MOCASSIN-prot: A multi-objective clustering approach for protein similarity networks
USDA-ARS?s Scientific Manuscript database
Motivation: Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary h...
Bursts of transposable elements as an evolutionary driving force.
Belyayev, A
2014-12-01
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
The major synthetic evolutionary transitions.
Solé, Ricard
2016-08-19
Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
The major synthetic evolutionary transitions
Solé, Ricard
2016-01-01
Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528
Divergent evolutionary processes associated with colonization of offshore islands.
Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B
2013-10-01
Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Why flying dogs are rare: A general theory of luck in evolutionary transitions.
Fleming, Leonore; Brandon, Robert
2015-02-01
There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution and diversification of the Toxicofera reptile venom system.
Fry, Bryan G; Vidal, Nicolas; van der Weerd, Louise; Kochva, Elazar; Renjifo, Camila
2009-03-06
The diversification of the reptile venom system has been an area of major research but of great controversy. In this review we examine the historical and modern-day efforts of all aspects of the venom system including dentition, glands and secreted toxins and highlight areas of future research opportunities. We use multidisciplinary techniques, including magnetic resonance imaging of venom glands through to molecular phylogenetic reconstruction of toxin evolutionary history, to illustrate the diversity within this integrated weapons system and map the timing of toxin recruitment events over the toxicoferan organismal evolutionary tree.
Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri
2012-01-01
Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.
Testing for Independence between Evolutionary Processes.
Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume
2016-09-01
Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spatial Structure of Evolutionary Models of Dialects in Contact
Murawaki, Yugo
2015-01-01
Phylogenetic models, originally developed to demonstrate evolutionary biology, have been applied to a wide range of cultural data including natural language lexicons, manuscripts, folktales, material cultures, and religions. A fundamental question regarding the application of phylogenetic inference is whether trees are an appropriate approximation of cultural evolutionary history. Their validity in cultural applications has been scrutinized, particularly with respect to the lexicons of dialects in contact. Phylogenetic models organize evolutionary data into a series of branching events through time. However, branching events are typically not included in dialectological studies to interpret the distributions of lexical terms. Instead, dialectologists have offered spatial interpretations to represent lexical data. For example, new lexical items that emerge in a politico-cultural center are likely to spread to peripheries, but not vice versa. To explore the question of the tree model’s validity, we present a simple simulation model in which dialects form a spatial network and share lexical items through contact rather than through common ancestors. We input several network topologies to the model to generate synthetic data. We then analyze the synthesized data using conventional phylogenetic techniques. We found that a group of dialects can be considered tree-like even if it has not evolved in a temporally tree-like manner but has a temporally invariant, spatially tree-like structure. In addition, the simulation experiments appear to reproduce unnatural results observed in reconstructed trees for real data. These results motivate further investigation into the spatial structure of the evolutionary history of dialect lexicons as well as other cultural characteristics. PMID:26221958
Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.
M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W
2016-12-01
The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.
Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.
Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C
2016-01-01
Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.
Archaeogenetics in evolutionary medicine.
Bouwman, Abigail; Rühli, Frank
2016-09-01
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Xiao-Long Jiang; Ming-Li Zhang; Hong-Xiang Zhang; Stewart C. Sanderson
2014-01-01
To investigate the impacts of ancient geological and climatic events on the evolutionary history of the Aconitum nemorum species group, including A. nemorum s. str., A. karakolicum, and A. soongoricum; a total of 18 natural populations with 146 individuals were sampled, mainly from grassy slopes or the coniferous forest understory of the Tianshan Mountain Range and its...
Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies.
Lopes-Marques, Mónica; Ruivo, Raquel; Fonseca, Elza; Teixeira, Ana; Castro, L Filipe C
2017-11-01
Gene duplication and loss are powerful drivers of evolutionary change. The role of loss in phenotypic diversification is notably illustrated by the variable enzymatic repertoire involved in vertebrate protein digestion. Among these we find the pepsin family of aspartic proteinases, including chymosin (Cmy). Previous studies demonstrated that Cmy, a neo-natal digestive pepsin, is inactivated in some primates, including humans. This pseudogenization event was hypothesized to result from the acquisition of maternal immune immunoglobulin G (IgG) transfer. By investigating 94 mammalian subgenomes we reveal an unprecedented level of Cmy erosion in placental mammals, with numerous independent events of gene loss taking place in Primates, Dermoptera, Rodentia, Cetacea and Perissodactyla. Our findings strongly suggest that the recurrent inactivation of Cmy correlates with the evolution of the passive transfer of IgG and uncovers a noteworthy case of evolutionary cross-talk between the digestive and the immune system, modulated by gene loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Behaviorism, Private Events, and the Molar View of Behavior
Baum, William M
2011-01-01
Viewing the science of behavior (behavior analysis) to be a natural science, radical behaviorism rejects any form of dualism, including subjective–objective or inner–outer dualism. Yet radical behaviorists often claim that treating private events as covert behavior and internal stimuli is necessary and important to behavior analysis. To the contrary, this paper argues that, compared with the rejection of dualism, private events constitute a trivial idea and are irrelevant to accounts of behavior. Viewed in the framework of evolutionary theory or for any practical purpose, behavior is commerce with the environment. By its very nature, behavior is extended in time. The temptation to posit private events arises when an activity is viewed in too small a time frame, obscuring what the activity does. When activities are viewed in an appropriately extended time frame, private events become irrelevant to the account. This insight provides the answer to many philosophical questions about thinking, sensing, and feeling. Confusion about private events arises in large part from failure to appreciate fully the radical implications of replacing mentalistic ideas about language with the concept of verbal behavior. Like other operant behavior, verbal behavior involves no agent and no hidden causes; like all natural events, it is caused by other natural events. In a science of behavior grounded in evolutionary theory, the same set of principles applies to verbal and nonverbal behavior and to human and nonhuman organisms. PMID:22532740
Psychotraumatology: What researchers and clinicians can learn from an evolutionary perspective.
Troisi, Alfonso
2018-05-01
This review outlines the contribution of evolutionary science to experimental and clinical psychotraumatology. From an evolutionary perspective, traumatic and psychosocial stressors are conceived of as events or circumstances that thwart the achievement of biological goals. The more important is the adaptive value of the goal, the more painful is the emotional impact of the life event that endangers goal achievement. Life history theory and sexual selection theory help to explain why goal priorities differ between the sexes and across age groups. Cultural values and social learning interact with evolved inclinations in determining the hierarchy of goals for a specific person in a specific phase of his or her life. To illustrate the applicability of the evolutionary model, epidemiological and clinical data concerning individual differences in stress sensitivity and stress generation are reviewed and discussed. The final part of the review summarizes new hypotheses that explain how early and current psychosocial stressors can activate a series of adaptive mechanisms including developmental plasticity, predictive adaptive responses and differential susceptibility. Ultimately, the contribution of evolutionary science to psychotraumatology is the idea that experimental and clinical studies should shift the focus of research from the external environment (defined as all stressful factors external to the subjects under investigation) to the ecological environment (defined as those stressful factors of the external environment that have a greater potential to threaten the adaptive equilibrium of the subjects under investigation because of their evolved inclinations). Copyright © 2017 Elsevier Ltd. All rights reserved.
Gene fusion analysis in the battle against the African endemic sleeping sickness.
Trimpalis, Philip; Koumandou, Vassiliki Lila; Pliakou, Evangelia; Anagnou, Nicholas P; Kossida, Sophia
2013-01-01
The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs), vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method) was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a) statistical significance (BLAST e-value, domain length etc.), (b) their involvement in crucial metabolic pathways, and (c) their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns.
Human genomic disease variants: a neutral evolutionary explanation.
Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir
2012-08-01
Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.
Human genomic disease variants: A neutral evolutionary explanation
Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir
2012-01-01
Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443
NASA Astrophysics Data System (ADS)
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.
2013-01-01
Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047
Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.
Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul
2014-12-11
Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.
Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien
2016-05-18
With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Dynamics of dental evolution in ornithopod dinosaurs.
Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J; Stubbs, Thomas L
2016-07-14
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.
Dynamics of dental evolution in ornithopod dinosaurs
NASA Astrophysics Data System (ADS)
Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.
2016-07-01
Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.
Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.
Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B
2015-10-01
Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.
2011-01-01
The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish. PMID:22194910
Reconciliation of Gene and Species Trees
Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.
2014-01-01
The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245
Pareto-optimal phylogenetic tree reconciliation
Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S.; Kellis, Manolis
2014-01-01
Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Availability and implementation: Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. Contact: mukul@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24932009
Evolutionary history and metabolic insights of ancient mammalian uricases
Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.
2014-01-01
Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457
Patterns of genome evolution that have accompanied host adaptation in Salmonella
Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.
2015-01-01
Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353
Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana
MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian
2015-01-01
The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359
The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.
Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P
2017-07-31
The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Phylogenetic estimates of diversification rate are affected by molecular rate variation.
Duchêne, D A; Hua, X; Bromham, L
2017-10-01
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
A short history of nearly every sense - The evolutionary history of vertebrate sensory cell types.
Schlosser, Gerhard
2018-05-08
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears and olfactory epithelia. However, the photoreceptors, mechanoreceptors and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Will extreme climatic events facilitate biological invasions?
USDA-ARS?s Scientific Manuscript database
Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...
Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M
2016-05-31
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. Copyright © 2016 Beres et al.
Accounting for rate variation among lineages in comparative demographic analyses
Hope, Andrew G.; Ho, Simon Y. W.; Malaney, Jason L.; Cook, Joseph A.; Talbot, Sandra L.
2014-01-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies.
Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming
2013-01-01
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs
Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal
2013-01-01
Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653
Galván-Quesada, Sesángari; Doadrio, Ignacio; Alda, Fernando; Perdices, Anabel; Reina, Ruth Gisela; García Varela, Martín; Hernández, Natividad; Campos Mendoza, Antonio; Bermingham, Eldredge; Domínguez-Domínguez, Omar
2016-01-01
Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and β-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes. PMID:27074006
Awan, Ali R; Manfredo, Amanda; Pleiss, Jeffrey A
2013-07-30
Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.
Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure
2013-01-01
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker's yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.
Asteroid families: Current situation
NASA Astrophysics Data System (ADS)
Cellino, A.; Dell'Oro, A.; Tedesco, E. F.
2009-02-01
Being the products of energetic collisional events, asteroid families provide a fundamental body of evidence to test the predictions of theoretical and numerical models of catastrophic disruption phenomena. The goal is to obtain, from current physical and dynamical data, reliable inferences on the original disruption events that produced the observed families. The main problem in doing this is recognizing, and quantitatively assessing, the importance of evolutionary phenomena that have progressively changed the observable properties of families, due to physical processes unrelated to the original disruption events. Since the early 1990s, there has been a significant evolution in our interpretation of family properties. New ideas have been conceived, primarily as a consequence of the development of refined models of catastrophic disruption processes, and of the discovery of evolutionary processes that had not been accounted for in previous studies. The latter include primarily the Yarkovsky and Yarkovsky-O'Keefe-Radzvieski-Paddack (YORP) effects - radiation phenomena that can secularly change the semi-major axis and the rotation state. We present a brief review of the current state of the art in our understanding of asteroid families, point out some open problems, and discuss a few likely directions for future developments.
Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure
2013-01-01
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined. PMID:23869229
The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.
Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V
2008-12-01
The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.
Evolutionary Theory under Fire.
ERIC Educational Resources Information Center
Lewin, Roger
1980-01-01
Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)
The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)
Altshuler, Ianina; Vaillant, James J.; Xu, Sen; Cristescu, Melania E.
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain. PMID:23285113
The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA).
Altshuler, Ianina; Vaillant, James J; Xu, Sen; Cristescu, Melania E
2012-01-01
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transporters, H(+)/K(+) transporters, and plasma membrane Ca(2+) pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca(2+) into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.
Vanneste, Kevin; Baele, Guy; Maere, Steven; Van de Peer, Yves
2014-01-01
Ancient whole-genome duplications (WGDs), also referred to as paleopolyploidizations, have been reported in most evolutionary lineages. Their attributed role remains a major topic of discussion, ranging from an evolutionary dead end to a road toward evolutionary success, with evidence supporting both fates. Previously, based on dating WGDs in a limited number of plant species, we found a clustering of angiosperm paleopolyploidizations around the Cretaceous–Paleogene (K–Pg) extinction event about 66 million years ago. Here we revisit this finding, which has proven controversial, by combining genome sequence information for many more plant lineages and using more sophisticated analyses. We include 38 full genome sequences and three transcriptome assemblies in a Bayesian evolutionary analysis framework that incorporates uncorrelated relaxed clock methods and fossil uncertainty. In accordance with earlier findings, we demonstrate a strongly nonrandom pattern of genome duplications over time with many WGDs clustering around the K–Pg boundary. We interpret these results in the context of recent studies on invasive polyploid plant species, and suggest that polyploid establishment is promoted during times of environmental stress. We argue that considering the evolutionary potential of polyploids in light of the environmental and ecological conditions present around the time of polyploidization could mitigate the stark contrast in the proposed evolutionary fates of polyploids. PMID:24835588
Alekseyenko, Alexander V.; Kim, Namshin; Lee, Christopher J.
2007-01-01
Association of alternative splicing (AS) with accelerated rates of exon evolution in some organisms has recently aroused widespread interest in its role in evolution of eukaryotic gene structure. Previous studies were limited to analysis of exon creation or lost events in mouse and/or human only. Our multigenome approach provides a way for (1) distinguishing creation and loss events on the large scale; (2) uncovering details of the evolutionary mechanisms involved; (3) estimating the corresponding rates over a wide range of evolutionary times and organisms; and (4) assessing the impact of AS on those evolutionary rates. We use previously unpublished independent analyses of alternative splicing in five species (human, mouse, dog, cow, and zebrafish) from the ASAP database combined with genomewide multiple alignment of 17 genomes to analyze exon creation and loss of both constitutively and alternatively spliced exons in mammals, fish, and birds. Our analysis provides a comprehensive database of exon creation and loss events over 360 million years of vertebrate evolution, including tens of thousands of alternative and constitutive exons. We find that exon inclusion level is inversely related to the rate of exon creation. In addition, we provide a detailed in-depth analysis of mechanisms of exon creation and loss, which suggests that a large fraction of nonrepetitive created exons are results of ab initio creation from purely intronic sequences. Our data indicate an important role for alternative splicing in creation of new exons and provide a useful novel database resource for future genome evolution research. PMID:17369312
Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†
Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.
2003-01-01
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons. PMID:12966138
Govindarajulu, Rajanikanth; Hughes, Colin E; Alexander, Patrick J; Bailey, C Donovan
2011-12-01
The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.
Marino, I A M; Benazzo, A; Agostini, C; Mezzavilla, M; Hoban, S M; Patarnello, T; Zane, L; Bertorelle, G
2013-10-01
Determining the timing, extent and underlying causes of interspecific gene exchange during or following speciation is central to understanding species' evolution. Antarctic notothenioid fish, thanks to the acquisition of antifreeze glycoproteins during Oligocene transition to polar conditions, experienced a spectacular radiation to >100 species during Late Miocene cooling events. The impact of recent glacial cycles on this group is poorly known, but alternating warming and cooling periods may have affected species' distributions, promoted ecological divergence into recurrently opening niches and/or possibly brought allopatric species into contact. Using microsatellite markers and statistical methods including Approximate Bayesian Computation, we investigated genetic differentiation, hybridization and the possible influence of the last glaciation/deglaciation events in three icefish species of the genus Chionodraco. Our results provide strong evidence of contemporary and past introgression by showing that: (i) a substantial fraction of contemporary individuals in each species has mixed ancestry, (ii) evolutionary scenarios excluding hybridization or including it only in ancient times have small or zero posterior probabilities, (iii) the data support a scenario of interspecific gene flow associated with the two most recent interglacial periods. Glacial cycles might therefore have had a profound impact on the genetic composition of Antarctic fauna, as newly available shelf areas during the warmer intervals might have favoured secondary contacts and hybridization between diversified groups. If our findings are confirmed in other notothenioids, they offer new perspectives for understanding evolutionary dynamics of Antarctic fish and suggest a need for new predictions on the effects of global warming in this group. © 2013 John Wiley & Sons Ltd.
Towards a mechanistic foundation of evolutionary theory.
Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt
2017-02-15
Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN
Hohmann, Nora; Wolf, Eva M.
2015-01-01
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304
Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H
2015-06-01
Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
A phylogenetic blueprint for a modern whale.
Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R
2013-02-01
The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life. Copyright © 2012 Elsevier Inc. All rights reserved.
A Molecular Phylogeny of Living Primates
Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill
2011-01-01
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896
Geologic map of the Agnesi quadrangle (V-45), Venus
Hansen, Vicki L.; Tharalson, Erik R.
2014-01-01
Two general classes of hypotheses have emerged to address the near random spatial distribution of ~970 apparently pristine impact craters across the surface of Venus: (1) catastrophic/episodic resurfacing and (2) equilibrium/evolutionary resurfacing. Catastrophic/episodic hypotheses propose that a global-scale, temporally punctuated event or events dominated Venus’ evolution and that the generally uniform impact crater distribution (Schaber and others, 1992; Phillips and others, 1992; Herrick and others, 1997) reflects craters that accumulated during relative global quiescence since that event (for example, Strom and others, 1994; Herrick, 1994; Turcotte and others, 1999). Equilibrium/evolutionary hypotheses suggest instead that the near random crater distribution results from relatively continuous, but spatially localized, resurfacing in which volcanic and (or) tectonic processes occur across the planet through time, although the style of operative processes may have varied temporally and spatially (for example, Phillips and others, 1992; Guest and Stofan, 1999; Hansen and Young, 2007). Geologic relations within the map area allow us to test the catastrophic/episodic versus equilibrium/evolutionary resurfacing hypotheses.
Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate
Dehal, Paramvir; Boore, Jeffrey L
2005-01-01
The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622
Classification of proteins with shared motifs and internal repeats in the ECOD database
Kinch, Lisa N.; Liao, Yuxing
2016-01-01
Abstract Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain‐like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade. PMID:26833690
Inglin, Raffael C; Meile, Leo; Stevens, Marc J A
2018-04-24
Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed by the environment and HGT.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida).
Milani, Liliana; Ghiselli, Fabrizio; Pellecchia, Marco; Scali, Valerio; Passamonti, Marco
2010-08-25
Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well.
Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida)
2010-01-01
Background Phasmids show noteworthy abilities to overcome species-specific reproductive isolation mechanisms, including hybridization, polyploidy, parthenogenesis, hybridogenesis and androgenesis. From an evolutionary standpoint, such tangled reproductive interactions lead to the complex phyletic relationships known as "reticulate evolution". Moroccan stick insects of the genus Clonopsis include one bisexual (C. felicitatis) and two closely related parthenogenetic forms (C. gallica, C. soumiae), which represent a polyploid series in chromosome number, but with apparent diploid karyotypes. Moreover, two Clonopsis strains of ameiotic males have been described, C. androgenes-35 and C. androgenes-53. As a consequence, Clonopsis stick insects may have experienced complex micro-evolutionary events, which we try to disentangle in this study. Results Mitochondrial cox2 analysis supports a recent divergence of Clonopsis, while AFLPs evidence genetic differentiation not linked to karyotypes, so that parthenogenetic C. gallica and C. soumiae appear to be a mix of strains of polyphyletic origin rather than single parthenogenetic species. Moreover, an admixed hybrid origin seems to be confirmed for C. androgenes. Conclusion On the whole, Clonopsis is an intriguing case of reticulate evolution. Actually, complex cladogenetic events should be taken into account to explain the observed genetic structure, including diploidization of polyploid karyotypes, possibly coupled with hybridization and androgenesis. We also proposed a "working hypothesis" to account for the observed data, which deserves further studies, but fits the observed data very well. PMID:20738851
Episodic processes, invasion and faunal mosaics in evolutionary and ecological time
USDA-ARS?s Scientific Manuscript database
Episodes of ecological perturbation and faunal turnover represent crises for global biodiversity and have occurred periodically across Earth history on a continuum linking deep evolutionary and shallow ecological time. Major extinction events and biodiversity crises across the 540 milion years of th...
Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.
Turajlic, Samra; Xu, Hang; Litchfield, Kevin; Rowan, Andrew; Horswell, Stuart; Chambers, Tim; O'Brien, Tim; Lopez, Jose I; Watkins, Thomas B K; Nicol, David; Stares, Mark; Challacombe, Ben; Hazell, Steve; Chandra, Ashish; Mitchell, Thomas J; Au, Lewis; Eichler-Jonsson, Claudia; Jabbar, Faiz; Soultati, Aspasia; Chowdhury, Simon; Rudman, Sarah; Lynch, Joanna; Fernando, Archana; Stamp, Gordon; Nye, Emma; Stewart, Aengus; Xing, Wei; Smith, Jonathan C; Escudero, Mickael; Huffman, Adam; Matthews, Nik; Elgar, Greg; Phillimore, Ben; Costa, Marta; Begum, Sharmin; Ward, Sophia; Salm, Max; Boeing, Stefan; Fisher, Rosalie; Spain, Lavinia; Navas, Carolina; Grönroos, Eva; Hobor, Sebastijan; Sharma, Sarkhara; Aurangzeb, Ismaeel; Lall, Sharanpreet; Polson, Alexander; Varia, Mary; Horsfield, Catherine; Fotiadis, Nicos; Pickering, Lisa; Schwarz, Roland F; Silva, Bruno; Herrero, Javier; Luscombe, Nick M; Jamal-Hanjani, Mariam; Rosenthal, Rachel; Birkbak, Nicolai J; Wilson, Gareth A; Pipek, Orsolya; Ribli, Dezso; Krzystanek, Marcin; Csabai, Istvan; Szallasi, Zoltan; Gore, Martin; McGranahan, Nicholas; Van Loo, Peter; Campbell, Peter; Larkin, James; Swanton, Charles
2018-04-19
The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance. Copyright © 2018 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties.
Davis, Gregory K
2012-09-01
Evolutionary novelties represent challenges to biologists, particularly those who would like to understand the developmental and genetic changes responsible for their appearance. Most modern aphids possess two apparent evolutionary novelties: cyclical parthenogenesis (a life cycle with both sexual and asexual phases) and viviparity (internal development and live birth of progeny) in their asexual phase. Here I discuss the evolution of these apparent novelties from a developmental standpoint. Although a full understanding of the evolution of cyclical parthenogenesis and viviparity in aphids can seem a daunting task, these complex transitions can at least be broken down into a handful of steps. I argue that these should include the following: a differentiation of two developmentally distinct oocytes; de novo synthesis of centrosomes and modification of meiosis during asexual oogenesis; a loss or bypass of any cell cycle arrest and changes in key developmental events during viviparous oogenesis; and a change in how mothers specify the sexual vs. asexual fates of their progeny. Grappling with the nature of such steps and the order in which they occurred ought to increase our understanding and reduce the apparent novelty of complex evolutionary transitions. © 2012 Wiley Periodicals, Inc.
A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes
McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J
2011-01-01
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792
Accounting for rate variation among lineages in comparative demographic analyses.
Hope, Andrew G; Ho, Simon Y W; Malaney, Jason L; Cook, Joseph A; Talbot, Sandra L
2014-09-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Hou, Beiwei; Luo, Jing; Zhang, Yusi; Niu, Zhitao; Xue, Qingyun; Ding, Xiaoyu
2017-01-01
The genus Dendrobium was used as a case study to elucidate the evolutionary history of Orchidaceae in the Sino-Japanese Floristic Region (SJFR) and Southeast Asia region. These evolutionary histories remain largely unknown, including the temporal and spatial distribution of the evolutionary events. The present study used nuclear and plastid DNA to determine the phylogeography of Dendrobium officinale and four closely related taxa. Plastid DNA haplotype and nuclear data were shown to be discordant, suggesting reticulate evolution drove the species’ diversification. Rapid radiation and genetic drift appeared to drive the evolution of D. tosaense and D. flexicaule, whereas introgression or hybridization might have been involved in the evolution of D. scoriarum and D. shixingense. The phylogeographical structure of D. officinale revealed that core natural distribution regions might have served as its glacial refuges. In recent years, human disturbances caused its artificial migration and population extinction. The five taxa may have originated from the Nanling Mountains and the Yungui Plateau and then migrated northward or eastward. After the initial iteration expansion, D. officinale populations appeared to experience the regional evolutionary patterns in different regions and follow the sequential or rapid decline in gene exchange. PMID:28262789
An improved approximate-Bayesian model-choice method for estimating shared evolutionary history
2014-01-01
Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
DeCoSTAR: Reconstructing the Ancestral Organization of Genes or Genomes Using Reconciled Phylogenies
Anselmetti, Yoann; Patterson, Murray; Ponty, Yann; B�rard, S�verine; Chauve, Cedric; Scornavacca, Celine; Daubin, Vincent; Tannier, Eric
2017-01-01
DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neighborhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which DeCoSTAR is integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann–Gibbs distribution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeCoLT, ART-DeCo, and DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria. Availability: http://pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017). PMID:28402423
Attard, Catherine R M; Beheregaray, Luciano B; Jenner, K Curt S; Gill, Peter C; Jenner, Micheline-Nicole M; Morrice, Margaret G; Teske, Peter R; Möller, Luciana M
2015-05-01
Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Genetic diversity, virulence and fitness evolution in an obligate fungal parasite of bees.
Evison, S E F; Foley, K; Jensen, A B; Hughes, W O H
2015-01-01
Within-host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co-evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain-specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot
2018-06-01
Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.
van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H C; Visser, Marcel E
2017-06-19
More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
McDermott, Rose; Hatemi, Peter K
2018-01-01
As new waves of populism arise and cause disruption around the globe, there is both great interest in attempting to explain the origin of this dynamic as well as a need to ameliorate its potentially destructive impact. Perhaps the greatest signal of seismic change is the global dismantling of American institutional control of the postwar world following the election of Donald Trump in the United States. In the wake of such dramatic changes, it may seem odd to turn to evolutionary psychology which looks deeply into the past to try to understand current events, but, in fact, modern technology has dramatically changed the shape of political communication in just such a way as to make politics more personal once again, increasing the need to understand and interpret modern politics through an evolutionary lens. In fact, current modern political turmoils demonstrate how important evolutionary themes are and how critical they remain to understand how current forms of populism tape into older tribal sentiments and drives. Modern technology allows for a form of interpretative politics that no longer need to be mediated by political institutions or larger social structures, including enduring ones such as marriage. Indeed, in any ways, as we have technologically advanced, we have also regressed to more immediate, emotional, and personal forms of political communication. And it is only in understanding the nature of that personal political psychology that we can begin to grapple seriously with the challenges of today, including the consequences of global populism.
Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.
Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F
2015-01-01
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou
2017-09-18
The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450 gene families in A. thaliana and Brassica species. This study provides a biology model to study the mechanism of gene family formation, particularly in the context of the evolutionary history of angiosperms, and offers novel insights for the study of angiosperm genomes.
Wolf, Y I; Aravind, L; Grishin, N V; Koonin, E V
1999-08-01
Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the beta-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies-shared derived characters, such as extra domains or inserts-for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary "standard model" whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.
Dispersal and vicariance: the complex evolutionary history of boid snakes.
Noonan, Brice P; Chippindale, Paul T
2006-08-01
Since the early 1970s, boine snakes (Boidae: Boinae) have served as a prime example of a group whose current distribution was shaped by vicariant events associated with the fragmentation of the supercontinent Gondwana. Early phylogenetic treatments of this group, and what were thought to be closely related groups (Erycinae and Pythoninae) based on morphological features, produced a relatively stable view of relationships that has strongly influenced subsequent molecular-based work. We examined 4307 base pairs (bp) of nucleotide sequence data obtained from five nuclear loci (c-mos, NT3, BDNF, RAG1, and ODC) and one mitochondrial locus (cyt b) for all genera of erycines and boines, plus representatives of other groups, including those previously thought to be closely allied with boines (Ungaliophiidae, Loxocemidae, Xenopeltidae, and Pythoninae). Our results suggest that the Boidae is not monophyletic, and its current division into three subfamilies (Erycinae, Boinae, and Pythoninae) does not accurately reflect evolutionary history. We find that the evolutionary relationships are better reflected by current geographic distributions and tectonic history than by the morphological characters that have long served as the foundation of boid phylogeny. Divergence time estimates suggest that this strong congruence between geography and phylogeny is the result of several vicariant and dispersal events in the Late Cretaceous and Paleocene associated with the fragmentation of the Gondwanan supercontinent. Our results demonstrate the importance of both vicariance and dispersal in shaping the global distributions of terrestrial organisms.
Johnston, Iain G; Williams, Ben P
2016-02-24
Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.
UV-B Radiation Contributes to Amphibian Population Declines
NASA Astrophysics Data System (ADS)
Blaustein, Andrew
2007-05-01
UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.
Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce
2014-01-01
Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host-parasite events explain the codivergence patterns observed, in which cospeciation and colonisation via host-switching and vicariant plus dispersal events are appreciated, at different times during the diversification history of both associates, particularly during the Pleistocene.
Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E.; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce
2014-01-01
Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host-parasite events explain the codivergence patterns observed, in which cospeciation and colonisation via host-switching and vicariant plus dispersal events are appreciated, at different times during the diversification history of both associates, particularly during the Pleistocene. PMID:24999998
Massol, François; Débarre, Florence
2015-07-01
Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge
2010-08-03
Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.
Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge
2010-01-01
Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927
The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia.
Furness, Caroline L; Mansur, Marcela B; Weston, Victoria J; Ermini, Luca; van Delft, Frederik W; Jenkinson, Sarah; Gale, Rosemary; Harrison, Christine J; Pombo-de-Oliveira, Maria S; Sanchez-Martin, Marta; Ferrando, Adolfo A; Kearns, Pamela; Titley, Ian; Ford, Anthony M; Potter, Nicola E; Greaves, Mel
2018-03-20
Single-cell genetics were used to interrogate clonal complexity and the sequence of mutational events in STIL-TAL1+ T-ALL. Single-cell multicolour FISH was used to demonstrate that the earliest detectable leukaemia subclone contained the STIL-TAL1 fusion and copy number loss of 9p21.3 (CDKN2A/CDKN2B locus), with other copy number alterations including loss of PTEN occurring as secondary subclonal events. In three cases, multiplex qPCR and phylogenetic analysis were used to produce branching evolutionary trees recapitulating the snapshot history of T-ALL evolution in this leukaemia subtype, which confirmed that mutations in key T-ALL drivers, including NOTCH1 and PTEN, were subclonal and reiterative in distinct subclones. Xenografting confirmed that self-renewing or propagating cells were genetically diverse. These data suggest that the STIL-TAL1 fusion is a likely founder or truncal event. Therapies targeting the TAL1 auto-regulatory complex are worthy of further investigation in T-ALL.
Eastwick, Paul W
2009-09-01
Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.
The evolutionary rate dynamically tracks changes in HIV-1 epidemics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus
Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less
Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)
Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun
2016-01-01
Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352
Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish
Pasco-Viel, Emmanuel; Yang, Lei; Veran, Monette; Balter, Vincent; Mayden, Richard L.; Laudet, Vincent; Viriot, Laurent
2014-01-01
Evolutionary radiations, especially adaptive radiations, have been widely studied but mainly for recent events such as in cichlid fish or Anolis lizards. Here, we investigate the radiation of the subfamily Cyprininae, which includes more than 1300 species and is estimated to have originated from Southeast Asia around 55 Ma. In order to decipher a potential adaptive radiation, within a solid phylogenetic framework, we investigated the trophic apparatus, and especially the pharyngeal dentition, as teeth have proved to be important markers of ecological specialization. We compared two tribes within Cyprininae, Poropuntiini and Labeonini, displaying divergent dental patterns, as well as other characters related to their trophic apparatus. Our results suggest that the anatomy of the trophic apparatus and diet are clearly correlated and this explains the difference in dental patterns observed between these two tribes. Our results illustrate the diversity of mechanisms that account for species diversity in this very diverse clade: diversification of dental characters from an ancestral pattern on the one hand, conservation of a basal synapomorphy leading to ecological specialization on the other hand. By integrating morphological, ecological and phylogenetic analyses, it becomes possible to investigate ancient radiation events that have shaped the present diversity of species. PMID:24523268
Evolutionary Game Theory in Growing Populations
NASA Astrophysics Data System (ADS)
Melbinger, Anna; Cremer, Jonas; Frey, Erwin
2010-10-01
Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.
Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum
Sachs, Joel L.; Russell, James E.; Hollowell, Amanda C.
2011-01-01
Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown. PMID:22073160
ERIC Educational Resources Information Center
Caplan, Arnold I.
1981-01-01
Describes development of the limb and various interactions necessary for the expression of its unique form and phenotypes to uncover the hierarchical controlling steps in the development process for the potential of avoiding abnormal events and manipulating what might be detrimental genetic events into a normal sequence. (Author/SK)
Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.
Markunas, Chelsea M; Triemer, Richard E
2016-05-01
Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Pollak, Daniela D; Minh, Bui Quang; Cicvaric, Ana; Monje, Francisco J
2014-11-01
Fibroblast Growth Factor (FGF) Receptors (FGFRs) regulate essential biological processes, including embryogenesis, angiogenesis, cellular growth and memory-related long-term synaptic plasticity. Whereas canonical FGFRs depend exclusively on extracellular Immunoglobulin (Ig)-like domains for ligand binding, other receptor types, including members of the tropomyosin-receptor-kinase (Trk) family, use either Ig-like or Leucine-Rich Repeat (LRR) motifs, or both. Little is known, however, about the evolutionary events leading to the differential incorporation of LRR domains into Ig-containing tyrosine kinase receptors. Moreover, although FGFRs have been identified in many vertebrate species, few reports describe their existence in invertebrates. Information about the biological relevance of invertebrate FGFRs and evolutionary divergences between them and their vertebrate counterparts is therefore limited. Here, we characterized ApLRRTK, a neuronal cell-surface protein recently identified in Aplysia. We unveiled ApLRRTK as the first member of the FGFRs family deprived of Ig-like domains that instead contains extracellular LRR domains. We describe that ApLRRTK exhibits properties typical of canonical vertebrate FGFRs, including promotion of FGF activity, enhancement of neuritic outgrowth and signaling via MAPK and the transcription factor CREB. ApLRRTK also enhanced the synaptic efficiency of neurons known to mediate in vivo memory-related defensive behaviors. These data reveal a novel molecular regulator of neuronal function in invertebrates, provide the first evolutionary linkage between LRR proteins and FGFRs and unveil an unprecedented mechanism of FGFR gene diversification in primeval central nervous systems.
Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas
2012-07-01
Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28-0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46-1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance was the most likely limiting factor in the evolution of Altiplano species flocks.
Probabilistic and Evolutionary Early Warning System: concepts, performances, and case-studies
NASA Astrophysics Data System (ADS)
Zollo, A.; Emolo, A.; Colombelli, S.; Elia, L.; Festa, G.; Martino, C.; Picozzi, M.
2013-12-01
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform for Earthquake Early Warning that integrates algorithms for real-time earthquake location, magnitude estimation and damage assessment into a highly configurable and easily portable package. In its regional configuration, the software processes, in real-time, the 3-component acceleration data streams coming from seismic stations, for P-waves arrival detection and, in the case a quite large event is occurring, can promptly performs event detection and location, magnitude estimation and peak ground-motion prediction at target sites. The regional approach has been integrated with a threshold-based early warning method that allows, in the very first seconds after a moderate-to-large earthquake, to identify the most Probable Damaged Zone starting from the real-time measurement at near-source stations located at increasing distances from the earthquake epicenter, of the peak displacement (Pd) and predominant period of P-waves (τc), over a few-second long window after the P-wave arrival. Thus, each recording site independently provides an evolutionary alert level, according to the Pd and τc it measured, through a decisional table. Since 2009, PRESTo has been under continuous real-time testing using data streaming from the Iripinia Seismic Network (Southern Italy) and has produced a bulletin of some hundreds low magnitude events, including all the M≥2.5 earthquakes occurred in that period in Irpinia. Recently, PRESTo has been also implemented at the accelerometric network and broad-band networks in South Korea and in Romania, and off-line tested in Iberian Peninsula, in Turkey, in Israel, and in Japan. The feasibility of an Early Warning System at national scale, is currently under testing by studying the performances of the PRESTo platform for the Italian Accelerometric Network. Moreover, PRESTo is under experimentation in order to provide alert in a high-school located in the neighborhood of Naples at about 100 km from the Irpinia region.
Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin
2011-01-01
Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses. PMID:21711553
The evolutionary landscape of intergenic trans-splicing events in insects
Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan
2015-01-01
To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696
Increased genetic variation and evolutionary potential drive the success of an invasive grass.
Lavergne, Sébastien; Molofsky, Jane
2007-03-06
Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination.
Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo
2016-04-01
Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Predicting loss of evolutionary history: Where are we?
Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine
2017-02-01
The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides. © 2015 Cambridge Philosophical Society.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin.
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J; Stenseth, Nils Chr; Trathan, Phil N; Whittington, Jason D; Zanetti, Enrico; Zitterbart, Daniel P; Le Bohec, Céline; Trucchi, Emiliano
2016-06-14
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.
Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease
Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.
2014-01-01
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772
Full circumpolar migration ensures evolutionary unity in the Emperor penguin
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J.; Stenseth, Nils Chr; Trathan, Phil N.; Whittington, Jason D.; Zanetti, Enrico; Zitterbart, Daniel P.; Le Bohec, Céline; Trucchi, Emiliano
2016-01-01
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory. PMID:27296726
Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia.
Estrada-Peña, Agustín; Álvarez-Jarreta, Jorge; Cabezas-Cruz, Alejandro
2018-04-12
The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
The evolution of complex life.
Billingham, J
1989-01-01
In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.
Formation of the first three gravitational-wave observations through isolated binary evolution
Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.
2017-01-01
During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively. PMID:28378739
The geological record of ocean acidification.
Hönisch, Bärbel; Ridgwell, Andy; Schmidt, Daniela N; Thomas, Ellen; Gibbs, Samantha J; Sluijs, Appy; Zeebe, Richard; Kump, Lee; Martindale, Rowan C; Greene, Sarah E; Kiessling, Wolfgang; Ries, Justin; Zachos, James C; Royer, Dana L; Barker, Stephen; Marchitto, Thomas M; Moyer, Ryan; Pelejero, Carles; Ziveri, Patrizia; Foster, Gavin L; Williams, Branwen
2012-03-02
Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.
Piperno, Dolores R.
2017-01-01
The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881
Designing and Securing an Event Processing System for Smart Spaces
ERIC Educational Resources Information Center
Li, Zang
2011-01-01
Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-11-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).
Comparing genomes with rearrangements and segmental duplications.
Shao, Mingfu; Moret, Bernard M E
2015-06-15
Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.
Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity.
de Bruyn, Mark; Stelbrink, Björn; Morley, Robert J; Hall, Robert; Carvalho, Gary R; Cannon, Charles H; van den Bergh, Gerrit; Meijaard, Erik; Metcalfe, Ian; Boitani, Luigi; Maiorano, Luigi; Shoup, Robert; von Rintelen, Thomas
2014-11-01
Tropical Southeast (SE) Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the SE Asian biota through time and space. We conduct meta-analyses of geological, climatic, and biological (including 61 phylogenetic) data sets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene, and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major "evolutionary hotspots" for a diverse range of fauna and flora. Although most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of SE Asian plant and mammal species richness, are critically required. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Boulila, Moncef
2010-06-01
To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.
Chaara, Dhekra; Ravel, Christophe; Bañuls, Anne- Laure; Haouas, Najoua; Lami, Patrick; Talignani, Loïc; El Baidouri, Fouad; Jaouadi, Kaouther; Harrat, Zoubir; Dedet, Jean-Pierre; Babba, Hamouda; Pratlong, Francine
2015-04-01
The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.
Ambiguity Within Nursing Practice: An Evolutionary Concept Analysis.
McMahon, Michelle A; Dluhy, Nancy M
2017-02-01
To analyze the concept of ambiguity in a nursing context. Ambiguity is inherent within nursing practice. As health care becomes increasingly complex, nurses must continue to successfully deal with greater amounts of clinical ambiguity. Although ambiguity is discussed in nursing, minimal concept refinement exists to capture the contextual intricacies from a nursing lens. Nurse perception of an ambiguous clinical event, in combination with nurse tolerance level for ambiguity, can impact nurse response. Yet, little is known about what constitutes ambiguity within nursing practice (AWNP). Rodgers evolutionary method was used to explore AWNP, with emphasis on nurse thinking during ambiguous clinical situations. Literature searches across multiple databases yielded 38 articles for analysis. Attributes of AWNP include (a) variations in cues/available information, (b) multiple interpretations, (c) novel/nonroutine presentations, and (d) unpredictable. Antecedents include (a) a context-specific, clinical situation with ambiguous features needing evaluation and (b) an individual to sense a knowledge gap or perceive ambiguity. Consequences include ranges of (a) emotional, (b) behavioral, and (c) cognitive clinician responses. Preliminary findings support AWNP as a distinct concept in which ambiguity perceived by the nurse likely affects judgment, decision making, and clinical interventions. AWNP is a clinically relevant concept requiring continued development.
Eukaryogenesis, how special really?
Booth, Austin; Doolittle, W Ford
2015-08-18
Eukaryogenesis is widely viewed as an improbable evolutionary transition uniquely affecting the evolution of life on this planet. However, scientific and popular rhetoric extolling this event as a singularity lacks rigorous evidential and statistical support. Here, we question several of the usual claims about the specialness of eukaryogenesis, focusing on both eukaryogenesis as a process and its outcome, the eukaryotic cell. We argue in favor of four ideas. First, the criteria by which we judge eukaryogenesis to have required a genuinely unlikely series of events 2 billion years in the making are being eroded by discoveries that fill in the gaps of the prokaryote:eukaryote "discontinuity." Second, eukaryogenesis confronts evolutionary theory in ways not different from other evolutionary transitions in individuality; parallel systems can be found at several hierarchical levels. Third, identifying which of several complex cellular features confer on eukaryotes a putative richer evolutionary potential remains an area of speculation: various keys to success have been proposed and rejected over the five-decade history of research in this area. Fourth, and perhaps most importantly, it is difficult and may be impossible to eliminate eukaryocentric bias from the measures by which eukaryotes as a whole are judged to have achieved greater success than prokaryotes as a whole. Overall, we question whether premises of existing theories about the uniqueness of eukaryogenesis and the greater evolutionary potential of eukaryotes have been objectively formulated and whether, despite widespread acceptance that eukaryogenesis was "special," any such notion has more than rhetorical value.
Eukaryogenesis, how special really?
Booth, Austin; Doolittle, W. Ford
2015-01-01
Eukaryogenesis is widely viewed as an improbable evolutionary transition uniquely affecting the evolution of life on this planet. However, scientific and popular rhetoric extolling this event as a singularity lacks rigorous evidential and statistical support. Here, we question several of the usual claims about the specialness of eukaryogenesis, focusing on both eukaryogenesis as a process and its outcome, the eukaryotic cell. We argue in favor of four ideas. First, the criteria by which we judge eukaryogenesis to have required a genuinely unlikely series of events 2 billion years in the making are being eroded by discoveries that fill in the gaps of the prokaryote:eukaryote “discontinuity.” Second, eukaryogenesis confronts evolutionary theory in ways not different from other evolutionary transitions in individuality; parallel systems can be found at several hierarchical levels. Third, identifying which of several complex cellular features confer on eukaryotes a putative richer evolutionary potential remains an area of speculation: various keys to success have been proposed and rejected over the five-decade history of research in this area. Fourth, and perhaps most importantly, it is difficult and may be impossible to eliminate eukaryocentric bias from the measures by which eukaryotes as a whole are judged to have achieved greater success than prokaryotes as a whole. Overall, we question whether premises of existing theories about the uniqueness of eukaryogenesis and the greater evolutionary potential of eukaryotes have been objectively formulated and whether, despite widespread acceptance that eukaryogenesis was “special,” any such notion has more than rhetorical value. PMID:25883267
Estimating true evolutionary distances under the DCJ model.
Lin, Yu; Moret, Bernard M E
2008-07-01
Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.
MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks.
Keel, Brittney N; Deng, Bo; Moriyama, Etsuko N
2018-04-15
Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. emoriyama2@unl.edu. Supplementary data are available at Bioinformatics online.
USDA-ARS?s Scientific Manuscript database
Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift, and founding events. Some invasions are also molded by additional human activities such as selection for cultivars and intentional introduction of desired phenotypes, wh...
Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra.
Buckley, David; Alcobendas, Marina; García-París, Mario; Wake, Marvalee H
2007-01-01
The way in which novelties that lead to macroevolutionary events originate is a major question in evolutionary biology, and one that can be addressed using the fire salamander (Salamandra salamandra) as a model system. It is exceptional among amphibians in displaying intraspecific diversity of reproductive strategies. In S. salamandra, two distinct modes of reproduction co-occur: the common mode, ovoviviparity (females giving birth to many small larvae), and a phylogenetically derived reproductive strategy, viviparity (females producing only a few large, fully metamorphosed juveniles, which are nourished maternally). We examine the relationship between heterochronic modifications of the ontogeny and the evolution of the new reproductive mode in the fire salamander. The in vitro development of embryos of ovoviviparous and viviparous salamanders from fertilization to metamorphosis is compared, highlighting the key events that distinguish the two modes of reproduction. We identify the heterochronic events that, together with the intrauterine cannibalistic behavior, characterize the derived viviparous reproductive strategy. The ways in which evolutionary novelties can arise by modification of developmental programs can be studied in S. salamandra. Moreover, the variation in reproductive modes and the associated variation of sequences of development occur in neighboring, conspecific populations. Thus, S. salamandra is a unique biological system in which evolutionary developmental research questions can be addressed at the level of populations.
Prevalence and genome characteristics of canine astrovirus in southwest China.
Li, Mingxiang; Yan, Nan; Ji, Conghui; Wang, Min; Zhang, Bin; Yue, Hua; Tang, Cheng
2018-05-30
The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3 %) were positive for CaAstV by RT-PCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV.
Uyeda, Josef C; Harmon, Luke J; Blank, Carrine E
2016-01-01
Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record-phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth's history have shaped-and been shaped by-evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and "Snowball Earth" glaciations and is associated with decrease in the evolutionary rates around 1.8-1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes-particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth's history.
Harmon, Luke J.; Blank, Carrine E.
2016-01-01
Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record—phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth’s history have shaped—and been shaped by—evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and “Snowball Earth” glaciations and is associated with decrease in the evolutionary rates around 1.8–1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes–particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth’s history. PMID:27649395
Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.
2015-01-01
The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392
Arenas, Miguel
2015-04-01
NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.
Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe
2014-01-01
Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation. PMID:24699231
Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform1[OPEN
Sun, Pengchuan; Li, Yuxian; Liu, Yinzhe; Yu, Jigao; Ma, Xuelian; Sun, Sangrong; Yang, Nanshan; Xia, Ruiyan; Lei, Tianyu; Liu, Xiaojian; Jiao, Beibei; Xing, Yue; Ge, Weina; Wang, Li; Song, Xiaoming; Yuan, Min; Guo, Di; Zhang, Lan; Zhang, Jiaqi; Chen, Wei; Pan, Yuxin; Liu, Tao; Jin, Ling; Sun, Jinshuai; Yu, Jiaxiang; Duan, Xueqian; Shen, Shaoqi; Qin, Jun; Zhang, Meng-chen; Paterson, Andrew H.
2017-01-01
Mainly due to their economic importance, genomes of 10 legumes, including soybean (Glycine max), wild peanut (Arachis duranensis and Arachis ipaensis), and barrel medic (Medicago truncatula), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape (Vitis vinifera) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org). PMID:28325848
2012-01-01
Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874
Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D
2018-08-01
Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.
Pontremoli, Chiara; Forni, Diego; Cagliani, Rachele; Pozzoli, Uberto; Riva, Stefania; Bravo, Ignacio G; Clerici, Mario; Sironi, Manuela
2017-10-01
The Old World (OW) arenavirus complex includes several species of rodent-borne viruses, some of which (i.e., Lassa virus, LASV and Lymphocytic choriomeningitis virus, LCMV) cause human diseases. Most LCMV and LASV infections are caused by rodent-to-human transmissions. Thus, viral evolution is largely determined by events that occur in the wildlife reservoirs. We used a set of human- and rodent-derived viral sequences to investigate the evolutionary history underlying OW arenavirus speciation, as well as the more recent selective events that accompanied LASV spread in West Africa. We show that the viral RNA polymerase (L protein) was a major positive selection target in OW arenaviruses and during LASV out-of-Nigeria migration. No evidence of selection was observed for the glycoprotein, whereas positive selection acted on the nucleoprotein (NP) during LCMV speciation. Positively selected sites in L and NP are surrounded by highly conserved residues, and the bulk of the viral genome evolves under purifying selection. Several positively selected sites are likely to modulate viral replication/transcription. In both L and NP, structural features (solvent exposed surface area) are important determinants of site-wise evolutionary rate variation. By incorporating several rodent-derived sequences, we also performed an analysis of OW arenavirus codon adaptation to the human host. Results do not support a previously hypothesized role of codon adaptation in disease severity for non-Nigerian strains. In conclusion, L and NP represent the major selection targets and possible determinants of disease presentation; these results suggest that field surveys and experimental studies should primarily focus on these proteins. © 2017 John Wiley & Sons Ltd.
Qiu, Wen-Ming; Li, Jing; Zhou, Hui; Zhang, Qiong; Guo, Wenwu; Zhu, Tingting; Peng, Junhua; Sun, Fengjie; Li, Shaohua; Korban, Schuyler S.; Han, Yuepeng
2012-01-01
Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. PMID:22291904
Human Germline Mutation and the Erratic Evolutionary Clock
Przeworski, Molly
2016-01-01
Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive. PMID:27760127
The role of domain expertise and judgment in dealing with unexpected events
NASA Astrophysics Data System (ADS)
Kochan, Janeen Adrion
Unexpected events, particularly those creating surprise, interrupt ongoing mental and behavioral processes, creating an increased potential for unwanted outcomes to the situation. Human reactions to unexpected events vary. One can hypothesize a number of reasons for this variation, including level of domain expertise, previous experience with similar events, emotional connotation, and the contextual surround of the event. Whereas interrupting ongoing activities and focusing attention temporarily on a surprising event may be a useful evolutionary response to a threatening situation, the same process may be maladaptive in today's highly dynamic world. The purpose of this study was to investigate how different aspects of expertise affected one's ability to detect and react to an unexpected event. It was hypothesized that there were two general types of expertise, domain expertise and judgment (Hammond, 2000), which influenced one's performance on dealing with an unexpected event. The goal of the research was to parse out the relative contribution of domain expertise, so the role of judgment could be revealed. The research questions for this study were: (a) Can we identify specific knowledges and skills which enhance one's ability to deal with unexpected events? (b) Are these skills "automatically" included in domain expertise? (c) How does domain expertise improve or deter one's reaction and response to unexpected events? (d) What role does judgment play in responding to surprise? The general hypothesis was that good judgment would influence the process of surprise at different stages and in different ways than would domain expertise. The conclusions from this research indicated that good judgment had a significant positive effect in helping pilots deal with unexpected events. This was most pronounced when domain expertise was low.
Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie
2012-09-15
Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.
A single determinant dominates the rate of yeast protein evolution.
Drummond, D Allan; Raval, Alpan; Wilke, Claus O
2006-02-01
A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.
Gratton, P; Konopiński, M K; Sbordoni, V
2008-10-01
Genetic data are currently providing a large amount of new information on past distribution of species and are contributing to a new vision of Pleistocene ice ages. Nonetheless, an increasing number of studies on the 'time dependency' of mutation rates suggest that date assessments for evolutionary events of the Pleistocene might be overestimated. We analysed mitochondrial (mt) DNA (COI) sequence variation in 225 Parnassius mnemosyne individuals sampled across central and eastern Europe in order to assess (i) the existence of genetic signatures of Pleistocene climate shifts; and (ii) the timescale of demographic and evolutionary events. Our analyses reveal a phylogeographical pattern markedly influenced by the Pleistocene/Holocene climate shifts. Eastern Alpine and Balkan populations display comparatively high mtDNA diversity, suggesting multiple glacial refugia. On the other hand, three widely distributed and spatially segregated lineages occupy most of northern and eastern Europe, indicating postglacial recolonization from different refugial areas. We show that a conventional 'phylogenetic' substitution rate cannot account for the present distribution of genetic variation in this species, and we combine phylogeographical pattern and palaeoecological information in order to determine a suitable intraspecific rate through a Bayesian coalescent approach. We argue that our calibrated 'time-dependent' rate (0.096 substitutions/ million years), offers the most convincing time frame for the evolutionary events inferred from sequence data. When scaled by the new rate, estimates of divergence between Balkan and Alpine lineages point to c. 19 000 years before present (last glacial maximum), and parameters of demographic expansion for northern lineages are consistent with postglacial warming (5-11 000 years before present).
Norman, Janette A.; Blackmore, Caroline J.; Rourke, Meaghan; Christidis, Les
2014-01-01
Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade. PMID:25181547
Increased genetic variation and evolutionary potential drive the success of an invasive grass
Lavergne, Sébastien; Molofsky, Jane
2007-01-01
Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination. PMID:17360447
Bouzat, Juan L; Hoostal, Matthew J
2013-05-01
Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.
2011-01-01
Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783
Gaudeul, Myriam; Rouhan, Germinal; Gardner, Martin F; Hollingsworth, Peter M
2012-01-01
Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.
2017-01-01
More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483865
Evolution of a genetic polymorphism with climate change in a Mediterranean landscape
Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri
2013-01-01
Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198
2008-01-01
Background The bananaquit (Coereba flaveola) is a small nectivorous and frugivorous emberizine bird (order Passeriformes) that is an abundant resident throughout the Caribbean region. We used multi-gene analyses to investigate the evolutionary history of this species throughout its distribution in the West Indies and in South and Middle America. We sequenced six mitochondrial genes (3744 base pairs) and three nuclear genes (2049 base pairs) for forty-four bananaquits and three outgroup species. We infer the ancestral area of the present-day bananaquit populations, report on the species' phylogenetic, biogeographic and evolutionary history, and propose scenarios for its diversification and range expansion. Results Phylogenetic concordance between mitochondrial and nuclear genes at the base of the bananaquit phylogeny supported a West Indian origin for continental populations. Multi-gene analysis showing genetic remnants of successive colonization events in the Lesser Antilles reinforced earlier research demonstrating that bananaquits alternate periods of invasiveness and colonization with biogeographic quiescence. Although nuclear genes provided insufficient information at the tips of the tree to further evaluate relationships of closely allied but strongly supported mitochondrial DNA clades, the discrepancy between mitochondrial and nuclear data in the population of Dominican Republic suggested that the mitochondrial genome was recently acquired by introgression from Jamaica. Conclusion This study represents one of the most complete phylogeographic analyses of its kind and reveals three patterns that are not commonly appreciated in birds: (1) island to mainland colonization, (2) multiple expansion phases, and (3) mitochondrial genome replacement. The detail revealed by this analysis will guide evolutionary analyses of populations in archipelagos such as the West Indies, which include islands varying in size, age, and geological history. Our results suggest that multi-gene phylogenies will permit improved comparative analysis of the evolutionary histories of different lineages in the same geographical setting, which provide replicated "natural experiments" for testing evolutionary hypotheses. PMID:18718030
Phylogeny and photosynthesis of the grass tribe Paniceae.
Washburn, Jacob D; Schnable, James C; Davidse, Gerrit; Pires, J Chris
2015-09-01
The grass tribe Paniceae includes important food, forage, and bioenergy crops such as switchgrass, napiergrass, various millet species, and economically important weeds. Paniceae are also valuable for answering scientific and evolutionary questions about C4 photosynthetic evolution, drought tolerance, and spikelet variation. However, the phylogeny of the tribe remains incompletely resolved. Forty-five taxa were selected from across the tribe Paniceae and outgroups for genome survey sequencing (GSS). These data were used to build a phylogenetic tree of the Paniceae based on 102 markers (78 chloroplast, 22 mitochondrial, 2 nrDNA). Ancestral state reconstruction analyses were also performed within the Paniceae using both the traditional and two subtype classification systems to test hypotheses of C4 subtype evolution. The phylogenetic tree resolves many areas of the Paniceae with high support and provides insight into the origin and number of C4 evolution events within the tribe. The recovered phylogeny and ancestral state reconstructions support between four and seven independent origins of C4 photosynthesis within the tribe and indicate which species are potentially the closest C3 sister taxa of each of these events. Although the sequence of evolutionary events that produced multiple C4 subtypes within the Paniceae remains undetermined, the results presented here are consistent with only a subset of currently proposed models. The species used in this study constitute a panel of C3 and C4 grasses that are suitable for further studies on C4 photosynthesis, bioenergy, food and forage crops, and various developmental features of the Paniceae. © 2015 Botanical Society of America.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-01-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524
Maddin, Hillary C; Reisz, Robert R; Anderson, Jason S
2010-01-01
Ontogenetic data can play a prominent role in addressing questions in tetrapod evolution, but such evidence from the fossil record is often incompletely considered because it is limited to initiation of ossification, or allometric changes with increasing size. In the present study, specimens of a new species of an archaic amphibian (280 Myr old), Acheloma n. sp., a member of the temnospondyl superfamily Dissorophoidea and the sister group to Amphibamidae, which is thought to include at least two of our modern amphibian clades, anurans and caudatans (Batrachia), provides us with new developmental data. We identify five ontogenetic events, enabling us to construct a partial ontogenetic trajectory (integration of developmental and transformation sequence data) related to the relative timing of completion of neurocranial structures. Comparison of the adult amphibamid morphology with this partial ontogeny identifies a heterochronic event that occurred within the neurocranium at some point in time between the two taxa, which is consistent with the predictions of miniaturization in amphibamids, providing the first insights into the influence of miniaturization on the neurocranium in a fossil tetrapod group. This study refines hypotheses of large-scale evolutionary trends within Dissorophoidea that may have facilitated the radiation of amphibamids and, projected forward, the origin of the generalized batrachian skull. Most importantly, this study highlights the importance of integrating developmental and transformation sequence data, instead of onset of ossification alone, into investigations of major events in tetrapod evolution using evidence provided by the fossil record, and highlights the value of even highly incomplete growth series comprised of relatively late-stage individuals.
Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A
2015-06-08
The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Chamala, Srikar; Feng, Guanqiao; Chavarro, Carolina; Barbazuk, W. Brad
2015-01-01
Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40–70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms. PMID:25859541
Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong
2015-04-01
Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae)
Gardner, Elliot M.; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T.
2017-01-01
Abstract Background and Aims The breadfruit genus (Artocarpus, Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus, to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. Methods To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Key Results Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus, with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Conclusions Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot. PMID:28073771
Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)
2010-01-01
Background Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. Results This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. Conclusions The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events early in the association between anoplurans and mammals, there is substantial conflict between the host and parasite phylogenies. This conflict is likely the result of a complex history of host switching and extinction events that occurred throughout the evolutionary association between sucking lice and their mammalian hosts. It is unlikely that there are any ectoparasite groups (including lice) that tracked the early and rapid radiation of eutherian mammals. PMID:20860811
The Ancient Evolutionary History of Polyomaviruses
Buck, Christopher B.; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M.; Tisza, Michael J.; An, Ping; Katz, Joshua P.; Pipas, James M.; McBride, Alison A.; Camus, Alvin C.; McDermott, Alexa J.; Dill, Jennifer A.; Delwart, Eric; Ng, Terry F. F.; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V.; Varsani, Arvind
2016-01-01
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155
NASA Astrophysics Data System (ADS)
Sylwester, Barbara; Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Phillips, Kenneth
Very high sensitivity of SphinX soft X-ray spectrophotometer aboard Coronas-Photon allows to observe spectra of small X-ray brightenings(microflares), many of them with maximum intensities well below the GOES or RHESSI sensitivity thresholds. Hundreds of such small flare-like events have been observed in the period between March and November 2009 with energy resolution better than 0.5 keV. The spectra have been measured in the energy range extending above 1 keV. In this study we investigate the time variability of basic plasma parameters: temperature T and emission measure EM for a number of these weak flare-like events and discuss respective evolutionary patterns on the EM-T diagnostic diagrams. For some of these events, unusual behavior is observed, different from this characteristic for a "normal" flares of higher maximum intensities. Physical scenarios providing possible explanation of such unusual evolutionary patterns will be discussed.
Conservation of transcription factor binding events predicts gene expression across species
Hemberg, Martin; Kreiman, Gabriel
2011-01-01
Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661
Jąkalski, Marcin; Takeshita, Kazutaka; Deblieck, Mathieu; Koyanagi, Kanako O; Makałowska, Izabela; Watanabe, Hidemi; Makałowski, Wojciech
2016-08-04
Retroposition, one of the processes of copying the genetic material, is an important RNA-mediated mechanism leading to the emergence of new genes. Because the transcription controlling segments are usually not copied to the new location in this mechanism, the duplicated gene copies (retrocopies) become pseudogenized. However, few can still survive, e.g. by recruiting novel regulatory elements from the region of insertion. Subsequently, these duplicated genes can contribute to the formation of lineage-specific traits and phenotypic diversity. Despite the numerous studies of the functional retrocopies (retrogenes) in animals and plants, very little is known about their presence in green algae, including morphologically diverse species. The current availability of the genomes of both uni- and multicellular algae provides a good opportunity to conduct a genome-wide investigation in order to fill the knowledge gap in retroposition phenomenon in this lineage. Here we present a comparative genomic analysis of uni- and multicellular algae, Chlamydomonas reinhardtii and Volvox carteri, respectively, to explore their retrogene complements. By adopting a computational approach, we identified 141 retrogene candidates in total in both genomes, with their fraction being significantly higher in the multicellular Volvox. Majority of the retrogene candidates showed signatures of functional constraints, thus indicating their functionality. Detailed analyses of the identified retrogene candidates, their parental genes, and homologs of both, revealed that most of the retrogene candidates were derived from ancient retroposition events in the common ancestor of the two algae and that the parental genes were subsequently lost from the respective lineages, making many retrogenes 'orphan'. We revealed that the genomes of the green algae have maintained many possibly functional retrogenes in spite of experiencing various molecular evolutionary events during a long evolutionary time after the retroposition events. Our first report about the retrogene set in the green algae provides a good foundation for any future investigation of the repertoire of retrogenes and facilitates the assessment of the evolutionary impact of retroposition on diverse morphological traits in this lineage. This article was reviewed by William Martin and Piotr Zielenkiewicz.
Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas
2012-01-01
Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28–0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46–1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance was the most likely limiting factor in the evolution of Altiplano species flocks. PMID:22957159
Viruses and mobile elements as drivers of evolutionary transitions
2016-01-01
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520
Viruses and mobile elements as drivers of evolutionary transitions.
Koonin, Eugene V
2016-08-19
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.
Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.
Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni
2017-08-14
Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.
Ruffner, Beat; Péchy-Tarr, Maria; Höfte, Monica; Bloemberg, Guido; Grunder, Jürg; Keel, Christoph; Maurhofer, Monika
2015-08-16
Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
Rosa, Marcello G.P; Tweedale, Rowan
2005-01-01
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007
Assembly constraints drive co-evolution among ribosomal constituents.
Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip
2015-06-23
Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Tsing-Wai; Valsecchi, Francesca; Ansari, Asna
The extragalactic X-ray binary IC 10 X-1 has attracted attention as it is possibly the host of the most massive stellar-mass black-hole (BH) known to date. Here we consider all available observational constraints and construct its evolutionary history up to the instant just before the formation of the BH. Our analysis accounts for the simplest possible history, which includes three evolutionary phases: binary orbital dynamics at core collapse, common envelope (CE) evolution, and evolution of the BH-helium star binary progenitor of the observed system. We derive the complete set of constraints on the progenitor system at various evolutionary stages. Specifically,more » right before the core collapse event, we find the mass of the BH immediate progenitor to be ≳ 31 M{sub ☉} (at 95% of confidence, same hereafter). The magnitude of the natal kick imparted to the BH is constrained to be ≲ 130 km s{sup –1}. Furthermore, we find that the 'enthalpy' formalism recently suggested by Ivanova and Chaichenets is able to explain the existence of IC 10 X-1 without the need to invoke unreasonably high CE efficiencies. With this physically motivated formalism, we find that the CE efficiency required to explain the system is in the range of ≅ 0.6-1.« less
Carvalho, Fabíola M; Souza, Rangel C; Barcellos, Fernando G; Hungria, Mariangela; Vasconcelos, Ana Tereza R
2010-02-08
Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
Dorrell, Richard G; Gile, Gillian; McCallum, Giselle; Méheust, Raphaël; Bapteste, Eric P; Klinger, Christen M; Brillet-Guéguen, Loraine; Freeman, Katalina D; Richter, Daniel J; Bowler, Chris
2017-01-01
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI: http://dx.doi.org/10.7554/eLife.23717.001 PMID:28498102
Clues to evolution of the SERA multigene family in 18 Plasmodium species.
Arisue, Nobuko; Kawai, Satoru; Hirai, Makoto; Palacpac, Nirianne M Q; Jia, Mozhi; Kaneko, Akira; Tanabe, Kazuyuki; Horii, Toshihiro
2011-03-15
SERA gene sequences were newly determined from 11 primate Plasmodium species including two human parasites, P. ovale and P. malariae, and the evolutionary history of SERA genes was analyzed together with 7 known species. All have one each of Group I to III cysteine-type SERA genes and varying number of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA genes were ascertained in all mammalian parasite lineages; and in two primate parasite lineages gene events such as duplication, truncation, fragmentation and gene loss occurred at high frequency in a manner that mimics the birth-and-death evolution model. Transcription profile of individual SERA genes varied greatly among rodent and monkey parasites. Results support the lineage-specific evolution of the Plasmodium SERA gene family. These findings provide further impetus for studies that could clarify/provide proof-of-concept that duplications of SERA genes were associated with the parasites' expansion of host range and the evolutionary conundrums of multigene families in Plasmodium.
Polyploid Evolution of the Brassicaceae during the Cenozoic Era[C][W][OPEN
Kagale, Sateesh; Robinson, Stephen J.; Nixon, John; Xiao, Rong; Huebert, Terry; Condie, Janet; Kessler, Dallas; Clarke, Wayne E.; Edger, Patrick P.; Links, Matthew G.; Sharpe, Andrew G.; Parkin, Isobel A.P.
2014-01-01
The Brassicaceae (Cruciferae) family, owing to its remarkable species, genetic, and physiological diversity as well as its significant economic potential, has become a model for polyploidy and evolutionary studies. Utilizing extensive transcriptome pyrosequencing of diverse taxa, we established a resolved phylogeny of a subset of crucifer species. We elucidated the frequency, age, and phylogenetic position of polyploidy and lineage separation events that have marked the evolutionary history of the Brassicaceae. Besides the well-known ancient α (47 million years ago [Mya]) and β (124 Mya) paleopolyploidy events, several species were shown to have undergone a further more recent (∼7 to 12 Mya) round of genome multiplication. We identified eight whole-genome duplications corresponding to at least five independent neo/mesopolyploidy events. Although the Brassicaceae family evolved from other eudicots at the beginning of the Cenozoic era of the Earth (60 Mya), major diversification occurred only during the Neogene period (0 to 23 Mya). Remarkably, the widespread species divergence, major polyploidy, and lineage separation events during Brassicaceae evolution are clustered in time around epoch transitions characterized by prolonged unstable climatic conditions. The synchronized diversification of Brassicaceae species suggests that polyploid events may have conferred higher adaptability and increased tolerance toward the drastically changing global environment, thus facilitating species radiation. PMID:25035408
Polyploid evolution of the Brassicaceae during the Cenozoic era.
Kagale, Sateesh; Robinson, Stephen J; Nixon, John; Xiao, Rong; Huebert, Terry; Condie, Janet; Kessler, Dallas; Clarke, Wayne E; Edger, Patrick P; Links, Matthew G; Sharpe, Andrew G; Parkin, Isobel A P
2014-07-01
The Brassicaceae (Cruciferae) family, owing to its remarkable species, genetic, and physiological diversity as well as its significant economic potential, has become a model for polyploidy and evolutionary studies. Utilizing extensive transcriptome pyrosequencing of diverse taxa, we established a resolved phylogeny of a subset of crucifer species. We elucidated the frequency, age, and phylogenetic position of polyploidy and lineage separation events that have marked the evolutionary history of the Brassicaceae. Besides the well-known ancient α (47 million years ago [Mya]) and β (124 Mya) paleopolyploidy events, several species were shown to have undergone a further more recent (∼7 to 12 Mya) round of genome multiplication. We identified eight whole-genome duplications corresponding to at least five independent neo/mesopolyploidy events. Although the Brassicaceae family evolved from other eudicots at the beginning of the Cenozoic era of the Earth (60 Mya), major diversification occurred only during the Neogene period (0 to 23 Mya). Remarkably, the widespread species divergence, major polyploidy, and lineage separation events during Brassicaceae evolution are clustered in time around epoch transitions characterized by prolonged unstable climatic conditions. The synchronized diversification of Brassicaceae species suggests that polyploid events may have conferred higher adaptability and increased tolerance toward the drastically changing global environment, thus facilitating species radiation. © 2014 American Society of Plant Biologists. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less
An Evolutionary Framework for Understanding the Origin of Eukaryotes.
Blackstone, Neil W
2016-04-27
Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.
Approaches to Macroevolution: 1. General Concepts and Origin of Variation.
Jablonski, David
2017-01-01
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform.
Wang, Jinpeng; Sun, Pengchuan; Li, Yuxian; Liu, Yinzhe; Yu, Jigao; Ma, Xuelian; Sun, Sangrong; Yang, Nanshan; Xia, Ruiyan; Lei, Tianyu; Liu, Xiaojian; Jiao, Beibei; Xing, Yue; Ge, Weina; Wang, Li; Wang, Zhenyi; Song, Xiaoming; Yuan, Min; Guo, Di; Zhang, Lan; Zhang, Jiaqi; Jin, Dianchuan; Chen, Wei; Pan, Yuxin; Liu, Tao; Jin, Ling; Sun, Jinshuai; Yu, Jiaxiang; Cheng, Rui; Duan, Xueqian; Shen, Shaoqi; Qin, Jun; Zhang, Meng-Chen; Paterson, Andrew H; Wang, Xiyin
2017-05-01
Mainly due to their economic importance, genomes of 10 legumes, including soybean ( Glycine max ), wild peanut ( Arachis duranensis and Arachis ipaensis ), and barrel medic ( Medicago truncatula ), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape ( Vitis vinifera ) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org). © 2017 American Society of Plant Biologists. All Rights Reserved.
Reconstruction of a composite comparative map composed of ten legume genomes.
Lee, Chaeyoung; Yu, Dongwoon; Choi, Hong-Kyu; Kim, Ryan W
2017-01-01
The Fabaceae (legume family) is the third largest and the second of agricultural importance among flowering plant groups. In this study, we report the reconstruction of a composite comparative map composed of ten legume genomes, including seven species from the galegoid clade ( Medicago truncatula , Medicago sativa , Lens culinaris, Pisum sativum , Lotus japonicus , Cicer arietinum , Vicia faba ) and three species from the phaseoloid clade ( Vigna radiata , Phaseolus vulgaris , Glycine max ). To accomplish this comparison, a total of 209 cross-species gene-derived markers were employed. The comparative analysis resulted in a single extensive genetic/genomic network composed of 93 chromosomes or linkage groups, from which 110 synteny blocks and other evolutionary events (e.g., 13 inversions) were identified. This comparative map also allowed us to deduce several large scale evolutionary events, such as chromosome fusion/fission, with which might explain differences in chromosome numbers among compared species or between the two clades. As a result, useful properties of cross-species genic markers were re-verified as an efficient tool for cross-species translation of genomic information, and similar approaches, combined with a high throughput bioinformatic marker design program, should be effective for applying the knowledge of trait-associated genes to other important crop species for breeding purposes. Here, we provide a basic comparative framework for the ten legume species, and expect to be usefully applied towards the crop improvement in legume breeding.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1990-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing
2016-12-01
RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
USDA-ARS?s Scientific Manuscript database
Although evolution is now recognized as improving the invasive success of populations, where and when key adaptation event(s) occur often remains unclear. Here we used a multidisciplinary approach to disentangle the eco-evolutionary scenario of invasion of a Mediterranean zone (i.e. Israel) by the t...
Hybridisation and diversification in the adaptive radiation of clownfishes.
Litsios, Glenn; Salamin, Nicolas
2014-11-30
The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown. We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids. Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F
2017-03-01
Based on neurobiological and evolutionary arguments, the generalized unsafety theory of stress (GUTS) hypothesizes that the stress response is a default response, and that chronic stress responses are caused by generalized unsafety (GU), independent of stressors or their cognitive representation. Three highly prevalent conditions are particularly vulnerable to becoming 'compromised' in terms of GU, and carry considerable health risks: Thus, GUTS critically revises and expands stress theory, by focusing on safety instead of threat, and by including risk factors that have hitherto not been attributed to stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thinking of biology: asteroid impacts, microbes, and the cooling of the atmosphere
NASA Technical Reports Server (NTRS)
Oberbeck, V. R.; Mancinelli, R. L.
1994-01-01
The authors examine the cooling of the Earth's surface from 3.75 to 1 billion years ago. Three effects of the bombardment of Earth by asteroids and comets that may have delayed surface cooling include time to form continents, volatilization of carbonate rocks which released carbon dioxide into the atmosphere, and inability of microbes to inhabit land masses during large impact events. Continental microbes may have helped reduce high temperatures from 3.75 to 3.5 billion years ago. If so, the evolutionary sequence of microbes is proposed to be anaerobic heterotrophs, chemoautotrophs, and then photoautotrophs.
OBrien, Stephen J; Haussler, David; Ryder, Oliver
2014-01-01
Everyone loves the birds of the world. From their haunting songs and majesty of flight to dazzling plumage and mating rituals, bird watchers - both amateurs and professionals - have marveled for centuries at their considerable adaptations. Now, we are offered a special treat with the publication of a series of papers in dedicated issues of Science, Genome Biology and GigaScience (which also included pre-publication data release). These present the successful beginnings of an international interdisciplinary venture, the Avian Phylogenomics Project that lets us view, through a genomics lens, modern bird species and the evolutionary events that produced them.
Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K S; Li, Juanjuan; Li, Xia; Deyholos, Michael K; Cronk, Quentin C B
2014-04-01
Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.
Demographic Events and Evolutionary Forces Shaping European Genetic Diversity
Veeramah, Krishna R.; Novembre, John
2014-01-01
Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709
Wilf, Peter; Escapa, Ignacio H
2015-07-01
Evolutionary divergence-age estimates derived from molecular 'clocks' are frequently correlated with paleogeographic, paleoclimatic and extinction events. One prominent hypothesis based on molecular data states that the dominant pattern of Southern Hemisphere biogeography is post-Gondwanan clade origins and subsequent dispersal across the oceans in a metaphoric 'Green Web'. We tested this idea against well-dated Patagonian fossils of 19 plant lineages, representing organisms that actually lived on Gondwana. Most of these occurrences are substantially older than their respective, often post-Gondwanan molecular dates. The Green Web interpretation probably results from directional bias in molecular results. Gondwanan history remains fundamental to understanding Southern Hemisphere plant radiations, and we urge significantly greater caution when using molecular dating to interpret the biological impacts of geological events. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology
Ho, Simon Y. W.; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth
2008-01-01
Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events. PMID:18286172
The effect of inappropriate calibration: three case studies in molecular ecology.
Ho, Simon Y W; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth
2008-02-20
Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.
Ikehara, Kenji
2016-01-26
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Punctuated equilibrium in the large-scale evolution of programming languages†
Valverde, Sergi; Solé, Ricard V.
2015-01-01
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. PMID:25994298
Radiation of the Drosophila nannoptera species group in Mexico.
Lang, M; Polihronakis Richmond, M; Acurio, A E; Markow, T A; Orgogozo, V
2014-03-01
The Drosophila nannoptera species group, a taxon of Mexican cactophilic flies, is an excellent model system to study the influence of abiotic and biotic factors on speciation, the genetic causes of ecological specialization and the evolution of unusual reproductive characters. However, the phylogenetic relationships in the nannoptera species group and its position within the virilis-repleta phylogeny have not been thoroughly investigated. Using a multilocus data set of gene coding regions of eight nuclear and three mitochondrial genes, we found that the four described nannoptera group species diverged rapidly, with very short internodes between divergence events. Phylogenetic analysis of repleta group lineages revealed that D. inca and D. canalinea are sister to all other repleta group species, whereas the annulimana species D. aracataca and D. pseudotalamancana are sister to the nannoptera and bromeliae species groups. Our divergence time estimates suggest that the nannoptera species group radiated following important geological events in Central America. Our results indicate that a single evolutionary transition to asymmetric genitalia and to unusual sperm storage may have occurred during evolution of the nannoptera group. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Hanski, Ilkka A
2011-08-30
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
Jablonski, David
2017-01-01
Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting-sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties-can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailing edges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology.
Molecular evolution of the polyamine oxidase gene family in Metazoa
2012-01-01
Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies. PMID:22716069
Molecular evolution of the polyamine oxidase gene family in Metazoa.
Polticelli, Fabio; Salvi, Daniele; Mariottini, Paolo; Amendola, Roberto; Cervelli, Manuela
2012-06-20
Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS) mechanism. In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO) and orthologous genes related by speciation events (PAOs, SMOs/APAOs). Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.
Gibb, Gillian C; Kardailsky, Olga; Kimball, Rebecca T; Braun, Edward L; Penny, David
2007-01-01
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.
Zozomová-Lihová, Judita; Krak, Karol; Mandáková, Terezie; Shimizu, Kentaro K.; Španiel, Stanislav; Vít, Petr; Lysak, Martin A.
2014-01-01
Background and Aims Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past ∼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. Methods Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. Key Results It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. Conclusions Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrids. PMID:24577071
'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.
Guinot, Guillaume; Cavin, Lionel
2016-11-01
Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous-Paleogene extinction, we provide an in-depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea-levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on 'fish' evolutionary history, along with other biotic constraints. © 2015 Cambridge Philosophical Society.
Sociobiology for Social Scientists: A Critical Introduction to E.O. Wilson's Evolutionary Paradigm.
ERIC Educational Resources Information Center
Dugger, William M.
1981-01-01
Reviews recent works of E.O. Wilson on sociobiology (the evolutionary and comparative study of social animals, including humans). Topics discussed include the nature of sociobiology, explanatory hypotheses in sociobiology, subdisciplines, biological individualism and altruism, costs of social engineering, and evolutionary perspectives. (DB)
REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes.
Lo Giudice, Claudio; Pesole, Graziano; Picardi, Ernesto
2018-01-01
RNA editing is an important epigenetic mechanism by which genome-encoded transcripts are modified by substitutions, insertions and/or deletions. It was first discovered in kinetoplastid protozoa followed by its reporting in a wide range of organisms. In plants, RNA editing occurs mostly by cytidine (C) to uridine (U) conversion in translated regions of organelle mRNAs and tends to modify affected codons restoring evolutionary conserved aminoacid residues. RNA editing has also been described in non-protein coding regions such as group II introns and structural RNAs. Despite its impact on organellar transcriptome and proteome complexity, current primary databases still do not provide a specific field for RNA editing events. To overcome these limitations, we developed REDIdb a specialized database for RNA editing modifications in plant organelles. Hereafter we describe its third release containing more than 26,000 events in a completely novel web interface to accommodate RNA editing in its genomics, biological and evolutionary context through whole genome maps and multiple sequence alignments. REDIdb is freely available at http://srv00.recas.ba.infn.it/redidb/index.html.
The chordate proteome history database.
Levasseur, Anthony; Paganini, Julien; Dainat, Jacques; Thompson, Julie D; Poch, Olivier; Pontarotti, Pierre; Gouret, Philippe
2012-01-01
The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each individual domain. Novel approaches were developed to identify orthologs/paralogs, and predict gene duplication/gain/loss events and the occurrence of new protein architectures (domain gains, losses and shuffling). These important genetic events were localized on the phylogenetic trees and on the genomic sequence. Secondly, the phylogenetic trees were enhanced by the creation of phylogroups, whereby groups of orthologous sequences created using OrthoMCL were corrected based on the phylogenetic trees; gene family size and gene gain/loss in a given lineage could be deduced from the phylogroups. For each ortholog group obtained from the phylogenetic or the phylogroup analysis, functional information and expression data can be retrieved. Database searches can be performed easily using biological objects: protein identifier, keyword or domain, but can also be based on events, eg, domain exchange events can be retrieved. To our knowledge, this is the first database that links group clustering, phylogeny and automatic functional searches along with the detection of important events occurring during genome evolution, such as the appearance of a new domain architecture.
Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment
Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.
2018-01-01
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574
An Evolutionary Framework for Understanding the Origin of Eukaryotes
Blackstone, Neil W.
2016-01-01
Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953
Evolutionary principles and their practical application
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-01-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Reconstruction of the evolution of microbial defense systems.
Puigbò, Pere; Makarova, Kira S; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V
2017-04-04
Evolution of bacterial and archaeal genomes is a highly dynamic process that involves intensive loss of genes as well as gene gain via horizontal transfer, with a lesser contribution from gene duplication. The rates of these processes can be estimated by comparing genomes that are linked by an evolutionary tree. These estimated rates of genome dynamics events substantially differ for different functional classes of genes. The genes involved in defense against viruses and other invading DNA are among those that are gained and lost at the highest rates. We employed a stochastic birth-and-death model to obtain maximum likelihood estimates of the rates of gain and loss of defense genes in 35 groups of closely related bacterial genomes and one group of archaeal genomes. We find that on average, the defense genes experience 1.4 fold higher flux than the rest of microbial genes. This excessive flux of defense genes over the genomic mean is consistent across diverse microbial groups. The few exceptions include intracellular parasites with small, degraded genomes that possess few defense systems which are more stable than in other microbes. Generally, defense genes follow the previously established pattern of genome dynamics, with gene family loss being about 3 times more common than gain and an order of magnitude more common than expansion or contraction of gene families. Case by case analysis of the evolutionary dynamics of defense genes indicates frequent multiple events in the same locus and widespread involvement of mobile elements in the gain and loss of defense genes. Evolution of microbial defense systems is highly dynamic but, notwithstanding the host-parasite arms race, generally follows the same trends that have been established for the rest of the genes. Apart from the paucity and the low flux of defense genes in parasitic bacteria with deteriorating genomes, there is no clear connection between the evolutionary regime of defense systems and microbial life style.
Romeiras, Maria M.; Vieira, Ana; Silva, Diogo N.; Moura, Monica; Santos-Guerra, Arnoldo; Batista, Dora; Duarte, Maria Cristina; Paulo, Octávio S.
2016-01-01
The Western Mediterranean Region and Macaronesian Islands are one of the top biodiversity hotspots of Europe, containing a significant native genetic diversity of global value among the Crop Wild Relatives (CWR). Sugar beet is the primary crop of the genus Beta (subfamily Betoideae, Amaranthaceae) and despite the great economic importance of this genus, and of the close relative Patellifolia species, a reconstruction of their evolutionary history is still lacking. We analyzed nrDNA (ITS) and cpDNA gene (matK, trnH-psbA, trnL intron, rbcL) sequences to: (i) investigate the phylogenetic relationships within the Betoideae subfamily, and (ii) elucidate the historical biogeography of wild beet species in the Western Mediterranean Region, including the Macaronesian Islands. The results support the Betoideae as a monophyletic group (excluding the Acroglochin genus) and provide a detailed inference of relationships within this subfamily, revealing: (i) a deep genetic differentiation between Beta and Patellifolia species, which may have occurred in Late Oligocene; and (ii) the occurrence of a West-East genetic divergence within Beta, indicating that the Mediterranean species probably differentiated by the end of the Miocene. This was interpreted as a signature of species radiation induced by dramatic habitat changes during the Messinian Salinity Crisis (MSC, 5.96–5.33 Mya). Moreover, colonization events during the Pleistocene also played a role in shaping the current diversity patterns among and within the Macaronesian Islands. The origin and number of these events could not be revealed due to insufficient phylogenetic resolution, suggesting that the diversification was quite recent in these archipelagos, and unravelling potential complex biogeographic patterns with hybridization and gene flow playing an important role. Finally, three evolutionary lineages were identified corresponding to major gene pools of sugar beet wild relatives, which provide useful information for establishing in situ and ex situ conservation priorities in the hotspot area of the Macaronesian Islands. PMID:27031338
Sato, Mitsuharu; Miyazaki, Kentaro
2017-01-01
Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992
Concepts in solid tumor evolution.
Sidow, Arend; Spies, Noah
2015-04-01
Evolutionary mechanisms in cancer progression give tumors their individuality. Cancer evolution is different from organismal evolution, however, and we discuss where concepts from evolutionary genetics are useful or limited in facilitating an understanding of cancer. Based on these concepts we construct and apply the simplest plausible model of tumor growth and progression. Simulations using this simple model illustrate the importance of stochastic events early in tumorigenesis, highlight the dominance of exponential growth over linear growth and differentiation, and explain the clonal substructure of tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methylome evolution in plants.
Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank
2016-12-20
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
The quest for a unified view of bacterial land colonization
Wu, Hao; Fang, Yongjun; Yu, Jun; Zhang, Zhang
2014-01-01
Exploring molecular mechanisms underlying bacterial water-to-land transition represents a critical start toward a better understanding of the functioning and stability of the terrestrial ecosystems. Here, we perform comprehensive analyses based on a large variety of bacteria by integrating taxonomic, phylogenetic and metagenomic data, in the quest for a unified view that elucidates genomic, evolutionary and ecological dynamics of the marine progenitors in adapting to nonaquatic environments. We hypothesize that bacterial land colonization is dominated by a single-gene sweep, that is, the emergence of dnaE2 derived from an early duplication event of the primordial dnaE, followed by a series of niche-specific genomic adaptations, including GC content increase, intensive horizontal gene transfer and constant genome expansion. In addition, early bacterial radiation may be stimulated by an explosion of land-borne hosts (for example, plants and animals) after initial land colonization events. PMID:24451209
López-Bueno, Alberto; Parras-Moltó, Marcos; López-Barrantes, Olivia; Belda, Sylvia; Alejo, Alí
2017-05-01
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates
Tao, Nannan; Wu, Shuai; Kim, Jaehan; An, Hyun Joo; Hinde, Katie; Power, Michael L.; Gagneux, Pascal; German, J. Bruce; Lebrilla, Carlito B.
2011-01-01
Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. Mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study was to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective in order to assess the extent to which the compositions of hMOs derives from ancestral, primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in non-primate milk. A detailed comparison of the oligosaccharides across evolution revealed non-sequential developmental pattern, i.e. that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates. PMID:21214271
Evolution of floral diversity: genomics, genes and gamma
Berger, Brent A.; Howarth, Dianella G.; Soltis, Douglas E.
2017-01-01
A salient feature of flowering plant diversification is the emergence of a novel suite of floral features coinciding with the origin of the most species-rich lineage, Pentapetalae. Advances in phylogenetics, developmental genetics and genomics, including new analyses presented here, are helping to reconstruct the specific evolutionary steps involved in the evolution of this clade. The enormous floral diversity among Pentapetalae appears to be built on a highly conserved ground plan of five-parted (pentamerous) flowers with whorled phyllotaxis. By contrast, lability in the number and arrangement of component parts of the flower characterize the early-diverging eudicot lineages subtending Pentapetalae. The diversification of Pentapetalae also coincides closely with ancient hexaploidy, referred to as the gamma whole-genome triplication, for which the phylogenetic timing, mechanistic details and molecular evolutionary consequences are as yet not fully resolved. Transcription factors regulating floral development often persist in duplicate or triplicate in gamma-derived genomes, and both individual genes and whole transcriptional programmes exhibit a shift from broadly overlapping to tightly defined expression domains in Pentapetalae flowers. Investigations of these changes associated with the origin of Pentapetalae can lead to a more comprehensive understanding of what is arguably one of the most important evolutionary diversification events within terrestrial plants. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994132
Zaslansky, Paul; Currey, John D; Fleck, Claudia
2016-09-12
The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.
Getting a better picture of microbial evolution en route to a network of genomes.
Dagan, Tal; Martin, William
2009-08-12
Most current thinking about evolution is couched in the concept of trees. The notion of a tree with recursively bifurcating branches representing recurrent divergence events is a plausible metaphor to describe the evolution of multicellular organisms like vertebrates or land plants. But if we try to force the tree metaphor onto the whole of the evolutionary process, things go badly awry, because the more closely we inspect microbial genomes through the looking glass of gene and genome sequence comparisons, the smaller the amount of the data that fits the concept of a bifurcating tree becomes. That is mainly because among microbes, endosymbiosis and lateral gene transfer are important, two mechanisms of natural variation that differ from the kind of natural variation that Darwin had in mind. For such reasons, when it comes to discussing the relationships among all living things, that is, including the microbes and all of their genes rather than just one or a select few, many biologists are now beginning to talk about networks rather than trees in the context of evolutionary relationships among microbial chromosomes. But talk is not enough. If we were to actually construct networks instead of trees to describe the evolutionary process, what would they look like? Here we consider endosymbiosis and an example of a network of genomes involving 181 sequenced prokaryotes and how that squares off with some ideas about early cell evolution.
From humans to hydra: patterns of cancer across the tree of life.
Albuquerque, Thales A F; Drummond do Val, Luisa; Doherty, Aoife; de Magalhães, João Pedro
2018-04-16
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer-resistant animals such as whales and mole-rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Lotsari, Eliisa; House, Kyle; Alho, Petteri; Baker, Victor
2017-04-01
Analyses of the evolutionary trajectories of braided ephemeral channels enable identification of trends, magnitudes and periodicity of the processes that affect the channels. In addition to infrequent great floods, relatively frequent, small discharge events have been shown to be important for the evolution of ephemeral channels. However, evolutionary trajectories have rarely been studied in small ephemeral rivers, that predominantly transport gravel, cobles and boulders. Ephemeral tributary channels typify the Colorado River basin (USA), and two examples are Bronco Creek and Eldorado Canyon. These streams experienced extraordinary great floods in 1971 and 1974 respectively, and they are comparable to each other in both basin size, and climatic conditions. Annual precipitation is less than 50 cm, and the average temperature of each month is above 7°C. More importantly, earlier studies have shown similarities in the hydraulics and geomorphic characteristics of the extraordinary floods, which removed the pre-flood bar and braiding structure from the channels. Thus, these two channels are ideal for comparisons of their evolutionary trajecties. Moreover, the availability of high-resolutions aerial photographs for both channels since 1954 allowed for decadal analyses. Our research has analyzed and compared the long-term evolutionary trajectories of the two ephemeral channels within Colorado River Basin based on series of aerial photos and digital elevation models. (1) We detected the development and adjustment of braiding since the extraordinary floods. The detected parameters include the braiding index, bar area and number, channel area and width, confluence number and density, and the proportion of inactive and active areas. (2) We also analyzed the time required for the ephemeral river system to evolve back to its prior state before the high magnitude floods. Finally, (3) we analyzed whether these temporal changes in channel evolution can reveal new insights as to climatic and environmental conditions for these un-gauged basins.
Evolutionary mysteries in meiosis.
Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R
2016-10-19
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Evolutionary mysteries in meiosis
2016-01-01
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often ‘weird’ features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619705
Test of Von Baer's law of the conservation of early development.
Poe, Steven
2006-11-01
One of the oldest and most pervasive ideas in comparative embryology is the perceived evolutionary conservation of early ontogeny relative to late ontogeny. Karl Von Baer first noted the similarity of early ontogeny across taxa, and Ernst Haeckel and Charles Darwin gave evolutionary interpretation to this phenomenon. In spite of a resurgence of interest in comparative embryology and the development of mechanistic explanations for Von Baer's law, the pattern itself has been largely untested. Here, I use statistical phylogenetic approaches to show that Von Baer's law is an unnecessarily complex explanation of the patterns of ontogenetic timing in several clades of vertebrates. Von Baer's law suggests a positive correlation between ontogenetic time and amount of evolutionary change. I compare ranked position in ontogeny to frequency of evolutionary change in rank for developmental events and find that these measures are not correlated, thus failing to support Von Baer's model. An alternative model that postulates that small changes in ontogenetic rank are evolutionarily easier than large changes is tentatively supported.
Consciousness and the natural method.
Flanagan, O
1995-09-01
'Consciousness' is a superordinate term for a heterogeneous array of mental state types. The types share the property of 'being experienced' or 'being experiences'--'of there being something that it is like for the subject to be in one of these states.' I propose that we can only build a theory of consciousness by deploying 'the natural method' of coordinating all relevant informational resources at once, especially phenomenology, cognitive science, neuroscience and evolutionary biology. I'll provide two examples of the natural method in action in mental domains where an adaptationist evolutionary account seems plausible: (i) visual awareness and (ii) conscious event memory. Then I will discuss a case, (iii), dreaming, where I think no adaptationist evolutionary account exists. Beyond whatever interest the particular cases have, the examination will show why I think that a theory of mind, and the role conscious mentation plays in it, will need to be built domain-by-domain with no a priori expectation that there will be a unified account of the causal role or evolutionary history of different domains and competences.
Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Lohn, Jason D.
2006-01-01
The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.
Nonbinary Tree-Based Phylogenetic Networks.
Jetten, Laura; van Iersel, Leo
2018-01-01
Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.
Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K. S.; Li, Juanjuan; Li, Xia; Deyholos, Michael K.; Cronk, Quentin C. B.
2014-01-01
Background and Aims Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5–9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Methods Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. Key Results A previously unknown paleopolyploidy event that occurred 20–40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. Conclusions The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research. PMID:24380843
The drug target genes show higher evolutionary conservation than non-target genes.
Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie
2016-01-26
Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly
Hanski, Ilkka A.
2011-01-01
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506
Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.
Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C
2016-01-01
In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.
Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea
2006-01-01
Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312
Extinction events can accelerate evolution.
Lehman, Joel; Miikkulainen, Risto
2015-01-01
Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.
THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallart, Carme; Monelli, Matteo; Aparicio, Antonio
We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that startedmore » their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.« less
Yan, Jun; Li, Guilin; Guo, Xingqi; Li, Yang; Cao, Xuecheng
2018-01-01
The protein kinase (PK, kinome) family is one of the largest families in plants and regulates almost all aspects of plant processes, including plant development and stress responses. Despite their important functions, comprehensive functional classification, evolutionary analysis and expression patterns of the cotton PK gene family has yet to be performed on PK genes. In this study, we identified the cotton kinomes in the Gossypium raimondii, Gossypium arboretum, Gossypium hirsutum and Gossypium barbadense genomes and classified them into 7 groups and 122–24 subfamilies using software HMMER v3.0 scanning and neighbor-joining (NJ) phylogenetic analysis. Some conserved exon-intron structures were identified not only in cotton species but also in primitive plants, ferns and moss, suggesting the significant function and ancient origination of these PK genes. Collinearity analysis revealed that 16.6 million years ago (Mya) cotton-specific whole genome duplication (WGD) events may have played a partial role in the expansion of the cotton kinomes, whereas tandem duplication (TD) events mainly contributed to the expansion of the cotton RLK group. Synteny analysis revealed that tetraploidization of G. hirsutum and G. barbadense contributed to the expansion of G. hirsutum and G. barbadense PKs. Global expression analysis of cotton PKs revealed stress-specific and fiber development-related expression patterns, suggesting that many cotton PKs might be involved in the regulation of the stress response and fiber development processes. This study provides foundational information for further studies on the evolution and molecular function of cotton PKs. PMID:29768506
Templeton, A R; Robertson, R J; Brisson, J; Strasburg, J
2001-05-08
Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.
Eco-evolutionary effects on population recovery following catastrophic disturbance
Weese, Dylan J; Schwartz, Amy K; Bentzen, Paul; Hendry, Andrew P; Kinnison, Michael T
2011-01-01
Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. PMID:25567978
An Analysis of Recent Major Breakups in he Low Earth Orbit Region
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Anz-Meador, P. D.
2010-01-01
Of the 190 known satellite breakups between 1961 and 2006, only one generated more than 500 cataloged fragments. The event was the explosion of the Pegasus Hydrazine Auxiliary Propulsion System in 1996, adding 713 fragments to the U.S. Satellite Catalog. Since the beginning of 2007; however, the near-Earth environment has been subjected to several major breakups, including the Fengyun-1C anti-satellite test and the explosion of Briz-M in 2007, the unusual breakup of Cosmos 2421 in 2008, and the collision between Iridium 33 and Cosmos 2251 in 2009. Combined, these events added more than 5000 large (> or equal 10 cm) fragments to the environment. Detailed analysis of the radar cross section measurements and orbit histories of the fragments from these major events reveals several unusual characteristics in their size and area-to-mass ratio distributions. The characteristics could be related to the material composition of the parent vehicles, the nature of the breakup, and the composition and physical property of the fragments. In addition, the majority of these fragments are expected to remain in orbit for at least decades. Their long-term impact to the environment is analyzed using the NASA orbital debris evolutionary model, LEGEND. Descriptions of these analyses and a summary are included in this paper.
Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans
2010-01-01
Background Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. Results CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. Conclusions Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence. PMID:20184761
dePamphilis, Claude W.; Young, Nelson D.; Wolfe, Andrea D.
1997-01-01
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism. PMID:9207097
Madrid, Eric N.; Friedman, William E.
2009-01-01
Background and Aims Fritillaria-type female gametophyte development is a complex, yet homoplasious developmental pattern that is interesting from both evolutionary and developmental perspectives. Piper (Piperaceae) was chosen for this study of Fritillaria-type female gametophyte development because Piperales represent a ‘hotspot’ of female gametophyte developmental evolution and have been the subject of several recent molecular phylogenetic analyses. This wealth of phylogenetic and descriptive data make Piper an excellent candidate for inferring the evolutionary developmental basis for the origin of Fritillaria-type female gametophytes. Methods Developing ovules of Piper peltatum were taken from greenhouse collections, embedded in glycol methacrylate, and serially sectioned. Light microscopy and laser scanning confocal microscopy were combined to produce three-dimensional computer reconstructions of developing female gametophytes. The ploidies of the developing embryos and endosperms were calculated using microspectrofluorometry. Key Results The data describe female gametophyte development in Piper with highly detailed three-dimensional models, and document two previously unknown arrangements of megaspore nuclei during early development. Also collected were microspectrofluorometric data that indicate that Fritillaria-type female gametophyte development in Piper results in pentaploid endosperm. Conclusions The three-dimensional models resolve previous ambiguities in developmental interpretations of Fritillaria-type female gametophytes in Piper. The newly discovered arrangements of megaspore nuclei that are described allow for the construction of explicit hypotheses of female gametophyte developmental evolution within Piperaceae, and more broadly throughout Piperales. These detailed hypotheses indicate that the common ancestor of Piperaceae minus Verhuellia had a Drusa-type female gametophyte, and that evolutionary transitions to derived tetrasporic female gametophyte ontogenies in Piperaceae, including Fritillaria-type female gametophyte development, are the consequence of key nuclear migration and patterning events at the end of megasporogenesis. PMID:19202137
Mesozoic Calcareous Nannofossil Evolution: Relation to Paleoceanographic Events
NASA Astrophysics Data System (ADS)
Roth, Peter H.
1987-12-01
The taxonomic evolution of Jurassic and Cretaceous calcareous nannofossil species is described using the following indices: species diversity, rate of speciation, rate of extinction, rate of diversification, rate of turnover, survivorship, and species accretion. The Jurassic prior to the late Oxfordian is characterized by positive diversification rates, that is, rates of speciation exceeded rates of extinction. Highest rates of diversification occurred in the late Lias and early Oxfordian. During the generally regressive latest Jurassic, diversification rates remained low and rates of extinctions exceed rates of speciation. In the early Cretaceous, rates of diversification are positive and peak in the early Valanginian, early Aptian, and middle Albian, after which time rates of extinction generally exceed rates of speciation. Such peaks in rate of evolution coincide with times of increased accumulation of organic carbon in the ocean ("anoxic events"). Peaks in rates of extinction result in very high rates of turnover during times of major regressions, in particular, in the Tithonian and Maastrichtian. Survivorship analyses for three datum planes (74.5, 144, and 160 Ma) show relatively constant extinction rates with some stepping in the older part; they are best explained by a temporally fluctuating abiotic environment causing changes in the probability of extinction. Species accretion curves are also relatively linear with some indication of changing rates of speciation. The coincidences of major changes in evolutionary rates with major paleoceanographic events are indicative of a predominantly abiotic control of nannoplankton evolution. Relationships of evolutionary rates of calcareous nannoplankton with deep ocean ventilation, sea level, and ocean fertility indicates that global tectonic processes are the ultimate causes of evolutionary change.
Loeza-Quintana, Tzitziki; Adamowicz, Sarah J
2018-02-01
During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.
Riddle, Brett R.
2016-01-01
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines. PMID:27432953
Riddle, Brett R
2016-07-19
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines.
Symposium on the evolution and development of the vertebrate head.
Depew, Michael J; Olsson, Lennart
2008-06-15
Among the symposia held at the seminal meeting of the European Society for Evolutionary Developmental Biology was one centered on the development and evolution of the vertebrate head, an exquisitely complex anatomical system. The articles presented at this meeting have been gathered in a special issue of the Journal of Experimental Zoology, and are here reviewed by the organizers of the symposia. These articles cover a breadth of subjects, including interactions between cells derived from the different germ layers, such as those underlying neural crest cell migration and fate and cranial muscle specification, as well as placode development and the origin, development, and evolution of important evolutionary innovations such as jaws and the trabecula cranii. In this introduction, we provide a short historical overview of themes of research into the fundamental organization, structure, and development of the vertebrate head, including the search for head segmentation and the relevance of the New Head Hypothesis, and subsequently present the topics discussed in each of the articles. This overview of the past and the present of head evo-devo is then followed by a glimpse at its possible future and a brief examination of the utility of the notions of heterochrony, heterotopy, and heterofacience in describing evolutionarily important changes in developmental events. (c) 2008 Wiley-Liss, Inc.
Evans, Ben J.; Carter, Timothy F.; Greenbaum, Eli; Gvoždík, Václav; Kelley, Darcy B.; McLaughlin, Patrick J.; Pauwels, Olivier S. G.; Portik, Daniel M.; Stanley, Edward L.; Tinsley, Richard C.; Tobias, Martha L.; Blackburn, David C.
2015-01-01
African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups). PMID:26672747
Zhang, Jun; Sun, Min; Zhou, Li; Li, Zhi; Liu, Zhen; Li, Xi-Yin; Liu, Xiao-Li; Liu, Wei; Gui, Jian-Fang
2015-06-04
Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates.
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Kumar, Sudhir; Stecher, Glen; Tamura, Koichiro
2016-07-01
We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Matisoo-Smith, Elizabeth; Gosling, Anna L
2018-05-01
The Pacific region has had a complex human history. It has been subject to multiple major human dispersal and colonisation events, including some of the earliest Out-of-Africa migrations, the so-called Austronesian expansion of people out of Island Southeast Asia, and the more recent arrival of Europeans. Despite models of island isolation, evidence suggests significant levels of interconnectedness that vary in direction and frequency over time. The Pacific Ocean covers a vast area and its islands provide an array of different physical environments with variable pathogen loads and subsistence opportunities. These diverse environments likely caused Pacific peoples to adapt (both genetically and culturally) in unique ways. Differences in genetic background, in combination with adaptation, likely affect their susceptibility to non-communicable diseases. Here we provide an overview of some of the key issues in the natural and human history of the Pacific region which are likely to impact human health. We argue that understanding the evolutionary and cultural history of Pacific peoples is essential for the generation of testable hypotheses surrounding potential causes of elevated disease susceptibility among Pacific peoples.
Zhang, Jun; Sun, Min; Zhou, Li; Li, Zhi; Liu, Zhen; Li, Xi-Yin; Liu, Xiao-Li; Liu, Wei; Gui, Jian-Fang
2015-01-01
Unisexual polyploid vertebrates are commonly known to reproduce by gynogenesis, parthenogenesis, or hybridogenesis. One clone of polyploid Carassius gibelio has been revealed to possess multiple modes of unisexual gynogenesis and sexual reproduction, but the cytological and developmental mechanisms have remained unknown. In this study, normal meiosis completion was firstly confirmed by spindle co-localization of β-tubulin and Spindlin. Moreover, three types of various nuclear events and development behaviors were revealed by DAPI staining and BrdU-incorporated immunofluorescence detection during the first mitosis in the fertilized eggs by three kinds of different sperms. They include normal sexual reproduction in response to sperm from the same clone male, typical unisexual gynogenesis in response to sperm from the male of another species Cyprinus carpio, and an unusual hybrid-similar development mode in response to sperm from another different clone male. Based on these findings, we have discussed cytological and developmental mechanisms on multiple reproduction modes in the polyploid fish, and highlighted evolutionary significance of meiosis completion and evolutionary consequences of reproduction mode diversity in polyploid vertebrates. PMID:26042995
Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong
2016-01-01
Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae–Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. PMID:27604225
Life in the Aftermath of Mass Extinctions.
Hull, Pincelli
2015-10-05
The vast majority of species that have ever lived went extinct sometime other than during one of the great mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolutionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the aftermaths of mass extinctions might contribute to the evolutionary importance of such events. Following the mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolutionary driver - earth system succession. Earth system succession occurs when global environmental or biotic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium. As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles - and in turn, species and ecosystems - over timescales typical of the geosphere, often many thousands to millions of years. Earth system succession provides a general explanation for the pattern and timing of ecological and evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the pace of global biotic change after massive disturbance - a limit set by geosphere-biosphere interactions. For mass extinctions, earth system succession may drive the ever-changing ecological stage on which species evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do. Copyright © 2015 Elsevier Ltd. All rights reserved.
Early diversification trend and Asian origin for extent bat lineages.
Yu, W; Wu, Y; Yang, G
2014-10-01
Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities
Muscente, A. D.; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B.; Fox, Peter; Hazen, Robert M.; Knoll, Andrew H.
2018-01-01
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski’s Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian–Triassic, Cretaceous–Paleogene, Devonian, and Triassic–Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. PMID:29686079
Vanschoenwinkel, Bram; Mergeay, Joachim; Pinceel, Tom; Waterkeyn, Aline; Vandewaerde, Hanne; Seaman, Maitland; Brendonck, Luc
2011-01-01
Recent findings suggest a convergence of time scales between ecological and evolutionary processes which is usually explained in terms of rapid micro evolution resulting in evolution on ecological time scales. A similar convergence, however, can also emerge when slow ecological processes take place on evolutionary time scales. A good example of such a slow ecological process is the colonization of remote aquatic habitats by passively dispersed zooplankton. Using variation at the protein coding mitochondrial COI gene, we investigated the balance between mutation and migration as drivers of genetic diversity in two Branchipodopsis fairy shrimp species (Crustacea, Anostraca) endemic to remote temporary rock pool clusters at the summit of isolated mountaintops in central South Africa. We showed that both species colonized the region almost simultaneously c. 0.8 My ago, but exhibit contrasting patterns of regional genetic diversity and demographic history. The haplotype network of the common B. cf. wolfi showed clear evidence of 11 long distance dispersal events (up to 140 km) with five haplotypes that are shared among distant inselbergs, as well as some more spatially isolated derivates. Similar patterns were not observed for B. drakensbergensis presumably since this rarer species experienced a genetic bottleneck. We conclude that the observed genetic patterns reflect rare historic colonization events rather than frequent ongoing gene flow. Moreover, the high regional haplotype diversity combined with a high degree of haplotype endemicity indicates that evolutionary- (mutation) and ecological (migration) processes in this system operate on similar time scales. PMID:22102865
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
Muscente, A D; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B; Fox, Peter; Hazen, Robert M; Knoll, Andrew H
2018-05-15
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski's Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian-Triassic, Cretaceous-Paleogene, Devonian, and Triassic-Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. Copyright © 2018 the Author(s). Published by PNAS.
Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho
2014-01-01
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322
Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae).
Williams, Evelyn W; Gardner, Elliot M; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T; Zerega, Nyree J C
2017-03-01
The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks.
Sands, Arthur F; Apanaskevich, Dmitry A; Matthee, Sonja; Horak, Ivan G; Harrison, Alan; Karim, Shahid; Mohammad, Mohammad K; Mumcuoglu, Kosta Y; Rajakaruna, Rupika S; Santos-Silva, Maria M; Matthee, Conrad A
2017-09-01
Hyalomma Koch, 1844 are ixodid ticks that infest mammals, birds and reptiles, to which 27 recognized species occur across the Afrotropical, Palearctic and Oriental regions. Despite their medical and veterinary importance, the evolutionary history of the group is enigmatic. To investigate various taxonomic hypotheses based on morphology, and also some of the mechanisms involved in the diversification of the genus, we sequenced and analysed data derived from two mtDNA fragments, three nuclear DNA genes and 47 morphological characters. Bayesian and Parsimony analyses based on the combined data (2242 characters for 84 taxa) provided maximum resolution and strongly supported the monophyly of Hyalomma and the subgenus Euhyalomma Filippova, 1984 (including H. punt Hoogstraal, Kaiser and Pedersen, 1969). A predicted close evolutionary association was found between morphologically similar H. dromedarii Koch, 1844, H. somalicum Tonelli Rondelli, 1935, H. impeltatum Schulze and Schlottke, 1929 and H. punt, and together they form a sister lineage to H. asiaticum Schulze and Schlottke, 1929, H. schulzei Olenev, 1931 and H. scupense Schulze, 1919. Congruent with morphological suggestions, H. anatolicum Koch, 1844, H. excavatum Koch, 1844 and H. lusitanicum Koch, 1844 form a clade and so also H. glabrum Delpy, 1949, H. marginatum Koch, 1844, H. turanicum Pomerantzev, 1946 and H. rufipes Koch, 1844. Wide scale continental sampling revealed cryptic divergences within African H. truncatum Koch, 1844 and H. rufipes and suggested that the taxonomy of these lineages is in need of a revision. The most basal lineages in Hyalomma represent taxa currently confined to Eurasia and molecular clock estimates suggest that members of the genus started to diverge approximately 36.25 million years ago (Mya). The early diversification event coincides well with the collision of the Indian and Eurasian Plates, an event that was also characterized by large scale faunal turnover in the region. Using S-Diva, we also propose that the closure of the Tethyan seaway allowed for the genus to first enter Africa approximately 17.73Mya. In concert, our data supports the notion that tectonic events and large scale global changes in the environment contributed significantly to produce the rich species diversity currently found in the genus Hyalomma. Copyright © 2017 Elsevier Inc. All rights reserved.
Biological hierarchies and the nature of extinction.
Congreve, Curtis R; Falk, Amanda R; Lamsdell, James C
2018-05-01
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant. © 2017 Cambridge Philosophical Society.
Su, Junhu; Ji, Weihong; Wei, Yanming; Zhang, Yanping; Gleeson, Dianne M; Lou, Zhongyu; Ren, Jing
2014-08-01
The endangered schizothoracine fish Gymnodiptychus pachycheilus is endemic to the Qinghai-Tibetan Plateau (QTP), but very little genetic information is available for this species. Here, we accessed the current genetic divergence of G. pachycheilus population to evaluate their distributions modulated by contemporary and historical processes. Population structure and demographic history were assessed by analyzing 1811-base pairs of mitochondrial DNA from 61 individuals across a large proportion of its geographic range. Our results revealed low nucleotide diversity, suggesting severe historical bottleneck events. Analyses of molecular variance and the conventional population statistic FST (0.0435, P = 0.0215) confirmed weak genetic structure. The monophyly of G. pachycheilus was statistically well-supported, while two divergent evolutionary clusters were identified by phylogenetic analyses, suggesting a microgeographic population structure. The consistent scenario of recent population expansion of two clusters was identified based on several complementary analyses of demographic history (0.096 Ma and 0.15 Ma). This genetic divergence and evolutionary process are likely to have resulted from a series of drainage arrangements triggered by the historical tectonic events of the region. The results obtained here provide the first insights into the evolutionary history and genetic status of this little-known fish.
Long-term evolution of the Luteoviridae: time scale and mode of virus speciation.
Pagán, Israel; Holmes, Edward C
2010-06-01
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.
Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang
2015-01-01
Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired. PMID:25961030
Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang
2015-01-01
Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.
Convergent evolution as natural experiment: the tape of life reconsidered
Powell, Russell; Mariscal, Carlos
2015-01-01
Stephen Jay Gould argued that replaying the ‘tape of life’ would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution—the independent origination of similar biological forms and functions—which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the ‘critique from convergent evolution’ fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life. PMID:26640647
Convergent evolution as natural experiment: the tape of life reconsidered.
Powell, Russell; Mariscal, Carlos
2015-12-06
Stephen Jay Gould argued that replaying the 'tape of life' would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution-the independent origination of similar biological forms and functions-which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the 'critique from convergent evolution' fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life.
Punctuated equilibrium in the large-scale evolution of programming languages.
Valverde, Sergi; Solé, Ricard V
2015-06-06
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Crossover between structured and well-mixed networks in an evolutionary prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Dai, Qionglin; Cheng, Hongyan; Li, Haihong; Li, Yuting; Zhang, Mei; Yang, Junzhong
2011-07-01
In a spatial evolutionary prisoner’s dilemma game (PDG), individuals interact with their neighbors and update their strategies according to some rules. As is well known, cooperators are destined to become extinct in a well-mixed population, whereas they could emerge and be sustained on a structured network. In this work, we introduce a simple model to investigate the crossover between a structured network and a well-mixed one in an evolutionary PDG. In the model, each link j is designated a rewiring parameter τj, which defines the time interval between two successive rewiring events for link j. By adjusting the rewiring parameter τ (the mean time interval for any link in the network), we could change a structured network into a well-mixed one. For the link rewiring events, three situations are considered: one synchronous situation and two asynchronous situations. Simulation results show that there are three regimes of τ: large τ where the density of cooperators ρc rises to ρc,∞ (the value of ρc for the case without link rewiring), small τ where the mean-field description for a well-mixed network is applicable, and moderate τ where the crossover between a structured network and a well-mixed one happens.
Hodgins, Kathryn A; Bock, Dan G; Hahn, Min A; Heredia, Sylvia M; Turner, Kathryn G; Rieseberg, Loren H
2015-05-01
Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species. © 2014 John Wiley & Sons Ltd.
Buj, Ivana; Marčić, Zoran; Ćaleta, Marko; Šanda, Radek; Geiger, Matthias F; Freyhof, Jörg; Machordom, Annie; Vukić, Jasna
2017-01-01
In order to better understand the complex geologic history of the Mediterranean area, we have analysed evolutionary history, phylogeographic structure and molecular diversity of freshwater fishes belonging to the genus Telestes. As primary freshwater fishes distributed largely in the Mediterranean basin, this genus represents a suitable model system for investigating the historical biogeography of freshwater drainage systems in southern Europe. In this investigation we have included samples representing all Telestes species and based our analyses on one mitochondrial and one nuclear gene. We have investigated phylogenetic structure inside the genus Telestes, estimated divergence times, reconstructed ancestral distribution ranges and described intraspecific molecular diversity. Diversification of Telestes started in the Early Miocene, when the ancestors of T. souffia, lineage comprising T. croaticus and T. fontinalis, and the one comprising T. pleurobipunctatus and T. beoticus got isolated. The remaining species are genetically more closely related and form a common cluster in the recovered phylogenetic trees. Complex geological history of southern Europe, including formation of continental bridges, fragmentation of landmass, closing of the sea corridor, local tectonic activities, led to complicated biogeographical pattern of this genus, caused by multiple colonization events and passovers between ancient rivers and water basins. Especially pronounced diversity of Telestes found in the Adriatic watershed in Croatia and Bosnia and Herzegovina is a consequence of a triple colonization of this area by different lineages, which led to an existence of genetically distinct species in neighboring areas. Significant intraspecific structuring is present in T. souffia, T. muticellus, T. croaticus and T. pleurobipunctatus. Besides in well-structured species, elevated levels of genetic polymorphism were found inside T. turskyi and T. ukliva, as a consequence of their old origin and unconstrained evolutionary history.
Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi
2018-01-01
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722
Kweon, Ohgew; Kim, Seong-Jae; Blom, Jochen; Kim, Sung-Kwan; Kim, Bong-Soo; Baek, Dong-Heon; Park, Su Inn; Sutherland, John B; Cerniglia, Carl E
2015-02-14
The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium.
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Phylogenetic conservatism in plant phenology
Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.
2013-01-01
Synthesis. Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conser ved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species’ shared evolutionary histories.
Social Media: Menagerie of Metrics
2010-01-27
intelligence, an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm . An EA...Cloning - 22 Animals were cloned to date; genetic algorithms can help prediction (e.g. “elitism” - attempts to ensure selection by including performers...28, 2010 Evolutionary Algorithm • Evolutionary algorithm From Wikipedia, the free encyclopedia Artificial intelligence portal In artificial
EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE
Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.
2015-01-01
Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168
Extinction Events Can Accelerate Evolution
Lehman, Joel; Miikkulainen, Risto
2015-01-01
Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804
SCOPSCO: Scientific Collaboration On Past Speciation Conditions in Lake Ohrid
NASA Astrophysics Data System (ADS)
Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel-Gudegast, S.; Reicherter, K.; Zanchetta, G.
2009-04-01
Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979, and included as a target area of the International Continental Scientific Drilling Program (ICDP) already in 1993. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles (INNOMAR SES-96 light and INNOMAR SES-2000 compact) taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is ~680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. For this purpose, five primary drill sites were selected based on the results obtained from sedimentological studies, tectonic mapping in the catchment and detailed seismic surveys conducted between 2004 and 2008. For the recovery of the up to ca. 680 m long sediment sequences the GLAD800 shall be used.
Courses of action for effects based operations using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Haider, Sajjad; Levis, Alexander H.
2006-05-01
This paper presents an Evolutionary Algorithms (EAs) based approach to identify effective courses of action (COAs) in Effects Based Operations. The approach uses Timed Influence Nets (TINs) as the underlying mathematical model to capture a dynamic uncertain situation. TINs provide a concise graph-theoretic probabilistic approach to specify the cause and effect relationships that exist among the variables of interest (actions, desired effects, and other uncertain events) in a problem domain. The purpose of building these TIN models is to identify and analyze several alternative courses of action. The current practice is to use trial and error based techniques which are not only labor intensive but also produce sub-optimal results and are not capable of modeling constraints among actionable events. The EA based approach presented in this paper is aimed to overcome these limitations. The approach generates multiple COAs that are close enough in terms of achieving the desired effect. The purpose of generating multiple COAs is to give several alternatives to a decision maker. Moreover, the alternate COAs could be generalized based on the relationships that exist among the actions and their execution timings. The approach also allows a system analyst to capture certain types of constraints among actionable events.
Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda, III.
Cronin, T. M.
1987-01-01
Three types of geographic isolation - land barriers, deep water barriers, and climatic barriers - resulted in three distinct evolutionary responses in Neogene and Quaternary species of the epineritic ostracode genus Puriana. Through systematic, paleobiogeographic, and morphologic study of several hundred fossil and Recent populations from the eastern Pacific, western Atlantic, Gulf of Mexico, and the Caribbean, the phylogeny of the genus and the geography of speciation events were determined. Isolation of large populations by the Isthumus of Panama during the Pliocene did not lead to lineage splitting in species known to have existed before the Isthmus formed. Conversely, the establishment of small isolated populations on Caribbean islands by passive dispersal mechanisms frequently led to the evolution of new species or subspecies. Climatic changes along the southeastern United States during the Pliocene also catalyzed possible parapatric speciation as populations that immigrated to the northeastern periphery of the genus' range split to form new species. The results provide evidence that evolutionary models describing the influence of abiotic events on patterns of evolution and speciation can be tested using properly selected tectonic and climatic events and fossil groups amenable to species-level analysis. Two new species, P. bajaensis and P. paikensis, are described. -Author
Patterns of co-speciation and host switching in primate malaria parasites.
Garamszegi, László Zsolt
2009-05-22
The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.
Ruminant-specific multiple duplication events of PRDM9 before speciation
USDA-ARS?s Scientific Manuscript database
Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination a...
Evolution of early embryogenesis in rhabditid nematodes
Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio
2009-01-01
The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102
Hsieh, PingHsun; Woerner, August E; Wall, Jeffrey D; Lachance, Joseph; Tishkoff, Sarah A; Gutenkunst, Ryan N; Hammer, Michael F
2016-03-01
Comparisons of whole-genome sequences from ancient and contemporary samples have pointed to several instances of archaic admixture through interbreeding between the ancestors of modern non-Africans and now extinct hominids such as Neanderthals and Denisovans. One implication of these findings is that some adaptive features in contemporary humans may have entered the population via gene flow with archaic forms in Eurasia. Within Africa, fossil evidence suggests that anatomically modern humans (AMH) and various archaic forms coexisted for much of the last 200,000 yr; however, the absence of ancient DNA in Africa has limited our ability to make a direct comparison between archaic and modern human genomes. Here, we use statistical inference based on high coverage whole-genome data (greater than 60×) from contemporary African Pygmy hunter-gatherers as an alternative means to study the evolutionary history of the genus Homo. Using whole-genome simulations that consider demographic histories that include both isolation and gene flow with neighboring farming populations, our inference method rejects the hypothesis that the ancestors of AMH were genetically isolated in Africa, thus providing the first whole genome-level evidence of African archaic admixture. Our inferences also suggest a complex human evolutionary history in Africa, which involves at least a single admixture event from an unknown archaic population into the ancestors of AMH, likely within the last 30,000 yr. © 2016 Hsieh et al.; Published by Cold Spring Harbor Laboratory Press.
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
Inferring phylogenetic trees from the knowledge of rare evolutionary events.
Hellmuth, Marc; Hernandez-Rosales, Maribel; Long, Yangjing; Stadler, Peter F
2018-06-01
Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.
The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications.
Crame, J Alistair; Beu, Alan G; Ineson, Jon R; Francis, Jane E; Whittle, Rowan J; Bowman, Vanessa C
2014-01-01
The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.
Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar
2015-10-01
Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Galili, Uri
2015-01-01
The α1,3-galactosyltransferase (α1,3GT or GGTA1) gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The α1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the α1,3GT enzyme that synthesizes a carbohydrate antigen called "α-gal epitope." The α-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The α1,3GT gene was inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack α-gal epitopes and naturally produce an antibody called the "anti-Gal antibody" which binds specifically to α-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the α1,3GT gene in ancestral Old World primates could have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the α-gal epitope. Once the α-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. This assumption is supported by the fossil record demonstrating an almost complete extinction of apes in the late Miocene and failure of Old World monkeys to radiate into multiple species before that period. A present outcome of this evolutionary event is the anti-Gal-mediated rejection of mammalian xenografts expressing α-gal epitopes in humans, apes, and Old World monkeys.
The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications
Crame, J. Alistair; Beu, Alan G.; Ineson, Jon R.; Francis, Jane E.; Whittle, Rowan J.; Bowman, Vanessa C.
2014-01-01
The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds. PMID:25493546
Evidence of function for conserved noncoding sequences in Arabidopsis thaliana.
Spangler, Jacob B; Subramaniam, Sabarinath; Freeling, Michael; Feltus, F Alex
2012-01-01
• Whole genome duplication events provide a lineage with a large reservoir of genes that can be molded by evolutionary forces into phenotypes that fit alternative environments. A well-studied whole genome duplication, the α-event, occurred in an ancestor of the model plant Arabidopsis thaliana. Retained segments of the α-event have been defined in recent years in the form of duplicate protein coding sequences (α-pairs) and associated conserved noncoding DNA sequences (CNSs). Our aim was to identify any association between CNSs and α-pair co-functionality at the gene expression level. • Here, we tested for correlation between CNS counts and α-pair co-expression and expression intensity across nine expression datasets: aerial tissue, flowers, leaves, roots, rosettes, seedlings, seeds, shoots and whole plants. • We provide evidence for a putative regulatory role of the CNSs. The association of CNSs with α-pair co-expression and expression intensity varied by gene function, subgene position and the presence of transcription factor binding motifs. A range of possible CNS regulatory mechanisms, including intron-mediated enhancement, messenger RNA fold stability and transcriptional regulation, are discussed. • This study provides a framework to understand how CNS motifs are involved in the maintenance of gene expression after a whole genome duplication event. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Host-switching by a vertically transmitted rhabdovirus in Drosophila.
Longdon, Ben; Wilfert, Lena; Osei-Poku, Jewelna; Cagney, Heather; Obbard, Darren J; Jiggins, Francis M
2011-10-23
A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.
The Atlantic salmon genome provides insights into rediploidization
USDA-ARS?s Scientific Manuscript database
The common ancestor of salmonids underwent an autotetraploid whole genome duplication event (Ss4R) approximately eighty million years ago, which provides unique opportunities to study the early evolutionary fate of a duplicated vertebrate genome in different extant lineages. Here, we present a high ...
Quantitative results of stellar evolution and pulsation theories.
NASA Technical Reports Server (NTRS)
Fricke, K.; Stobie, R. S.; Strittmatter, P. A.
1971-01-01
The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.
Morphological diversity and evolution of egg and clutch structure in amphibians
Altig, Ronald; McDiarmid, Roy W.
2007-01-01
The first part of this synthesis summarizes the morphology of the jelly layers surrounding an amphibian ovum. We propose a standard terminology and discuss the evolution of jelly layers. The second part reviews the morphological diversity and arrangement of deposited eggs?the ovipositional mode; we recognize 5 morphological classes including 14 modes. We discuss some of the oviductal, ovipositional, and postovipositional events that contribute to these morphologies. We have incorporated data from taxa from throughout the world but recognize that other types will be discovered that may modify understanding of these modes. Finally, we discuss the evolutionary context of the diversity of clutch structure and present a first estimate of its evolution.
Evolutionary ethics from Darwin to Moore.
Allhoff, Fritz
2003-01-01
Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded to but never fully brought to the fore by Huxley. These philosophers were the well known moralists from Cambridge: Henry Sidgwick (Sidgwick 1902, 1907) and G.E. Moore (Moore 1903), though their ideas hearkened back to David Hume (Hume 1960). These criticisms were so strong that the industry of evolutionary ethics was largely abandoned (though with some exceptions) for many years. Third, E.O. Wilson, a Harvard entomologist, published Sociobiology: The New Synthesis in 1975 (Wilson E.O. 1975), which sparked renewed interest in evolutionary ethics and offered new directions of investigation. These events suggest the following stages for the history of evolutionary ethics: development, criticism and abandonment, revival. In this paper, I shall focus on the first two stages, since those are the ones on which the philosophical merits have already been largely decided. The revival stage is still in progress and we shall eventually find out whether it was a success.
Ancient Recombination Events between Human Herpes Simplex Viruses
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.
2017-01-01
Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565
Early events in speciation: Cryptic species of Drosophila aldrichi.
Castro Vargas, Cynthia; Richmond, Maxi Polihronakis; Ramirez Loustalot Laclette, Mariana; Markow, Therese Ann
2017-06-01
Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi , a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri , and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.
Marr's levels and the minimalist program.
Johnson, Mark
2017-02-01
A simple change to a cognitive system at Marr's computational level may entail complex changes at the other levels of description of the system. The implementational level complexity of a change, rather than its computational level complexity, may be more closely related to the plausibility of a discrete evolutionary event causing that change. Thus the formal complexity of a change at the computational level may not be a good guide to the plausibility of an evolutionary event introducing that change. For example, while the Minimalist Program's Merge is a simple formal operation (Berwick & Chomsky, 2016), the computational mechanisms required to implement the language it generates (e.g., to parse the language) may be considerably more complex. This has implications for the theory of grammar: theories of grammar which involve several kinds of syntactic operations may be no less evolutionarily plausible than a theory of grammar that involves only one. A deeper understanding of human language at the algorithmic and implementational levels could strengthen Minimalist Program's account of the evolution of language.
Huang, Chien-Hsun; Zhang, Caifei; Liu, Mian; Hu, Yi; Gao, Tiangang; Qi, Ji; Ma, Hong
2016-11-01
Biodiversity results from multiple evolutionary mechanisms, including genetic variation and natural selection. Whole-genome duplications (WGDs), or polyploidizations, provide opportunities for large-scale genetic modifications. Many evolutionarily successful lineages, including angiosperms and vertebrates, are ancient polyploids, suggesting that WGDs are a driving force in evolution. However, this hypothesis is challenged by the observed lower speciation and higher extinction rates of recently formed polyploids than diploids. Asteraceae includes about 10% of angiosperm species, is thus undoubtedly one of the most successful lineages and paleopolyploidization was suggested early in this family using a small number of datasets. Here, we used genes from 64 new transcriptome datasets and others to reconstruct a robust Asteraceae phylogeny, covering 73 species from 18 tribes in six subfamilies. We estimated their divergence times and further identified multiple potential ancient WGDs within several tribes and shared by the Heliantheae alliance, core Asteraceae (Asteroideae-Mutisioideae), and also with the sister family Calyceraceae. For two of the WGD events, there were subsequent great increases in biodiversity; the older one proceeded the divergence of at least 10 subfamilies within 10 My, with great variation in morphology and physiology, whereas the other was followed by extremely high species richness in the Heliantheae alliance clade. Our results provide different evidence for several WGDs in Asteraceae and reveal distinct association among WGD events, dramatic changes in environment and species radiations, providing a possible scenario for polyploids to overcome the disadvantages of WGDs and to evolve into lineages with high biodiversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies
2015-01-01
Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018
Lamsdell, James C; Selden, Paul A
2017-01-01
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Long-Term Evolution of the Luteoviridae: Time Scale and Mode of Virus Speciation▿ †
Pagán, Israel; Holmes, Edward C.
2010-01-01
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature. PMID:20375155
Koizumi, Itsuro; Usio, Nisikawa; Kawai, Tadashi; Azuma, Noriko; Masuda, Ryuichi
2012-01-01
Intra-specific genetic diversity is important not only because it influences population persistence and evolutionary potential, but also because it contains past geological, climatic and environmental information. In this paper, we show unusually clear genetic structure of the endangered Japanese crayfish that, as a sedentary species, provides many insights into lesser-known past environments in northern Japan. Over the native range, most populations consisted of unique 16S mtDNA haplotypes, resulting in significant genetic divergence (overall F ST = 0.96). Owing to the simple and clear structure, a new graphic approach unraveled a detailed evolutionary history; regional crayfish populations were comprised of two distinct lineages that had experienced contrasting demographic processes (i.e. rapid expansion vs. slow stepwise range expansion) following differential drainage topologies and past climate events. Nuclear DNA sequences also showed deep separation between the lineages. Current ocean barriers to dispersal did not significantly affect the genetic structure of the freshwater crayfish, indicating the formation of relatively recent land bridges. This study provides one of the best examples of how phylogeographic analysis can unravel a detailed evolutionary history of a species and how this history contributes to the understanding of the past environment in the region. Ongoing local extinctions of the crayfish lead not only to loss of biodiversity but also to the loss of a significant information regarding past geological and climatic events. PMID:22470505
One pedigree we all may have come from - did Adam and Eve have the chromosome 2 fusion?
Stankiewicz, Paweł
2016-01-01
In contrast to Great Apes, who have 48 chromosomes, modern humans and likely Neandertals and Denisovans have and had, respectively, 46 chromosomes. The reduction in chromosome number was caused by the head-to-head fusion of two ancestral chromosomes to form human chromosome 2 (HSA2) and may have contributed to the reproductive barrier with Great Apes. Next generation sequencing and molecular clock analyses estimated that this fusion arose prior to our last common ancestor with Neandertal and Denisovan hominins ~ 0.74 - 4.5 million years ago. I propose that, unlike recurrent Robertsonian translocations in humans, the HSA2 fusion was a single nonrecurrent event that spread through a small polygamous clan population bottleneck. Its heterozygous to homozygous conversion, fixation, and accumulation in the succeeding populations was likely facilitated by an evolutionary advantage through the genomic loss rather than deregulation of expression of the gene(s) flanking the HSA2 fusion site at 2q13. The origin of HSA2 might have been a critical evolutionary event influencing higher cognitive functions in various early subspecies of hominins. Next generation sequencing of Homo heidelbergensis and Homo erectus genomes and complete reconstruction of DNA sequence of the orthologous subtelomeric chromosomes in Great Apes should enable more precise timing of HSA2 formation and better understanding of its evolutionary consequences.
Mycobacterial species as case-study of comparative genome analysis.
Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M
2011-02-08
The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.
phyloXML: XML for evolutionary biology and comparative genomics
Han, Mira V; Zmasek, Christian M
2009-01-01
Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910
Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay
2016-01-01
The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290
Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Holmes, Edward C.; Bourhy, Hervé
2016-01-01
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. PMID:27977811
Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Duchene, Sebastián; Holmes, Edward C; Bourhy, Hervé
2016-12-01
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.
Tougard, Christelle; Renvoisé, Elodie; Petitjean, Amélie; Quéré, Jean-Pierre
2008-01-01
Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity. PMID:18958287
Silva, Larissa Lopes; Marcet-Houben, Marina; Nahum, Laila Alves; Zerlotini, Adhemar; Gabaldón, Toni; Oliveira, Guilherme
2012-11-13
Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni's proteome evolution and to improve its functional annotation. Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org). In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into host-parasite interactions. Taking advantage of a proteome-wide perspective rather than focusing on individual proteins, we identified that this parasite has experienced specific gene duplication events, particularly affecting genes that are potentially related to the parasitic lifestyle. These innovations may be related to the mechanisms that protect S. mansoni against host immune responses being important adaptations for the parasite survival in a potentially hostile environment. Continuing this work, a comparative analysis involving genomic, transcriptomic, and proteomic data from other helminth parasites, other parasites, and vectors will supply more information regarding parasite's biology as well as host-parasite interactions.
Shirai, Leila T; Saenko, Suzanne V; Keller, Roberto A; Jerónimo, Maria A; Brakefield, Paul M; Descimon, Henri; Wahlberg, Niklas; Beldade, Patrícia
2012-02-15
The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. The evolutionary history of gene (co-)recruitment is consistent with both divergence from a recruited putative ancestral network, and with independent co-option of individual genes. The diversity in the combinations of genes expressed in association with eyespot formation does not parallel diversity in characteristics of the adult phenotype. We discuss these results in the context of inferring homology. Our study underscores the importance of widening the representation of phylogenetic, morphological, and genetic diversity in order to establish general principles about the mechanisms behind the evolution of novel traits.
NASA's Earth Observing System Data and Information System - EOSDIS
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2011-01-01
This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.
Immediate causality network of stock markets
NASA Astrophysics Data System (ADS)
Zhou, Li; Qiu, Lu; Gu, Changgui; Yang, Huijie
2018-02-01
Extensive works show that a network of stocks within a single stock market stores rich information on evolutionary behaviors of the system, such as collapses and/or crises. But a financial event covers usually several markets or even the global financial system. This mismatch of scale leads to lack of concise information to coordinate the event. In this work by using the transfer entropy we reconstruct the influential network between ten typical stock markets distributed in the world. Interesting findings include, before a financial crisis the connection strength reaches a maximum, which can act as an early warning signal of financial crises. The markets in America are monodirectionally and strongly influenced by that in Europe and act as the center. Some strongly linked pairs have also close correlations. The findings are helpful in understanding the evolution and modelling the dynamical process of the global financial system. This method can be extended straightly to find early warning signals for physiological and ecological systems, etc.
Chen, Ningbo; Cai, Yudong; Chen, Qiuming; Li, Ran; Wang, Kun; Huang, Yongzhen; Hu, Songmei; Huang, Shisheng; Zhang, Hucai; Zheng, Zhuqing; Song, Weining; Ma, Zhijie; Ma, Yun; Dang, Ruihua; Zhang, Zijing; Xu, Lei; Jia, Yutang; Liu, Shanzhai; Yue, Xiangpeng; Deng, Weidong; Zhang, Xiaoming; Sun, Zhouyong; Lan, Xianyong; Han, Jianlin; Chen, Hong; Bradley, Daniel G; Jiang, Yu; Lei, Chuzhao
2018-06-14
Cattle domestication and the complex histories of East Asian cattle breeds warrant further investigation. Through analysing the genomes of 49 modern breeds and eight East Asian ancient samples, worldwide cattle are consistently classified into five continental groups based on Y-chromosome haplotypes and autosomal variants. We find that East Asian cattle populations are mainly composed of three distinct ancestries, including an earlier East Asian taurine ancestry that reached China at least ~3.9 kya, a later introduced Eurasian taurine ancestry, and a novel Chinese indicine ancestry that diverged from Indian indicine approximately 36.6-49.6 kya. We also report historic introgression events that helped domestic cattle from southern China and the Tibetan Plateau achieve rapid adaptation by acquiring ~2.93% and ~1.22% of their genomes from banteng and yak, respectively. Our findings provide new insights into the evolutionary history of cattle and the importance of introgression in adaptation of cattle to new environmental challenges in East Asia.
The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle
Ito, Yuta; Harigai, Ayane; Nakata, Moe; Hosoya, Tadatsugu; Araya, Kunio; Oba, Yuichi; Ito, Akinori; Ohde, Takahiro; Yaginuma, Toshinobu; Niimi, Teruyuki
2013-01-01
Male-specific exaggerated horns are an evolutionary novelty and have diverged rapidly via intrasexual selection. Here, we investigated the function of the conserved sex-determination gene doublesex (dsx) in the Japanese rhinoceros beetle (Trypoxylus dichotomus) using RNA interference (RNAi). Our results show that the sex-specific T. dichotomus dsx isoforms have an antagonistic function for head horn formation and only the male isoform has a role for thoracic horn formation. These results indicate that the novel sex-specific regulation of dsx during horn morphogenesis might have been the key evolutionary developmental event at the transition from sexually monomorphic to sexually dimorphic horns. PMID:23609854
The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle.
Ito, Yuta; Harigai, Ayane; Nakata, Moe; Hosoya, Tadatsugu; Araya, Kunio; Oba, Yuichi; Ito, Akinori; Ohde, Takahiro; Yaginuma, Toshinobu; Niimi, Teruyuki
2013-06-01
Male-specific exaggerated horns are an evolutionary novelty and have diverged rapidly via intrasexual selection. Here, we investigated the function of the conserved sex-determination gene doublesex (dsx) in the Japanese rhinoceros beetle (Trypoxylus dichotomus) using RNA interference (RNAi). Our results show that the sex-specific T. dichotomus dsx isoforms have an antagonistic function for head horn formation and only the male isoform has a role for thoracic horn formation. These results indicate that the novel sex-specific regulation of dsx during horn morphogenesis might have been the key evolutionary developmental event at the transition from sexually monomorphic to sexually dimorphic horns.
Graph Model of Coalescence with Recombinations
NASA Astrophysics Data System (ADS)
Parida, Laxmi
One of the primary genetic events shaping an autosomal chromosome is recombination. This is a process that occurs during meiosis, in eukaryotes, that results in the offsprings having different combinations of (homologous) genes, or chromosomal segments, of the two parents. The presence of these recombination events in the evolutionary history of each chromosome complicates the genetic landscape of a population, and understanding the manifestations of these genetic exchanges in the chromosome sequences has been a subject of intense curiosity (see [Hud83, Gri99, HSW05] and citations therein).
Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae).
Perfectti, Francisco; Gómez, José M; González-Megías, Adela; Abdelaziz, Mohamed; Lorite, Juan
2017-01-01
The phylogeny of tribe Brassiceae (Brassicaceae) has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA) and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trn T- trn F region). We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca . The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia . The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis . We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic analyses, M. foleyi appeared outside the Moricandia lineage but within the genus Eruca . Therefore, M. foleyi should be excluded from the genus Moricandia and be ascribed, at least provisionally, to the genus Eruca .
An evolutionary concept analysis of futility in health care.
Morata, Lauren
2018-06-01
To report a concept analysis of futility in health care. Each member of the healthcare team: the physician, the nurse, the patient, the family and all others involved perceive futility differently. The current evidence and knowledge in regard to futility in health care manifest a plethora of definitions, meanings and interpretations without consensus. Concept analysis. Databases searched included Medline, Cumulative Index of Nursing and Allied Health Literature, Academic Search Premier, Cochrane Database of Systematic Reviews and PsycINFO. Search terms included "futil*," "concept analysis," "concept," "inefficacious," "non-beneficial," "ineffective" and "fruitless" from 1935-2016 to ensure a historical perspective of the concept. A total of 106 articles were retained to develop the concept. Rogers' evolutionary concept analysis was used to evaluate the concept of futility from ancient medicine to the present. Seven antecedents (the patient/family autonomy, surrogate decision-making movement, the patient-family/physician relationship, physician authority, legislation and court rulings, catastrophic events and advancing medical technology) lead to four major attributes (quantitative, physiologic, qualitative, and disease-specific). Ultimately, futile care could lead to consequences such as litigation, advancing technology, increasing healthcare costs, rationing, moral distress and ethical dilemmas. Futility in health care demonstrates components of a cyclical process and a consensus definition is proposed. A framework is developed to clarify the concept and articulate relationships among attributes, antecedents and consequences. Further testing of the proposed definition and framework are needed. © 2018 John Wiley & Sons Ltd.
Bounds on the minimum number of recombination events in a sample history.
Myers, Simon R; Griffiths, Robert C
2003-01-01
Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723
Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus.
Emmanuelle, Jousselin; Gwenaelle, Genson; Armelle, Coeur d'acier
2010-09-28
Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids. Phylogenetic investigation and character reconstruction suggest that life cycle is evolutionary labile in the genus. Though ancestral character states can be ambiguous depending on optimization methods, all analyses suggest that transitions from monoecy on herbs towards heteroecy have occurred several times. Transitions from heteroecy towards monoecy, are also likely. There have been many shifts in feeding behaviour but we found no significant correlation between life cycle changes and changes in diet. The transitions from monoecy on herbs towards heteroecy observed in this study go against a widely accepted evolutionary scenario: aphids in the genus Brachycaudus seem to be able to recapture their supposedly ancestral woody host. This suggests that the determinants of host alternation are probably not as complicated as previously thought. Definitive proofs of the lability of life cycle in Brachycaudus will necessitate investigation of these determinants. Life cycle changes, whether corresponding to the loss or acquisition of a primary host, necessarily promote speciation, by inducing shifts of the reproductive phase on different plants. We suggest that the evolutionary lability of life cycle may have driven speciation events in the Brachycaudus genus.
Himalayan fossils of the oldest known pantherine establish ancient origin of big cats.
Tseng, Z Jack; Wang, Xiaoming; Slater, Graham J; Takeuchi, Gary T; Li, Qiang; Liu, Juan; Xie, Guangpu
2014-01-07
Pantherine felids ('big cats') include the largest living cats, apex predators in their respective ecosystems. They are also the earliest diverging living cat lineage, and thus are important for understanding the evolution of all subsequent felid groups. Although the oldest pantherine fossils occur in Africa, molecular phylogenies point to Asia as their region of origin. This paradox cannot be reconciled using current knowledge, mainly because early big cat fossils are exceedingly rare and fragmentary. Here, we report the discovery of a fossil pantherine from the Tibetan Himalaya, with an age of Late Miocene-Early Pliocene, replacing African records as the oldest pantherine. A 'total evidence' phylogenetic analysis of pantherines indicates that the new cat is closely related to the snow leopard and exhibits intermediate characteristics on the evolutionary line to the largest cats. Historical biogeographic models provide robust support for the Asian origin of pantherines. The combined analyses indicate that 75% of the divergence events in the pantherine lineage extended back to the Miocene, up to 7 Myr earlier than previously estimated. The deeper evolutionary origin of big cats revealed by the new fossils and analyses indicate a close association between Tibetan Plateau uplift and diversification of the earliest living cats.
Sánchez-Quinto, Federico; Lalueza-Fox, Carles
2015-01-01
Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations—including morphological and behavioural traits—as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal's—and our very own—evolutionary history. PMID:25487326
How to test the threat-simulation theory.
Revonsuo, Antti; Valli, Katja
2008-12-01
Malcolm-Smith, Solms, Turnbull and Tredoux [Malcolm-Smith, S., Solms, M.,Turnbull, O., & Tredoux, C. (2008). Threat in dreams: An adaptation? Consciousness and Cognition, 17, 1281-1291.] have made an attempt to test the Threat-Simulation Theory (TST), a theory offering an evolutionary psychological explanation for the function of dreaming [Revonsuo, A. (2000a). The reinterpretation of dreams: An evolutionary hypothesis of the function of dreaming. Behavioral and Brain Sciences, 23(6), 877-901]. Malcolm-Smith et al. argue that empirical evidence from their own study as well as from some other studies in the literature does not support the main predictions of the TST: that threatening events are frequent and overrepresented in dreams, that exposure to real threats activates the threat-simulation system, and that dream threats contain realistic rehearsals of threat avoidance responses. Other studies, including our own, have come up with results and conclusions that are in conflict with those of Malcolm-Smith et al. In this commentary, we provide an analysis of the sources of these disagreements, and their implications to the TST. Much of the disagreement seems to stem from differing interpretations of the theory and, consequently, of differing methods to test it.
Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice
Reed, David L; Light, Jessica E; Allen, Julie M; Kirchman, Jeremy J
2007-01-01
Background The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts. Results Phylogenetic and cophylogenetic analyses suggest that the louse genera Pediculus and Pthirus are each monophyletic, and are sister taxa to one another. The age of the most recent common ancestor of the two Pediculus species studied matches the age predicted by host divergence (ca. 6 million years), whereas the age of the ancestor of Pthirus does not. The two species of Pthirus (Pthirus gorillae and Pthirus pubis) last shared a common ancestor ca. 3–4 million years ago, which is considerably younger than the divergence between their hosts (gorillas and humans, respectively), of approximately 7 million years ago. Conclusion Reconciliation analysis determines that there are two alternative explanations that account for the current distribution of anthropoid primate lice. The more parsimonious of the two solutions suggests that a Pthirus species switched from gorillas to humans. This analysis assumes that the divergence between Pediculus and Pthirus was contemporaneous with the split (i.e., a node of cospeciation) between gorillas and the lineage leading to chimpanzees and humans. Divergence date estimates, however, show that the nodes in the host and parasite trees are not contemporaneous. Rather, the shared coevolutionary history of the anthropoid primates and their lice contains a mixture of evolutionary events including cospeciation, parasite duplication, parasite extinction, and host switching. Based on these data, the coevolutionary history of primates and their lice has been anything but parsimonious. PMID:17343749
Controlled recovery of phylogenetic communities from an evolutionary model using a network approach
NASA Astrophysics Data System (ADS)
Sousa, Arthur M. Y. R.; Vieira, André P.; Prado, Carmen P. C.; Andrade, Roberto F. S.
2016-04-01
This works reports the use of a complex network approach to produce a phylogenetic classification tree of a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation through random mutations and population growth, but purposefully omits other realistic ingredients that are not strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set of parameters, controlling the mutation probability and the population of different species. Our results indicate that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the actual evolutionary history with a very high average degree of accuracy. This includes parameter values where the species originated by the evolutionary dynamics have modular structures. In the more general context of community identification in complex networks, our model offers a simple setting for evaluating the effects, on the efficiency of community formation and identification, of the underlying dynamics generating the network itself.
Miró-Herrans, Aida T.; Al-Meeri, Ali; Mulligan, Connie J.
2014-01-01
Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents' and grandparents' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent's generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution. PMID:24759992
Bermingham, E; Martin, A P
1998-04-01
Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source populations in northwestern Colombia. The first probably happened in the late Miocene, prior to the final emergence of the Isthmus in the mid-Pliocene; the second was probably coincident with the rise of the Isthmus in the mid-Pliocene, and the third event occurred more recently, perhaps in the Pleistocene. In each case the geographical scale of the dispersion of lineages was progressively more limited, a pattern we attribute to the continuing development of the landscape due to orogeny and the consequent increase in the insularization of drainage basins. Thus, the fisheye view of LCA suggests a complex biogeographic history of overlaid cycles of colonization, diversification, sorting and extinction of lineages.
Practical advantages of evolutionary computation
NASA Astrophysics Data System (ADS)
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Spork & Beans: Addressing Evolutionary Misconceptions
ERIC Educational Resources Information Center
Burton, Stephen R.; Dobson, Christopher
2009-01-01
They are found at picnics and family outings, apparently attracted by the food provided at these events. Large populations in fast food establishments further support their association with food. Yet little is known about the biology of "Utensilus plastica" (common name: plastic eating utensil). The authors have conducted an in-depth study of this…
Evolutionary history of the enolase gene family.
Tracy, M R; Hedges, S B
2000-12-23
The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.
Conceptual Barriers to Progress Within Evolutionary Biology
Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy
2011-01-01
In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912
Conceptual Barriers to Progress Within Evolutionary Biology.
Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy
2009-08-01
In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.
2013-01-01
Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation. PMID:23343473
Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades.
Schoch, Rainer R
2006-01-01
In vertebrates, the ontogeny of the bony skull forms a particularly complex part of embryonic development. Although this area used to be restricted to neontology, recent discoveries of fossil ontogenies provide an additional source of data. One of the most detailed ossification sequences is known from Permo-Carboniferous amphibians, the branchiosaurids. These temnospondyls form a near-perfect link between the piscine osteichthyans and the various clades of extant tetrapods, retaining a full complement of dermal bones in the skull. For the first time, the broader evolutionary significance of these event sequences is analyzed, focusing on the identification of sequence heterochronies. A set of 120 event pairs was analyzed by event pair cracking, which helped identify active movers. A cladistic analysis of the event pair data was also carried out, highlighting some shared patterns between widely divergent clades of tetrapods. The analyses revealed an unexpected degree of similarity between the widely divergent taxa. Most interesting is the apparently modular composition of the cranial sequence: five clusters of bones were discovered in each of which the elements form in the same time window: (1) jaw bones, (2) marginal palatal elements, (3) circumorbital bones, (4) skull roof elements, and (5) neurocranial ossifications. In the studied taxa, these "modules" have in most cases been shifted fore and back on the trajectory relative to the Amia sequence, but did not disintegrate. Such "modules" might indicate a high degree of evolutionary limitation (constraint).
Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Kudryavtseva, Anna; Mitrofanova, Irina
2018-04-01
Field isolates of Plum pox virus (PPV), belonging to the strain Rec, have been found for the first time in Russia. Full-size genomes of the isolates K28 and Kisl-1pl from myrobalan and plum, respectively, were sequenced on the 454 platform. Analysis of all known PPV-Rec complete genomes using the Recombination Detection Program (RDP4) revealed yet another recombination event in the 5'-terminal region. This event was detected by seven algorithms, implemented in the RDP4, with statistically significant P values and supported by a phylogenetic analysis with the bootstrap value of 87%. A putative PPV-M-derived segment, encompassing the C-terminus of the P1 gene and approximately two-thirds of the HcPro gene, is bordered by breakpoints at positions 760-940 and 1838-1964, depending on the recombinant isolate. The predicted 5'-distal breakpoint for the isolate Valjevka is located at position 2804. The Dideron (strain D) and SK68 (strain M) isolates were inferred as major and minor parents, respectively. Finding of another recombination event suggests more complex evolutionary history of PPV-Rec than previously assumed. Perhaps the first recombination event led to the formation of a PPV-D variant harboring the PPV-M-derived fragment within the 5'-proximal part of the genome. Subsequent recombination of its descendant with PPV-M in the 3'-proximal genomic region resulted in the emergence of the evolutionary successful strain Rec.
The importance of offshore origination revealed through ophiuroid phylogenomics.
Bribiesca-Contreras, Guadalupe; Verbruggen, Heroen; Hugall, Andrew F; O'Hara, Timothy D
2017-07-12
Our knowledge of macro-evolutionary processes in the deep sea is poor, leading to much speculation about whether the deep sea is a source or sink of evolutionary adaptation. Here, we use a phylogenetic approach, on large molecular (688 species, 275 kbp) and distributional datasets (104 513 records) across an entire class of marine invertebrates (Ophiuroidea), to infer rates of bathymetric range shift over time between shallow and deep water biomes. Biome conservation is evident through the phylogeny, with the majority of species in most clades distributed within the same bathome. Despite this, bathymetric shifts have occurred. We inferred from ancestral reconstructions that eurybathic or intermediate distributions across both biomes were a transitional state and direct changes between shallow and deep sea did not occur. The macro-evolutionary pattern of bathome shift appeared to reflect micro-evolutionary processes of bathymetric speciation. Results suggest that most of the oldest clades have a deep-sea origin, but multiple colonization events indicate that the evolution of this group conforms neither to a simple onshore-offshore hypothesis, nor the opposite pattern. Both shallow and deep bathomes have played an important role in generating the current diversity of this major benthic class. © 2017 The Author(s).
Evolutionary ecology of virus emergence.
Dennehy, John J
2017-02-01
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.
Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics
NASA Astrophysics Data System (ADS)
Zhou, Da; Qian, Hong
2011-09-01
Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.
Deciphering the evolutionary history of open and closed mitosis
Sazer, Shelley; Lynch, Michael; Needleman, Daniel
2014-01-01
Summary The origin of the nucleus at the prokaryote to eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the "closed" mitosis of some yeast but loses its integrity in the "open" mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and document patterns of mitotic nuclear variation within and among species and map them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. PMID:25458223
A model of ecological and evolutionary consequences of color polymorphism.
Forsman, Anders; Ahnesjö, Jonas; Caesar, Sofia; Karlsson, Magnus
2008-01-01
We summarize direct and indirect effects on fitness components of animal color pattern and present a synthesis of theories concerning the ecological and evolutionary dynamics of chromatic multiple niche polymorphisms. Previous endeavors have aimed primarily at identifying conditions that promote the evolution and maintenance of polymorphisms. We consider in a conceptual model also the reciprocal influence of color polymorphism on population processes and propose that polymorphism entails selective advantages that may promote the ecological success of polymorphic species. The model begins with an evolutionary branching event from mono- to polymorphic condition that, under the influence of correlational selection, is predicted to promote the evolution of physical integration of coloration and other traits (cf. multi-trait coevolution and complex phenotypes). We propose that the coexistence within a population of alternative ecomorphs with coadapted gene complexes promotes utilization of diverse environmental resources, population stability and persistence, colonization success, and range expansions, and enhances the evolutionary potential and speciation. Conversely, we predict polymorphic populations to be less vulnerable to environmental change and at lower risk of range contractions and extinctions compared with monomorphic populations. We offer brief suggestions as to how these falsifiable predictions may be tested.
Seasonality and the evolutionary divergence of plant parasites.
Hamelin, Frédéric M; Castel, Magda; Poggi, Sylvain; Andrivon, Didier; Mailleret, Ludovic
2011-12-01
The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize on either the early or the late season. Accordingly, we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption of a trade-off between in-season transmission and inter-season survival, we found through an "evolutionary invasion analysis" that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and polycyclic diseases, or uni- and multivoltine life cycles).
Cosacov, Andrea; Sérsic, Alicia N; Sosa, Victoria; De-Nova, J Arturo; Nylinder, Stephan; Cocucci, Andrea A
2009-12-01
Biogeographical patterns and diversification processes in Andean and Patagonian flora are not yet well understood. Calceolaria is a highly diversified genus of these areas, representing one of the most specialized plant-pollinator systems because flowers produce nonvolatile oils, a very unusual floral reward. Phylogenetic analyses with molecular (ITS and matK) and morphological characters from 103 Calceolaria species were conducted to examine relationships, to understand biogeographic patterns, and to detect evolutionary patterns of floral and ecological characters. Total evidence analysis retrieved three major clades, which strongly correspond to the three previously recognized subgenera, although only subgenus Rosula was retrieved as a monophyletic group. A single historical event explains the expansion from the southern to central Andes, while different parallel evolutionary lines show a northward expansion from the central to northern Andes across the Huancabamba Deflection, an important geographical barrier in northern Peru. Polyploidy, acquisition of elaiophores, and a nototribic pollination mechanism are key aspects of the evolutionary history of Calceolaria. Pollination interactions were more frequently established with Centris than with Chalepogenus oil-collecting bee species. The repeated loss of the oil gland and shifts to pollen as the only reward suggest an evolutionary tendency from highly to moderately specialized pollination systems.
2008-01-01
Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria. PMID:18485189
The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection
Kong, Yimeng; Pan, Bohu; Chen, Longxian; Wang, Hongbing; Hao, Pei; Li, Xuan
2016-01-01
The hydrolytic deamination of adenosine to inosine (A-to-I editing) in precursor mRNA induces variable gene products at the post-transcription level. How and to what extent A-to-I RNA editing diversifies transcriptome is not fully characterized in the evolution, and very little is known about the selective constraints that drive the evolution of RNA editing events. Here we present a study on A-to-I RNA editing, by generating a global profile of A-to-I editing for a phylogeny of seven Drosophila species, a model system spanning an evolutionary timeframe of approximately 45 million years. Of totally 9281 editing events identified, 5150 (55.5%) are located in the coding sequences (CDS) of 2734 genes. Phylogenetic analysis places these genes into 1,526 homologous families, about 5% of total gene families in the fly lineages. Based on conservation of the editing sites, the editing events in CDS are categorized into three distinct types, representing events on singleton genes (type I), and events not conserved (type II) or conserved (type III) within multi-gene families. While both type I and II events are subject to purifying selection, notably type III events are positively selected, and highly enriched in the components and functions of the nervous system. The tissue profiles are documented for three editing types, and their critical roles are further implicated by their shifting patterns during holometabolous development and in post-mating response. In conclusion, three A-to-I RNA editing types are found to have distinct evolutionary dynamics. It appears that nervous system functions are mainly tested to determine if an A-to-I editing is beneficial for an organism. The coding plasticity enabled by A-to-I editing creates a new class of binary variations, which is a superior alternative to maintain heterozygosity of expressed genes in a diploid mating system. PMID:27467689
Evolutionary Perspectives on Genetic and Environmental Risk Factors for Psychiatric Disorders.
Keller, Matthew C
2018-05-07
Evolutionary medicine uses evolutionary theory to help elucidate why humans are vulnerable to disease and disorders. I discuss two different types of evolutionary explanations that have been used to help understand human psychiatric disorders. First, a consistent finding is that psychiatric disorders are moderately to highly heritable, and many, such as schizophrenia, are also highly disabling and appear to decrease Darwinian fitness. Models used in evolutionary genetics to understand why genetic variation exists in fitness-related traits can be used to understand why risk alleles for psychiatric disorders persist in the population. The usual explanation for species-typical adaptations-natural selection-is less useful for understanding individual differences in genetic risk to disorders. Rather, two other types of models, mutation-selection-drift and balancing selection, offer frameworks for understanding why genetic variation in risk to psychiatric (and other) disorders exists, and each makes predictions that are now testable using whole-genome data. Second, species-typical capacities to mount reactions to negative events are likely to have been crafted by natural selection to minimize fitness loss. The pain reaction to tissue damage is almost certainly such an example, but it has been argued that the capacity to experience depressive symptoms such as sadness, anhedonia, crying, and fatigue in the face of adverse life situations may have been crafted by natural selection as well. I review the rationale and strength of evidence for this hypothesis. Evolutionary hypotheses of psychiatric disorders are important not only for offering explanations for why psychiatric disorders exist, but also for generating new, testable hypotheses and understanding how best to design studies and analyze data.
Hanson-Smith, Victor; Johnson, Alexander
2016-07-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and "resurrect" (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.
Hanson-Smith, Victor; Johnson, Alexander
2016-01-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and “resurrect” (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server. PMID:27472806
Duchen, Pablo; Renner, Susanne S
2010-07-01
The Cucurbitaceae genus Cayaponia comprises ∼60 species that occur from Uruguay to the southern United States and the Caribbean; C. africana occurs in West Africa and on Madagascar. Pollination is by bees or bats, raising the question of the evolutionary direction and frequency of pollinator shifts. Studies that investigated such shifts in other clades have suggested that bat pollination might be an evolutionary end point. • Plastid and nuclear DNA sequences were obtained for 50 accessions representing 30 species of Cayaponia and close relatives, and analyses were carried out to test monophyly, infer divergence times, and reconstruct ancestral states for habitat preferences and pollination modes. • The phylogeny shows that Cayaponia is monophyletic as long as Selysia (a genus with four species from Central and South America) is included. The required nomenclatural transfers are made in this paper. African and Madagascan accessions of C. africana form a clade that is part of a polytomy with Caribbean and South American species, and the inferred divergence time of 2-5 Ma implies a transoceanic dispersal event from the New World to Africa. The ancestral state reconstructions suggest that Cayaponia originated in tropical forests from where open savannas were reached several times and that bee pollination arose from bat pollination, roughly concomitant with the shifts from forests to savanna habitats. • Cayaponia provides the first example of evolutionary transitions from bat to bee pollination as well as another instance of transoceanic dispersal from the New World to Africa.
Logeman, Brandon L; Wood, L Kent; Lee, Jaekwon; Thiele, Dennis J
2017-07-07
Copper is an essential element for proper organismal development and is involved in a range of processes, including oxidative phosphorylation, neuropeptide biogenesis, and connective tissue maturation. The copper transporter (Ctr) family of integral membrane proteins is ubiquitously found in eukaryotes and mediates the high-affinity transport of Cu + across both the plasma membrane and endomembranes. Although mammalian Ctr1 functions as a Cu + transporter for Cu acquisition and is essential for embryonic development, a homologous protein, Ctr2, has been proposed to function as a low-affinity Cu transporter, a lysosomal Cu exporter, or a regulator of Ctr1 activity, but its functional and evolutionary relationship to Ctr1 is unclear. Here we report a biochemical, genetic, and phylogenetic comparison of metazoan Ctr1 and Ctr2, suggesting that Ctr2 arose over 550 million years ago as a result of a gene duplication event followed by loss of Cu + transport activity. Using a random mutagenesis and growth selection approach, we identified amino acid substitutions in human and mouse Ctr2 proteins that support copper-dependent growth in yeast and enhance copper accumulation in Ctr1 -/- mouse embryonic fibroblasts. These mutations revert Ctr2 to a more ancestral Ctr1-like state while maintaining endogenous functions, such as stimulating Ctr1 cleavage. We suggest key structural aspects of metazoan Ctr1 and Ctr2 that discriminate between their biological roles, providing mechanistic insights into the evolutionary, biochemical, and functional relationships between these two related proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tennessen, Jacob A.; Govindarajulu, Rajanikanth; Ashman, Tia-Lynn; Liston, Aaron
2014-01-01
Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes. PMID:25477420
Chuang, Trees-Juen; Yang, Min-Yu; Lin, Chuang-Chieh; Hsieh, Ping-Hung; Hung, Li-Yuan
2015-02-05
Crop plants such as rice, maize and sorghum play economically-important roles as main sources of food, fuel, and animal feed. However, current genome annotations of crop plants still suffer false-positive predictions; a more comprehensive registry of alternative splicing (AS) events is also in demand. Comparative genomics of crop plants is largely unexplored. We performed a large-scale comparative analysis (ExonFinder) of the expressed sequence tag (EST) library from nine grass plants against three crop genomes (rice, maize, and sorghum) and identified 2,879 previously-unannotated exons (i.e., novel exons) in the three crops. We validated 81% of the tested exons by RT-PCR-sequencing, supporting the effectiveness of our in silico strategy. Evolutionary analysis reveals that the novel exons, comparing with their flanking annotated ones, are generally under weaker selection pressure at the protein level, but under stronger pressure at the RNA level, suggesting that most of the novel exons also represent novel alternatively spliced variants (ASVs). However, we also observed the consistency of evolutionary rates between certain novel exons and their flanking exons, which provided further evidence of their co-occurrence in the transcripts, suggesting that previously-annotated isoforms might be subject to erroneous predictions. Our validation showed that 54% of the tested genes expressed the newly-identified isoforms that contained the novel exons, rather than the previously-annotated isoforms that excluded them. The consistent results were steadily observed across cultivated (Oryza sativa and O. glaberrima) and wild (O. rufipogon and O. nivara) rice species, asserting the necessity of our curation of the crop genome annotations. Our comparative analyses also inferred the common ancestral transcriptome of grass plants and gain- and loss-of-ASV events. We have reannotated the rice, maize, and sorghum genomes, and showed that evolutionary rates might serve as an indicator for determining whether the identified exons were alternatively spliced. This study not only presents an effective in silico strategy for the improvement of plant annotations, but also provides further insights into the role of AS events in the evolution and domestication of crop plants. ExonFinder and the novel exons/ASVs identified are publicly accessible at http://exonfinder.sourceforge.net/ .
Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio
2016-04-01
Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was earlier and related to the rising of the Betic Mountains. Divergence of its Atlantic and Mediterranean populations was associated with the creation of the freshwater systems of southern Iberia close to the Gibraltar Strait. The presence of S. pyrenaicus in southern Iberia may be the result of recent colonization associated with river capture, as demonstrated our biogeographic reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
Marburger, Sarah; Alexandrou, Markos A.; Creer, Simon
2018-01-01
Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here, we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species-rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size—0.6 to 4.4 pg per haploid cell. First, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree—the first between 43 and 49 Ma (95% highest posterior density (HPD) 36.2–68.1 Ma) and the second at approximately 19 Ma (95% HPD 15.3–30.14 Ma). Second, restriction-site-associated DNA (RAD) sequencing was used to identify potential WGD events and quantify transposable element (TE) abundance in different lineages. Evidence of two lineage-scale WGDs was identified across the phylogeny, the first event occurring between 54 and 66 Ma (95% HPD 42.56–99.5 Ma) and the second at 20–30 Ma (95% HPD 15.3–45 Ma) based on haplotype numbers per contig and between 35 and 44 Ma (95% HPD 30.29–64.51 Ma) and 20–30 Ma (95% HPD 15.3–45 Ma) based on SNP read ratios. TE abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20–30 Ma (95% HPD 15.3–45 Ma) and an older event at 35–44 Ma (95% HPD 30.29–64.51 Ma). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution. PMID:29445022
Marburger, Sarah; Alexandrou, Markos A; Taggart, John B; Creer, Simon; Carvalho, Gary; Oliveira, Claudio; Taylor, Martin I
2018-02-14
Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here, we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species-rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size-0.6 to 4.4 pg per haploid cell. First, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree-the first between 43 and 49 Ma (95% highest posterior density (HPD) 36.2-68.1 Ma) and the second at approximately 19 Ma (95% HPD 15.3-30.14 Ma). Second, restriction-site-associated DNA (RAD) sequencing was used to identify potential WGD events and quantify transposable element (TE) abundance in different lineages. Evidence of two lineage-scale WGDs was identified across the phylogeny, the first event occurring between 54 and 66 Ma (95% HPD 42.56-99.5 Ma) and the second at 20-30 Ma (95% HPD 15.3-45 Ma) based on haplotype numbers per contig and between 35 and 44 Ma (95% HPD 30.29-64.51 Ma) and 20-30 Ma (95% HPD 15.3-45 Ma) based on SNP read ratios. TE abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20-30 Ma (95% HPD 15.3-45 Ma) and an older event at 35-44 Ma (95% HPD 30.29-64.51 Ma). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution. © 2018 The Authors.
Selfish genetic elements, genetic conflict, and evolutionary innovation.
Werren, John H
2011-06-28
Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.
Selfish genetic elements, genetic conflict, and evolutionary innovation
Werren, John H.
2011-01-01
Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible “evolutionary functions” of SGEs. PMID:21690392
SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid
NASA Astrophysics Data System (ADS)
Vogel, Hendrik; Wagner, Bernd; Wilke, Thomas; Grazhdani, Andon; Kostoski, Goce; Krastel-Gudegast, Sebastian; Reicherter, Klaus; Zanchetta, Giovanni
2010-05-01
Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979, and included as a target area of the International Continental Scientific Drilling Program (ICDP) already in 1993. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles (INNOMAR SES-96 light and INNOMAR SES-2000 compact) taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is ˜680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. For this purpose, five primary drill sites were selected based on the results obtained from sedimentological studies, tectonic mapping in the catchment and detailed seismic surveys conducted between 2004 and 2008. For the recovery of up to ca. 680 m long sediment sequences at water depths of more than 260 m a newly developed platform operated by DOSECC shall be used. The drilling operation is planned to take place in 2011.
Molecular Evolution of Grass Stomata.
Chen, Zhong-Hua; Chen, Guang; Dai, Fei; Wang, Yizhou; Hills, Adrian; Ruan, Yong-Ling; Zhang, Guoping; Franks, Peter J; Nevo, Eviatar; Blatt, Michael R
2017-02-01
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Darwinian perspectives on the evolution of human languages.
Pagel, Mark
2017-02-01
Human languages evolve by a process of descent with modification in which parent languages give rise to daughter languages over time and in a manner that mimics the evolution of biological species. Descent with modification is just one of many parallels between biological and linguistic evolution that, taken together, offer up a Darwinian perspective on how languages evolve. Combined with statistical methods borrowed from evolutionary biology, this Darwinian perspective has brought new opportunities to the study of the evolution of human languages. These include the statistical inference of phylogenetic trees of languages, the study of how linguistic traits evolve over thousands of years of language change, the reconstruction of ancestral or proto-languages, and using language change to date historical events.
The peopling of the African continent and the diaspora into the new world
Campbell, Michael C; Hirbo, Jibril B; Townsend, Jeffrey P; Tishkoff, Sarah A
2014-01-01
Africa is the birthplace of anatomically modern humans, and is the geographic origin of human migration across the globe within the last 100,000 years. The history of African populations has consisted of a number of demographic events that have influenced patterns of genetic and phenotypic variation across the continent. With the increasing amount of genomic data and corresponding developments in computational methods, researchers are able to explore long-standing evolutionary questions, expanding our understanding of human history within and outside of Africa. This review will summarize some of the recent findings regarding African demographic history, including the African Diaspora, and will briefly explore their implications for disease susceptibility in populations of African descent. PMID:25461616
Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J
2009-07-01
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.
Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H
1999-10-01
The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. Copyright 1999 Academic Press.
Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre
2017-01-01
High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829
Boero, Ferdinando
2013-01-01
Natural history is based on observations, whereas modern ecology is mostly based on experiments aimed at testing hypotheses, either in the field or in a computer. Furthermore, experiments often reveal generalities that are taken as norms. Ecology, however, is a historical discipline and history is driven by both regularities (deriving from norms) and irregularities, or contingencies, which occur when norms are broken. If only norms occured, there would be no history. The current disregard for the importance of contingencies and anecdotes is preventing us from understanding ecological history. We need rules and norms, but we also need records about apparently irrelevant things that, in non-linear systems like ecological ones, might become the drivers of change and, thus, the determinants of history. The same arguments also hold in the field of evolutionary biology, with natural selection being the ecological driver of evolutionary change. It is important that scientists are able to publish potentially important observations, particularly those that are unrelated to their current projects that have no sufficient grounds to be framed into a classical eco-evolutionary paper, and could feasibly impact on the history of the systems in which they occurred. A report on any deviation from the norm would be welcome, from the disappearance of species to their sudden appearance in great quantities. Any event that an "expert eye" (i.e. the eye of a naturalist) might judge as potentially important is worth being reported.
Ever-Young Sex Chromosomes in European Tree Frogs
Lindtke, Dorothea; Sermier, Roberto; Betto-Colliard, Caroline; Dufresnes, Christophe; Bonjour, Emmanuel; Dumas, Zoé; Luquet, Emilien; Maddalena, Tiziano; Sousa, Helena Clavero; Martinez-Solano, Iñigo; Perrin, Nicolas
2011-01-01
Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination. PMID:21629756
Historical contingency and its biophysical basis in glucocorticoid receptor evolution.
Harms, Michael J; Thornton, Joseph W
2014-08-14
Understanding how chance historical events shape evolutionary processes is a central goal of evolutionary biology. Direct insights into the extent and causes of evolutionary contingency have been limited to experimental systems, because it is difficult to know what happened in the deep past and to characterize other paths that evolution could have followed. Here we combine ancestral protein reconstruction, directed evolution and biophysical analysis to explore alternative 'might-have-been' trajectories during the ancient evolution of a novel protein function. We previously found that the evolution of cortisol specificity in the ancestral glucocorticoid receptor (GR) was contingent on permissive substitutions, which had no apparent effect on receptor function but were necessary for GR to tolerate the large-effect mutations that caused the shift in specificity. Here we show that alternative mutations that could have permitted the historical function-switching substitutions are extremely rare in the ensemble of genotypes accessible to the ancestral GR. In a library of thousands of variants of the ancestral protein, we recovered historical permissive substitutions but no alternative permissive genotypes. Using biophysical analysis, we found that permissive mutations must satisfy at least three physical requirements--they must stabilize specific local elements of the protein structure, maintain the correct energetic balance between functional conformations, and be compatible with the ancestral and derived structures--thus revealing why permissive mutations are rare. These findings demonstrate that GR evolution depended strongly on improbable, non-deterministic events, and this contingency arose from intrinsic biophysical properties of the protein.
Genes from scratch--the evolutionary fate of de novo genes.
Schlötterer, Christian
2015-04-01
Although considered an extremely unlikely event, many genes emerge from previously noncoding genomic regions. This review covers the entire life cycle of such de novo genes. Two competing hypotheses about the process of de novo gene birth are discussed as well as the high death rate of de novo genes. Despite the high death rate, some de novo genes are retained and remain functional, even in distantly related species, through their integration into gene networks. Further studies combining gene expression with ribosome profiling in multiple populations across different species will be instrumental for an improved understanding of the evolutionary processes operating on de novo genes. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution across the Poales
McKain, Michael R.; Tang, Haibao; McNeal, Joel R.; Ayyampalayam, Saravanaraj; Davis, Jerrold I.; dePamphilis, Claude W.; Givnish, Thomas J.; Pires, J. Chris; Stevenson, Dennis Wm.; Leebens-Mack, James H.
2016-01-01
Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy characterized by large intragenomic syntenic blocks. Three such whole-genome duplication (WGD) events, designated as rho (ρ), sigma (σ), and tau (τ), have been identified in the genomes of cereal grasses. Precise dating of these WGD events is necessary to investigate how they have influenced diversification rates, evolutionary innovations, and genomic characteristics such as the GC profile of protein-coding sequences. The timing of these events has remained uncertain due to the paucity of monocot genome sequence data outside the grass family (Poaceae). Phylogenomic analysis of protein-coding genes from sequenced genomes and transcriptome assemblies from 35 species, including representatives of all families within the Poales, has resolved the timing of rho and sigma relative to speciation events and placed tau prior to divergence of Asparagales and the commelinids but after divergence with eudicots. Examination of gene family phylogenies indicates that rho occurred just prior to the diversification of Poaceae and sigma occurred before early diversification of Poales lineages but after the Poales-commelinid split. Additional lineage-specific WGD events were identified on the basis of the transcriptome data. Gene families exhibiting high GC content are underrepresented among those with duplicate genes that persisted following these genome duplications. However, genome duplications had little overall influence on lineage-specific changes in the GC content of coding genes. Improved resolution of the timing of WGD events in monocot history provides evidence for the influence of polyploidization on functional evolution and species diversification. PMID:26988252
Gray, H W I; Nishida, S; Welch, A J; Moura, A E; Tanabe, S; Kiani, M S; Culloch, R; Möller, L; Natoli, A; Ponnampalam, L S; Minton, G; Gore, M; Collins, T; Willson, A; Baldwin, R; Hoelzel, A R
2018-05-01
Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range. Copyright © 2017 Elsevier Inc. All rights reserved.
Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore
2014-01-01
Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. PMID:25540695
Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore
2014-11-01
Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized.
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
Time: The Biggest Pattern in Natural History Research
NASA Astrophysics Data System (ADS)
Gontier, Nathalie
2016-10-01
We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology's notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space-time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a "sense" of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.
Strengths and weaknesses of McNamara's evolutionary psychological model of dreaming.
Olliges, Sandra
2010-10-07
This article includes a brief overview of McNamara's (2004) evolutionary model of dreaming. The strengths and weaknesses of this model are then evaluated in terms of its consonance with measurable neurological and biological properties of dreaming, its fit within the tenets of evolutionary theories of dreams, and its alignment with evolutionary concepts of cooperation and spirituality. McNamara's model focuses primarily on dreaming that occurs during rapid eye movement (REM) sleep; therefore this article also focuses on REM dreaming.
NASA Astrophysics Data System (ADS)
Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.
2017-05-01
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
2011-01-01
Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants. PMID:21910890
Lan, Tianying; Albert, Victor A
2011-09-12
Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Paphiopedilum species display many chromosomal rearrangements--for example, duplications, translocations, and inversions--but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants.
2011-01-01
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways. PMID:21261979
Biju, V Chellappan; Fokkens, Like; Houterman, Petra M; Rep, Martijn; Cornelissen, Ben J C
2017-02-15
Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times. Copyright © 2017 American Society for Microbiology.
Valli, Katja; Revonsuo, Antti; Pälkäs, Outi; Ismail, Kamaran Hassan; Ali, Karzan Jalal; Punamäki, Raija-Leena
2005-03-01
The threat simulation theory of dreaming (TST) () states that dream consciousness is essentially an ancient biological defence mechanism, evolutionarily selected for its capacity to repeatedly simulate threatening events. Threat simulation during dreaming rehearses the cognitive mechanisms required for efficient threat perception and threat avoidance, leading to increased probability of reproductive success during human evolution. One hypothesis drawn from TST is that real threatening events encountered by the individual during wakefulness should lead to an increased activation of the system, a threat simulation response, and therefore, to an increased frequency and severity of threatening events in dreams. Consequently, children who live in an environment in which their physical and psychological well-being is constantly threatened should have a highly activated dream production and threat simulation system, whereas children living in a safe environment that is relatively free of such threat cues should have a weakly activated system. We tested this hypothesis by analysing the content of dream reports from severely traumatized and less traumatized Kurdish children and ordinary, non-traumatized Finnish children. Our results give support for most of the predictions drawn from TST. The severely traumatized children reported a significantly greater number of dreams and their dreams included a higher number of threatening dream events. The dream threats of traumatized children were also more severe in nature than the threats of less traumatized or non-traumatized children.
Theories of Evolution, Science (Experimental): 5315.42.
ERIC Educational Resources Information Center
Adams, Joseph P.
This is an in-depth course of study of the historical attempts to explain the evolutionary process and of recent developments pertinent to the study of biomedical evolution. Topics included in the module are: (1) ancient concepts of the evolutionary process; (2) various aspects of Lamarckism, Darwinism and neo-Darwinism, including substantiating…
Endogenous Retroviruses in the Genomics Era.
Johnson, Welkin E
2015-11-01
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Yu, Yun; Degnan, James H.; Nakhleh, Luay
2012-01-01
Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa. PMID:22536161
Tracking the Evolution of Non-Small-Cell Lung Cancer.
Jamal-Hanjani, Mariam; Wilson, Gareth A; McGranahan, Nicholas; Birkbak, Nicolai J; Watkins, Thomas B K; Veeriah, Selvaraju; Shafi, Seema; Johnson, Diana H; Mitter, Richard; Rosenthal, Rachel; Salm, Max; Horswell, Stuart; Escudero, Mickael; Matthews, Nik; Rowan, Andrew; Chambers, Tim; Moore, David A; Turajlic, Samra; Xu, Hang; Lee, Siow-Ming; Forster, Martin D; Ahmad, Tanya; Hiley, Crispin T; Abbosh, Christopher; Falzon, Mary; Borg, Elaine; Marafioti, Teresa; Lawrence, David; Hayward, Martin; Kolvekar, Shyam; Panagiotopoulos, Nikolaos; Janes, Sam M; Thakrar, Ricky; Ahmed, Asia; Blackhall, Fiona; Summers, Yvonne; Shah, Rajesh; Joseph, Leena; Quinn, Anne M; Crosbie, Phil A; Naidu, Babu; Middleton, Gary; Langman, Gerald; Trotter, Simon; Nicolson, Marianne; Remmen, Hardy; Kerr, Keith; Chetty, Mahendran; Gomersall, Lesley; Fennell, Dean A; Nakas, Apostolos; Rathinam, Sridhar; Anand, Girija; Khan, Sajid; Russell, Peter; Ezhil, Veni; Ismail, Babikir; Irvin-Sellers, Melanie; Prakash, Vineet; Lester, Jason F; Kornaszewska, Malgorzata; Attanoos, Richard; Adams, Haydn; Davies, Helen; Dentro, Stefan; Taniere, Philippe; O'Sullivan, Brendan; Lowe, Helen L; Hartley, John A; Iles, Natasha; Bell, Harriet; Ngai, Yenting; Shaw, Jacqui A; Herrero, Javier; Szallasi, Zoltan; Schwarz, Roland F; Stewart, Aengus; Quezada, Sergio A; Le Quesne, John; Van Loo, Peter; Dive, Caroline; Hackshaw, Allan; Swanton, Charles
2017-06-01
Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early-stage NSCLC. In this prospective cohort study, we performed multiregion whole-exome sequencing on 100 early-stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence-free survival. We observed widespread intratumor heterogeneity for both somatic copy-number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy-number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy-number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10 -4 ), which remained significant in multivariate analysis. Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .).
Mondragón-Palomino, Mariana; Theißen, Günter
2009-01-01
Background The nearly 30 000 species of orchids produce flowers of unprecedented diversity. However, whether specific genetic mechanisms contributed to this diversity is a neglected topic and remains speculative. We recently published a theory, the ‘orchid code’, maintaining that the identity of the different perianth organs is specified by the combinatorial interaction of four DEF-like MADS-box genes with other floral homeotic genes. Scope Here the developmental and evolutionary implications of our theory are explored. Specifically, it is shown that all frequent floral terata, including all peloric types, can be explained by monogenic gain- or-loss-of-function mutants, changing either expression of a DEF-like or CYC-like gene. Supposed dominance or recessiveness of mutant alleles is correlated with the frequency of terata in both cultivation and nature. Our findings suggest that changes in DEF- and CYC-like genes not only underlie terata but also the natural diversity of orchid species. We argue, however, that true changes in organ identity are rare events in the evolution of orchid flowers, even though we review some likely cases. Conclusions The four DEF paralogues shaped floral diversity in orchids in a dramatic way by modularizing the floral perianth based on a complex series of sub- and neo-functionalization events. These genes may have eliminated constraints, so that different kinds of perianth organs could then evolve individually and thus often in dramatically different ways in response to selection by pollinators or by genetic drift. We therefore argue that floral diversity in orchids may be the result of an unprecedented developmental genetic predisposition that originated early in orchid evolution. PMID:19141602
Martinsen, Ellen S; Perkins, Susan L; Schall, Jos J
2008-04-01
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.
Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A
2015-01-01
We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.
ERIC Educational Resources Information Center
Caplan, Arnold I.
1981-01-01
Emphasizes ectodermal-mesodermal interaction but focuses on the genesis of specialized structures like feathers (ectodermal) and muscles, cartilage, and bone. The sum of these interactions and other factors which govern normal development may be important in regulating the regeneration of particular structures in postembryonic individuals.…
Conundrums, paradoxes, and surprises: a brave new world of biodiversity conservation
A.E. Lugo
2012-01-01
Anthropogenic activity is altering the global disturbance regime through such processes as urbanization, deforestation, and climate change. These disturbance events alter the environmental conditions under which organisms live and adapt and trigger succession, thus setting the biota in otiion in both ecological and evolutionary space. The result is the mixing of...
Episodic memory and the witness trump card.
Henry, Jeremy; Craver, Carl
2018-01-01
We accept Mahr & Csibra's (M&C's) causal claim that episodic memory provides humans with the means for evaluating the veracity of reports about non-occurrent events. We reject their evolutionary argument that this is the proper function of episodic memory. We explore three intriguing implications of the causal claim, for cognitive neuropsychology, comparative psychology, and philosophy.
We define the geographic distributions of embedded evolutionary mitochondrial DNA (mtDNA) lineages (clades) within a broadly distributed, arid- dwelling toad, Bufo punctatus, and evaluate these patterns as they relate to hypothesized vicariant events leading to the formation of b...
USDA-ARS?s Scientific Manuscript database
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
Callahan, Melissa S; McPeek, Mark A
2016-01-01
Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bharat Kumar, Yerra; Singh, Raghubar; Eswar Reddy, B.; Zhao, Gang
2018-05-01
In this Letter we report two new super Li-rich K giants, KIC2305930 and KIC12645107, with Li abundances exceeding that of the interstellar medium (ISM; A(Li) ≥ 3.2 dex). Importantly, both of the giants have been classified as core He-burning red clump (RC) stars based on asteroseismic data from Kepler mission. Also, both of the stars are found to be low mass (M ≈ 1.0 M ⊙), which, together with an evidence of their evolutionary status of being RC stars, implies that the stars have gone through both the luminosity bump and He-flash during their red giant branch (RGB) evolution. The stars’ large Li abundance and evolutionary phase suggest that Li enrichment occurred very recently, probably at the tip of the RGB either during He-flash, an immediate preceding event on the RGB, or by some kind of external event such as merger of an RGB star with white dwarf. The findings will provide critical constraints to theoretical models for understanding of Li enhancement origin in RGB stars.
Ancient Recombination Events between Human Herpes Simplex Viruses.
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien
2017-07-01
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cowman, P F; Bellwood, D R
2011-12-01
Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes
Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki
2005-01-01
Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788
Amplification and chromosomal dispersion of human endogenous retroviral sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, P.E.; Martin, M.A.; Rabson, A.B.
1986-09-01
Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less
Zhu, Xinyu; Ma, Hong; Chen, Zhiduan
2011-03-09
Plants contain numerous Su(var)3-9 homologues (SUVH) and related (SUVR) genes, some of which await functional characterization. Although there have been studies on the evolution of plant Su(var)3-9 SET genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation. Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core Su(var)3-9 homologues and related (cSUVHR) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant Su(var)3-9 SET genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade. A detailed phylogenetic analysis of the plant Su(var)3-9 SET genes was performed. A novel deep phylogenetic relationship including most plant Su(var)3-9 SET genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of Physcomitrella patens (moss) from other land plants. One or multiple retroposition events might have occurred among SUVH genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant Su(var)3-9 SET genes with different functions were described, contributing to the design of further experimental studies.
Zhao, Zhe; Li, Shuqiang
2017-11-01
Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.
2013-01-01
Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would entail selecting areas for protection in Mojave and Sonoran Deserts to retain divergent genetic diversity and ensure connectedness across environmental gradients.
NASA Astrophysics Data System (ADS)
Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe
2010-11-01
Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen’s ideas (stabilizing selection, autonomization) and C. H. Waddington’s (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer’s work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.
Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe
2010-11-01
Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen's ideas (stabilizing selection, autonomization) and C. H. Waddington's (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer's work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.
Teske, Peter R; Cherry, Michael I; Matthee, Conrad A
2004-02-01
Sequence data derived from four markers (the nuclear RP1 and Aldolase and the mitochondrial 16S rRNA and cytochrome b genes) were used to determine the phylogenetic relationships among 32 species belonging to the genus Hippocampus. There were marked differences in the rate of evolution among these gene fragments, with Aldolase evolving the slowest and the mtDNA cytochrome b gene the fastest. The RP1 gene recovered the highest number of nodes supported by >70% bootstrap values from parsimony analysis and >95% posterior probabilities from Bayesian inference. The combined analysis based on 2317 nucleotides resulted in the most robust phylogeny. A distinct phylogenetic split was identified between the pygmy seahorse, Hippocampus bargibanti, and a clade including all other species. Three species from the western Pacific Ocean included in our study, namely H. bargibanti, H. breviceps, and H. abdominalis occupy basal positions in the phylogeny. This and the high species richness in the region suggests that the genus evolved somewhere in the West Pacific. There is also fairly strong molecular support for the remaining species being subdivided into three main evolutionary lineages: two West Pacific clades and a clade of species present in both the Indo-Pacific and the Atlantic Ocean. The phylogeny obtained herein suggests at least two independent colonization events of the Atlantic Ocean, once before the closure of the Tethyan seaway, and once afterwards.
Monash Chemical Yields Project (Monχey) Element production in low- and intermediate-mass stars
NASA Astrophysics Data System (ADS)
Doherty, Carolyn; Lattanzio, John; Angelou, George; Campbell, Simon W.; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard
The Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ~ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.
The evolutionary ecology of molecular replicators
2016-01-01
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology. PMID:27853598
The evolutionary ecology of molecular replicators.
Nee, Sean
2016-08-01
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.
Testing inferences in developmental evolution: the forensic evidence principle.
Larsson, Hans C E; Wagner, Günter P
2012-09-01
Developmental evolution (DE) examines the influence of developmental mechanisms on biological evolution. Here we consider the question: "what is the evidence that allows us to decide whether a certain developmental scenario for an evolutionary change is in fact "correct" or at least falsifiable?" We argue that the comparative method linked with what we call the "forensic evidence principle" (FEP) is sufficient to conduct rigorous tests of DE scenarios. The FEP states that different genetically mediated developmental causes of an evolutionary transformation will leave different signatures in the development of the derived character. Although similar inference rules have been used in practically every empirical science, we expand this approach here in two ways: (1) we justify the validity of this principle with reference to a well-known result from mathematical physics, known as the symmetry principle, and (2) propose a specific form of the FEP for DE: given two or more developmental explanations for a certain evolutionary event, say an evolutionary novelty, then the evidence discriminating between these hypotheses will be found in the most proximal internal drivers of the derived character. Hence, a detailed description of the ancestral and derived states, and their most proximal developmental drivers are necessary to discriminate between various evolutionary developmental hypotheses. We discuss how this stepwise order of testing is necessary, establishes a formal test, and how skipping this order of examination may violate a more accurate examination of DE. We illustrate the approach with an example from avian digit evolution. © 2012 Wiley Periodicals, Inc.
Zeng, Jia; Hannenhalli, Sridhar
2013-01-01
Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.
The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming.
Revonsuo, A
2000-12-01
Several theories claim that dreaming is a random by-product of REM sleep physiology and that it does not serve any natural function. Phenomenal dream content, however, is not as disorganized as such views imply. The form and content of dreams is not random but organized and selective: during dreaming, the brain constructs a complex model of the world in which certain types of elements, when compared to waking life, are underrepresented whereas others are over represented. Furthermore, dream content is consistently and powerfully modulated by certain types of waking experiences. On the basis of this evidence, I put forward the hypothesis that the biological function of dreaming is to simulate threatening events, and to rehearse threat perception and threat avoidance. To evaluate this hypothesis, we need to consider the original evolutionary context of dreaming and the possible traces it has left in the dream content of the present human population. In the ancestral environment human life was short and full of threats. Any behavioral advantage in dealing with highly dangerous events would have increased the probability of reproductive success. A dream-production mechanism that tends to select threatening waking events and simulate them over and over again in various combinations would have been valuable for the development and maintenance of threat-avoidance skills. Empirical evidence from normative dream content, children's dreams, recurrent dreams, nightmares, post traumatic dreams, and the dreams of hunter-gatherers indicates that our dream-production mechanisms are in fact specialized in the simulation of threatening events, and thus provides support to the threat simulation hypothesis of the function of dreaming.
Core principles of evolutionary medicine
Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E
2018-01-01
Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660
Core principles of evolutionary medicine: A Delphi study.
Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E
2018-01-01
Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.
Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy
2017-02-01
Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.
Jacobson, Dionna
2017-01-01
Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3’UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3’UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions. PMID:28166241
Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama
2015-11-01
The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider
Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.
2017-01-01
The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction–expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation–deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity. PMID:29134072
Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider
NASA Astrophysics Data System (ADS)
Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.; Arango, Claudia P.
2017-10-01
The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction-expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation-deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity.
Stationary stability for evolutionary dynamics in finite populations
Harper, Marc; Fryer, Dashiell
2016-08-25
Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less
A theoretical comparison of evolutionary algorithms and simulated annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-08-28
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less
Inferring explicit weighted consensus networks to represent alternative evolutionary histories
2013-01-01
Background The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes. Methods To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny. Results We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species. Conclusions Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks. PMID:24359207
Bastian, S T; Tanaka, K; Anunciado, R V P; Natural, N G; Sumalde, A C; Namikawa, T
2002-04-01
Six flying fox species, genus Pteropus (four from the Philippines) were investigated using complete cytochrome b gene sequences (1140 bp) to infer their evolutionary relationships. The DNA sequences generated via polymerase chain reaction were analyzed using the neighbor-joining, parsimony, and maximum likelihood methods. We estimated that the first evolutionary event among these Pteropus species occurred approximately 13.90 +/- 1.49 MYA. Within this short period of evolutionary time we further hypothesized that the ancestors of the flying foxes found in the Philippines experienced a subsequent diversification forming two clusters in the topology. The first cluster is composed of P. pumilus (Philippine endemic), P. speciosus (restricted in western Mindanao) with P. scapulatus, while the second one comprised P. vampyrus and P. dasymallus species based on the analysis from first and second codon positions. Consistently, all phylogenetic analyses divulged close association of P. dasymallus with P. vampyrus contradicting the previous report categorizing P. dasymallus under subniger species group with P. pumilus. P. speciosus, and P. hypomelanus. The Philippine endemic species (P. pumilus) is closely linked with P. speciosus. The representative samples of P. vampyrus showed a large genetic distance of 1.87%. The large genetic distance between P. dasymallus and P. hypomelanus, P. pumilus and P. speciosus denotes a distinct species group.
Sun, Keping; Kimball, Rebecca T.; Liu, Tong; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Lin, Aiqing; Feng, Jiang
2016-01-01
Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization. PMID:27748429
Deciphering the evolutionary history of open and closed mitosis.
Sazer, Shelley; Lynch, Michael; Needleman, Daniel
2014-11-17
The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.
Fortunato, Antonio Emidio; Sordino, Paolo; Andreakis, Nikos
2016-06-01
SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.
Himalayan fossils of the oldest known pantherine establish ancient origin of big cats
Tseng, Z. Jack; Wang, Xiaoming; Slater, Graham J.; Takeuchi, Gary T.; Li, Qiang; Liu, Juan; Xie, Guangpu
2014-01-01
Pantherine felids (‘big cats’) include the largest living cats, apex predators in their respective ecosystems. They are also the earliest diverging living cat lineage, and thus are important for understanding the evolution of all subsequent felid groups. Although the oldest pantherine fossils occur in Africa, molecular phylogenies point to Asia as their region of origin. This paradox cannot be reconciled using current knowledge, mainly because early big cat fossils are exceedingly rare and fragmentary. Here, we report the discovery of a fossil pantherine from the Tibetan Himalaya, with an age of Late Miocene–Early Pliocene, replacing African records as the oldest pantherine. A ‘total evidence’ phylogenetic analysis of pantherines indicates that the new cat is closely related to the snow leopard and exhibits intermediate characteristics on the evolutionary line to the largest cats. Historical biogeographic models provide robust support for the Asian origin of pantherines. The combined analyses indicate that 75% of the divergence events in the pantherine lineage extended back to the Miocene, up to 7 Myr earlier than previously estimated. The deeper evolutionary origin of big cats revealed by the new fossils and analyses indicate a close association between Tibetan Plateau uplift and diversification of the earliest living cats. PMID:24225466
Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes
Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su
2016-01-01
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297
Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes.
Nevado, Bruno; Contreras-Ortiz, Natalia; Hughes, Colin; Filatov, Dmitry A
2018-06-04
Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Matos-Maraví, Pável
2016-07-01
Different diversification scenarios have been proposed to explain the origin of extant biodiversity. However, most existing meta-analyses of time-calibrated phylogenies rely on approaches that do not quantitatively test alternative diversification processes. Here, I highlight the shortcomings of using species divergence ranks, which is a method widely used in meta-analyses. Divergence ranks consist of categorizing cladogenetic events to certain periods of time, typically to either Pleistocene or to pre-Pleistocene ages. This approach has been claimed to shed light on the origin of most extant species and the timing and dynamics of diversification in any biogeographical region. However, interpretations drawn from such method often confound two fundamental questions in macroevolutionary studies, tempo (timing of evolutionary rate shifts) and mode ("how" and "why" of speciation). By using simulated phylogenies under four diversification scenarios, constant-rate, diversity-dependence, high extinction, and high speciation rates in the Pleistocene, I showed that interpretations based on species divergence ranks might have been seriously misleading. Future meta-analyses of dated phylogenies need to be aware of the impacts of incomplete taxonomic sampling, tree topology, and divergence time uncertainties, as well as they might be benefited by including quantitative tests of alternative diversification models that acknowledge extinction and diversity dependence. © 2016 The Author(s).
Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation.
Jahner, Joshua P; Forister, Matthew L; Parchman, Thomas L; Smilanich, Angela M; Miller, James S; Wilson, Joseph S; Walla, Thomas R; Tepe, Eric J; Richards, Lora A; Quijano-Abril, Mario Alberto; Glassmire, Andrea E; Dyer, Lee A
2017-12-01
The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper-diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping-by-sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper-diverse lineages. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence
Nepal, Madhav P; Benson, Benjamin V
2015-01-01
Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the Ks-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future. PMID:25922568
Sunflower domestication alleles support single domestication center in eastern North America
Blackman, Benjamin K.; Scascitelli, Moira; Kane, Nolan C.; Luton, Harry H.; Rasmussen, David A.; Bye, Robert A.; Lentz, David L.; Rieseberg, Loren H.
2011-01-01
Phylogenetic analyses of genes with demonstrated involvement in evolutionary transitions can be an important means of resolving conflicting hypotheses about evolutionary history or process. In sunflower, two genes have previously been shown to have experienced selective sweeps during its early domestication. In the present study, we identified a third candidate early domestication gene and conducted haplotype analyses of all three genes to address a recent, controversial hypothesis about the origin of cultivated sunflower. Although the scientific consensus had long been that sunflower was domesticated once in eastern North America, the discovery of pre-Columbian sunflower remains at archaeological sites in Mexico led to the proposal of a second domestication center in southern Mexico. Previous molecular studies with neutral markers were consistent with the former hypothesis. However, only two indigenous Mexican cultivars were included in these studies, and their provenance and genetic purity have been questioned. Therefore, we sequenced regions of the three candidate domestication genes containing SNPs diagnostic for domestication from large, newly collected samples of Mexican sunflower landraces and Mexican wild populations from a broad geographic range. The new germplasm also was genotyped for 12 microsatellite loci. Our evidence from multiple evolutionarily important loci and from neutral markers supports a single domestication event for extant cultivated sunflower in eastern North America. PMID:21844335
Gruetzner, Frank; Ashley, Terry; Rowell, David M; Marshall Graves, Jennifer A
2006-04-01
The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).
CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence.
Nepal, Madhav P; Benson, Benjamin V
2015-01-01
Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the K s-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future.
Janssens, Steven B; Vandelook, Filip; De Langhe, Edmond; Verstraete, Brecht; Smets, Erik; Vandenhouwe, Ines; Swennen, Rony
2016-06-01
Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species-rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo-Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera - Ensete, Musa and Musella - originated in northern Indo-Burma during the early Eocene. Musa species dispersed from 'northwest to southeast' into Southeast Asia with only few back-dispersals towards northern Indo-Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.
Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960
Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.
2016-01-01
The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321
Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H
2016-01-01
The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.
Digging Deep: Exploring College Students' Knowledge of Macroevolutionary Time
ERIC Educational Resources Information Center
Catley, Kefyn M.; Novick, Laura R.
2009-01-01
Some ability to comprehend deep time is a prerequisite for understanding macroevolution. This study examines students' knowledge of deep time in the context of seven major historical and evolutionary events (e.g., the age of the Earth, the emergence of life, the appearance of a pre-modern human, "Homo habilis"). The subjects were 126…
The Influence of Darwin on Evolutionary Algorithms from "Dinner with Darwin"
ERIC Educational Resources Information Center
Overbye, David L.
2009-01-01
The "Dinner with Darwin" event held at the National Association of Biology Teachers Conference over several successive years represented an innovative forum for exploring the ways that the work of Charles Darwin has had an impact in fields quite far removed from biology. Through a wide-ranging discussion by panel participants, drawn from a number…
The ideomotor recycling theory for language.
Badets, Arnaud
2016-01-01
For language acquisition and processing, the ideomotor theory predicts that the comprehension and the production of language are functionally based on their expected perceptual effects (i.e., linguistic events). This anticipative mechanism is central for action-perception behaviors in human and nonhuman animals, but a recent ideomotor recycling theory has emphasized a language account throughout an evolutionary perspective.
Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi.
Tomasini, Nicolás
2018-02-01
Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.
Glimpsing over the event horizon: evolution of nuclear pores and envelope.
Jékely, Gáspár
2005-02-01
The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.
Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence
NASA Technical Reports Server (NTRS)
Dayhoff, M. O.
1983-01-01
Prokaryotic and eukaryotic evolutionary trees are developed from protein and nucleic-acid sequences by the methods of numerical taxonomy. Trees are presented for bacterial ferredoxins, 5S ribosomal RNA, c-type cytochromes , cytochromes c2 and c', and 5.8S ribosomal RNA; the implications for early evolution are discussed; and a composite tree showing the branching of the anaerobes, aerobes, archaebacteria, and eukaryotes is shown. Single lines are found for all oxygen-evolving photosynthetic forms and for the salt-loving and high-temperature forms of archaebacteria. It is argued that the eukaryote mitochondria, chloroplasts, and cytoplasmic host material are descended from free-living prokaryotes that formed symbiotic associations, with more than one symbiotic event involved in the evolution of each organelle.
Pazza, Rubens; Dergam, Jorge A.; Kavalco, Karine F.
2018-01-01
The study of patterns and evolutionary processes in neotropical fish is not always an easy task due the wide distribution of major fish groups in large and extensive river basins. Thus, it is not always possible to detect or correlate possible effects of chromosome rearrangements in the evolution of biodiversity. In the Astyanax genus, chromosome data obtained since the 1970s have shown evidence of cryptic species, karyotypic plasticity, supernumerary chromosomes, triploidies, and minor chromosomal rearrangements. In the present work, we map and discuss the main chromosomal events compatible with the molecular evolution of the genus Astyanax (Characiformes, Characidae) using mitochondrial DNA sequence data, in the search for major chromosome evolutionary trends within this taxon. PMID:29713335
The Modern Synthesis in the Light of Microbial Genomics.
Booth, Austin; Mariscal, Carlos; Doolittle, W Ford
2016-09-08
We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.
Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.
Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L
2017-07-01
Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turchetto-Zolet, Andreia C; Maraschin, Felipe S; de Morais, Guilherme L; Cagliari, Alexandro; Andrade, Cláudia M B; Margis-Pinheiro, Marcia; Margis, Rogerio
2011-09-20
Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.
2011-01-01
Background Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence. PMID:21933415
Repetitive mammalian dwarfing during ancient greenhouse warming events
D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.
2017-01-01
Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031
Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data
Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2015-01-01
Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295
Deep trees: Woodfall biodiversity dynamics in present and past oceans
NASA Astrophysics Data System (ADS)
Sigwart, Julia D.
2017-03-01
Marine deposits of sunken wood provide an important habitat for deep-sea biota, including an extensive wood-endemic invertebrate fauna. These habitats are important in their own right; many species on organic falls are not able to survive in other deep sea ecosystems. Evolutionary transitions of species among various chemosynthesis-based ecosystems does not proceed deliberately from organic falls toward hydrothermal vents. Polyplacophoran molluscs (chitons) are generally rare in deep-sea systems but are found in comparatively high diversity and abundance on tropical sunken wood. A new time-calibrated phylogeny for the predominantly deep-sea order Lepidopleurida shows the chiton lineages found in sunken wood habitats do not comprise a single clade or radiation, but represents a minimum of three independent radiations in the Pacific alone. Most marine invertebrate groups diversified in the deep sea following the end Cretaceous extinction event; by contrast, sunken-wood chitons may have persisted in these habitats for longer than other animals. Fossil chitons from the early Carboniferous (ca. 350 Mya) have strong similarities to modern wood-endemic taxa, yet the common ancestor of living Lepidopleurida occurred much later in the Triassic and did not apparently rely on woodfall. Clades within Lepidopleurida that occupy wood habitats in the tropical Pacific probably arose in the Jurassic, which corresponds to evidence from the fossil record, but with an additional separate colonisation more recently in the early Paleogene. Wood-endemic chiton species encompass multiple independent evolutionary origins of co-occurring wood species, and these separate lineages correspond to differences in micohabitat and feeding strategies. These patterns demonstrate the ongoing evolutionary linkages between terrestrial and deep marine environments, and the opportunistic adaptations of deep-sea organisms.
On the Origin and Evolutionary History of NANOG
Vivien, Céline; Kodjabachian, Laurent; Demeneix, Barbara; Coen, Laurent; Girardot, Fabrice
2014-01-01
Though pluripotency is well characterized in mammals, many questions remain to be resolved regarding its evolutionary history. A necessary prerequisite for addressing this issue is to determine the phylogenetic distributions and orthology relationships of the transcription factor families sustaining or modulating this property. In mammals, the NANOG homeodomain transcription factor is one of the core players in the pluripotency network. However, its evolutionary history has not been thoroughly studied, hindering the interpretation of comparative studies. To date, the NANOG family was thought to be monogenic, with numerous pseudogenes described in mammals, including a tandem duplicate in Hominidae. By examining a wide-array of craniate genomes, we provide evidence that the NANOG family arose at the latest in the most recent common ancestor of osteichthyans and that NANOG genes are frequently found as tandem duplicates in sarcopterygians and as a single gene in actinopterygians. Their phylogenetic distribution is thus reminiscent of that recently shown for Class V POU paralogues, another key family of pluripotency-controlling factors. However, while a single ancestral duplication has been reported for the Class V POU family, we suggest that multiple independent duplication events took place during evolution of the NANOG family. These multiple duplications could have contributed to create a layer of complexity in the control of cell competence and pluripotency, which could explain the discrepancies relative to the functional evolution of this important gene family. Further, our analysis does not support the hypothesis that loss of NANOG and emergence of the preformation mode of primordial germ cell specification are causally linked. Our study therefore argues for the need of further functional comparisons between NANOG paralogues, notably regarding the novel duplicates identified in sauropsids and non-eutherian mammals. PMID:24465486
Silva, Mauro F; Smith, Andrea L; Friesen, Vicki L; Bried, Joël; Hasegawa, Osamu; Coelho, M Manuela; Silva, Mónica C
2016-05-01
The evolutionary mechanisms underlying the geographic distribution of gene lineages in the marine environment are not as well understood as those affecting terrestrial groups. The continuous nature of the pelagic marine environment may limit opportunities for divergence to occur and lineages to spatially segregate, particularly in highly mobile species. Here, we studied the phylogeography and historical demography of two tropically distributed, pelagic seabirds, the Madeiran Storm-petrel Oceanodroma castro, sampled in the Azores, Madeira, Galapagos and Japan, and its sister species Monteiro's Storm-petrel O. monteiroi (endemic to the Azores), using a multi-locus dataset consisting of 12 anonymous nuclear loci and the mitochondrial locus control region. Both marker types support the existence of four significantly differentiated genetic clusters, including the sampled O. monteiroi population and three populations within O. castro, although only the mitochondrial locus suggests complete lineage sorting. Multi-locus coalescent analyses suggest that most divergence events occurred within the last 200,000years. The proximity in divergence times precluded robust inferences of the species tree, in particular of the evolutionary relationships of the Pacific populations. Despite the great potential for dispersal, divergence among populations apparently proceeded in the absence of gene flow, emphasizing the effect of non-physical barriers, such as those driven by the paleo-oceanographical environments, philopatry and local adaptation, as important mechanisms of population divergence and speciation in highly mobile marine species. In view of the predicted climate change impacts, future changes in the demography and evolutionary dynamics of marine populations might be expected. Copyright © 2016 Elsevier Inc. All rights reserved.
Templeton, A. R.; Sing, C. F.
1993-01-01
We previously developed an analytical strategy based on cladistic theory to identify subsets of haplotypes that are associated with significant phenotypic deviations. Our initial approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site data to estimate the evolutionary steps that interrelate the observed haplotypes to one another. The cladogram is then used to define a nested statistical design for identifying mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that a mutation responsible for a particular phenotypic effect is embedded within the evolutionary history that is represented by the cladogram. The power of this approach depends on the accuracy of the cladogram in portraying the evolutionary history of the DNA region. This accuracy can be diminished both by recombination and by uncertainty in the estimated cladogram topology. In a previous paper, we presented an algorithm for estimating the set of likely cladograms and recombination events. In this paper we present an algorithm for defining a nested statistical design under cladogram uncertainty and recombination. Given the nested design, phenotypic associations can be examined using either a nested analysis of variance (for haploids or homozygous strains) or permutation testing (for outcrossed, diploid gene regions). In this paper we also extend this analytical strategy to include categorical phenotypes in addition to quantitative phenotypes. Some worked examples are presented using Drosophila data sets. These examples illustrate that having some recombination may actually enhance the biological inferences that may derived from a cladistic analysis. In particular, recombination can be used to assign a physical localization to a given subregion for mutations responsible for significant phenotypic effects. PMID:8100789
Getlekha, Nuntaporn; Cioffi, Marcelo de Bello; Maneechot, Nuntiya; Bertollo, Luiz Antônio Carlos; Supiwong, Weerayuth; Tanomtong, Alongklod; Molina, Wagner Franco
2018-02-01
Pomacentrus (damselfishes) is one of the most characteristic groups of fishes in the Indo-Pacific coral reef. Its 77 described species exhibit a complex taxonomy with cryptic lineages across their extensive distribution. Periods of evolutionary divergences between them are very variable, and the cytogenetic events that followed their evolutionary diversification are largely unknown. In this respect, analyses of chromosomal divergence, within a phylogenetic perspective, are particularly informative regarding karyoevolutionary trends. As such, we conducted conventional cytogenetic and cytogenomic analyses in four Pomacentrus species (Pomacentrus similis, Pomacentrus auriventris, Pomacentrus moluccensis, and Pomacentrus cuneatus), through the mapping of repetitive DNA classes and transposable elements, including 18S rDNA, 5S rDNA, (CA) 15 , (GA) 15 , (CAA) 10 , Rex6, and U2 snDNA as markers. P. auriventris and P. similis, belonging to the Pomacentrus coelestis complex, have indistinguishable karyotypes (2n = 48; NF = 48), with a peculiar syntenic organization of ribosomal genes. On the other hand, P. moluccensis and P. cuneatus, belonging to another clade, exhibit very different karyotypes (2n = 48, NF = 86 and 92, respectively), with a large number of bi-armed chromosomes, where multiple pericentric inversions played a significant role in their karyotype organization. In this sense, different chromosomal pathways followed the phyletic diversification in the Pomacentrus genus, making possible the characterization of two well-contrasting species groups regarding their karyotype features. Despite this, pericentric inversions act as an effective postzygotic barrier in many organisms, which appear to be also the case for P. moluccensis and P. cuneatus; the extensive chromosomal similarities in the two species of P. coelestis complex suggest minor participation of chromosomal postzygotic barriers in the phyletic diversification of these species.
Zareian, Halimeh; Esmaeili, Hamid Reza; Heidari, Adeleh; Khoshkholgh, Majid Reza; Mousavi-Sabet, Hamed
2016-01-01
Traditionally, Capoeta populations from the southern Caspian Sea basin have been considered as Capoeta capoeta gracilis. Study on the phylogenetic relationship of Capoeta species using mitochondrial cytochrome b gene sequences show that Capoeta population from the southern Caspian Sea basin is distinct species and receive well support (posterior probability of 100%). Based on the tree topologies obtained from Bayesian and Maximum Likelihood methods, three main groups for the studied Capoeta were detected: Clade I) Capoeta trutta group (the Mesopotamian Capoeta group) including closely related taxa (e.g. trutta, turani, barroisi) characterized by having numerous irregular black spots on the dorsal half of the body. This clade was the sister group to all other Capoeta species and its separation occurred very early in evolution possess, so we considered it as O ld Evolutionary Group. Clade II) comprises highly diversified and widespread group, Capoeta damascina complex group (small scale capoeta group), the Anatolian-Iranian group (e.g. banarescui, buhsei, damascina, saadii), characterized by small scales and plain body (absence of irregular black spots on the dorsal half of the body, except in some juveniles) with significantly later speciation event so called Young Evolutionary Group. Clade III) Capoeta capoeta complex group (large scale capoeta group, the Aralo-Caspian group) comprises very closely related taxa characterized by large scales and plain body (absence of irregular black spots on the dorsal half of the body) distributed in Aralo-Caspian water bodies (capoeta, ekmekciae, heratensis, gracilis, sevangi) that has been recently diverged and could be considered as Very Young Evolutionary Group. PMID:28097160
Burns, Mercedes M.; Hedin, Marshal; Shultz, Jeffrey W.
2013-01-01
Explaining the rapid, species-specific diversification of reproductive structures and behaviors is a long-standing goal of evolutionary biology, with recent research tending to attribute reproductive phenotypes to the evolutionary mechanisms of female mate choice or intersexual conflict. Progress in understanding these and other possible mechanisms depends, in part, on reconstructing the direction, frequency and relative timing of phenotypic evolution of male and female structures in species-rich clades. Here we examine evolution of reproductive structures in the leiobunine harvestmen or “daddy long-legs” of eastern North America, a monophyletic group that includes species in which males court females using nuptial gifts and other species that are equipped for apparent precopulatory antagonism (i.e., males with long, hardened penes and females with sclerotized pregenital barriers). We used parsimony- and Bayesian likelihood-based analyses to reconstruct character evolution in categorical reproductive traits and found that losses of ancestral gift-bearing penile sacs are strongly associated with gains of female pregenital barriers. In most cases, both events occur on the same internal branch of the phylogeny. These coevolutionary changes occurred at least four times, resulting in clade-specific designs in the penis and pregenital barrier. The discovery of convergent origins and/or enhancements of apparent precopulatory antagonism among closely related species offers an unusual opportunity to investigate how major changes in reproductive morphology have occurred. We propose new hypotheses that attribute these enhancements to changes in ecology or life history that reduce the duration of breeding seasons, an association that is consistent with female choice, sexual conflict, and/or an alternative evolutionary mechanism. PMID:23762497
Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K
2005-12-01
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.
Fang, Chengchi; Guan, Lihong; Zhong, Zaixuan; Gan, Xiaoni; He, Shunping
2015-08-01
One of the most important events in vertebrate evolutionary history is the water-to-land transition, during which some morphological and physiological changes occurred in concert with the loss of specific genes in tetrapods. However, the molecular mechanisms underlying this transition have not been well explored. To explore vertebrate adaptation to different oxygen levels during the water-to-land transition, we performed comprehensive bioinformatics and experimental analysis aiming to investigate the NAMPT family in vertebrates. NAMPT, a rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, is critical for cell survival in a hypoxic environment, and a high level of NAMPT significantly augments oxidative stress in normoxic environments. Phylogenetic analysis showed that NAMPT duplicates arose from a second round whole-genome duplication event. NAMPTA existed in all classes of vertebrates, whereas NAMPTB was only found in fishes and not tetrapods. Asymmetric evolutionary rates and purifying selection were the main evolutionary forces involved. Although functional analysis identified several functionally divergent sites during NAMPT family evolution, in vitro experimental data demonstrated that NAMPTA and NAMPTB were functionally conserved for NAMPT enzymatic function in the NAD+ salvage pathway. In situ hybridization revealed broad NAMPTA and NAMPTB expression patterns, implying regulatory functions over a wide range of developmental processes. The morpholino-mediated knockdown data demonstrated that NAMPTA was more essential than NAMPTB for vertebrate embryo development. We propose that the retention of NAMPTB in water-breathing fishes and its loss in air-breathing tetrapods resulted from vertebrate adaptation to different oxygen levels during the water-to-land transition. © 2015 FEBS.
Sign changes as a universal concept in first-passage-time calculations
NASA Astrophysics Data System (ADS)
Braun, Wilhelm; Thul, Rüdiger
2017-01-01
First-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common hurdles in first-passage-time calculations.
Koufopanou, Vassiliki; Burt, Austin
2005-07-01
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.
Gallot-Lavallée, Lucie; Blanc, Guillaume; Claverie, Jean-Michel
2017-07-15
Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina , formerly Chrysochromulina ericina ), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera ( Mimivirus and Cafeteriavirus ) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae , they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes. IMPORTANCE Although it infects the microalga Chrysochromulina ericina , CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae , the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage. Copyright © 2017 American Society for Microbiology.
Using Evolutionary Theory to Guide Mental Health Research.
Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W
2016-03-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.
Using Evolutionary Theory to Guide Mental Health Research
Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.
2016-01-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091
Short template switch events explain mutation clusters in the human genome.
Löytynoja, Ari; Goldman, Nick
2017-06-01
Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.
Detecting regular sound changes in linguistics as events of concerted evolution
Hruschka, Daniel J.; Branford, Simon; Smith, Eric D.; ...
2014-12-18
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less
Detecting regular sound changes in linguistics as events of concerted evolution.
Hruschka, Daniel J; Branford, Simon; Smith, Eric D; Wilkins, Jon; Meade, Andrew; Pagel, Mark; Bhattacharya, Tanmoy
2015-01-05
Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Detecting regular sound changes in linguistics as events of concerted evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hruschka, Daniel J.; Branford, Simon; Smith, Eric D.
Background: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon—a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. Results: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular soundmore » change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. Conclusions: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements—such as genes, words, cultural trends, technologies, or morphological traits—can change in parallel within an organism or other evolving group.« less
Carbon isotopic studies of organic matter in Precambrian rocks.
NASA Technical Reports Server (NTRS)
Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.
1972-01-01
A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.
The Artistry of Bacterial Colonies and the Antibiotic Crisis
NASA Astrophysics Data System (ADS)
Golding, Ido; Ben-Jacob, Eshel
Since the beginning of massive usage of antibiotics during World War II we have witnessed a dramatic evolutionary event - the emergence of multiple drug resistant bacteria. The bacteria are capable of developing antibiotic resistance at a higher rate than scientists develop new drugs [1, and references therein. See also the UN's World Health Report 1996]. We seem to be loosing a crucial battle on our health. To reverse this course of events, we have to "outsmart" the bacteria by taking new avenues of study which will lead to the development of novel strategies to fight them.
Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.
Blanchard, Benjamin D; Moreau, Corrie S
2017-02-01
Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Cancer Evolution: Mathematical Models and Computational Inference
Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804
SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid
NASA Astrophysics Data System (ADS)
Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel, S.; Reicherter, K. R.; Zanchetta, G.
2009-12-01
Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is c. 680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. For this purpose, five primary drill sites were selected based on the results obtained from sedimentological studies, tectonic mapping in the catchment and detailed seismic surveys conducted between 2004 and 2008. For the recovery of the up to c. 680 m long sediment sequences the GLAD800 shall be used. The drilling operation is planned to take place in 2011.
The Evolutionary History of Protein Domains Viewed by Species Phylogeny
Yang, Song; Bourne, Philip E.
2009-01-01
Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107
Evolutionary biology: a basic science for medicine in the 21st century.
Perlman, Robert L
2011-01-01
Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.
Michael Akam and the rise of evolutionary developmental biology
Stern, David L.; Dawes-Hoang, Rachel E.
2010-01-01
Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michael’s contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists. PMID:20209429
Evolutionary computation in zoology and ecology.
Boone, Randall B
2017-12-01
Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.
Evolutionary computation in zoology and ecology
2017-01-01
Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029
Ocampo, Denise; Booth, Mark
2016-07-22
Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.
A global perspective on Campanulaceae: Biogeographic, genomic, and floral evolution.
Crowl, Andrew A; Miles, Nicholas W; Visger, Clayton J; Hansen, Kimberly; Ayers, Tina; Haberle, Rosemarie; Cellinese, Nico
2016-02-01
The Campanulaceae are a diverse clade of flowering plants encompassing more than 2300 species in myriad habitats from tropical rainforests to arctic tundra. A robust, multigene phylogeny, including all major lineages, is presented to provide a broad, evolutionary perspective of this cosmopolitan clade. We used a phylogenetic framework, in combination with divergence dating, ancestral range estimation, chromosome modeling, and morphological character reconstruction analyses to infer phylogenetic placement and timing of major biogeographic, genomic, and morphological changes in the history of the group and provide insights into the diversification of this clade across six continents. Ancestral range estimation supports an out-of-Africa diversification following the Cretaceous-Tertiary extinction event. Chromosomal modeling, with corroboration from the distribution of synonymous substitutions among gene duplicates, provides evidence for as many as 20 genome-wide duplication events before large radiations. Morphological reconstructions support the hypothesis that switches in floral symmetry and anther dehiscence were important in the evolution of secondary pollen presentation mechanisms. This study provides a broad, phylogenetic perspective on the evolution of the Campanulaceae clade. The remarkable habitat diversity and cosmopolitan distribution of this lineage appears to be the result of a complex history of genome duplications and numerous long-distance dispersal events. We failed to find evidence for an ancestral polyploidy event for this clade, and our analyses indicate an ancestral base number of nine for the group. This study will serve as a framework for future studies in diverse areas of research in Campanulaceae. © 2016 Botanical Society of America.
Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses
Rojas-Anaya, Edith; Kolokotronis, Sergios-Orestis; Taboada, Blanca; Loza-Rubio, Elizabeth; Méndez-Ojeda, Maria L.; Osterrieder, Nikolaus
2016-01-01
ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. PMID:27834200
Solbakken, Monica Hongrø; Voje, Kjetil Lysne; Jakobsen, Kjetill Sigurd; Jentoft, Sissel
2017-04-26
Host-intrinsic factors as well as environmental changes are known to be strong evolutionary drivers defining the genetic foundation of immunity. Using a novel set of teleost genomes and a time-calibrated phylogeny, we here investigate the family of Toll-like receptor ( TLR ) genes and address the underlying evolutionary processes shaping the diversity of the first-line defence. Our findings reveal remarkable flexibility within the evolutionary design of teleost innate immunity characterized by prominent TLR gene losses and expansions. In the order of Gadiformes, expansions correlate with the loss of major histocompatibility complex class II ( MHCII ) and diversifying selection analyses support that this has fostered new immunological innovations in TLR s within this lineage. In teleosts overall, TLRs expansions correlate with species latitudinal distributions and maximum depth. By contrast, lineage-specific gene losses overlap with well-described changes in palaeoclimate (global ocean anoxia) and past Atlantic Ocean geography. In conclusion, we suggest that the evolvability of the teleost immune system has most likely played a prominent role in the survival and successful radiation of this lineage. © 2017 The Authors.
Vieira-da-Silva, Ana; Louzada, Sandra; Adega, Filomena; Chaves, Raquel
2015-01-01
Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, Cricetus cricetus and Peromyscus eremicus, and the index species Mus musculus and Rattus norvegicus. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in C. cricetus and P. eremicus since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the C. cricetus (derivative) and P. eremicus (conserved) genomes. © 2015 S. Karger AG, Basel.
Detection of timescales in evolving complex systems
Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo
2016-01-01
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820
Ecological and evolutionary approaches to managing honeybee disease.
Brosi, Berry J; Delaplane, Keith S; Boots, Michael; de Roode, Jacobus C
2017-09-01
Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences.
Kirchhoff, K N; Hauffe, T; Stelbrink, B; Albrecht, C; Wilke, T
2017-08-01
Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat-related speciation rates in a time-calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Improving the U.S. Navy Riverine Capability: Lessons from the Colombian Experience
2007-12-01
29 A. EVOLUTIONARY RESPONSE TO THREATS .................................. 30 1. La Violencia ...and joint familiarity of terms within coordinating units.38 As defined in the CNA report, logistics might be affected by the type of medical...riverine transformation associated with each. Four specific events will be addressed: the period of La Violencia that took place from 1948 to 1957
Li, Jun; Zhao, Mian; Wei, Shichao; Luo, Zhenhua; Wu, Hua
2015-12-21
Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study. The genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene. Based on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis contributes to the understanding of the effects of changes in climate and of geographical events on the dynamic development of contemporary patterns of genetic variation in the species of southern China.