversity patterns is a fundamental goal in evolutionary biology. The development of phylogenetic comparative methods has yielded a tool kit for analyzing contemporary patterns by explicitly modeling processes of change in the past, providing neontologists tools for asking questions previously accessible only for select taxa via the fossil record or laboratory experimentation. The comparative approach, however, differs operationally from alternative approaches to studying convergence in that, for studies of only extant species, convergence must be inferred using evolutionary process models rather than being directly measured. As a result, investigation of evolutionary pattern and process cannot be decoupled in comparative studies of convergence, even though such a decoupling could in theory guard against adaptationist bias. Assumptions about evolutionary process underlying comparative tools can shape the inference of convergent pattern in sometimes profound ways and can color interpretation of such patterns. We discuss these issues and other limitations common to most phylogenetic comparative approaches and suggest ways that they can be avoided in practice. We conclude by promoting a multipronged approach to studying convergence that integrates comparative methods with complementary tests of evolutionary mechanisms and includes ecological and biogeographical perspectives. Carefully employed, the comparative method remains a powerful tool for enriching our understanding of convergence in macroevolution, especially for investigation of why convergence occurs in some settings but not others.
How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology
2016-01-01
An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753
Automated design of spacecraft systems power subsystems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona
2006-01-01
This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.
Developing of the future: scaffolded Darwinism in societal evolution.
Andersson, Claes; Törnberg, Anton; Törnberg, Petter
2014-08-01
We sympathize with the project of a synthetic approach for devising a "theory of intentional change" and agree that Darwinism should be central in such a theory. But Darwinism is not the only process of evolution that needs to be included. Evolutionary biology itself has taken such a turn recently, with the emergence of developmental evolutionary approaches.
Evolutionary change in physiological phenotypes along the human lineage
Vining, Alexander Q.; Nunn, Charles L.
2016-01-01
Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376
The evolutionary psychology of hunger.
Al-Shawaf, Laith
2016-10-01
An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental Validation of an Integrated Controls-Structures Design Methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.
1996-01-01
The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Using Evolution to Guide Protein Engineering: The Devil IS in the Details.
Swint-Kruse, Liskin
2016-07-12
For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chira, Camelia; Horvath, Dragos; Dumitrescu, D
2011-07-30
Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.
Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir
2012-01-01
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448
Particle swarm optimization: an alternative in marine propeller optimization?
NASA Astrophysics Data System (ADS)
Vesting, F.; Bensow, R. E.
2018-01-01
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.
NASA Astrophysics Data System (ADS)
Neuhoff, John G.
2003-04-01
Increasing acoustic intensity is a primary cue to looming auditory motion. Perceptual overestimation of increasing intensity could provide an evolutionary selective advantage by specifying that an approaching sound source is closer than actual, thus affording advanced warning and more time than expected to prepare for the arrival of the source. Here, multiple lines of converging evidence for this evolutionary hypothesis are presented. First, it is shown that intensity change specifying accelerating source approach changes in loudness more than equivalent intensity change specifying decelerating source approach. Second, consistent with evolutionary hunter-gatherer theories of sex-specific spatial abilities, it is shown that females have a significantly larger bias for rising intensity than males. Third, using functional magnetic resonance imaging in conjunction with approaching and receding auditory motion, it is shown that approaching sources preferentially activate a specific neural network responsible for attention allocation, motor planning, and translating perception into action. Finally, it is shown that rhesus monkeys also exhibit a rising intensity bias by orienting longer to looming tones than to receding tones. Together these results illustrate an adaptive perceptual bias that has evolved because it provides a selective advantage in processing looming acoustic sources. [Work supported by NSF and CDC.
Neo-Darwinists and Neo-Aristotelians: how to talk about natural purpose.
Woodford, Peter
2016-12-01
This paper examines the points of disagreement between Neo-Darwinian and recent Neo-Aristotelian discussions of the status of purposive language in biology. I discuss recent Neo-Darwinian "evolutionary" treatments and distinguish three ways to deal with the philosophical status of teleological language of purpose: teleological error theory, methodological teleology, and Darwinian teleological realism. I then show how "non-evolutionary" Neo-Aristotelian approaches in the work of Michael Thompson and Philippa Foot differ from these by offering a view of purposiveness grounded in life-cycle patterns, rather than in long-term evolutionary processes or natural selection. Finally, I argue that the crucial difference between Neo-Darwinian and Neo-Aristotelian approaches regards the question of whether or not reproduction deserves the status of an "ultimate" aim of organisms. I offer reasons to reject the concept of an "ultimate" aim in evolutionary biology and to reject the notion that reproduction serves a purpose. I argue that evolutionary biology is not in the position to determine what the "ultimate" explanation of natural purpose is.
Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.
Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E
2017-06-01
The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.
2017-11-01
The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.
Effective Technology Insertion: The Key to Evolutionary Acquisition Program
2004-05-03
Army War College, 7 April 2003. 47Orazia A. Di Marca ; Rejto, Stephen B. Rejto and Thomas Gomez, “ Open System Design and Evolutionary Acquisition...to Military Applications-Report No. D-2002-107. 14 June 2002. Di Marca , Orazia A.; Rejto, StephenB., and Gomez, Thomas, “ Open System Design and
Capturing planar shapes by approximating their outlines
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Riyazuddin, M.; Baig, M. H.
2006-05-01
A non-deterministic evolutionary approach for approximating the outlines of planar shapes has been developed. Non-uniform Rational B-splines (NURBS) have been utilized as an underlying approximation curve scheme. Simulated Annealing heuristic is used as an evolutionary methodology. In addition to independent studies of the optimization of weight and knot parameters of the NURBS, a separate scheme has also been developed for the optimization of weights and knots simultaneously. The optimized NURBS models have been fitted over the contour data of the planar shapes for the ultimate and automatic output. The output results are visually pleasing with respect to the threshold provided by the user. A web-based system has also been developed for the effective and worldwide utilization. The objective of this system is to provide the facility to visualize the output to the whole world through internet by providing the freedom to the user for various desired input parameters setting in the algorithm designed.
In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language
NASA Astrophysics Data System (ADS)
Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs
It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.
Efficient hybrid evolutionary algorithm for optimization of a strip coiling process
NASA Astrophysics Data System (ADS)
Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik
2015-04-01
This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.
Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.
Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej
2016-11-01
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Evolutionary explanations in medicine: how do they differ and how to benefit from them.
Lozano, George A
2010-04-01
Evolutionary explanations, many of which have appeared on the pages of this journal, are becoming more pervasive and influential in medicine, so it is becoming more important to understand how these types of explanations differ from the proximate approach that is more common in medicine, and how the evolutionary approach can contribute to medicine. Understanding of any biological phenomenon can occur at four levels: (1) ontogeny (2) causation, (3) function and (4) evolution. These approaches are not mutually exclusive, and whereas the first two are more common in medical practice, a complete explanation requires all four levels of analysis. Two major differences among these approaches are the apparent degree of immediacy associated with them, and the extent to which they apply to individuals rather than populations. Criticisms of adaptive explanations often arise from a failure to understand the complementary nature of these four types of explanations. Other unwarranted criticisms result from a failure to appreciate that adaptive explanations often apply to populations, not individuals. A third type of criticism is driven by the mistaken belief that adaptive explanations somehow justify morally reprehensible behaviours. Finally, evolutionary explanations sometimes face the criticism of "personal incredulity". Adaptive explanations must be consistent with basic evolutionary concepts and must adhere to the physical reality of the phenomenon in question. Their value, however, comes not in devising a seemingly rational explanation, but in their predictions. Testable predictions must be explicitly stated and clearly articulated. They must differ from those of arising from other hypotheses and must not only be interesting to evolutionary biologists, but also useful to medical practitioners. Integration of the proximate and the ultimate approaches is possible and potentially beneficial to both evolutionists and physicians, but it requires some basic understanding of our differences and a desire to co-operate. (c) 2009 Elsevier Ltd. All rights reserved.
Maternal source of variability in the embryo development of an annual killifish.
Polačik, M; Smith, C; Reichard, M
2017-04-01
Organisms inhabiting unpredictable environments often evolve diversified reproductive bet-hedging strategies, expressed as production of multiple offspring phenotypes, thereby avoiding complete reproductive failure. To cope with unpredictable rainfall, African annual killifish from temporary savannah pools lay drought-resistant eggs that vary widely in the duration of embryo development. We examined the sources of variability in the duration of individual embryo development, egg production and fertilization rate in Nothobranchius furzeri. Using a quantitative genetics approach (North Carolina type II design), we found support for maternal effects rather than polyandrous mating as the primary source of the variability in the duration of embryo development. The number of previously laid eggs appeared to serve as an internal physiological cue initiating a shift from rapid-to-slow embryo developmental mode. In annual killifish, extensive phenotypic variability in progeny traits is adaptive, as the conditions experienced by parents have limited relevance to the offspring generation. In contrast to genetic control, with high phenotypic expression and heritability, maternal control of traits under natural selection prevents standing genetic diversity from potentially detrimental effects of selection in fluctuating environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Evolutionary change in physiological phenotypes along the human lineage.
Vining, Alexander Q; Nunn, Charles L
2016-01-01
Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Evolutionary contributions to the study of human fertility.
Sear, Rebecca
2015-01-01
Demography, lacking an overarching theoretical framework of its own, has drawn on theories in many other social sciences to inform its analyses. The aim of this paper is to bring to the demographic community's attention research in the evolutionary sciences on fertility, and to demonstrate that evolutionary theory can be another useful tool in the demographer's toolkit. I first dispel some myths which impede the incorporation of evolutionary theory into demography: I make it clear that evolutionary explanations do not assume that all human behaviour is hardwired and functions to maximize genetic fitness; that they are able to explain variation in human behaviour; and that they are not necessarily alternatives to social science explanations. I then describe the diversity of work on fertility by evolutionary researchers, particularly human evolutionary ecologists and cultural evolutionists, and illustrate the usefulness of the evolutionary approach with examples of its application to age at first birth and the fertility transition.
Evolutionary domestication in Drosophila subobscura.
Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M
2007-03-01
The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.
From computers to cultivation: reconceptualizing evolutionary psychology.
Barrett, Louise; Pollet, Thomas V; Stulp, Gert
2014-01-01
Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on "cognitive integration" or the "extended mind hypothesis" in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human "mind-making" within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach.
Emerging Concepts of Data Integration in Pathogen Phylodynamics.
Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Emerging Concepts of Data Integration in Pathogen Phylodynamics
Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe
2017-01-01
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts
NASA Technical Reports Server (NTRS)
Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk
1992-01-01
The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.
Furlong, Michael; Seong, Jae Young
2017-01-01
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Furlong, Michael; Seong, Jae Young
2017-01-01
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples. PMID:28035082
Stephen, Ian D; Burke, Darren; Sulikowski, Danielle
2017-01-01
We adopt Tinbergen's (1963) "four questions" approach to strengthen the criticism by Maestripieri et al. of the non-evolutionary accounts of favouritism toward attractive individuals, by showing which levels of explanation are lacking in these accounts. We also use this approach to propose ways in which the evolutionary account may be extended and strengthened.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
EHW Approach to Temperature Compensation of Electronics
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2004-01-01
Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search-andoptimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by mathematical modeling (that is, computational simulation) only, tested in real hardware, or tested in combinations of computational simulation and real hardware.
Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco
2009-01-01
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.
NASA Astrophysics Data System (ADS)
Park, C.; Kim, Y.; Jang, H.
2016-12-01
Poor temporal distribution of precipitation increases winter drought risks in mountain valley areas in Korea. Since perennial streams or reservoirs for water use are rare in the areas, groundwater is usually a major water resource. Significant amount of the precipitation contributing groundwater recharge mostly occurs during the summer season. However, a volume of groundwater recharge is limited by rapid runoff because of the topographic characteristics such as steep hill and slope. A groundwater reservoir using artificial recharge method with rain water reuse can be a suitable solution to secure water resource for the mountain valley areas. Successful groundwater reservoir design depends on optimization of well placement and operation. This study introduces a combined approach using GA (Genetic Algorithm) and MODFLOW and its rapid application. The methodology is based on RAD (Rapid Application Development) concept in order to minimize the cost of implementation. DEAP (Distributed Evolutionary Algorithms in Python), a framework for prototyping and testing evolutionary algorithms, is applied for quick code development and CUDA (Compute Unified Device Architecture), a parallel computing platform using GPU (Graphics Processing Unit), is introduced to reduce runtime. The application was successfully applied to Samdeok-ri, Gosung, Korea. The site is located in a mountain valley area and unconfined aquifers are major source of water use. The results of the application produced the best location and optimized operation schedule of wells including pumping and injecting.
Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves
Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.
2003-01-01
Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.
Incorporating evolution of transcription factor binding sites into annotated alignments.
Bais, Abha S; Grossmann, Stefen; Vingron, Martin
2007-08-01
Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.
Isolating Escherichia coli strains for recombinant protein production.
Schlegel, Susan; Genevaux, Pierre; de Gier, Jan-Willem
2017-03-01
Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.
The Modern Synthesis in the Light of Microbial Genomics.
Booth, Austin; Mariscal, Carlos; Doolittle, W Ford
2016-09-08
We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.
ERIC Educational Resources Information Center
Gillie, Lynn; Bizub, Anne L.
2012-01-01
The study of evolutionary theory and fieldwork in animal behavior is enriched when students leave the classroom so they may test their abilities to think and act like scientists. This article describes a course on evolutionary theory and animal behavior that blended on campus learning with field experience in the United States and in Ecuador and…
NASA Astrophysics Data System (ADS)
Moore, Gregory D.
South Carolina biology Indicator 5.6 calls for students to "Summarize ways that scientists use data from a variety of sources to investigate and critically analyze aspects of evolutionary theory" (South Carolina Department of Education, 2006). Levinson and Sutton (2001) offered a sociocultural approach to policy that considers cultural and historical influences at all levels of the policy process. Lipsky (1980/2010) and others have identified teachers as de facto policy makers, exercising broad discretion in the execution of their work. This study looks to Ajzen's Theory of Planned Behavior as an initial framework to inform how evolutionary biology policy in South Carolina is conceptualized and understood at different levels of the policy process. The results of this study indicate that actors in the state's evolutionary biology policy process draw upon a myriad of Discourses (Gee, 1999/2005). These Discourses shape cultural dynamics and the agency of the policy actors as they navigate conflicting messages between testing mandates and evolutionary biology policy. There indeed exist gaps between how evolutionary biology policy in South Carolina is conceptualized and understood at the different levels of the policy process. Evidence from this study suggests that appropriation-level policy actors must be brought into the Discourse related to the critical analysis of evolutionary biology and academic freedom legislation must be enacted if South Carolina biology Indicator 5.6 is to realize practical significance in educational policy.
Thrall, Peter H; Oakeshott, John G; Fitt, Gary; Southerton, Simon; Burdon, Jeremy J; Sheppard, Andy; Russell, Robyn J; Zalucki, Myron; Heino, Mikko; Ford Denison, R
2011-01-01
Anthropogenic impacts increasingly drive ecological and evolutionary processes at many spatio-temporal scales, demanding greater capacity to predict and manage their consequences. This is particularly true for agro-ecosystems, which not only comprise a significant proportion of land use, but which also involve conflicting imperatives to expand or intensify production while simultaneously reducing environmental impacts. These imperatives reinforce the likelihood of further major changes in agriculture over the next 30–40 years. Key transformations include genetic technologies as well as changes in land use. The use of evolutionary principles is not new in agriculture (e.g. crop breeding, domestication of animals, management of selection for pest resistance), but given land-use trends and other transformative processes in production landscapes, ecological and evolutionary research in agro-ecosystems must consider such issues in a broader systems context. Here, we focus on biotic interactions involving pests and pathogens as exemplars of situations where integration of agronomic, ecological and evolutionary perspectives has practical value. Although their presence in agro-ecosystems may be new, many traits involved in these associations evolved in natural settings. We advocate the use of predictive frameworks based on evolutionary models as pre-emptive management tools and identify some specific research opportunities to facilitate this. We conclude with a brief discussion of multidisciplinary approaches in applied evolutionary problems. PMID:25567968
Evolutionary and differential psychology: conceptual conflicts and the path to integration
Marsh, Tim; Boag, Simon
2013-01-01
Evolutionary psychology has seen the majority of its success exploring adaptive features of the mind believed to be ubiquitous across our species. This has given rise to the belief that the adaptationist approach has little to offer the field of differential psychology, which concerns itself exclusively with the ways in which individuals systematically differ. By framing the historical origins of both disciplines, and exploring the means through which they each address the unique challenges of psychological description and explanation, the present article identifies the conceptual and theoretical problems that have kept differential psychology isolated not only from evolutionary psychology, but from explanatory approaches in general. Paying special attention to these conceptual problems, the authors review how these difficulties are being overcome by contemporary evolutionary research, and offer instructive suggestions concerning how differential researchers (and others) can best build upon these innovations. PMID:24065949
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
NASA Astrophysics Data System (ADS)
Persico, Giacomo
2017-03-01
This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.
Development of an Evolutionary Algorithm for the ab Initio Discovery of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Revard, Benjamin Charles
Crystal structure prediction is an important first step on the path toward computational materials design. Increasingly robust methods have become available in recent years for computing many materials properties, but because properties are largely a function of crystal structure, the structure must be known before these methods can be brought to bear. In addition, structure prediction is particularly useful for identifying low-energy structures of subperiodic materials, such as two-dimensional (2D) materials, which may adopt unexpected structures that differ from those of the corresponding bulk phases. Evolutionary algorithms, which are heuristics for global optimization inspired by biological evolution, have proven to be a fruitful approach for tackling the problem of crystal structure prediction. This thesis describes the development of an improved evolutionary algorithm for structure prediction and several applications of the algorithm to predict the structures of novel low-energy 2D materials. The first part of this thesis contains an overview of evolutionary algorithms for crystal structure prediction and presents our implementation, including details of extending the algorithm to search for clusters, wires, and 2D materials, improvements to efficiency when running in parallel, improved composition space sampling, and the ability to search for partial phase diagrams. We then present several applications of the evolutionary algorithm to 2D systems, including InP, the C-Si and Sn-S phase diagrams, and several group-IV dioxides. This thesis makes use of the Cornell graduate school's "papers" option. Chapters 1 and 3 correspond to the first-author publications of Refs. [131] and [132], respectively, and chapter 2 will soon be submitted as a first-author publication. The material in chapter 4 is taken from Ref. [144], in which I share joint first-authorship. In this case I have included only my own contributions.
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Clive Brasier
2017-01-01
It is now generally accepted that the four evolutionary lineages of Phytophthora ramorum (informally designated NA1, NA2, EU1, and EU2) are relatively anciently divergent populations, recently introduced into Europe and North America from different, unknown geographic locations; that recombinants between them are genetically unstable and probably...
First steps in experimental cancer evolution
Taylor, Tiffany B; Johnson, Louise J; Jackson, Robert W; Brockhurst, Michael A; Dash, Philip R
2013-01-01
Evolutionary processes play a central role in the development, progression and response to treatment of cancers. The current challenge facing researchers is to harness evolutionary theory to further our understanding of the clinical progression of cancers. Central to this endeavour will be the development of experimental systems and approaches by which theories of cancer evolution can be effectively tested. We argue here that the experimental evolution approach – whereby evolution is observed in real time and which has typically employed microorganisms – can be usefully applied to cancer. This approach allows us to disentangle the ecological causes of natural selection, identify the genetic basis of evolutionary changes and determine their repeatability. Cell cultures used in cancer research share many of the desirable traits that make microorganisms ideal for studying evolution. As such, experimental cancer evolution is feasible and likely to give great insight into the selective pressures driving the evolution of clinically destructive cancer traits. We highlight three areas of evolutionary theory with importance to cancer biology that are amenable to experimental evolution: drug resistance, social evolution and resource competition. Understanding the diversity, persistence and evolution of cancers is vital for treatment and drug development, and an experimental evolution approach could provide strategic directions and focus for future research. PMID:23745144
Artificial evolution by viability rather than competition.
Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario
2014-01-01
Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.
Integrating evo-devo with ecology for a better understanding of phenotypic evolution
Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.
2015-01-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411
Integrating evo-devo with ecology for a better understanding of phenotypic evolution.
Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman
2015-11-01
Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.
Integrating the study of conformity and culture in humans and nonhuman animals.
Claidière, Nicolas; Whiten, Andrew
2012-01-01
Conformity--defined here by the fact that an individual displays a particular behavior because it is the most frequent the individual witnessed in others--has long been recognized by social psychologists as one of the main categories of social influence. Surprisingly, it is only recently that conformity has become an active topic in animal and comparative biology. As in any new and rapidly growing field, however, definitions, hypotheses, and protocols are diverse, not easy to organize in a coherent way, and sometimes seriously in conflict with one another. Here we pursue greater coherence by reviewing the newer literature on conformity in behavioral ecology and evolutionary biology in light of the foundational work in social psychology. We suggest that the knowledge accumulated in social psychology can be exploited by behavioral ecologists and evolutionary biologists to bring conceptual clarity to the field, avoid some experimental pitfalls, and help design new and challenging experiments. In particular, we propose that the notions of informational and normative conformity that, until now, have been little recognized in recent literature can resolve some important controversies. In turn, research on animal culture should be of great interest to social scientists, because understanding human culture and human uniqueness requires an evolutionary analysis of our cognitive capacities and their evolutionary origins. Our review suggests excellent opportunities for social and natural scientists to join forces in building an interdisciplinary and integrative approach to the pervasive phenomenon of conformity.
A comparative study of corrugated horn design by evolutionary techniques
NASA Technical Reports Server (NTRS)
Hoorfar, A.
2003-01-01
Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Evolutionary dynamics with fluctuating population sizes and strong mutualism.
Chotibut, Thiparat; Nelson, David R
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Evolutionary dynamics with fluctuating population sizes and strong mutualism
NASA Astrophysics Data System (ADS)
Chotibut, Thiparat; Nelson, David R.
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Hybrid zone studies: An interdisciplinary approach for the analysis of evolutionary processes
Scribner, Kim T.
1994-01-01
There has been considerable debate in the ecological and evolutionary literature over the relative importance and rate by which microevolutionary processes operating at the population level result in separation and differentiation of lineages and populations, and ultimately in speciation. Our understanding of evolutionary processes have need greatly enhances through the study of hybridization and hybrid zones. Indeed, hybrid zones have been described as “natural laboratories” (Barton, N. H., and G .M. Hewitt, 189. Adaptation, speciation, and hybrid zones. Nature 341:497-503) or as “windows on the evolutionary processes” (Harrison, R. G. 1990. Hybrid zones: windows on the evolutionary process. Oxford Surveys in Evolutionary Biology 7:69-128). Hybrid zones greatly facilitate analyses of evolutionary dynamics because differences in factors such as mating preference, fertility, and viability are likely to be magnified, making the consequences easier to document over short periods of time.
Group adaptation, formal darwinism and contextual analysis.
Okasha, S; Paternotte, C
2012-06-01
We consider the question: under what circumstances can the concept of adaptation be applied to groups, rather than individuals? Gardner and Grafen (2009, J. Evol. Biol.22: 659-671) develop a novel approach to this question, building on Grafen's 'formal Darwinism' project, which defines adaptation in terms of links between evolutionary dynamics and optimization. They conclude that only clonal groups, and to a lesser extent groups in which reproductive competition is repressed, can be considered as adaptive units. We re-examine the conditions under which the selection-optimization links hold at the group level. We focus on an important distinction between two ways of understanding the links, which have different implications regarding group adaptationism. We show how the formal Darwinism approach can be reconciled with G.C. Williams' famous analysis of group adaptation, and we consider the relationships between group adaptation, the Price equation approach to multi-level selection, and the alternative approach based on contextual analysis. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Quantitative genetic models of sexual conflict based on interacting phenotypes.
Moore, Allen J; Pizzari, Tommaso
2005-05-01
Evolutionary conflict arises between reproductive partners when alternative reproductive opportunities are available. Sexual conflict can generate sexually antagonistic selection, which mediates sexual selection and intersexual coevolution. However, despite intense interest, the evolutionary implications of sexual conflict remain unresolved. We propose a novel theoretical approach to study the evolution of sexually antagonistic phenotypes based on quantitative genetics and the measure of social selection arising from male-female interactions. We consider the phenotype of one sex as both a genetically influenced evolving trait as well as the (evolving) social environment in which the phenotype of the opposite sex evolves. Several important points emerge from our analysis, including the relationship between direct selection on one sex and indirect effects through selection on the opposite sex. We suggest that the proposed approach may be a valuable tool to complement other theoretical approaches currently used to study sexual conflict. Most importantly, our approach highlights areas where additional empirical data can help clarify the role of sexual conflict in the evolutionary process.
NASA Astrophysics Data System (ADS)
Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.
2011-08-01
This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.
1985-01-01
numerous major exercises, such as WINTEX- CIMEX , REFORGER, CRESTED EAGLE, and BRIGHT STAR. USAFE is now actively planning an evolutionary approach toward C2...during WINTEX- CIMEX 85, we have been investigating a number of approaches to enhancing joint air-ground operations and providing a means for better...throughout the ground battle elements. The USAREUR Distributed Decision Aid System (UD[1AS) was initially deployed in Exercise WINTEX- CIMEX 84. During
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Sánchez, Daniela; Melin, Patricia
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.
Sánchez, Daniela; Melin, Patricia; Castillo, Oscar
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander
2017-10-01
While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.
Integrating genomics into evolutionary medicine.
Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi
2014-12-01
The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolutionary public health: introducing the concept.
Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C
2017-07-29
The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
The major synthetic evolutionary transitions.
Solé, Ricard
2016-08-19
Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
The major synthetic evolutionary transitions
Solé, Ricard
2016-01-01
Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528
A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits
NASA Astrophysics Data System (ADS)
Moradi, Behzad; Mirzaei, Abdolreza
2016-11-01
A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.
Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil
2016-01-01
Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
MOCASSIN-prot: A multi-objective clustering approach for protein similarity networks
USDA-ARS?s Scientific Manuscript database
Motivation: Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary h...
The great opportunity: Evolutionary applications to medicine and public health.
Nesse, Randolph M; Stearns, Stephen C
2008-02-01
Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
Schumann, A; Priegnitz, M; Schoene, S; Enghardt, W; Rohling, H; Fiedler, F
2016-10-07
Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.
Ikehara, Kenji
2016-01-01
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event—the establishment of the first genetic code encoding [GADV]-amino acids—as a juncture for the results obtained from the two approaches. PMID:26821048
Ikehara, Kenji
2016-01-26
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Computer-Automated Evolution of Spacecraft X-Band Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.
2010-01-01
A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.
Expert-guided evolutionary algorithm for layout design of complex space stations
NASA Astrophysics Data System (ADS)
Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu
2017-08-01
The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.
EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.
Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D
2012-01-01
Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.
Hernández Blasi, Carlos; Causey, Kayla
2010-02-01
This is an introduction to this special issue on evolutionary psychology (EP) and evolutionary developmental psychology (EDP). We suggest here that, contrary to some common assumptions, mainstream psychology continues to be essentially non Darwinian and that EP and EDP are new approaches that can potentially help us to change this situation. We then present the organization of the special issue (composed of six papers). We conclude that evolution is certainly not the final consideration in psychology, but emphasize its importance as the basis upon which all modern behaviors and development are built.
Evolutionary space platform concept study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The Evolutionary Space Platform Concept Study encompassed a 10 month effort to define, evaluate and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the current Space Platform concepts to an evolutionary goal of establishing a permanent manned presence in space. Areas addressed included: special emphasis trade studies on the current unmanned concept, assessment of manned platform concepts, and utility analysis of a manned platform for defense related missions.
NASA Astrophysics Data System (ADS)
Southard, Ashton C.; Zeigler-Hill, Virgil; Shackelford, Todd K.
2014-12-01
Yair Neuman [6] presents many provocative ideas in his interdisciplinary approach to human personality. In this commentary, we focus on his ideas regarding (1) the evolutionary basis of personality and (2) human sperm competition.
ERIC Educational Resources Information Center
Maloney, Peter C.; Wilson, T. Hastings
1985-01-01
Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)
Kosevich, I A
2012-01-01
The morphogenetic approach is applied to analyze the diversity of spatial organization of shoots in thecate hydroids (Cnidaria, Hydroidomedusa, Leptomedusae). The main tendencies and constraints of increased evolutionary complexity in thecate hydroids colonies are uncovered.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
NASA Astrophysics Data System (ADS)
Crawford, Barbara A.; Zembal-Saul, Carla; Munford, Danusa; Friedrichsen, Patricia
2005-08-01
This study addresses the need for research in three areas: (1) teachers' understandings of scientific inquiry; (2) conceptual understandings of evolutionary processes; and (3) technology-enhanced instruction using an inquiry approach. The purpose of this study was to determine in what ways The Galapagos Finches software-based materials created a context for learning and teaching about the nature of scientific knowledge and evolutionary concepts. The research used a design experiment in which researchers significantly modified a secondary science methods course. The multiple data sources included: audiotaped conversations of two focus pairs of participants as they interacted with the software; written pre- and posttests on concepts of natural selection of the 21 prospective teachers; written pre- and posttests on views of the nature of science; three e-mail journal questions; and videotaped class discussions. Findings indicate that prospective teachers initially demonstrated alternative understandings of evolutionary concepts; there were uninformed understandings of the nature of scientific inquiry; there was little correlation between understandings and disciplines; and even the prospective teachers with research experience failed to understand the diverse methods used by scientists. Following the module there was evidence of enhanced understandings through metacognition, and the potential for interactive software to provide promising context for enhancing content understandings.
Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti.
Ye, Yixin H; Chenoweth, Stephen F; Carrasco, Alison M; Allen, Scott L; Frentiu, Francesca D; van den Hurk, Andrew F; Beebe, Nigel W; McGraw, Elizabeth A
2016-11-01
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life-history consequences for virus-infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
From computers to cultivation: reconceptualizing evolutionary psychology
Barrett, Louise; Pollet, Thomas V.; Stulp, Gert
2014-01-01
Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on “cognitive integration” or the “extended mind hypothesis” in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human “mind-making” within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach. PMID:25161633
Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2014-01-01
The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy—molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the critical need to integrate these two disciplines. We first articulate the elements of these integrated approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. PMID:24952216
Serohijos, Adrian W R; Shakhnovich, Eugene I
2014-06-01
The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy-molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the crucial need to integrate these two disciplines. We first articulate the elements of these approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deontic reasoning with emotional content: evolutionary psychology or decision theory?
Perham, Nick; Oaksford, Mike
2005-09-10
Three experiments investigated the contrasting predictions of the evolutionary and decision-theoretic approaches to deontic reasoning. Two experiments embedded a hazard management (HM) rule in a social contract scenario that should lead to competition between innate modules. A 3rd experiment used a pure HM task. Threatening material was also introduced into the antecedent, p, of a deontic rule, if p then must q. According to the evolutionary approach, more HM responses (Cosmides & Tooby, 2000) are predicted when p is threatening, whereas decision theory predicts fewer. All 3 experiments were consistent with decision theory. Other theories are discussed, and it is concluded that they cannot account for the behavior observed in these experiments. 2005 Lawrence Erlbaum Associates, Inc.
Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Stoica, Adrian
1998-01-01
Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
NASA Astrophysics Data System (ADS)
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Cancer Evolution: Mathematical Models and Computational Inference
Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804
Evolvable Hardware for Space Applications
NASA Technical Reports Server (NTRS)
Lohn, Jason; Globus, Al; Hornby, Gregory; Larchev, Gregory; Kraus, William
2004-01-01
This article surveys the research of the Evolvable Systems Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.
Loreto, R G; Hughes, D P
2016-01-01
It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism. Copyright © 2016 Elsevier Inc. All rights reserved.
Microgravity research in the era of Space Station Freedom
NASA Technical Reports Server (NTRS)
Lee, Mark C.
1989-01-01
NASA has developed numerous microgravity research-related missions planned for the period of 1991 to 1994, leading to Space Station Freedom (SSF). Space Transportation System (STS) flights are designed with the philosophy that STS, Spacelab, and SSF will constitute an integrated system allowing an evolutionary approach to microgravity research in low earth orbit. Ground experiments, tested and refined on short-duration STS flights, will be developed and deployed on SSF where long-duration operation is required. In addition, this sequence will ensure maximum scientific return, encourage growth of the research community, and increase the chances of identifying new techniques and processes to be used in the SSF time frame. The paper discusses the rationale, justification, and approach taken by NASA to fully exploit this environment.
What have humans done for evolutionary biology? Contributions from genes to populations.
Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi
2017-11-15
Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).
What have humans done for evolutionary biology? Contributions from genes to populations
Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.
2017-01-01
Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130
The Evolutionary Psychology of Envy and Jealousy
Ramachandran, Vilayanur S.; Jalal, Baland
2017-01-01
The old dogma has always been that the most complex aspects of human emotions are driven by culture; Germans and English are thought to be straight-laced whereas Italians and Indians are effusive. Yet in the last two decades there has been a growing realization that even though culture plays a major role in the final expression of human nature, there must be a basic scaffolding specified by genes. While this is recognized to be true for simple emotions like anger, fear, and joy, the relevance of evolutionary arguments for more complex nuances of emotion have been inadequately explored. In this paper, we consider envy or jealousy as an example; the feeling evoked when someone is better off than you. Our approach is broadly consistent with traditional evolutionary psychology (EP) approaches, but takes it further by exploring the complexity and functional logic of the emotion – and the precise social triggers that elicit them – by using deliberately farfetched, and contrived “thought experiments” that the subject is asked to participate in. When common sense (e.g., we should be jealous of Bill Gates – not of our slightly richer neighbor) appears to contradict observed behavior (i.e., we are more envious of our neighbor) the paradox can often be resolved by evolutionary considerations which h predict the latter. Many – but not all – EP approaches fail because evolution and common sense do not make contradictory predictions. Finally, we briefly raise the possibility that gaining deeper insight into the evolutionary origins of certain undesirable emotions or behaviors can help shake them off, and may therefore have therapeutic utility. Such an approach would complement current therapies (such as cognitive behavior therapies, psychoanalysis, psychopharmacologies, and hypnotherapy), rather than negate them. PMID:28970815
On joint subtree distributions under two evolutionary models.
Wu, Taoyang; Choi, Kwok Pui
2016-04-01
In population and evolutionary biology, hypotheses about micro-evolutionary and macro-evolutionary processes are commonly tested by comparing the shape indices of empirical evolutionary trees with those predicted by neutral models. A key ingredient in this approach is the ability to compute and quantify distributions of various tree shape indices under random models of interest. As a step to meet this challenge, in this paper we investigate the joint distribution of cherries and pitchforks (that is, subtrees with two and three leaves) under two widely used null models: the Yule-Harding-Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model. Based on two novel recursive formulae, we propose a dynamic approach to numerically compute the exact joint distribution (and hence the marginal distributions) for trees of any size. We also obtained insights into the statistical properties of trees generated under these two models, including a constant correlation between the cherry and the pitchfork distributions under the YHK model, and the log-concavity and unimodality of the cherry distributions under both models. In addition, we show that there exists a unique change point for the cherry distributions between these two models. Copyright © 2015 Elsevier Inc. All rights reserved.
Historical development of administration architecture in Malaysia (15th-21st century)
NASA Astrophysics Data System (ADS)
Mohidin, H. H. B.; Ismail, A. S.
2014-02-01
The main purpose of this paper is to document the development of the state administration building in Malaysia before and after the independence era, in relation to the evolutionary period of Malaysia's political, social and economic history. Multiple case study approach [19] is applied by referring to six prominent case studies to represent state administrative buildings from various phases of Malaysian history beginning from 14th century to 21st century as exemplar. Since this paper formulates new ways to approach and describes state administrative building design and factors that influence them, it uses interpretivism paradigm and (semiotics) as methodological approach to study the relationship between the building design and contextual elements. This paper, therefore, offers new insights, which not only add to knowledge in this field by widening and strengthening the understanding of state administrative architecture in Malaysia, but also are valuable for range of associated fields including architectural semiotics and non verbal communication. This is because this paper reveals deep understandings of the built form and material environment operating as a sign in a cultural and social context.
De Tiège, Alexis; Van de Peer, Yves; Braeckman, Johan; Tanghe, Koen B
2017-11-22
Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly 'gene-centred', the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene's eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of 'intra-organismic' and 'intra-genomic' gene-selectionism, i.e., of a behavioural-ecological 'gene's eye view' on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the-to some extent-still 'organism-centred' approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin's 'common descent with modification' or, more specifically, for 'historical continuity or homology with modular evolutionary change' as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on 'within-organism' developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene's eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene's eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.
Howling about Trophic Cascades
ERIC Educational Resources Information Center
Kowalewski, David
2012-01-01
Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…
Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)
Bedford, Trevor; Cobey, Sarah; Beerli, Peter; Pascual, Mercedes
2010-01-01
The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions. PMID:20523898
From mechanisms to function: an integrated framework of animal innovation
Tebbich, Sabine; Griffin, Andrea S.; Peschl, Markus F.; Sterelny, Kim
2016-01-01
Animal innovations range from the discovery of novel food types to the invention of completely novel behaviours. Innovations can give access to new opportunities, and thus enable innovating agents to invade and create novel niches. This in turn can pave the way for morphological adaptation and adaptive radiation. The mechanisms that make innovations possible are probably as diverse as the innovations themselves. So too are their evolutionary consequences. Perhaps because of this diversity, we lack a unifying framework that links mechanism to function. We propose a framework for animal innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance, and which suggests an expanded range of experimental approaches. In doing so, we split innovation into factors (components and phases) that can be manipulated systematically, and which can be investigated both experimentally and with correlational studies. We apply this framework to a selection of cases, showing how it helps us ask more precise questions and design more revealing experiments. PMID:26926285
Evolution and Vaccination of Influenza Virus.
Lam, Ham Ching; Bi, Xuan; Sreevatsan, Srinand; Boley, Daniel
2017-08-01
In this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results. We used the influenza surface Hemagglutinin (HA) gene for this study as the HA gene is the major target of the immune system. The visualization is achieved without using any clustering methods or prior information about the influenza sequences. Our results clearly showed that the evolutionary trajectories between vaccine-controlled and non-vaccine-controlled influenza viruses are different and vaccine as an evolution driving force cannot be completely eliminated.
Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir
2018-01-01
Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954
Eastwick, Paul W
2009-09-01
Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.
Multifunctional Logic Gate Controlled by Supply Voltage
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo
2005-01-01
A complementary metal oxide/semiconductor (CMOS) electronic circuit functions as a NAND gate at a power-supply potential (V(sub dd)) of 3.3 V and as NOR gate for V(sub dd) = 1.8 V. In the intermediate V(sub dd) range of 1.8 to 3.3 V, this circuit performs a function intermediate between NAND and NOR with degraded noise margin. Like the circuit of the immediately preceding article, this circuit serves as a demonstration of the evolutionary approach to design of polymorphic electronics -- a technological discipline that emphasizes evolution of the design of a circuit to perform different analog and/or digital functions under different conditions. In this instance, the different conditions are different values of V(sub dd).
Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.
Yamada, N; Nishikawa, T
2010-06-21
In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.
The Evolutionary History of Protein Domains Viewed by Species Phylogeny
Yang, Song; Bourne, Philip E.
2009-01-01
Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107
Evolutionary biology: a basic science for medicine in the 21st century.
Perlman, Robert L
2011-01-01
Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research traditions and evolutionary explanations in medicine.
Méthot, Pierre-Olivier
2011-02-01
In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.
Incorporating Eco-Evolutionary Processes into Population Models:Design and Applications
Eco-evolutionary population models are powerful new tools for exploring howevolutionary processes influence plant and animal population dynamics andvice-versa. The need to manage for climate change and other dynamicdisturbance regimes is creating a demand for the incorporation of...
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Analysis of Students' Arguments on Evolutionary Theory
ERIC Educational Resources Information Center
Basel, Nicolai; Harms, Ute; Prechtl, Helmut
2013-01-01
A qualitative exploratory study was conducted to reveal students' argumentation skills in the context of the topic of evolution. Transcripts from problem-centred interviews on secondary students' beliefs about evolutionary processes of adaptation were analysed using a content analysis approach. For this purpose two categorical systems were…
Chakrabarti, Shaon; Michor, Franziska
2017-07-15
The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. Cancer Res; 77(14); 3908-21. ©2017 AACR . ©2017 American Association for Cancer Research.
Price, C; Briggs, K; Brown, P J
1999-01-01
Healthcare terminologies have become larger and more complex, aiming to support a diverse range of functions across the whole spectrum of healthcare activity. Prioritization of development, implementation and evaluation can be achieved by regarding the "terminology" as an integrated system of content-based and functional components. Matching these components to target segments within the healthcare community, supports a strategic approach to evolutionary development and provides essential product differentiation to enable terminology providers and systems suppliers to focus on end-user requirements.
Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.
Menges, Achim
2012-03-01
Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.
Evolutionary and mechanistic theories of aging.
Hughes, Kimberly A; Reynolds, Rose M
2005-01-01
Senescence (aging) is defined as a decline in performance and fitness with advancing age. Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. Here we present a concise review of both evolutionary and mechanistic theories of aging. We describe the development of the general evolutionary theory, along with the mutation accumulation, antagonistic pleiotropy, and disposable soma versions of the evolutionary model. The review of the mechanistic theories focuses on the oxidative stress resistance, cellular signaling, and dietary control mechanisms of life span extension. We close with a discussion of how an approach that makes use of both evolutionary and molecular analyses can address a critical question: Which of the mechanisms that can cause variation in aging actually do cause variation in natural populations?
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
Evolutionary and ecological approaches to the study of personality
Réale, Denis; Dingemanse, Niels J.; Kazem, Anahita J. N.; Wright, Jonathan
2010-01-01
This introduction to the themed issue on Evolutionary and ecological approaches to the study of personality provides an overview of conceptual, theoretical and methodological progress in research on animal personalities over the last decade, and places the contributions to this volume in context. The issue has three main goals. First, we aimed to bring together theoreticians to contribute to the development of models providing adaptive explanations for animal personality that could guide empiricists, and stimulate exchange of ideas between the two groups of researchers. Second, we aimed to stimulate cross-fertilization between different scientific fields that study personality, namely behavioural ecology, psychology, genomics, quantitative genetics, neuroendocrinology and developmental biology. Third, we aimed to foster the application of an evolutionary framework to the study of personality. PMID:21078646
An adaptive paradigm for human space settlement
NASA Astrophysics Data System (ADS)
Smith, Cameron M.
2016-02-01
Because permanent space settlement will be multigenerational it will have to be viable on ecological timescales so far unfamiliar to those planning space exploration. Long-term viability will require evolutionary and adaptive planning. Adaptations in the natural world provide many lessons for such planning, but implementing these lessons will require a new, evolutionary paradigm for envisioning and carrying out Earth-independent space settlement. I describe some of these adaptive lessons and propose some cognitive shifts required to implement them in a genuinely evolutionary approach to human space settlement.
Modeling Misbehavior in Cooperative Diversity: A Dynamic Game Approach
NASA Astrophysics Data System (ADS)
Dehnie, Sintayehu; Memon, Nasir
2009-12-01
Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS). Our main goal is to design a mechanism that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the conditions for the existence of perfect Bayesian equilibrium.
NASA Astrophysics Data System (ADS)
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.
An Hypothesis-Driven, Molecular Phylogenetics Exercise for College Biology Students
ERIC Educational Resources Information Center
Parker, Joel D.; Ziemba, Robert E.; Cahan, Sara Helms; Rissing, Steven W.
2004-01-01
This hypothesis-driven laboratory exercise teaches how DNA evidence can be used to investigate an organism's evolutionary history while providing practical modeling of the fundamental processes of gene transcription and translation. We used an inquiry-based approach to construct a laboratory around a nontrivial, open-ended evolutionary question…
A Strategic Approach to Joint Officer Management: Analysis and Modeling Results
2009-01-01
rules. 5 Johnson and Wichern, 2002, p. 643. 6 Sullivan and Perry, 2004, p. 370. 7 Francesco Mola and Raffaele Miele, “Evolutionary Algorithms for...in Military Affairs, Newport, R.I.: Center for Naval Warfare Studies, 2003. Mola , Francesco, and Raffaele Miele, “Evolutionary Algorithms for
Attachment in Middle Childhood: An Evolutionary-Developmental Perspective
ERIC Educational Resources Information Center
Del Giudice, Marco
2015-01-01
Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…
ERIC Educational Resources Information Center
Maestripieri, Dario; Roney, James R.
2006-01-01
Evolutionary developmental psychology is a discipline that has the potential to integrate conceptual approaches to the study of behavioral development derived from psychology and biology as well as empirical data from humans and animals. Comparative research with animals, and especially with nonhuman primates, can provide evidence of adaptation in…
Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization
ERIC Educational Resources Information Center
Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.
2013-01-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…
Analysis of evolutionary patterns of genes in campylobacter jejuni and C. coli
USDA-ARS?s Scientific Manuscript database
Background: In order to investigate the population genetics structure of thermophilic Campylobacter spp., we extracted a set of 1029 core gene families (CGF) from 25 sequenced genomes of C. jejuni, C. coli and C. lari. Based on these CGFs we employed different approaches to reveal the evolutionary ...
USDA-ARS?s Scientific Manuscript database
Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...
Some considerations for analyzing biodiversity using integrative metagenomics and gene networks.
Bittner, Lucie; Halary, Sébastien; Payri, Claude; Cruaud, Corinne; de Reviers, Bruno; Lopez, Philippe; Bapteste, Eric
2010-07-30
Improving knowledge of biodiversity will benefit conservation biology, enhance bioremediation studies, and could lead to new medical treatments. However there is no standard approach to estimate and to compare the diversity of different environments, or to study its past, and possibly, future evolution. We argue that there are two conditions for significant progress in the identification and quantification of biodiversity. First, integrative metagenomic studies - aiming at the simultaneous examination (or even better at the integration) of observations about the elements, functions and evolutionary processes captured by the massive sequencing of multiple markers - should be preferred over DNA barcoding projects and over metagenomic projects based on a single marker. Second, such metagenomic data should be studied with novel inclusive network-based approaches, designed to draw inferences both on the many units and on the many processes present in the environments. We reached these conclusions through a comparison of the theoretical foundations of two molecular approaches seeking to assess biodiversity: metagenomics (mostly used on prokaryotes and protists) and DNA barcoding (mostly used on multicellular eukaryotes), and by pragmatic considerations of the issues caused by the 'species problem' in biodiversity studies. Evolutionary gene networks reduce the risk of producing biodiversity estimates with limited explanatory power, biased either by unequal rates of LGT, or difficult to interpret due to (practical) problems caused by type I and type II grey zones. Moreover, these networks would easily accommodate additional (meta)transcriptomic and (meta)proteomic data.
A systems approach to physiologic evolution: From micelles to consciousness.
Torday, John S; Miller, William B
2018-01-01
A systems approach to evolutionary biology offers the promise of an improved understanding of the fundamental principles of life through the effective integration of many biologic disciplines. It is presented that any critical integrative approach to evolutionary development involves a paradigmatic shift in perspective, more than just the engagement of a large number of disciplines. Critical to this differing viewpoint is the recognition that all biological processes originate from the unicellular state and remain permanently anchored to that phase throughout evolutionary development despite their macroscopic appearances. Multicellular eukaryotic development can, therefore, be viewed as a series of connected responses to epiphenomena that proceeds from that base in continuous iterative maintenance of collective cellular homeostatic equipoise juxtaposed against an ever-changing and challenging environment. By following this trajectory of multicellular eukaryotic evolution from within unicellular First Principles of Physiology forward, the mechanistic nature of complex physiology can be identified through a step-wise analysis of a continuous arc of vertebrate evolution based upon serial exaptations. © 2017 Wiley Periodicals, Inc.
Laine, Elodie; Carbone, Alessandra
2015-01-01
Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
NASA Technical Reports Server (NTRS)
Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.
1982-01-01
Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.
Order and disorder: Temporal organization of eating
Rowland, Neil E.
2012-01-01
Feeding behavior is described from an evolutionary perspective, and implications for modern neurobiological studies are suggested. In particular, it is argued that meals may have evolved more for sociocultural reasons than physiological imperatives, and that biological approaches to the study of feeding episodes should adopt a more flexible model that is founded in economic or cost-benefit considerations. Specific examples of flexibility in mouse feeding behavior are given. It is further argued that the modern human food environment is so immoderate that physiological manipulations designed to restrain eating have little hope of achieving this goal. PMID:22138508
Evolutionary Design of Controlled Structures
NASA Technical Reports Server (NTRS)
Masters, Brett P.; Crawley, Edward F.
1997-01-01
Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed based on the measured and fit average system transfer function gains and system phase loss.
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.
Rittschof, C C; Robinson, G E
2016-01-01
The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.
Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.
2014-01-01
Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554
Tougard, Christelle; Renvoisé, Elodie; Petitjean, Amélie; Quéré, Jean-Pierre
2008-01-01
Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity. PMID:18958287
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana
2010-06-01
This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.
Robust enzyme design: bioinformatic tools for improved protein stability.
Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas
2015-03-01
The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback
van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.
2015-01-01
Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313
The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.
van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K
2015-01-01
Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.
Buried treasure: evolutionary perspectives on microbial iron piracy
Barber, Matthew F.; Elde, Nels C.
2015-01-01
Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675
A Genetic Representation for Evolutionary Fault Recovery in Virtex FPGAs
NASA Technical Reports Server (NTRS)
Lohn, Jason; Larchev, Greg; DeMara, Ronald; Korsmeyer, David (Technical Monitor)
2003-01-01
Most evolutionary approaches to fault recovery in FPGAs focus on evolving alternative logic configurations as opposed to evolving the intra-cell routing. Since the majority of transistors in a typical FPGA are dedicated to interconnect, nearly 80% according to one estimate, evolutionary fault-recovery systems should benefit hy accommodating routing. In this paper, we propose an evolutionary fault-recovery system employing a genetic representation that takes into account both logic and routing configurations. Experiments were run using a software model of the Xilinx Virtex FPGA. We report that using four Virtex combinational logic blocks, we were able to evolve a 100% accurate quadrature decoder finite state machine in the presence of a stuck-at-zero fault.
Cancer evolution: mathematical models and computational inference.
Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.
Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J
2018-05-11
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Evolutionary adaptations: theoretical and practical implications for visual ergonomics.
Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode
2014-01-01
The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.
Niche construction theory: a practical guide for ecologists.
Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N
2013-03-01
Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.
Yang, Lucie; Krefting, Ira; Gorovets, Alex; Marzella, Louis; Kaiser, James; Boucher, Robert; Rieves, Dwaine
2012-10-01
In 2007, the Food and Drug Administration requested that manufacturers of all approved gadolinium-based contrast agents (GBCAs), drugs widely used in magnetic resonance imaging, use nearly identical text in their product labeling to describe the risk of nephrogenic systemic fibrosis (NSF). Accumulating information about NSF risks led to revision of the labeling text for all of these drugs in 2010. The present report summarizes the basis and purpose of this class-labeling approach and describes some of the related challenges, given the evolutionary nature of the NSF risk evidence. The class-labeling approach for presentation of product risk is designed to decrease the occurrence of NSF and to enhance the safe use of GBCAs in radiologic practice. © RSNA, 2012.
A switching control law approach for cancer immunotherapy of an evolutionary tumor growth model.
Doban, Alina I; Lazar, Mircea
2017-02-01
We propose a new approach for tumor immunotherapy which is based on a switching control strategy defined on domains of attraction of equilibria of interest. For this, we consider a recently derived model which captures the effects of the tumor cells on the immune system and viceversa, through predator-prey competition terms. Additionally, it incorporates the immune system's mechanism for producing hunting immune cells, which makes the model suitable for immunotherapy strategies analysis and design. For computing domains of attraction for the tumor nonlinear dynamics, and thus, for deriving immunotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the switching control strategy to destabilize an invasive tumor equilibrium and steer the system trajectories to tumor dormancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Strategic approaches to planetary base development
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The evolutionary development of a planetary expansionary outpost is considered in the light of both technical and economic issues. The outline of a partnering taxonomy is set forth which encompasses both institutional and temporal issues related to establishing shared interests and investments. The purely technical issues are discussed in terms of the program components which include nonaerospace technologies such as construction engineering. Five models are proposed in which partnership and autonomy for participants are approached in different ways including: (1) the standard customer/provider relationship; (2) a service-provider scenario; (3) the joint venture; (4) a technology joint-development model; and (5) a redundancy model for reduced costs. Based on the assumed characteristics of planetary surface systems the cooperative private/public models are championed with coordinated design by NASA to facilitate outside cooperation.
DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.
Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O
2013-07-01
Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.
Understanding Evolutionary Change within the Framework of Geological Time
ERIC Educational Resources Information Center
Dodick, Jeff
2007-01-01
This paper focuses on a learning strategy designed to overcome students' difficulty in understanding evolutionary change within the framework of geological time. Incorporated into the learning program "From Dinosaurs to Darwin: Evolution from the Perspective of Time," this strategy consists of four scaffolded investigations in which…
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
Pitiot, Alain; Toga, Arthur W; Thompson, Paul M
2002-08-01
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.
What to expect from an evolutionary hypothesis for a human disease: The case of type 2 diabetes.
Watve, Milind; Diwekar-Joshi, Manawa
2016-10-01
Evolutionary medicine has a promise to bring in a conceptual revolution in medicine. However, as yet the field does not have the same theoretical rigour as that of many other fields in evolutionary studies. We discuss here with reference to type 2 diabetes mellitus (T2DM) what role an evolutionary hypothesis should play in the development of thinking in medicine. Starting with the thrifty gene hypothesis, evolutionary thinking in T2DM has undergone several transitions, modifications and refinements of the thrift family of hypotheses. In addition alternative hypotheses independent of thrift are also suggested. However, most hypotheses look at partial pictures; make selective use of supportive data ignoring inconvenient truths. Most hypotheses look at a superficial picture and avoid getting into the intricacies of underlying molecular, neuronal and physiological processes. Very few hypotheses have suggested clinical implications and none of them have been tested with randomized clinical trials. In the meanwhile the concepts in the pathophysiology of T2DM are undergoing radical changes and evolutionary hypotheses need to take them into account. We suggest an approach and a set of criteria to evaluate the relative merits of the alternative hypotheses. A number of hypotheses are likely to fail when critically evaluated against these criteria. It is possible that more than one selective process are at work in the evolution of propensity to T2DM, but the intercompatibility of the alternative selective forces and their relative contribution needs to be examined. The approach we describe could potentially lead to a sound evolutionary theory that is clinically useful and testable by randomized controlled clinical trials. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jeremy J. Burdon; Peter H. Thrall; Adnane Nemri
2012-01-01
Natural plant-pathogen associations are complex interactions in which the interplay of environment, host, and pathogen factors results in spatially heterogeneous ecological and epidemiological dynamics. The evolutionary patterns that result from the interaction of these factors are still relatively poorly understood. Recently, integration of the appropriate spatial and...
Deontic Reasoning with Emotional Content: Evolutionary Psychology or Decision Theory?
ERIC Educational Resources Information Center
Perham, Nick; Oaksford, Mike
2005-01-01
Three experiments investigated the contrasting predictions of the evolutionary and decision-theoretic approaches to deontic reasoning. Two experiments embedded a hazard management (HM) rule in a social contract scenario that should lead to competition between innate modules. A 3rd experiment used a pure HM task. Threatening material was also…
Preschoolers' Social Dominance, Moral Cognition, and Moral Behavior: An Evolutionary Perspective
ERIC Educational Resources Information Center
Hawley, Patricia H.; Geldhof, G. John
2012-01-01
Various aspects of moral functioning, aggression, and positive peer regard were assessed in 153 preschool children. Our hypotheses were inspired by an evolutionary approach to morality that construes moral norms as tools of the social elite. Accordingly, children were also rated for social dominance and strategies for its attainment. We predicted…
Finding a common path: predicting gene function using inferred evolutionary trees.
Reynolds, Kimberly A
2014-07-14
Reporting in Cell, Li and colleagues (2014) describe an innovative method to functionally classify genes using evolutionary information. This approach demonstrates broad utility for eukaryotic gene annotation and suggests an intriguing new decomposition of pathways and complexes into evolutionarily conserved modules. Copyright © 2014 Elsevier Inc. All rights reserved.
The Evolution of Altruistic Preferences: Mothers versus Fathers.
Alger, Ingela; Cox, Donald
2013-09-01
What can evolutionary biology tell us about male-female differences in preferences concerning family matters? Might mothers be more solicitous toward offspring than fathers, for example? The economics literature has documented gender differences-children benefit more from money put in the hands of mothers rather than fathers, for example-and these differences are thought to be partly due to preferences. Yet for good reason family economics is mostly concerned with how prices and incomes affect behavior against a backdrop of exogenous preferences. Evolutionary biology complements this approach by treating preferences as the outcome of natural selection. We mine the well-developed biological literature to make a prima facie case for evolutionary roots of parental preferences. We consider the most rudimentary of traits-sex differences in gamete size and internal fertilization-and explain how they have been thought to generate male-female differences in altruism toward children and other preferences related to family behavior. The evolutionary approach to the family illuminates connections between issues typically thought distinct in family economics, such as parental care and marriage markets.
Spatial evolutionary epidemiology of spreading epidemics
2016-01-01
Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295
Spatial evolutionary epidemiology of spreading epidemics.
Lion, S; Gandon, S
2016-10-26
Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).
The Evolution of Altruistic Preferences: Mothers versus Fathers
Alger, Ingela; Cox, Donald
2013-01-01
What can evolutionary biology tell us about male-female differences in preferences concerning family matters? Might mothers be more solicitous toward offspring than fathers, for example? The economics literature has documented gender differences—children benefit more from money put in the hands of mothers rather than fathers, for example—and these differences are thought to be partly due to preferences. Yet for good reason family economics is mostly concerned with how prices and incomes affect behavior against a backdrop of exogenous preferences. Evolutionary biology complements this approach by treating preferences as the outcome of natural selection. We mine the well-developed biological literature to make a prima facie case for evolutionary roots of parental preferences. We consider the most rudimentary of traits—sex differences in gamete size and internal fertilization—and explain how they have been thought to generate male-female differences in altruism toward children and other preferences related to family behavior. The evolutionary approach to the family illuminates connections between issues typically thought distinct in family economics, such as parental care and marriage markets. PMID:23976890
Arpaia, P; Cimmino, P; Girone, M; La Commara, G; Maisto, D; Manna, C; Pezzetti, M
2014-09-01
Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.
Evolution of a designed retro-aldolase leads to complete active site remodeling
Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald
2013-01-01
Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672
The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Mccurdy, David R.
2014-01-01
NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
NASA Astrophysics Data System (ADS)
Okanoya, Kazuo
2014-09-01
The comparative computational approach of Fitch [1] attempts to renew the classical David Marr paradigm of computation, algorithm, and implementation, by introducing evolutionary view of the relationship between neural architecture and cognition. This comparative evolutionary view provides constraints useful in narrowing down the problem space for both cognition and neural mechanisms. I will provide two examples from our own studies that reinforce and extend Fitch's proposal.
Evolutionary space platform concept study. Volume 2, part A: SASP special emphasis trade studies
NASA Technical Reports Server (NTRS)
1982-01-01
Efforts are in progress to define an approach to provide a simple and cost effective solution to the problem of long duration space flight. This approach involves a Space Platform in low Earth orbit, which can be tended by the Space Shuttle and which will provide, for extended periods of time, stability, utilities and access for a variety of replaceable payloads. The feasibility of an evolutionary space system which would cost effectively support unmanned payloads in groups, using a Space Platform which provides centralized basic subsystems is addressed.
Who Should Pick the Winners of Climate Change?
Webster, Michael S; Colton, Madhavi A; Darling, Emily S; Armstrong, Jonathan; Pinsky, Malin L; Knowlton, Nancy; Schindler, Daniel E
2017-03-01
Many conservation strategies identify a narrow subset of genotypes, species, or geographic locations that are predicted to be favored under different scenarios of future climate change. However, a focus on predicted winners, which might not prove to be correct, risks undervaluing the balance of biological diversity from which climate-change winners could otherwise emerge. Drawing on ecology, evolutionary biology, and portfolio theory, we propose a conservation approach designed to promote adaptation that is less dependent on uncertain predictions about the identity of winners and losers. By designing actions to facilitate numerous opportunities for selection across biological and environmental conditions, we can allow nature to pick the winners and increase the probability that ecosystems continue to provide services to humans and other species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimal lunar soft landing trajectories using taboo evolutionary programming
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel consumption. The results are compared with the available results in literature shows that the solution of present algorithm is better than some of the existing algorithms. Keywords: soft landing, trajectory optimization, evolutionary programming, control parameters, Pontrygen principle.
Racial classification in the evolutionary sciences: a comparative analysis.
Billinger, Michael S
2007-01-01
Human racial classification has long been a problem for the discipline of anthropology, but much of the criticism of the race concept has focused on its social and political connotations. The central argument of this paper is that race is not a specifically human problem, but one that exists in evolutionary thought in general. This paper looks at various disciplinary approaches to racial or subspecies classification, extending its focus beyond the anthropological race concept by providing a comparative analysis of the use of racial classification in evolutionary biology, genetics, and anthropology.
Darwinian Controversies: An Historiographical Recounting
NASA Astrophysics Data System (ADS)
Depew, David J.
2010-05-01
This essay reviews key controversies in the history of the Darwinian research tradition: the Wilberforce-Huxley debate in 1860, early twentieth-century debates about the heritability of acquired characteristics and the consistency of Mendelian genetics with natural selection; the 1925 Scopes trial about teaching evolution; tensions about race, culture, and eugenics at the 1959 centenary celebration Darwin’s Origin of Species; adaptationism and its critics in the Sociobiology debate of 1970s and, more recently, Evolutionary Psychology; and current disputes about Intelligent Design. These controversies, I argue, are etched into public memory because they occur at the emotionally charged boundaries between public-political, technical-scientific, and personal-religious spheres of discourse. Over most of them falls the shadow of eugenics. The main lesson is that the history of Darwinism cannot be told except by showing the mutual influence of the different norms of discourse that obtain in the personal, technical, and public spheres. Nor can evolutionary biology successfully be taught to citizens and citizens-to-be until the fractious intersections between spheres of discourse have been made explicit. In the course of showing why, I take rival evolutionary approaches to be dynamical historical research traditions rather than static theories. Accordingly, I distinguish Darwin’s version of Darwinism from its later transformations. I pay special attention to the role Darwin assigned to development in evolution, which was marginalized by twentieth-century population genetical Darwinism, but has recently resurfaced in new forms. I also show how the disputed phrases “survival of the fittest” and “social Darwinism” have shaped personal anxieties about “Darwinism,” have provoked public opposition to teaching evolution in public schools, and have cast a shadow over efforts to effectively communicate to the public largely successful technical efforts to make evolutionary inquiry into a science.
Jung, Kirsten; Molinari, Jesús; Kalko, Elisabeth K V
2014-01-01
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.
Jung, Kirsten; Molinari, Jesús
2014-01-01
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats. PMID:24454833
Graves, Joseph L; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry
2016-10-15
Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. In order to facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes.Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Argasinski, K; Broom, M
2013-10-01
In the standard approach to evolutionary games and replicator dynamics, differences in fitness can be interpreted as an excess from the mean Malthusian growth rate in the population. In the underlying reasoning, related to an analysis of "costs" and "benefits", there is a silent assumption that fitness can be described in some type of units. However, in most cases these units of measure are not explicitly specified. Then the question arises: are these theories testable? How can we measure "benefit" or "cost"? A natural language, useful for describing and justifying comparisons of strategic "cost" versus "benefits", is the terminology of demography, because the basic events that shape the outcome of natural selection are births and deaths. In this paper, we present the consequences of an explicit analysis of births and deaths in an evolutionary game theoretic framework. We will investigate different types of mortality pressures, their combinations and the possibility of trade-offs between mortality and fertility. We will show that within this new approach it is possible to model how strictly ecological factors such as density dependence and additive background fitness, which seem neutral in classical theory, can affect the outcomes of the game. We consider the example of the Hawk-Dove game, and show that when reformulated in terms of our new approach new details and new biological predictions are produced.
NASA Technical Reports Server (NTRS)
Winston, M. M.; Conner, D. W.
1980-01-01
An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter).
Evolutionary genetics of plant adaptation.
Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas
2011-07-01
Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reconstructing evolutionary trees in parallel for massive sequences.
Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam
2017-12-14
Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
NASA Astrophysics Data System (ADS)
Fu, Shihua; Li, Haitao; Zhao, Guodong
2018-05-01
This paper investigates the evolutionary dynamic and strategy optimisation for a kind of networked evolutionary games whose strategy updating rules incorporate 'bankruptcy' mechanism, and the situation that each player's bankruptcy is due to the previous continuous low profits gaining from the game is considered. First, by using semi-tensor product of matrices method, the evolutionary dynamic of this kind of games is expressed as a higher order logical dynamic system and then converted into its algebraic form, based on which, the evolutionary dynamic of the given games can be discussed. Second, the strategy optimisation problem is investigated, and some free-type control sequences are designed to maximise the total payoff of the whole game. Finally, an illustrative example is given to show that our new results are very effective.
Neutrality and evolvability of designed protein sequences
NASA Astrophysics Data System (ADS)
Bhattacherjee, Arnab; Biswas, Parbati
2010-07-01
The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (ΔΔG) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.
ERIC Educational Resources Information Center
da Silva, Paloma Rodrigues; de Andrade, Mariana A. Bologna Soares; de Andrade Caldeira, Ana Maria
2015-01-01
Biology is a science that involves study of the diversity of living organisms. This diversity has always generated questions and has motivated cultures to seek plausible explanations for the differences and similarities between types of organisms. In biology teaching, these issues are addressed by adopting an evolutionary approach. The aim of this…
Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.
Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A
2015-09-01
This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.
Julien, Clavel; Leandro, Aristide; Hélène, Morlon
2018-06-19
Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.
Automatic programming via iterated local search for dynamic job shop scheduling.
Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen
2015-01-01
Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures
Bryson, David M.; Ofria, Charles
2013-01-01
We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669
Computer-automated evolution of an X-band antenna for NASA's Space Technology 5 mission.
Hornby, Gregory S; Lohn, Jason D; Linden, Derek S
2011-01-01
Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.
Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes
Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M.; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel
2017-01-01
Abstract Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. PMID:28204787
Ecological and evolutionary genomics of marine photosynthetic organisms.
Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric
2013-02-01
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.
Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.
Jiang, Chao; Caccamo, Paul D; Brun, Yves V
2015-04-01
How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.
Schaller, Mark; Faulkner, Jason; Park, Justin H.; Neuberg, Steven L.; Kenrick, Douglas T.
2011-01-01
An evolutionary approach to social cognition yields novel hypotheses about the perception of people belonging to specific kinds of social categories. These implications are illustrated by empirical results linking the perceived threat of physical injury to stereotypical impressions of outgroups. We review a set of studies revealing several ways in which threat-connoting cues influence perceptions of ethnic outgroups and the individuals who belong to those outgroups. We also present new results that suggest additional implications of evolved danger-avoidance mechanisms on interpersonal communication and the persistence of cultural-level stereotypes about ethnic outgroups. The conceptual utility of an evolutionary approach is further illustrated by a parallel line of research linking the threat of disease to additional kinds of social perceptions and behaviors. Evolved danger-avoidance mechanisms appear to contribute in diverse ways to individual-level cognitive processes, as well as to culturally-shared collective beliefs. PMID:21874126
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.
Li, Shan; Kang, Liying; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
Cobey, Sarah; Wilson, Patrick; Matsen, Frederick A.
2015-01-01
The B-cell immune response is a remarkable evolutionary system found in jawed vertebrates. B-cell receptors, the membrane-bound form of antibodies, are capable of evolving high affinity to almost any foreign protein. High germline diversity and rapid evolution upon encounter with antigen explain the general adaptability of B-cell populations, but the dynamics of repertoires are less well understood. These dynamics are scientifically and clinically important. After highlighting the remarkable characteristics of naive and experienced B-cell repertoires, especially biased usage of genes encoding the B-cell receptors, we contrast methods of sequence analysis and their attempts to explain patterns of B-cell evolution. These phylogenetic approaches are currently unlinked to explicit models of B-cell competition, which analyse repertoire evolution at the level of phenotype, the affinities and specificities to particular antigenic sites. The models, in turn, suggest how chance, infection history and other factors contribute to different patterns of immunodominance and protection between people. Challenges in rational vaccine design, specifically vaccines to induce broadly neutralizing antibodies to HIV, underscore critical gaps in our understanding of B cells' evolutionary and ecological dynamics. PMID:26194749
A Powerful Toolkit for Synthetic Biology: Over 3.8 Billion Years of Evolution
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.
2010-01-01
The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested
A powerful toolkit for synthetic biology: Over 3.8 billion years of evolution.
Rothschild, Lynn J
2010-04-01
The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested.
A controllable sensor management algorithm capable of learning
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
Biswas, Subhodip; Kundu, Souvik; Das, Swagatam
2014-10-01
In real life, we often need to find multiple optimally sustainable solutions of an optimization problem. Evolutionary multimodal optimization algorithms can be very helpful in such cases. They detect and maintain multiple optimal solutions during the run by incorporating specialized niching operations in their actual framework. Differential evolution (DE) is a powerful evolutionary algorithm (EA) well-known for its ability and efficiency as a single peak global optimizer for continuous spaces. This article suggests a niching scheme integrated with DE for achieving a stable and efficient niching behavior by combining the newly proposed parent-centric mutation operator with synchronous crowding replacement rule. The proposed approach is designed by considering the difficulties associated with the problem dependent niching parameters (like niche radius) and does not make use of such control parameter. The mutation operator helps to maintain the population diversity at an optimum level by using well-defined local neighborhoods. Based on a comparative study involving 13 well-known state-of-the-art niching EAs tested on an extensive collection of benchmarks, we observe a consistent statistical superiority enjoyed by our proposed niching algorithm.
Dorey, Narimane; Garfield, David A.; Stumpp, Meike; Dupont, Sam; Wray, Gregory A.
2016-01-01
Abstract Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change. PMID:28082601
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
A thermal design concept of using propylene loop heat pipes to minimize survival heater power for NASA's Evolutionary Xenon Thruster power processing units is presented. It reduces the survival heater power from 183 W to 35 W per power processing unit. The reduction is 81%.
Gender and Evolutionary Theory in Workplace Health Promotion
ERIC Educational Resources Information Center
Björklund, Erika; Wright, Jan
2017-01-01
Objective: Ideas from evolutionary theories are increasingly taken up in health promotion. This article seeks to demonstrate how such a trend has the potential to embed essentialist and limiting stereotypes of women and men in health promotion practice. Design: We draw on material gathered for a larger ethnographic study that examined how…
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
Evolutionary design optimization of traffic signals applied to Quito city
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process. PMID:29236733
Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.
Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya
2017-01-01
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.
Measuring, Enabling and Comparing Modularity, Regularity and Hierarchy in Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2005-01-01
For computer-automated design systems to scale to complex designs they must be able to produce designs that exhibit the characteristics of modularity, regularity and hierarchy - characteristics that are found both in man-made and natural designs. Here we claim that these characteristics are enabled by implementing the attributes of combination, control-flow and abstraction in the representation. To support this claim we use an evolutionary algorithm to evolve solutions to different sizes of a table design problem using five different representations, each with different combinations of modularity, regularity and hierarchy enabled and show that the best performance happens when all three of these attributes are enabled. We also define metrics for modularity, regularity and hierarchy in design encodings and demonstrate that high fitness values are achieved with high values of modularity, regularity and hierarchy and that there is a positive correlation between increases in fitness and increases in modularity. regularity and hierarchy.
Preliminary design of 1 kW bipolar Ni-MH battery for LEO-satellite application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, J.H.; Reisner, D.E.; Klein, M.G.
1996-12-31
Electro Energy, Inc. (EEI) is developing a bipolar nickel-metal hydride rechargeable battery based upon the use of stackable wafer cells. The key to viable bipolar operation has been this unique modular (unitized) approach. The patented unit wafer-cell construct exploits the chemical and thermal properties of a proprietary electrically conductive plastic film. Characteristic of bipolar batteries, current flows across the cell interfaces-perpendicular to the electrode plane. EEI has recently contracted with NASA Lewis Research Center (LeRC) to develop an optimized design 1 kW flightweight battery, for low-earth-orbit (LEO) satellite applications, over a 4-year period with a deliverable flightweight design package. Themore » contract includes an option for EEI to deliver up to three flight quality batteries in an 18-month follow-on program. NASA LeRC has promulgated that the program steps include the design, fabrication, and evaluation of four evolutionary stages of the final battery design which have been designated Preliminary, Improved, Optimized, and Flightweight Design. Initial results from the Preliminary Stage are presented including a 1 kW battery design, thermal design, parameter study, and component development in subscale bipolar batteries.« less
Liesen, Laurette T
2007-03-01
Often since the early 1990s, feminist evolutionists have criticized evolutionary psychologists, finding fault in their analyses of human male and female reproductive behavior. Feminist evolutionists have criticized various evolutionary psychologists for perpetuating gender stereotypes, using questionable methodology, and exhibiting a chill toward feminism. Though these criticisms have been raised many times, the conflict itself has not been fully analyzed. Therefore, I reconsider this conflict, both in its origins and its implications. I find that the approaches and perspectives of feminist evolutionists and evolutionary psychologists are distinctly different, leading many of the former to work in behavioral ecology, primatology, and evolutionary biology. Invitingly to feminist evolutionists, these three fields emphasize social behavior and the influences of environmental variables; in contrast, evolutionary psychology has come to rely on assumptions deemphasizing the pliability of psychological mechanisms and the flexibility of human behavior. In behavioral ecology, primatology, and evolutionary biology, feminist evolutionists have found old biases easy to correct and new hypotheses practical to test, offering new insights into male and female behavior, explaining the emergence and persistence of patriarchy, and potentially bringing closer a prime feminist goal, sexual equality.
Teixeira, Leonor; Ferreira, Carlos; Santos, Beatriz Sousa
2012-06-01
The use of sophisticated information and communication technologies (ICTs) in the health care domain is a way to improve the quality of services. However, there are also hazards associated with the introduction of ICTs in this domain and a great number of projects have failed due to the lack of systematic consideration of human and other non-technology issues throughout the design or implementation process, particularly in the requirements engineering process. This paper presents the methodological approach followed in the design process of a web-based information system (WbIS) for managing the clinical information in hemophilia care, which integrates the values and practices of user-centered design (UCD) activities into the principles of software engineering, particularly in the phase of requirements engineering (RE). This process followed a paradigm that combines a grounded theory for data collection with an evolutionary design based on constant development and refinement of the generic domain model using three well-known methodological approaches: (a) object-oriented system analysis; (b) task analysis; and, (c) prototyping, in a triangulation work. This approach seems to be a good solution for the requirements engineering process in this particular case of the health care domain, since the inherent weaknesses of individual methods are reduced, and emergent requirements are easier to elicit. Moreover, the requirements triangulation matrix gives the opportunity to look across the results of all used methods and decide what requirements are critical for the system success. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
The power and promise of RNA-seq in ecology and evolution.
Todd, Erica V; Black, Michael A; Gemmell, Neil J
2016-03-01
Reference is regularly made to the power of new genomic sequencing approaches. Using powerful technology, however, is not the same as having the necessary power to address a research question with statistical robustness. In the rush to adopt new and improved genomic research methods, limitations of technology and experimental design may be initially neglected. Here, we review these issues with regard to RNA sequencing (RNA-seq). RNA-seq adds large-scale transcriptomics to the toolkit of ecological and evolutionary biologists, enabling differential gene expression (DE) studies in nonmodel species without the need for prior genomic resources. High biological variance is typical of field-based gene expression studies and means that larger sample sizes are often needed to achieve the same degree of statistical power as clinical studies based on data from cell lines or inbred animal models. Sequencing costs have plummeted, yet RNA-seq studies still underutilize biological replication. Finite research budgets force a trade-off between sequencing effort and replication in RNA-seq experimental design. However, clear guidelines for negotiating this trade-off, while taking into account study-specific factors affecting power, are currently lacking. Study designs that prioritize sequencing depth over replication fail to capitalize on the power of RNA-seq technology for DE inference. Significant recent research effort has gone into developing statistical frameworks and software tools for power analysis and sample size calculation in the context of RNA-seq DE analysis. We synthesize progress in this area and derive an accessible rule-of-thumb guide for designing powerful RNA-seq experiments relevant in eco-evolutionary and clinical settings alike. © 2016 John Wiley & Sons Ltd.
Evolution and social epidemiology.
Nishi, Akihiro
2015-11-01
Evolutionary biology, which aims to explain the dynamic process of shaping the diversity of life, has not yet significantly affected thinking in social epidemiology. Current challenges in social epidemiology include understanding how social exposures can affect our biology, explaining the dynamics of society and health, and designing better interventions that are mindful of the impact of exposures during critical periods. I review how evolutionary concepts and tools, such as fitness gradient in cultural evolution, evolutionary game theory, and contemporary evolution in cancer, can provide helpful insights regarding social epidemiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
Growth requirements for multidiscipline research and development on the evolutionary space station
NASA Technical Reports Server (NTRS)
Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David
1988-01-01
The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.
Evol and ProDy for bridging protein sequence evolution and structural dynamics
Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet
2014-01-01
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577
Active vibration control activities at the LaRC - Present and future
NASA Technical Reports Server (NTRS)
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Formal Darwinism, the individual-as-maximizing-agent analogy and bet-hedging
Grafen, A.
1999-01-01
The central argument of The origin of species was that mechanical processes (inheritance of features and the differential reproduction they cause) can give rise to the appearance of design. The 'mechanical processes' are now mathematically represented by the dynamic systems of population genetics, and the appearance of design by optimization and game theory in which the individual plays the part of the maximizing agent. Establishing a precise individual-as-maximizing-agent (IMA) analogy for a population-genetics system justifies optimization approaches, and so provides a modern formal representation of the core of Darwinism. It is a hitherto unnoticed implication of recent population-genetics models that, contrary to a decades-long consensus, an IMA analogy can be found in models with stochastic environments (subject to a convexity assumption), in which individuals maximize expected reproductive value. The key is that the total reproductive value of a species must be considered as constant, so therefore reproductive value should always be calculated in relative terms. This result removes a major obstacle from the theoretical challenge to find a unifying framework which establishes the IMA analogy for all of Darwinian biology, including as special cases inclusive fitness, evolutionarily stable strategies, evolutionary life-history theory, age-structured models and sex ratio theory. This would provide a formal, mathematical justification of fruitful and widespread but 'intentional' terms in evolutionary biology, such as 'selfish', 'altruism' and 'conflict'.
De Smedt, Johan; De Cruz, Helen
2010-11-28
This paper examines explanations for human artistic behavior in two reductionist research programs, cognitive neuroscience and evolutionary psychology. Despite their different methodological outlooks, both approaches converge on an explanation of art production and appreciation as byproducts of normal perceptual and motivational cognitive skills that evolved in response to problems originally not related to art, such as the discrimination of salient visual stimuli and speech sounds. The explanatory power of this reductionist framework does not obviate the need for higher-level accounts of art from the humanities, such as aesthetics, art history or anthropology of art.
Multiobjective optimization of combinatorial libraries.
Agrafiotis, D K
2002-01-01
Combinatorial chemistry and high-throughput screening have caused a fundamental shift in the way chemists contemplate experiments. Designing a combinatorial library is a controversial art that involves a heterogeneous mix of chemistry, mathematics, economics, experience, and intuition. Although there seems to be little agreement as to what constitutes an ideal library, one thing is certain: only one property or measure seldom defines the quality of the design. In most real-world applications, a good experiment requires the simultaneous optimization of several, often conflicting, design objectives, some of which may be vague and uncertain. In this paper, we discuss a class of algorithms for subset selection rooted in the principles of multiobjective optimization. Our approach is to employ an objective function that encodes all of the desired selection criteria, and then use a simulated annealing or evolutionary approach to identify the optimal (or a nearly optimal) subset from among the vast number of possibilities. Many design criteria can be accommodated, including diversity, similarity to known actives, predicted activity and/or selectivity determined by quantitative structure-activity relationship (QSAR) models or receptor binding models, enforcement of certain property distributions, reagent cost and availability, and many others. The method is robust, convergent, and extensible, offers the user full control over the relative significance of the various objectives in the final design, and permits the simultaneous selection of compounds from multiple libraries in full- or sparse-array format.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
Semantic wireless localization of WiFi terminals in smart buildings
NASA Astrophysics Data System (ADS)
Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.
2016-06-01
The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.
USDA-ARS?s Scientific Manuscript database
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. We integrated classic and Bayesian phylogeographic methods with a paleodistribution modeling approach to study the demographic patterns that shaped the distribut...
Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.
Baier, F; Copp, J N; Tokuriki, N
2016-11-22
The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.
Currie, Thomas E; Mace, Ruth
2011-04-12
Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of 'Spencerian' cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader 'Darwinian' framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification.
Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach
NASA Astrophysics Data System (ADS)
Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique Persano; Spagnolo, Bernardo
2009-09-01
The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.
Currie, Thomas E.; Mace, Ruth
2011-01-01
Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of ‘Spencerian’ cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader ‘Darwinian’ framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification. PMID:21357233
[Narcissism in the world of Facebook. An evolutionary psychopathological interpretation].
Szekeres, Adám; Tisljár, Roland
2013-01-01
In the last few decades there has been a considerable increase in the levels of narcissism among the population of individualistic, western cultures. The phenomena of narcissism induced a large number of psychological researches, some of which approaches the issue from changes in environmental factors. The modern environment of these days is substantially different from the one to which our ancestors have adapted over millions of years of evolution. The research results of narcissism from the perspective of evolutionary psychopathology approach have yet to integrate.The present review focuses on two studies and empirical findings induced by them in which an attempt is made to explore the evolutionary origins of narcissism. Relating to these studies we present the main mechanisms by which evolution may have played a role in the development and maintenance of narcissism. One of the significant elements of the current, changing social environment allowing virtual contacts is the social networking site called Facebook. Following the presentation of the main features of the site we discuss research results in connection with narcissistic traits and Facebook usage. Finally an attempt is made to integrate these findings into an evolutionary psychopathological framework.
NASA Astrophysics Data System (ADS)
Smith, James F., III; Blank, Joseph A.
2003-03-01
An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.
Evolutionary accounts of human behavioural diversity
Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.
2011-01-01
Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836
García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César
2006-05-01
In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.
Periodic table of virus capsids: implications for natural selection and design.
Mannige, Ranjan V; Brooks, Charles L
2010-03-04
For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.
Applying evolutionary psychology to a serious game about children's interpersonal conflict.
Ingram, Gordon P D; Campos, Joana; Hondrou, Charline; Vasalou, Asimina; Martinho, Carlos; Joinson, Adam
2012-12-20
This article describes the use of evolutionary psychology to inform the design of a serious computer game aimed at improving 9-12-year-old children's conflict resolution skills. The design of the game will include dynamic narrative generation and emotional tagging, and there is a strong evolutionary rationale for the effect of both of these on conflict resolution. Gender differences will also be taken into consideration in designing the game. In interview research in schools in three countries (Greece, Portugal, and the UK) aimed at formalizing the game requirements, we found that gender differences varied in the extent to which they applied cross-culturally. Across the three countries, girls were less likely to talk about responding to conflict with physical aggression, talked more about feeling sad about conflict and about conflicts over friendship alliances, and talked less about conflicts in the context of sports or games. Predicted gender differences in anger and reconciliation were not found. Results are interpreted in terms of differing underlying models of friendship that are motivated by parental investment theory. This research will inform the design of the themes that we use in game scenarios for both girls and boys.
Achieving sustainable plant disease management through evolutionary principles.
Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J
2014-09-01
Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arenas, Miguel
2015-04-01
NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.
Comparison of multiobjective evolutionary algorithms: empirical results.
Zitzler, E; Deb, K; Thiele, L
2000-01-01
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.
Pearse, William D.; Chase, Mark W.; Crawley, Michael J.; Dolphin, Konrad; Fay, Michael F.; Joseph, Jeffrey A.; Powney, Gary; Preston, Chris D.; Rapacciuolo, Giovanni; Roy, David B.; Purvis, Andy
2015-01-01
Conservation biologists have only finite resources, and so must prioritise some species over others. The EDGE-listing approach ranks species according to their combined evolutionary distinctiveness and degree of threat, but ignores the uncertainty surrounding both threat and evolutionary distinctiveness. We develop a new family of measures for species, which we name EDAM, that incorporates evolutionary distinctiveness, the magnitude of decline, and the accuracy with which decline can be predicted. Further, we show how the method can be extended to explore phyogenetic uncertainty. Using the vascular plants of Britain as a case study, we find that the various EDAM measures emphasise different species and parts of Britain, and that phylogenetic uncertainty can strongly affect the prioritisation scores of some species. PMID:26018568
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma
As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.
2017-04-01
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.
Sex in a test tube: testing the benefits of in vitro recombination.
Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M
2016-10-19
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Learning Evolution and the Nature of Science Using Evolutionary Computing and Artificial Life
ERIC Educational Resources Information Center
Pennock, Robert T.
2007-01-01
Because evolution in natural systems happens so slowly, it is difficult to design inquiry-based labs where students can experiment and observe evolution in the way they can when studying other phenomena. New research in evolutionary computation and artificial life provides a solution to this problem. This paper describes a new A-Life software…
ERIC Educational Resources Information Center
Abraham, Joel K.; Perez, Kathryn E.; Downey, Nicholas; Herron, Jon C.; Meir, Eli
2012-01-01
Undergraduates commonly harbor alternate conceptions about evolutionary biology; these alternate conceptions often persist, even after intensive instruction, and may influence acceptance of evolution. We interviewed undergraduates to explore their alternate conceptions about macroevolutionary patterns and designed a 2-h lesson plan to present…
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, Adam; Reynolds, John
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
EvoluZion: A Computer Simulator for Teaching Genetic and Evolutionary Concepts
ERIC Educational Resources Information Center
Zurita, Adolfo R.
2017-01-01
EvoluZion is a forward-in-time genetic simulator developed in Java and designed to perform real time simulations on the evolutionary history of virtual organisms. These model organisms harbour a set of 13 genes that codify an equal number of phenotypic features. These genes change randomly during replication, and mutant genes can have null,…
ERIC Educational Resources Information Center
Navarro, Manuel
2014-01-01
This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology ("evolutionary maps" or "emaps"), whose implementation on certain domains unfolds the web of itineraries that children may follow in the…
A Course in Evolutionary Biology: Engaging Students in the "Practice" of Evolution. Research Report.
ERIC Educational Resources Information Center
Passmore, Cynthia; Stewart, James
Recent education reform documents emphasize the need for students to develop a rich understanding of evolution's power to integrate knowledge of the natural world. This paper describes a nine-week high school course designed to help students understand evolutionary biology by engaging them in developing, elaborating, and using Charles Darwin's…
An evolutionary approach to the architecture of effective healthcare delivery systems.
Towill, D R; Christopher, M
2005-01-01
Aims to show that material flow concepts developed and successfully applied to commercial products and services can form equally well the architectural infrastructure of effective healthcare delivery systems. The methodology is based on the "power of analogy" which demonstrates that healthcare pipelines may be classified via the Time-Space Matrix. A small number (circa 4) of substantially different healthcare delivery pipelines will cover the vast majority of patient needs and simultaneously create adequate added value from their perspective. The emphasis is firmly placed on total process mapping and analysis via established identification techniques. Healthcare delivery pipelines must be properly engineered and matched to life cycle phase if the service is to be effective. This small family of healthcare delivery pipelines needs to be designed via adherence to very specific-to-purpose principles. These vary from "lean production" through to "agile delivery". The proposition for a strategic approach to healthcare delivery pipeline design is novel and positions much currently isolated research into a comprehensive organisational framework. It therefore provides a synthesis of the needs of global healthcare.
Three-Function Logic Gate Controlled by Analog Voltage
NASA Technical Reports Server (NTRS)
Zebulum, Ricardo; Stoica, Adrian
2006-01-01
The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If multifunctional gates like this circuit were used in the place of the configurable logic blocks of present commercial FPGAs, it would be possible to change the functions of the resulting digital systems within shorter times. For example, by changing a single control voltage, one could change the function of thousands of FPGA cells within nanoseconds. In contrast, typically, the reconfiguration in a conventional FPGA by use of bits downloaded from look-up tables via a digital bus takes microseconds.
Evolutionary Agent-based Models to design distributed water management strategies
NASA Astrophysics Data System (ADS)
Giuliani, M.; Castelletti, A.; Reed, P. M.
2012-12-01
There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a synthetic case study, representing a Y-shaped system composed by two regulated lakes, whose releases merge just upstream of a city. Each reservoir is operated by an agent in order to prevent floods along the lake shores (local objective). However, the optimal operation of the reservoirs with respect to the local objectives is conflicting with the minimization of floods in the city (global objective). The evolution of the Agent-based Model from individualistic management strategies of the reservoirs toward a global compromise that reduces the costs for the city is analysed.
Driessens, T; Baeckens, S; Balzarolo, M; Vanhooydonck, B; Huyghe, K; Van Damme, R
2017-10-01
Animals communicate using a variety of signals that differ dramatically among and within species. The astonishing dewlap diversity in anoles has attracted considerable attention in this respect. Yet, the evolutionary processes behind it remain elusive and have mostly been explored for males only. Here, we considered Anolis sagrei males and females to study signal divergence among populations. First, we assessed the degree of variation in dewlap design (size, pattern and colour) and displays by comparing 17 populations distributed across the Caribbean. Second, we assessed whether the observed dewlap diversity is associated with variation in climate-related environmental conditions. Results showed that populations differed in all dewlap characteristics, with the exception of display rate in females. We further found that males and females occurring in 'xeric' environments had a higher proportion of solid dewlaps with higher UV reflectance. In addition, lizards inhabiting 'mesic' environments had primarily marginal dewlaps showing high reflectance in red. For dewlap display, a correlation with environment was only observed in males. Our study provides evidence for a strong relationship between signal design and prevailing environmental conditions, which may result from differential selection on signal efficacy. Moreover, our study highlights the importance of including females when studying dewlaps in an evolutionary context. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes.
Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel; Wegmann, Daniel
2017-11-01
Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Evolutionary dynamics from a variational principle.
Klimek, Peter; Thurner, Stefan; Hanel, Rudolf
2010-07-01
We demonstrate with a thought experiment that fitness-based population dynamical approaches to evolution are not able to make quantitative, falsifiable predictions about the long-term behavior of some evolutionary systems. A key characteristic of evolutionary systems is the ongoing endogenous production of new species. These novel entities change the conditions for already existing species. Even Darwin's Demon, a hypothetical entity with exact knowledge of the abundance of all species and their fitness functions at a given time, could not prestate the impact of these novelties on established populations. We argue that fitness is always a posteriori knowledge--it measures but does not explain why a species has reproductive success or not. To overcome these conceptual limitations, a variational principle is proposed in a spin-model-like setup of evolutionary systems. We derive a functional which is minimized under the most general evolutionary formulation of a dynamical system, i.e., evolutionary trajectories causally emerge as a minimization of a functional. This functional allows the derivation of analytic solutions of the asymptotic diversity for stochastic evolutionary systems within a mean-field approximation. We test these approximations by numerical simulations of the corresponding model and find good agreement in the position of phase transitions in diversity curves. The model is further able to reproduce stylized facts of timeseries from several man-made and natural evolutionary systems. Light will be thrown on how species and their fitness landscapes dynamically coevolve.
Social evolution and genetic interactions in the short and long term.
Van Cleve, Jeremy
2015-08-01
The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.
Interdisciplinary multisensory fusion: design lessons from professional architects
NASA Astrophysics Data System (ADS)
Geiger, Ray W.; Snell, J. T.
1992-11-01
Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. Human efficacy for innovation in architectural design has always reflected more the projected perceptual vision of the designer visa vis the hierarchical spirit of the design process. In pursuing better ways to build and/or design things, we have found surprising success in exploring certain more esoteric applications. One of those applications is the vision of an artistic approach in/and around creative problem solving. Our evaluation in research into vision and visual systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and interdisciplinary design practice. Discussion will cover areas of cognitive ergonomics, natural modeling sources, and an open architectural process of means and goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process. One hypothesis is that the kinematic simulation of perceived connections between hard and soft sciences, centering on the life sciences and life in general, has become a very effective foundation for design theory and application.
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
Eirín-López, José M
2013-01-01
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Zimmerman, Timothy David
2005-11-01
Students and citizens need to apply science to important issues every day. Yet the design of science curricula that foster integration of science and everyday decisions is not well understood. For example, can curricula be designed that help learners apply scientific reasons for choosing only environmentally sustainable seafood for dinner? Learners must develop integrated understandings of scientific principles, prior experiences, and current decisions in order to comprehend how everyday decisions impact environmental resources. In order to investigate how such integrated understandings can be promoted within school science classes, research was conducted with an inquiry-oriented curriculum that utilizes technology and a visit to an informal learning environment (aquarium) to promote the integration of scientific principles (adaptation) with environmental stewardship. This research used a knowledge integration approach to teaching and learning that provided a framework for promoting the application of science to environmental issues. Marine biology, often forsaken in classrooms for terrestrial biology, served as the scientific context for the curriculum. The curriculum design incorporated a three-phase pedagogical strategy and new technology tools to help students integrate knowledge and experiences across the classroom and aquarium learning environments. The research design and assessment protocols included comparisons among and within student populations using two versions of the curriculum: an issue-based version and a principle-based version. These inquiry curricula were tested with sophomore biology students attending a marine-focused academy within a coastal California high school. Pretest-posttest outcomes were compared between and within the curricular treatments. Additionally, comparisons were made between the inquiry groups and seniors in an Advanced Placement biology course who attend the same high school. Results indicate that the inquiry curricula enabled students to integrate and apply knowledge of evolutionary biology to real-world environmental stewardship issues. Over the course of the curriculum, students' ideas became more scientifically normative and tended to focus around concepts of natural selection. Students using the inquiry curricula outperformed the Advanced Placement biology students on several measures, including knowledge of evolutionary biology. These results have implications for designing science curricula that seek to promote the application of science to environmental stewardship and integrate formal and informal learning environments.
Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Guillaume, Alexandre
2009-01-01
Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.
Using protistan examples to dispel the myths of intelligent design.
Farmer, Mark A; Habura, Andrea
2010-01-01
In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.
The scope and strength of sex-specific selection in genome evolution.
Wright, A E; Mank, J E
2013-09-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Treatment resistance in urothelial carcinoma: an evolutionary perspective.
Vlachostergios, Panagiotis J; Faltas, Bishoy M
2018-05-02
The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.
Asynchronous spatial evolutionary games.
Newth, David; Cornforth, David
2009-02-01
Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.
A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.
Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric
2017-05-05
Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.
Testing inferences in developmental evolution: the forensic evidence principle.
Larsson, Hans C E; Wagner, Günter P
2012-09-01
Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.
Świerniak, Andrzej; Krześlak, Michał; Student, Sebastian; Rzeszowska-Wolny, Joanna
2016-09-21
Living cells, like whole living organisms during evolution, communicate with their neighbors, interact with the environment, divide, change their phenotypes, and eventually die. The development of specific ways of communication (through signaling molecules and receptors) allows some cellular subpopulations to survive better, to coordinate their physiological status, and during embryonal development to create tissues and organs or in some conditions to become tumors. Populations of cells cultured in vitro interact similarly, also competing for space and nutrients and stimulating each other to better survive or to die. The results of these intercellular interactions of different types seem to be good examples of biological evolutionary games, and have been the subjects of simulations by the methods of evolutionary game theory where individual cells are treated as players. Here we present examples of intercellular contacts in a population of living human cancer HeLa cells cultured in vitro and propose an evolutionary game theory approach to model the development of such populations. We propose a new technique termed Mixed Spatial Evolutionary Games (MSEG) which are played on multiple lattices corresponding to the possible cellular phenotypes which gives the possibility of simulating and investigating the effects of heterogeneity at the cellular level in addition to the population level. Analyses performed with MSEG suggested different ways in which cellular populations develop in the case of cells communicating directly and through factors released to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.
Wilkins, Adam S
2007-05-15
The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.
Computationally mapping sequence space to understand evolutionary protein engineering.
Armstrong, Kathryn A; Tidor, Bruce
2008-01-01
Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.
Applying evolutionary concepts to wildlife disease ecology and management
Vander Wal, Eric; Garant, Dany; Calmé, Sophie; Chapman, Colin A; Festa-Bianchet, Marco; Millien, Virginie; Rioux-Paquette, Sébastien; Pelletier, Fanie
2014-01-01
Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host–pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment–disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management. PMID:25469163
An evolutionary critique of cultural analysis in sociology.
Crippen, T
1992-12-01
A noteworthy development that has transpired in American sociology in the past quarter century has been the increasingly sophisticated interest in the analysis of human cultural systems. Sadly, however, these analyses reveal that social scientists rarely appreciate the profoundly evolutionary aspects of human culture. The chief purpose of this essay is to address this shortcoming and to offer some tentative suggestions toward its rectification. The essay begins by briefly reviewing recent developments in the analysis of cultural systems, primarily by reference to the influential work of Wuthnow. Second, a common flaw in these approaches is addressed-namely, the absence of any recognition of the value of grounding sociocultural theory in an informed evolutionary framework-and the case is made that this shortcoming is avoidable, even within the context of the intellectual traditions of the social sciences. Third, the evolutionary foundations of human cultural behavior are explored in terms of an analysis of relevant theoretical and empirical developments in the evolutionary neurosciences. Fourth, the value of these insights is illustrated by reference to an evolutionary critique of a recent and thought-provoking contribution to the study of modern political culture-Douglas and Wildavsky's analysis ofRisk and Culture. Finally, the article concludes by emphasizing the value of and the necessity for incorporating evolutionary reasoning into the domain of sociocultural theory.
Applying evolutionary concepts to wildlife disease ecology and management.
Vander Wal, Eric; Garant, Dany; Calmé, Sophie; Chapman, Colin A; Festa-Bianchet, Marco; Millien, Virginie; Rioux-Paquette, Sébastien; Pelletier, Fanie
2014-08-01
Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host-pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment-disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management.
Cummins, Carla A; McInerney, James O
2011-12-01
Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.
Group-level traits can be studied with standard evolutionary theory.
Scott-Phillips, Thomas C; Dickins, Thomas E
2014-06-01
Smaldino's target article draws on and seeks to add to a literature that has partially rejected orthodox, gene-centric evolutionary theory. However, orthodox theory has much to say about group-level traits. The target article does not reference or refute these views, and provides no explicit arguments for this narrow approach. In this commentary we: (i) give two examples of topics that the target article might and probably should have discussed (cultural epidemiology and the psychology of individual differences); and (ii) argue that the orthodox approach has much more to say about the emergence of group-level traits than the target article recognises, or gives credit for.
Back to the future: Rational maps for exploring acetylcholine receptor space and time.
Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B
2017-11-01
Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Majid, Abdul; Ali, Safdar
2015-01-01
We developed genetic programming (GP)-based evolutionary ensemble system for the early diagnosis, prognosis and prediction of human breast cancer. This system has effectively exploited the diversity in feature and decision spaces. First, individual learners are trained in different feature spaces using physicochemical properties of protein amino acids. Their predictions are then stacked to develop the best solution during GP evolution process. Finally, results for HBC-Evo system are obtained with optimal threshold, which is computed using particle swarm optimization. Our novel approach has demonstrated promising results compared to state of the art approaches.
The cultural evolution of fertility decline
Colleran, Heidi
2016-01-01
Cultural evolutionists have long been interested in the problem of why fertility declines as populations develop. By outlining plausible mechanistic links between individual decision-making, information flow in populations and competition between groups, models of cultural evolution offer a novel and powerful approach for integrating multiple levels of explanation of fertility transitions. However, only a modest number of models have been published. Their assumptions often differ from those in other evolutionary approaches to social behaviour, but their empirical predictions are often similar. Here I offer the first overview of cultural evolutionary research on demographic transition, critically compare it with approaches taken by other evolutionary researchers, identify gaps and overlaps, and highlight parallel debates in demography. I suggest that researchers divide their labour between three distinct phases of fertility decline—the origin, spread and maintenance of low fertility—each of which may be driven by different causal processes, at different scales, requiring different theoretical and empirical tools. A comparative, multi-level and mechanistic framework is essential for elucidating both the evolved aspects of our psychology that govern reproductive decision-making, and the social, ecological and cultural contingencies that precipitate and sustain fertility decline. PMID:27022079
From head to tail: new models and approaches in primate functional anatomy and biomechanics.
Organ, Jason M; Deleon, Valerie B; Wang, Qian; Smith, Timothy D
2010-04-01
This special issue of The Anatomical Record (AR) is based on interest generated by a symposium at the 2008 annual meeting of the American Association of Anatomists (AAA) at Experimental Biology, entitled "An Evolutionary Perspective on Human Anatomy." The development of this volume in turn provided impetus for a Biological Anthropology Mini-Meeting, organized by members of the AAA for the 2010 Experimental Biology meeting in Anaheim, California. The research presented in these pages reflects the themes of these symposia and provides a snapshot of the current state of primate functional anatomy and biomechanics research. The 17 articles in this special issue utilize new models and/or approaches to study long-standing questions about the evolution of our closest relatives, including soft-tissue dissection and microanatomical techniques, experimental approaches to morphology, kinematic and kinetic biomechanics, high-resolution computed tomography, and Finite Element Analysis (FEA). This volume continues a close historical association between the disciplines of anatomy and biological anthropology: anatomists benefit from an understanding of the evolutionary history of our modern form, and biological anthropologists rely on anatomical principles to make informed evolutionary inferences about our closest relatives. (c) 2010 Wiley-Liss, Inc.
Evolutionary Ensemble for In Silico Prediction of Ames Test Mutagenicity
NASA Astrophysics Data System (ADS)
Chen, Huanhuan; Yao, Xin
Driven by new regulations and animal welfare, the need to develop in silico models has increased recently as alternative approaches to safety assessment of chemicals without animal testing. This paper describes a novel machine learning ensemble approach to building an in silico model for the prediction of the Ames test mutagenicity, one of a battery of the most commonly used experimental in vitro and in vivo genotoxicity tests for safety evaluation of chemicals. Evolutionary random neural ensemble with negative correlation learning (ERNE) [1] was developed based on neural networks and evolutionary algorithms. ERNE combines the method of bootstrap sampling on training data with the method of random subspace feature selection to ensure diversity in creating individuals within an initial ensemble. Furthermore, while evolving individuals within the ensemble, it makes use of the negative correlation learning, enabling individual NNs to be trained as accurate as possible while still manage to maintain them as diverse as possible. Therefore, the resulting individuals in the final ensemble are capable of cooperating collectively to achieve better generalization of prediction. The empirical experiment suggest that ERNE is an effective ensemble approach for predicting the Ames test mutagenicity of chemicals.
From experimental systems to evolutionary biology: an impossible journey?
Morange, Michel
2013-01-01
The historical approach to the sciences has undergone a sea change during recent decades. Maybe the major contribution of Hans-Jörg Rheinberger to this movement was his demonstration of the importance of experimental systems, and of their transformations, in the development of the sciences. To describe these transformations, Hans-Jörg borrows metaphors from evolutionary biology. I want to argue that evolutionary biologists can find in these recent historical studies plenty of models and concepts to address unresolved issues in their discipline. At a time when transdisciplinarity is highly praised, it is useful to provide a precise description of the obstacles that have so far prevented this exchange.
["Long-branch Attraction" artifact in phylogenetic reconstruction].
Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping
2007-06-01
Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).
Human compulsivity: A perspective from evolutionary medicine.
Stein, Dan J; Hermesh, Haggai; Eilam, David; Segalas, Cosi; Zohar, Joseph; Menchon, Jose; Nesse, Randolph M
2016-05-01
Biological explanations address not only proximal mechanisms (for example, the underlying neurobiology of obsessive-compulsive disorder), but also distal mechanisms (that is, a consideration of how particular neurobiological mechanisms evolved). Evolutionary medicine has emphasized a series of explanations for vulnerability to disease, including constraints, mismatch, and tradeoffs. The current paper will consider compulsive symptoms in obsessive-compulsive and related disorders and behavioral addictions from this evolutionary perspective. It will argue that while obsessive-compulsive disorder (OCD) is typically best conceptualized as a dysfunction, it is theoretically and clinically valuable to understand some symptoms of obsessive-compulsive and related disorders in terms of useful defenses. The symptoms of behavioral addictions can also be conceptualized in evolutionary terms (for example, mismatch), which in turn provides a sound foundation for approaching assessment and intervention. Copyright © 2016. Published by Elsevier B.V.
Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel
2016-01-01
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Using Generative Representations to Evolve Robots. Chapter 1
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.
Griskevicius, Vladas; Shiota, Michelle N; Neufeld, Samantha L
2010-04-01
Much research has found that positive affect facilitates increased reliance on heuristics in cognition. However, theories proposing distinct evolutionary fitness-enhancing functions for specific positive emotions also predict important differences among the consequences of different positive emotion states. Two experiments investigated how six positive emotions influenced the processing of persuasive messages. Using different methods to induce emotions and assess processing, we showed that the positive emotions of anticipatory enthusiasm, amusement, and attachment love tended to facilitate greater acceptance of weak persuasive messages (consistent with previous research), whereas the positive emotions of awe and nurturant love reduced persuasion by weak messages. In addition, a series of mediation analyses suggested that the effects distinguishing different positive emotions from a neutral control condition were best accounted for by different mediators rather than by one common mediator. These findings build upon approaches that link affective valence to certain types of processing, documenting emotion-specific effects on cognition that are consistent with functional evolutionary accounts of discrete positive emotions. Copyright 2010 APA, all rights reserved.
Automated discovery of local search heuristics for satisfiability testing.
Fukunaga, Alex S
2008-01-01
The development of successful metaheuristic algorithms such as local search for a difficult problem such as satisfiability testing (SAT) is a challenging task. We investigate an evolutionary approach to automating the discovery of new local search heuristics for SAT. We show that several well-known SAT local search algorithms such as Walksat and Novelty are composite heuristics that are derived from novel combinations of a set of building blocks. Based on this observation, we developed CLASS, a genetic programming system that uses a simple composition operator to automatically discover SAT local search heuristics. New heuristics discovered by CLASS are shown to be competitive with the best Walksat variants, including Novelty+. Evolutionary algorithms have previously been applied to directly evolve a solution for a particular SAT instance. We show that the heuristics discovered by CLASS are also competitive with these previous, direct evolutionary approaches for SAT. We also analyze the local search behavior of the learned heuristics using the depth, mobility, and coverage metrics proposed by Schuurmans and Southey.