Sample records for evolutionary forces act

  1. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx

    PubMed Central

    Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.

    2004-01-01

    The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131

  2. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    PubMed

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  3. Neutral forces acting on intragenomic variability shape the Escherichia coli regulatory network topology.

    PubMed

    Ruths, Troy; Nakhleh, Luay

    2013-05-07

    Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks. Although tests of neutrality and selection based on molecular sequence data exist, no such tests are currently available based on CRNs. In this work, we present a unique genotype model of CRNs that is grounded in a genomic context and demonstrate its use in identifying portions of the CRN with properties explainable by neutral evolutionary forces at the system, subsystem, and operon levels. We leverage our model against experimentally derived data from Escherichia coli. The results of this analysis show statistically significant and substantial neutral trends in properties previously identified as adaptive in origin--degree distribution, clustering coefficient, and motifs--within the E. coli CRN. Our model captures the tightly coupled genome-interactome of an organism and enables analyses of how evolutionary events acting at the genome level, such as mutation, and at the population level, such as genetic drift, give rise to neutral patterns that we can quantify in CRNs.

  4. Differences in evolutionary pressure acting within highly conserved ortholog groups.

    PubMed

    Przytycka, Teresa M; Jothi, Raja; Aravind, L; Lipman, David J

    2008-07-17

    In highly conserved widely distributed ortholog groups, the main evolutionary force is assumed to be purifying selection that enforces sequence conservation, with most divergence occurring by accumulation of neutral substitutions. Using a set of ortholog groups from prokaryotes, with a single representative in each studied organism, we asked the question if this evolutionary pressure is acting similarly on different subgroups of orthologs defined as major lineages (e.g. Proteobacteria or Firmicutes). Using correlations in entropy measures as a proxy for evolutionary pressure, we observed two distinct behaviors within our ortholog collection. The first subset of ortholog groups, called here informational, consisted mostly of proteins associated with information processing (i.e. translation, transcription, DNA replication) and the second, the non-informational ortholog groups, mostly comprised of proteins involved in metabolic pathways. The evolutionary pressure acting on non-informational proteins is more uniform relative to their informational counterparts. The non-informational proteins show higher level of correlation between entropy profiles and more uniformity across subgroups. The low correlation of entropy profiles in the informational ortholog groups suggest that the evolutionary pressure acting on the informational ortholog groups is not uniform across different clades considered this study. This might suggest "fine-tuning" of informational proteins in each lineage leading to lineage-specific differences in selection. This, in turn, could make these proteins less exchangeable between lineages. In contrast, the uniformity of the selective pressure acting on the non-informational groups might allow the exchange of the genetic material via lateral gene transfer.

  5. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    USDA-ARS?s Scientific Manuscript database

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  6. Inference of Evolutionary Forces Acting on Human Biological Pathways

    PubMed Central

    Daub, Josephine T.; Dupanloup, Isabelle; Robinson-Rechavi, Marc; Excoffier, Laurent

    2015-01-01

    Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures. PMID:25971280

  7. The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African horseshoe bats (Rhinolophidae).

    PubMed

    Jacobs, D S; Bastian, A; Bam, L

    2014-12-01

    The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. Shaping communicative colour signals over evolutionary time

    PubMed Central

    Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.

    2016-01-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661

  9. Shaping communicative colour signals over evolutionary time.

    PubMed

    Ossip-Drahos, Alison G; Oyola Morales, José R; Vital-García, Cuauhcihuatl; Zúñiga-Vega, J Jaime; Hews, Diana K; Martins, Emília P

    2016-11-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus ) represents an ancient loss of the belly patch by S. siniferus , and the second evolutionary shift, bounded by S. undulatus and S. virgatus , represents a more recent loss of blue belly patch by S. virgatus . Conspicuousness measurements suggest that the species with the recent loss ( S. virgatus ) is the least conspicuous. Results for two other species ( S. siniferus and S. merriami ) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch ( S. siniferus ) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours.

  10. Methylome evolution in plants.

    PubMed

    Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank

    2016-12-20

    Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.

  11. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    PubMed

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  12. Ecological networks to unravel the routes to horizontal transposon transfers.

    PubMed

    Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique

    2017-02-01

    Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.

  13. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    PubMed

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  14. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    PubMed Central

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  15. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    PubMed

    Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A

    2008-08-27

    The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  16. Botanical smuts and hermaphrodites: Lydia Becker, Darwin's botany, and education reform.

    PubMed

    Gianquitto, Tina

    2013-06-01

    In 1868, Lydia Becker (1827-1890), the renowned Manchester suffragist, announced in a talk before the British Association for the Advancement of Science that the mind had no sex. A year later, she presented original botanical research at the BAAS, contending that a parasitic fungus forced normally single-sex female flowers of Lychnis diurna to develop stamens and become hermaphroditic. This essay uncovers the complex relationship between Lydia Becker's botanical research and her stance on women's rights by investigating how her interest in evolutionary theory, as well as her correspondence with Charles Darwin, critically informed her reform agendas by providing her with a new vocabulary for advocating for equality. One of the facts that Becker took away from her work on Lychnis was that even supposedly fixed, dichotomous categories such as biological sex became unfocused under the evolutionary lens. The details of evolutionary theory, from specific arguments on structural adaptations to more encompassing theories on heredity (i.e., pangenesis), informed Becker's understanding of human physiology. At the same time, Becker's belief in the fundamental equality of the sexes enabled her to perceive the distinction between inherent, biological differences and culturally contingent ones. She applied biological principles to social constructs as she asked: Do analogous evolutionary forces act on humans?

  17. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera.

    PubMed

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-02-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.

  18. Nucleotide Variability at Its Limit? Insights into the Number and Evolutionary Dynamics of the Sex-Determining Specificities of the Honey Bee Apis mellifera

    PubMed Central

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-01-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene. PMID:24170493

  19. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  20. Why are some people left-handed? An evolutionary perspective

    PubMed Central

    Llaurens, V.; Raymond, M.; Faurie, C.

    2008-01-01

    Since prehistoric times, left-handed individuals have been ubiquitous in human populations, exhibiting geographical frequency variations. Evolutionary explanations have been proposed for the persistence of the handedness polymorphism. Left-handedness could be favoured by negative frequency-dependent selection. Data have suggested that left-handedness, as the rare hand preference, could represent an important strategic advantage in fighting interactions. However, the fact that left-handedness occurs at a low frequency indicates that some evolutionary costs could be associated with left-handedness. Overall, the evolutionary dynamics of this polymorphism are not fully understood. Here, we review the abundant literature available regarding the possible mechanisms and consequences of left-handedness. We point out that hand preference is heritable, and report how hand preference is influenced by genetic, hormonal, developmental and cultural factors. We review the available information on potential fitness costs and benefits acting as selective forces on the proportion of left-handers. Thus, evolutionary perspectives on the persistence of this polymorphism in humans are gathered for the first time, highlighting the necessity for an assessment of fitness differences between right- and left-handers. PMID:19064347

  1. Island Rule, quantitative genetics and brain–body size evolution in Homo floresiensis

    PubMed Central

    2017-01-01

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis, a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60–90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus, which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. PMID:28637851

  2. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  3. Genetic Architecture of Hybrid Male Sterility in Drosophila: Analysis of Intraspecies Variation for Interspecies Isolation

    PubMed Central

    Reed, Laura K.; LaFlamme, Brooke A.; Markow, Therese A.

    2008-01-01

    Background The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Methodology/Principal Findings Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. Conclusions/Significance The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation. PMID:18728782

  4. Selection for sex in finite populations.

    PubMed

    Roze, D

    2014-07-01

    Finite population size generates interference between selected loci, which has been shown to favour increased rates of recombination. In this article, I present different analytical models exploring selection acting on a 'sex modifier locus' (that affects the relative investment into asexual and sexual reproduction) in a finite population. Two forms of selective forces act on the modifier: direct selection due to intrinsic costs associated with sexual reproduction and indirect selection generated by one or two other loci affecting fitness. The results show that indirect selective forces differ from those acting on a recombination modifier even in the case of a haploid population: in particular, a single selected locus generates indirect selection for sex, while two loci are required in the case of a recombination modifier. This effect stems from the fact that modifier alleles increasing sex escape more easily from low-fitness genetic backgrounds than alleles coding for lower rates of sex. Extrapolating the results from three-locus models to a large number of loci at mutation-selection balance indicates that in the parameter range where indirect selection is strong enough to outweigh a substantial cost of sex, interactions between selected loci have a stronger effect than the sum of individual effects of each selected locus. Comparisons with multilocus simulation results show that such extrapolations may provide correct predictions for the evolutionarily stable rate of sex, unless the cost of sex is high. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. Regulatory and evolutionary signatures of sex-biased genes on both the X chromosome and the autosomes.

    PubMed

    Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling

    2017-11-02

    Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.

  6. Novel Insights on Hantavirus Evolution: The Dichotomy in Evolutionary Pressures Acting on Different Hantavirus Segments.

    PubMed

    Sankar, Sathish; Upadhyay, Mohita; Ramamurthy, Mageshbabu; Vadivel, Kumaran; Sagadevan, Kalaiselvan; Nandagopal, Balaji; Vivekanandan, Perumal; Sridharan, Gopalan

    2015-01-01

    Hantaviruses are important emerging zoonotic pathogens. The current understanding of hantavirus evolution is complicated by the lack of consensus on co-divergence of hantaviruses with their animal hosts. In addition, hantaviruses have long-term associations with their reservoir hosts. Analyzing the relative abundance of dinucleotides may shed new light on hantavirus evolution. We studied the relative abundance of dinucleotides and the evolutionary pressures shaping different hantavirus segments. A total of 118 sequences were analyzed; this includes 51 sequences of the S segment, 43 sequences of the M segment and 23 sequences of the L segment. The relative abundance of dinucleotides, effective codon number (ENC), codon usage biases were analyzed. Standard methods were used to investigate the relative roles of mutational pressure and translational selection on the three hantavirus segments. All three segments of hantaviruses are CpG depleted. Mutational pressure is the predominant evolutionary force leading to CpG depletion among hantaviruses. Interestingly, the S segment of hantaviruses is GpU depleted and in contrast to CpG depletion, the depletion of GpU dinucleotides from the S segment is driven by translational selection. Our findings also suggest that mutational pressure is the primary evolutionary pressure acting on the S and the M segments of hantaviruses. While translational selection plays a key role in shaping the evolution of the L segment. Our findings highlight how different evolutionary pressures may contribute disproportionally to the evolution of the three hantavirus segments. These findings provide new insights on the current understanding of hantavirus evolution. There is a dichotomy among evolutionary pressures shaping a) the relative abundance of different dinucleotides in hantavirus genomes b) the evolution of the three hantavirus segments.

  7. The evolution of "Life": A Metadarwinian integrative approach.

    PubMed

    De Loof, Arnold

    2017-01-01

    It is undeniably very logical to first formulate an unambiguous definition of "Life" before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from "still alive" to "just dead," the following definition emerged. What we call "Life" (L) is an activity . It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such "living" entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny ("physical children" and "pupils") as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: "Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by doing so, to solve problems."

  8. The evolution of “Life”: A Metadarwinian integrative approach

    PubMed Central

    De Loof, Arnold

    2017-01-01

    ABSTRACT It is undeniably very logical to first formulate an unambiguous definition of “Life” before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from “still alive” to “just dead,” the following definition emerged. What we call “Life” (L) is an activity. It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such “living” entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny (”physical children” and “pupils”) as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: “Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by doing so, to solve problems.” PMID:28702123

  9. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    PubMed Central

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  10. Why Be Temperate: Lessons from Bacteriophage λ.

    PubMed

    Gandon, Sylvain

    2016-05-01

    Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  12. Quantifying selective pressures driving bacterial evolution using lineage analysis

    PubMed Central

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population’s rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages –i.e. the life-histories of individuals and their ancestors– to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to E. coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems. PMID:26213639

  13. Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae)

    PubMed Central

    Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan

    2012-01-01

    Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207

  14. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico.

    PubMed

    Rampersad, Sephra N; Perez-Brito, Daisy; Torres-Calzada, Claudia; Tapia-Tussell, Raul; Carrington, Christine V F

    2013-06-22

    C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical.

  15. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico

    PubMed Central

    2013-01-01

    Background C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. Results The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. Conclusions The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical. PMID:23800297

  16. Y fuse? Sex chromosome fusions in fishes and reptiles.

    PubMed

    Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun

    2015-05-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.

  17. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    PubMed Central

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  18. Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems

    PubMed Central

    Sander van Doorn, G.

    2014-01-01

    The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578

  19. The QTN program and the alleles that matter for evolution: all that's gold does not glitter.

    PubMed

    Rockman, Matthew V

    2012-01-01

    The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  20. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to Streptococcus pneumoniae

    PubMed Central

    Lehtinen, Sonja; Fraser, Christophe

    2017-01-01

    The frequency of resistance to antibiotics in Streptococcus pneumoniae has been stable over recent decades. For example, penicillin non-susceptibility in Europe has fluctuated between 12% and 16% without any major time trend. In spite of long-term stability, resistance fluctuates over short time scales, presumably in part due to seasonal fluctuations in antibiotic prescriptions. Here, we develop a model that describes the evolution of antibiotic resistance under selection by multiple antibiotics prescribed at seasonally changing rates. This model was inspired by, and fitted to, published data on monthly antibiotics prescriptions and frequency of resistance in two communities in Israel over 5 years. Seasonal fluctuations in antibiotic usage translate into small fluctuations of the frequency of resistance around the average value. We describe these dynamics using a perturbation approach that encapsulates all ecological and evolutionary forces into a generic model, whose parameters quantify a force stabilizing the frequency of resistance around the equilibrium and the sensitivity of the population to antibiotic selection. Fitting the model to the data revealed a strong stabilizing force, typically two to five times stronger than direct selection due to antibiotics. The strong stabilizing force explains that resistance fluctuates in phase with usage, as antibiotic selection alone would result in resistance fluctuating behind usage with a lag of three months when antibiotic use is seasonal. While most antibiotics selected for increased resistance, intriguingly, cephalosporins selected for decreased resistance to penicillins and macrolides, an effect consistent in the two communities. One extra monthly prescription of cephalosporins per 1000 children decreased the frequency of penicillin-resistant strains by 1.7%. This model emerges under minimal assumptions, quantifies the forces acting on resistance and explains up to 43% of the temporal variation in resistance. PMID:28566489

  1. Opposing Forces of A/T-Biased Mutations and G/C-Biased Gene Conversions Shape the Genome of the Nematode Pristionchus pacificus

    PubMed Central

    Weller, Andreas M.; Rödelsperger, Christian; Eberhardt, Gabi; Molnar, Ruxandra I.; Sommer, Ralf J.

    2014-01-01

    Base substitution mutations are a major source of genetic novelty and mutation accumulation line (MAL) studies revealed a nearly universal AT bias in de novo mutation spectra. While a comparison of de novo mutation spectra with the actual nucleotide composition in the genome suggests the existence of general counterbalancing mechanisms, little is known about the evolutionary and historical details of these opposing forces. Here, we correlate MAL-derived mutation spectra with patterns observed from population resequencing. Variation observed in natural populations has already been subject to evolutionary forces. Distinction between rare and common alleles, the latter of which are close to fixation and of presumably older age, can provide insight into mutational processes and their influence on genome evolution. We provide a genome-wide analysis of de novo mutations in 22 MALs of the nematode Pristionchus pacificus and compare the spectra with natural variants observed in resequencing of 104 natural isolates. MALs show an AT bias of 5.3, one of the highest values observed to date. In contrast, the AT bias in natural variants is much lower. Specifically, rare derived alleles show an AT bias of 2.4, whereas common derived alleles close to fixation show no AT bias at all. These results indicate the existence of a strong opposing force and they suggest that the GC content of the P. pacificus genome is in equilibrium. We discuss GC-biased gene conversion as a potential mechanism acting against AT-biased mutations. This study provides insight into genome evolution by combining MAL studies with natural variation. PMID:24414549

  2. Gene transfer agents: phage-like elements of genetic exchange

    PubMed Central

    Lang, Andrew S.; Zhaxybayeva, Olga; Beatty, J. Thomas

    2013-01-01

    Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell’s genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production. PMID:22683880

  3. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal

    PubMed Central

    Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-01-01

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342

  4. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal.

    PubMed

    Risso, Davide S; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis

    2016-05-03

    The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.

  5. A behavioral perspective on fishing-induced evolution.

    PubMed

    Uusi-Heikkilä, Silva; Wolter, Christian; Klefoth, Thomas; Arlinghaus, Robert

    2008-08-01

    The potential for excessive and/or selective fishing to act as an evolutionary force has been emphasized recently. However, most studies have focused on evolution of life-history traits in response to size-selective harvesting. Here we draw attention to fishing-induced evolution of behavioral and underlying physiological traits. We contend that fishing-induced selection directly acting on behavioral rather than on life-history traits per se can be expected in all fisheries that operate with passive gears such as trapping, angling and gill-netting. Recent artificial selection experiments in the nest-guarding largemouth bass Micropterus salmoides suggest that fishing-induced evolution of behavioral traits that reduce exposure to fishing gear might be maladaptive, potentially reducing natural recruitment. To improve understanding and management of fisheries-induced evolution, we encourage greater application of methods from behavioral ecology, physiological ecology and behavioral genetics.

  6. CYP76M7 Is an ent-Cassadiene C11α-Hydroxylase Defining a Second Multifunctional Diterpenoid Biosynthetic Gene Cluster in Rice[W][OA

    PubMed Central

    Swaminathan, Sivakumar; Morrone, Dana; Wang, Qiang; Fulton, D. Bruce; Peters, Reuben J.

    2009-01-01

    Biosynthetic gene clusters are common in microbial organisms, but rare in plants, raising questions regarding the evolutionary forces that drive their assembly in multicellular eukaryotes. Here, we characterize the biochemical function of a rice (Oryza sativa) cytochrome P450 monooxygenase, CYP76M7, which seems to act in the production of antifungal phytocassanes and defines a second diterpenoid biosynthetic gene cluster in rice. This cluster is uniquely multifunctional, containing enzymatic genes involved in the production of two distinct sets of phytoalexins, the antifungal phytocassanes and antibacterial oryzalides/oryzadiones, with the corresponding genes being subject to distinct transcriptional regulation. The lack of uniform coregulation of the genes within this multifunctional cluster suggests that this was not a primary driving force in its assembly. However, the cluster is dedicated to specialized metabolism, as all genes in the cluster are involved in phytoalexin metabolism. We hypothesize that this dedication to specialized metabolism led to the assembly of the corresponding biosynthetic gene cluster. Consistent with this hypothesis, molecular phylogenetic comparison demonstrates that the two rice diterpenoid biosynthetic gene clusters have undergone independent elaboration to their present-day forms, indicating continued evolutionary pressure for coclustering of enzymatic genes encoding components of related biosynthetic pathways. PMID:19825834

  7. The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model.

    PubMed

    McEvoy, Brian; Beleza, Sandra; Shriver, Mark D

    2006-10-15

    Skin pigmentation varies substantially across human populations in a manner largely coincident with ultraviolet radiation intensity. This observation suggests that natural selection in response to sunlight is a major force in accounting for pigmentation variability. We review recent progress in identifying the genes controlling this variation with a particular focus on the trait's evolutionary past and the potential role of testing for signatures of selection in aiding the discovery of functionally important genes. We have analyzed SNP data from the International HapMap project in 77 pigmentation candidate genes for such signatures. On the basis of these results and other similar work, we provide a tentative three-population model (West Africa, East Asia and North Europe) of the evolutionary-genetic architecture of human pigmentation. These results suggest a complex evolutionary history, with selection acting on different gene targets at different times and places in the human past. Some candidate genes may have been selected in the ancestral human population, others in the 'out of Africa' proto European-Asian population, whereas most appear to have selectively evolved solely in either Europeans or East Asians separately despite the pigmentation similarities between these two populations. Selection signatures can provide important clues to aid gene discovery. However, these should be viewed as complements, rather than replacements of, functional studies including linkage and association analyses, which can directly refine our understanding of the trait.

  8. The relative contribution of drift and selection to phenotypic divergence: A test case using the horseshoe bats Rhinolophus simulator and Rhinolophus swinnyi.

    PubMed

    Mutumi, Gregory L; Jacobs, David S; Winker, Henning

    2017-06-01

    Natural selection and drift can act on populations individually, simultaneously or in tandem and our understanding of phenotypic divergence depends on our ability to recognize the contribution of each. According to the quantitative theory of evolution, if an organism has diversified through neutral evolutionary processes (mutation and drift), variation of phenotypic characteristics between different geographic localities ( B ) should be directly proportional to the variation within localities ( W ), that is, B  ∝  W . Significant deviations from this null model imply that non-neutral forces such as natural selection are acting on a phenotype. We investigated the relative contributions of drift and selection to intraspecific diversity using southern African horseshoe bats as a test case. We characterized phenotypic diversity across the distributional range of Rhinolophus simulator ( n =  101) and Rhinolophus swinnyi ( n =  125) using several traits associated with flight and echolocation. Our results suggest that geographic variation in both species was predominantly caused by disruptive natural selection ( B was not directly proportional to W ). Evidence for correlated selection (co-selection) among traits further confirmed that our results were not compatible with drift. Selection rather than drift is likely the predominant evolutionary process shaping intraspecific variation in traits that strongly impact fitness.

  9. Do males pay for sex? Sex-specific selection coefficients suggest not.

    PubMed

    Prokop, Zofia M; Prus, Monika A; Gaczorek, Tomasz S; Sychta, Karolina; Palka, Joanna K; Plesnar-Bielak, Agata; Skarboń, Magdalena

    2017-03-01

    Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection-a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex-specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    PubMed Central

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  11. Williams' paradox and the role of phenotypic plasticity in sexual systems.

    PubMed

    Leonard, Janet L

    2013-10-01

    As George Williams pointed out in 1975, although evolutionary explanations, based on selection acting on individuals, have been developed for the advantages of simultaneous hermaphroditism, sequential hermaphroditism and gonochorism, none of these evolutionary explanations adequately explains the current distribution of these sexual systems within the Metazoa (Williams' Paradox). As Williams further pointed out, the current distribution of sexual systems is explained largely by phylogeny. Since 1975, we have made a great deal of empirical and theoretical progress in understanding sexual systems. However, we still lack a theory that explains the current distribution of sexual systems in animals and we do not understand the evolutionary transitions between hermaphroditism and gonochorism. Empirical data, collected over the past 40 years, demonstrate that gender may have more phenotypic plasticity than was previously realized. We know that not only sequential hermaphrodites, but also simultaneous hermaphrodites have phenotypic plasticity that alters sex allocation in response to social and environmental conditions. A focus on phenotypic plasticity suggests that one sees a continuum in animals between genetically determined gonochorism on the one hand and simultaneous hermaphroditism on the other, with various types of sequential hermaphroditism and environmental sex determination as points along the spectrum. Here I suggest that perhaps the reason we have been unable to resolve Williams' Paradox is because the problem was not correctly framed. First, because, for example, simultaneous hermaphroditism provides reproductive assurance or dioecy ensures outcrossing does not mean that there are no other evolutionary paths that can provide adaptive responses to those selective pressures. Second, perhaps the question we need to ask is: What selective forces favor increased versus reduced phenotypic plasticity in gender expression? It is time to begin to look at the question of sexual system as one of understanding the timing and degree of phenotypic plasticity in gender expression in the life history in terms of selection acting on a continuum, rather than on a set of discrete sexual systems.

  12. The evolution of distributed sensing and collective computation in animal populations

    PubMed Central

    Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D

    2015-01-01

    Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003

  13. Tinkering with the tinkerer: pollution versus evolution.

    PubMed Central

    Fox, G A

    1995-01-01

    Pollutants can act as powerful selective forces by altering genetic variability, its intergenerational transfer, and the size, functional viability, adaptability, and survival of future generations. It is at the level of the cell and the individual that meiosis occurs, that genetic diversity is maintained, and behavior, reproduction, growth, and survival occur and are regulated. It is at this level that evolutionary processes occur and most pollutants exert their toxic effects. Chronic exposure to chemicals contributes to the cumulative stress on individuals and disrupts physiological processes and chemically mediated communication thereby threatening the diversity and long-term survival of sexually reproducing biota. Regional or global effects of pollution on the atmosphere, hydrosphere, and lithosphere have indirectly altered Earth's life-support systems, thereby modifying trace metal balance, reproduction, and incidence of UV-B-induced DNA damage in biota. By altering the competitive ability and survival of species, chemical pollutants potentially threaten evolutionary processes and the biodiversity and function of intercepting ecosystems. PMID:7556031

  14. Selection on bristle length has the ability to drive the evolution of male abdominal appendages in the sepsid fly Themira biloba.

    PubMed

    Herath, B; Dochtermann, N A; Johnson, J I; Leonard, Z; Bowsher, J H

    2015-12-01

    Many exaggerated and novel traits are strongly influenced by sexual selection. Although sexual selection is a powerful evolutionary force, underlying genetic interactions can constrain evolutionary outcomes. The relative strength of selection vs. constraint has been a matter of debate for the evolution of male abdominal appendages in sepsid flies. These abdominal appendages are involved in courtship and mating, but their function has not been directly tested. We performed mate choice experiments to determine whether sexual selection acts on abdominal appendages in the sepsid Themira biloba. We tested whether appendage bristle length influenced successful insemination by surgically trimming the bristles. Females paired with males that had shortened bristles laid only unfertilized eggs, indicating that long bristles are necessary for successful insemination. We also tested whether the evolution of bristle length was constrained by phenotypic correlations with other traits. Analyses of phenotypic covariation indicated that bristle length was highly correlated with other abdominal appendage traits, but was not correlated with abdominal sternite size. Thus, abdominal appendages are not exaggerated traits like many sexual ornaments, but vary independently from body size. At the same time, strong correlations between bristle length and appendage length suggest that selection on bristle length is likely to result in a correlated increase in appendage length. Bristle length is under sexual selection in T. biloba and has the potential to evolve independently from abdomen size. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Genetic responses to rapid change in the environment during the anthropocene

    USGS Publications Warehouse

    Tallmon, David A.; Kovach, Ryan

    2017-01-01

    Humans have greatly affected the genetic composition of many different organisms during the Anthropocene. Humans cause genetic changes by affecting the direction and magnitude of evolutionary forces that act to create the Earth's biota. In many cases, we expect the outcome of human actions to be extinction and hybridization of existing species, but other outcomes, such as adaptation, also occur. Given the reach of humans throughout the globe, and recent biotechnology advances that make it possible to move individual genes between species or to remove them, it is likely that human influence on the genetic composition of other organisms will become even more widespread as the Anthropocene progresses.

  16. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute substrate specificity. We infer from this depiction of the three classes of enzymes, a general relation between the two functional properties, reaction rate and substrate specificity, namely, enzymes with diffusion-controlled rates have absolute substrate specificity. By appealing to energetic considerations, we furthermore show that enzymes with diffusion-controlled rates (types 2 and 3a) form a small subset of the class of all enzymes. This codification of present-day enzymes derived from an evolutionary model, essentially relates the structural properties of enzymes, as described by their thermodynamic parameters, to their functional properties, as represented by the reaction rate and substrate specificity.

  17. A single gene causes both male sterility and segregation distortion in Drosophila hybrids.

    PubMed

    Phadnis, Nitin; Orr, H Allen

    2009-01-16

    A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability-many of which have evolved rapidly under positive Darwinian selection-little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here, we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and U.S. subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation.

  18. The Sponge Hologenome

    PubMed Central

    Thomas, Torsten

    2016-01-01

    ABSTRACT A paradigm shift has recently transformed the field of biological science; molecular advances have revealed how fundamentally important microorganisms are to many aspects of a host’s phenotype and evolution. In the process, an era of “holobiont” research has emerged to investigate the intricate network of interactions between a host and its symbiotic microbial consortia. Marine sponges are early-diverging metazoa known for hosting dense, specific, and often highly diverse microbial communities. Here we synthesize current thoughts about the environmental and evolutionary forces that influence the diversity, specificity, and distribution of microbial symbionts within the sponge holobiont, explore the physiological pathways that contribute to holobiont function, and describe the molecular mechanisms that underpin the establishment and maintenance of these symbiotic partnerships. The collective genomes of the sponge holobiont form the sponge hologenome, and we highlight how the forces that define a sponge’s phenotype in fact act on the genomic interplay between the different components of the holobiont. PMID:27103626

  19. Invisible hand effect in an evolutionary minority game model

    NASA Astrophysics Data System (ADS)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  20. Hybridization affects life-history traits and host specificity in Diorhabda spp

    USDA-ARS?s Scientific Manuscript database

    Hybridization is an influential evolutionary process that has been viewed alternatively as an evolutionary dead-end or as an important creative evolutionary force. In colonizing species, such as introduced biological control agents, hybridization can negate the effects of bottlenecks and genetic dri...

  1. Coevolution between invasive and native plants driven by chemical competition and soil biota.

    PubMed

    Lankau, Richard A

    2012-07-10

    Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.

  2. Biomechanical Diversity of Mating Structures among Harvestmen Species Is Consistent with a Spectrum of Precopulatory Strategies

    PubMed Central

    Burns, Mercedes; Shultz, Jeffrey W.

    2015-01-01

    Diversity in reproductive structures is frequently explained by selection acting at individual to generational timescales, but interspecific differences predicted by such models (e.g., female choice or sexual conflict) are often untestable in a phylogenetic framework. An alternative approach focuses on clade- or function-specific hypotheses that predict evolutionary patterns in terms neutral to specific modes of sexual selection. Here we test a hypothesis that diversity of reproductive structures in leiobunine harvestmen (daddy longlegs) of eastern North America reflects two sexually coevolved but non-overlapping precopulatory strategies, a primitive solicitous strategy (females enticed by penis-associated nuptial gifts), and a multiply derived antagonistic strategy (penis exerts mechanical force against armature of the female pregenital opening). Predictions of sexual coevolution and fidelity to precopulatory categories were tested using 10 continuously varying functional traits from 28 species. Multivariate analyses corroborated sexual coevolution but failed to partition species by precopulatory strategy, with multiple methods placing species along a spectrum of mechanical antagonistic potential. These findings suggest that precopulatory features within species reflect different co-occurring levels of solicitation and antagonism, and that gradualistic evolutionary pathways exist between extreme strategies. The ability to quantify antagonistic potential of precopulatory structures invites comparison with ecological variables that may promote evolutionary shifts in precopulatory strategies. PMID:26352413

  3. Evolutionary stasis in pollen morphogenesis due to natural selection.

    PubMed

    Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri

    2016-01-01

    The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. A comparative perspective on longevity: the effect of body size dominates over ecology in moths.

    PubMed

    Holm, S; Davis, R B; Javoiš, J; Õunap, E; Kaasik, A; Molleman, F; Tammaru, T

    2016-12-01

    Both physiologically and ecologically based explanations have been proposed to account for among-species differences in lifespan, but they remain poorly tested. Phylogenetically explicit comparative analyses are still scarce and those that exist are biased towards homoeothermic vertebrates. Insect studies can significantly contribute as lifespan can feasibly be measured in a high number of species, and the selective forces that have shaped it may differ largely between species and from those acting on larger animals. We recorded adult lifespan in 98 species of geometrid moths. Phylogenetic comparative analyses were applied to study variation in species-specific values of lifespan and to reveal its ecological and life-history correlates. Among-species and between-gender differences in lifespan were found to be notably limited; there was also no evidence of phylogenetic signal in this trait. Larger moth species were found to live longer, with this result supporting a physiological rather than ecological explanation of this relationship. Species-specific lifespan values could not be explained by traits such as reproductive season and larval diet breadth, strengthening the evidence for the dominance of physiological determinants of longevity over ecological ones. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. Biomechanical Diversity of Mating Structures among Harvestmen Species Is Consistent with a Spectrum of Precopulatory Strategies.

    PubMed

    Burns, Mercedes; Shultz, Jeffrey W

    2015-01-01

    Diversity in reproductive structures is frequently explained by selection acting at individual to generational timescales, but interspecific differences predicted by such models (e.g., female choice or sexual conflict) are often untestable in a phylogenetic framework. An alternative approach focuses on clade- or function-specific hypotheses that predict evolutionary patterns in terms neutral to specific modes of sexual selection. Here we test a hypothesis that diversity of reproductive structures in leiobunine harvestmen (daddy longlegs) of eastern North America reflects two sexually coevolved but non-overlapping precopulatory strategies, a primitive solicitous strategy (females enticed by penis-associated nuptial gifts), and a multiply derived antagonistic strategy (penis exerts mechanical force against armature of the female pregenital opening). Predictions of sexual coevolution and fidelity to precopulatory categories were tested using 10 continuously varying functional traits from 28 species. Multivariate analyses corroborated sexual coevolution but failed to partition species by precopulatory strategy, with multiple methods placing species along a spectrum of mechanical antagonistic potential. These findings suggest that precopulatory features within species reflect different co-occurring levels of solicitation and antagonism, and that gradualistic evolutionary pathways exist between extreme strategies. The ability to quantify antagonistic potential of precopulatory structures invites comparison with ecological variables that may promote evolutionary shifts in precopulatory strategies.

  6. Evolutionary Pattern of the FAE1 Gene in Brassicaceae and Its Correlation with the Erucic Acid Trait

    PubMed Central

    Li, Mimi; Peng, Bin; Guo, Haisong; Yan, Qinqin; Hang, Yueyu

    2013-01-01

    The fatty acid elongase 1 (FAE1) gene catalyzes the initial condensation step in the elongation pathway of VLCFA (very long chain fatty acid) biosynthesis and is thus a key gene in erucic acid biosynthesis. Based on a worldwide collection of 62 accessions representing 14 tribes, 31 genera, 51 species, 4 subspecies and 7 varieties, we conducted a phylogenetic reconstruction and correlation analysis between genetic variations in the FAE1 gene and the erucic acid trait, attempting to gain insight into the evolutionary patterns and the correlations between genetic variations in FAE1 and trait variations. The five clear, deeply diverged clades detected in the phylogenetic reconstruction are largely congruent with a previous multiple gene-derived phylogeny. The Ka/Ks ratio (<1) and overall low level of nucleotide diversity in the FAE1 gene suggest that purifying selection is the major evolutionary force acting on this gene. Sequence variations in FAE1 show a strong correlation with the content of erucic acid in seeds, suggesting a causal link between the two. Furthermore, we detected 16 mutations that were fixed between the low and high phenotypes of the FAE1 gene, which constitute candidate active sites in this gene for altering the content of erucic acid in seeds. Our findings begin to shed light on the evolutionary pattern of this important gene and represent the first step in elucidating how the sequence variations impact the production of erucic acid in plants. PMID:24358289

  7. A single gene causes both male sterility and segregation distortion in Drosophila hybrids*

    PubMed Central

    Phadnis, Nitin; Orr, H. Allen

    2008-01-01

    A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability— many of which have evolved rapidly under positive Darwinian selection— little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation. PMID:19074311

  8. Unravelling the effects of gene flow and selection in highly connected populations of the silver-lip pearl oyster (Pinctada maxima).

    PubMed

    Nayfa, Maria G; Zenger, Kyall R

    2016-08-01

    Many marine organisms often display weak levels of population genetic structuring as a result of both environmental characteristics (e.g., ocean currents) and life history traits (e.g., widely dispersed planktonic larval stages) maintaining high levels of gene flow. This can lead to the assumption that these organisms can be managed as a single stock based on high levels of population connectivity. However, this neglects to account for other micro-evolutionary forces such as selection, which also shape these populations. This study utilizes 1130 genome-wide SNP loci to unravel the effects of gene flow and selection shaping three highly connected populations of the silver-lip pearl oyster (Pinctada maxima) in the ecologically and economically important Indo-Pacific region (Aru, Bali, and West Papua). Twenty-two loci under directional selection were identified amongst the populations, providing further supporting evidence of strong local adaptation (i.e., G×E effects) among populations in this region. Global Fst values for directional outliers (0.348) were up to eight times greater than for neutral markers (0.043). Pairwise Fst comparisons between Aru and Bali revealed the largest directional differences (0.488), while Bali and West Papua had the least (0.062). Unrooted neighbour-joining (NJ) distance trees and genetic diversity indices of directional outliers revealed that individuals from Bali and West Papua had reduced allelic variation (MAFavg=0.144, Ho=0.238 and MAFavg=0.232, Ho=0.369, respectively) compared to Aru (MAFavg=0.292, Ho=0.412). This indicates that directional selection is most likely acting upon genetic variation within the Bali and West Papua populations. NJ distance trees, discriminant analysis of principal components, and Fst analyses of directional outliers revealed two divergent groups ("Bali/West Papua"; "Aru") that had previously gone unrecognized. This study not only illustrates that relatively strong local adaptive forces are occurring despite high gene flow, but identifies the populations that are most likely experiencing selection. Additionally, this study highlights the need to understand all micro-evolutionary forces acting on populations when resolving stock structure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.).

    PubMed

    Jacobsen, Magnus W; da Fonseca, Rute R; Bernatchez, Louis; Hansen, Michael M

    2016-02-01

    Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Origin and Evolutionary Consequences of Skeletal Traits Shaped by Embryonic Muscular Activity, from Basal Theropods to Modern Birds.

    PubMed

    Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente

    2017-12-01

    Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  12. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  13. Evidence of Natural Selection Acting on a Polymorphic Hybrid Incompatibility Locus in Mimulus

    PubMed Central

    Sweigart, Andrea L.; Flagel, Lex E.

    2015-01-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. PMID:25428983

  14. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID:24137105

  15. Regulatory Evolution and Theoretical Arguments in Evolutionary Biology

    ERIC Educational Resources Information Center

    Ioannidis, Stavros

    2013-01-01

    The "cis"-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for "cis"-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current…

  16. Stability-based sorting: The forgotten process behind (not only) biological evolution.

    PubMed

    Toman, Jan; Flegr, Jaroslav

    2017-12-21

    Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neuroendocrine-Immune Circuits, Phenotypes, and Interactions

    PubMed Central

    Ashley, Noah T.; Demas, Gregory E.

    2016-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499

  18. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sexual dimorphism in bite performance drives morphological variation in chameleons.

    PubMed

    da Silva, Jessica M; Herrel, Anthony; Measey, G John; Tolley, Krystal A

    2014-01-01

    Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.

  20. Sexual Dimorphism in Bite Performance Drives Morphological Variation in Chameleons

    PubMed Central

    da Silva, Jessica M.; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.

    2014-01-01

    Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance. PMID:24475183

  1. Signatures of natural selection and ecological differentiation in microbial genomes.

    PubMed

    Shapiro, B Jesse

    2014-01-01

    We live in a microbial world. Most of the genetic and metabolic diversity that exists on earth - and has existed for billions of years - is microbial. Making sense of this vast diversity is a daunting task, but one that can be approached systematically by analyzing microbial genome sequences. This chapter explores how the evolutionary forces of recombination and selection act to shape microbial genome sequences, leaving signatures that can be detected using comparative genomics and population-genetic tests for selection. I describe the major classes of tests, paying special attention to their relative strengths and weaknesses when applied to microbes. Specifically, I apply a suite of tests for selection to a set of closely-related bacterial genomes with different microhabitat preferences within the marine water column, shedding light on the genomic mechanisms of ecological differentiation in the wild. I will focus on the joint problem of simultaneously inferring the boundaries between microbial populations, and the selective forces operating within and between populations.

  2. Host influence in the genomic composition of flaviviruses: A multivariate approach.

    PubMed

    Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor

    2017-10-28

    Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An Improved Co-evolutionary Particle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment

    PubMed Central

    Wang, Xue; Wang, Sheng; Ma, Jun-Jie

    2007-01-01

    The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.

  4. Diet, bite force and skull morphology in the generalist rodent morphotype.

    PubMed

    Maestri, R; Patterson, B D; Fornel, R; Monteiro, L R; de Freitas, T R O

    2016-11-01

    For many vertebrate species, bite force plays an important functional role. Ecological characteristics of a species' niche, such as diet, are often associated with bite force. Previous evidence suggests a biomechanical trade-off between rodents specialized for gnawing, which feed mainly on seeds, and those specialized for chewing, which feed mainly on green vegetation. We tested the hypothesis that gnawers are stronger biters than chewers. We estimated bite force and measured skull and mandible shape and size in 63 genera of a major rodent radiation (the myomorph sigmodontines). Analysis of the influence of diet on bite force and morphology was made in a comparative framework. We then used phylogenetic path analysis to uncover the most probable causal relationships linking diet and bite force. Both granivores (gnawers) and herbivores (chewers) have a similar high bite force, leading us to reject the initial hypothesis. Path analysis reveals that bite force is more likely influenced by diet than the reverse causality. The absence of a trade-off between herbivores and granivores may be associated with the generalist nature of the myomorph condition seen in sigmodontine rodents. Both gnawing and chewing sigmodontines exhibit similar, intermediate phenotypes, at least compared to extreme gnawers (squirrels) and chewers (chinchillas). Only insectivorous rodents appear to be moving towards a different direction in the shape space, through some notable changes in morphology. In terms of diet, natural selection alters bite force through changes in size and shape, indicating that organisms adjust their bite force in tandem with changes in food items. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. A Perspective on Micro-Evo-Devo: Progress and Potential

    PubMed Central

    Nunes, Maria D. S.; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P.

    2013-01-01

    The term “micro-evo-devo” refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field. PMID:24190920

  6. A perspective on micro-evo-devo: progress and potential.

    PubMed

    Nunes, Maria D S; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P

    2013-11-01

    The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.

  7. The coevolutionary dynamics of obligate ant social parasite systems--between prudence and antagonism.

    PubMed

    Brandt, Miriam; Foitzik, Susanne; Fischer-Blass, Birgit; Heinze, Jürgen

    2005-05-01

    In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.

  8. In Darwin's Footsteps: An On and Off-Campus Approach to Teaching Evolutionary Theory and Animal Behavior

    ERIC Educational Resources Information Center

    Gillie, Lynn; Bizub, Anne L.

    2012-01-01

    The study of evolutionary theory and fieldwork in animal behavior is enriched when students leave the classroom so they may test their abilities to think and act like scientists. This article describes a course on evolutionary theory and animal behavior that blended on campus learning with field experience in the United States and in Ecuador and…

  9. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Wilson, Robert E.; Underwood, Jared G.

    2017-01-01

    The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

  10. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    PubMed

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. Microbial multicellular development: mechanical forces in action.

    PubMed

    Rivera-Yoshida, Natsuko; Arias Del Angel, Juan A; Benítez, Mariana

    2018-06-06

    Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Conceptual Barriers to Progress Within Evolutionary Biology

    PubMed Central

    Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy

    2011-01-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912

  13. Conceptual Barriers to Progress Within Evolutionary Biology.

    PubMed

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  14. The Impact of Organismal Innovation on Functional and Ecological Diversification.

    PubMed

    Wainwright, Peter C; Price, Samantha A

    2016-09-01

    Innovations in organismal functional morphology are thought to be a major force in shaping evolutionary patterns, with the potential to drive adaptive radiation and influence the evolutionary prospects for lineages. But the evolutionary consequences of innovation are diverse and usually do not result in adaptive radiation. What factors shape the macroevolutionary impact of innovations? We assert that little is known in general about the macroevolutionary outcomes associated with functional innovations and we discuss a framework for studying biological innovations in an evolutionary context. Innovations are novel functional mechanisms that enhance organismal performance. The ubiquity of trade-offs in functional systems means that enhanced performance on one axis often occurs at the expense of performance on another axis, such that many innovations result in an exchange of performance capabilities, rather than an expansion. Innovations may open up new resources for exploitation but their consequences for functional and ecological diversification depend heavily on the adaptive landscape around these novel resources. As an example of a broader program that we imagine, we survey five feeding innovations in labrid fishes, an exceptionally successful and ecologically diverse group of reef fishes, and explore their impact on the rate of evolution of jaw functional morphology. All of the innovations provide performance enhancements and result in changes in patterns of resource use, but most are not associated with subsequent functional diversification or substantial ecological diversification. Because selection acts on a specific performance enhancement and not on the evolutionary potential of an innovation, the enhancement of diversity may be highly serendipitous. The macroevolutionary potential of innovations depends critically on the interaction between the performance enhancement and the ecological opportunity that is exposed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem.

    PubMed

    Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V

    2015-06-10

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.

  16. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem

    PubMed Central

    Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.

    2015-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296

  17. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    PubMed

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.

  18. Evolution and Vaccination of Influenza Virus.

    PubMed

    Lam, Ham Ching; Bi, Xuan; Sreevatsan, Srinand; Boley, Daniel

    2017-08-01

    In this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results. We used the influenza surface Hemagglutinin (HA) gene for this study as the HA gene is the major target of the immune system. The visualization is achieved without using any clustering methods or prior information about the influenza sequences. Our results clearly showed that the evolutionary trajectories between vaccine-controlled and non-vaccine-controlled influenza viruses are different and vaccine as an evolution driving force cannot be completely eliminated.

  19. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    PubMed

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  20. Patterns and Processes of Vertebrate Evolution

    NASA Astrophysics Data System (ADS)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  1. Population genetics and demography unite ecology and evolution

    USGS Publications Warehouse

    Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.

    2017-01-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.

  2. Stabilizing multicellularity through ratcheting

    PubMed Central

    Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.

    2016-01-01

    The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522

  3. Experimental evidence that the Ornstein-Uhlenbeck model best describes the evolution of leaf litter decomposability.

    PubMed

    Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K

    2014-09-01

    Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf 'afterlife' integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence.

  4. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies.

    PubMed

    Brown, Sam P; West, Stuart A; Diggle, Stephen P; Griffin, Ashleigh S

    2009-11-12

    Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.

  5. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies

    PubMed Central

    Brown, Sam P.; West, Stuart A.; Diggle, Stephen P.; Griffin, Ashleigh S.

    2009-01-01

    Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease. PMID:19805424

  6. Cultural transmission results in convergence towards colour term universals

    PubMed Central

    Xu, Jing; Dowman, Mike; Griffiths, Thomas L.

    2013-01-01

    As in biological evolution, multiple forces are involved in cultural evolution. One force is analogous to selection, and acts on differences in the fitness of aspects of culture by influencing who people choose to learn from. Another force is analogous to mutation, and influences how culture changes over time owing to errors in learning and the effects of cognitive biases. Which of these forces need to be appealed to in explaining any particular aspect of human cultures is an open question. We present a study that explores this question empirically, examining the role that the cognitive biases that influence cultural transmission might play in universals of colour naming. In a large-scale laboratory experiment, participants were shown labelled examples from novel artificial systems of colour terms and were asked to classify other colours on the basis of those examples. The responses of each participant were used to generate the examples seen by subsequent participants. By simulating cultural transmission in the laboratory, we were able to isolate a single evolutionary force—the effects of cognitive biases, analogous to mutation—and examine its consequences. Our results show that this process produces convergence towards systems of colour terms similar to those seen across human languages, providing support for the conclusion that the effects of cognitive biases, brought out through cultural transmission, can account for universals in colour naming. PMID:23486436

  7. Somatic clonal evolution: A selection-centric perspective.

    PubMed

    Scott, Jacob; Marusyk, Andriy

    2017-04-01

    It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  9. Population Genetics and Demography Unite Ecology and Evolution.

    PubMed

    Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W

    2017-02-01

    The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Passive margin evolution, initiation of subduction and the Wilson cycle

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1984-10-01

    We have constructed finite element models at various stages of passive margin evolution, in which we have incorporated the system of forces acting on the margin, depth-dependent rheological properties and lateral variations across the margin. We have studied the interrelations between age-dependent forces, geometry and rheology, to decipher their net effect on the state of stress at passive margins. Lithospheric flexure induced by sediment loading dominates the state of stress at passive margins. This study has shown that if after a short evolution of the margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favourable for transformation into an active margin. Although much geological evidence is available in support of the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept.

  11. The Human Shoulder Suspension Apparatus: A Causal Explanation for Bilateral Asymmetry and a Fresh Look at the Evolution of Human Bipedality.

    PubMed

    Osborn, Michelle L; Homberger, Dominique G

    2015-09-01

    The combination of large mastoid processes and clavicles is unique to humans, but the biomechanical and evolutionary significance of their special configuration is poorly understood. As part of the newly conceptualized shoulder suspension apparatus, the mastoid processes and clavicles are shaped by forces exerted by the musculo-fascial components of the cleidomastoid and clavotrapezius muscles as they suspend the shoulders from the head. Because both skeletal elements develop during infancy in tandem with the attainment of an upright posture, increased manual dexterity, and the capacity for walking, we hypothesized that the same forces would have shaped them as the shoulder suspension apparatus evolved in ancestral humans in tandem with an upright posture, increased manual dexterity, and bipedality with swinging arms. Because the shoulder suspension apparatus is subjected to asymmetrical forces from handedness, we predicted that its skeletal features would grow asymmetrically. We used this prediction to test our hypothesis in a natural experiment to correlate the size of the skeletal features with the forces exerted on them. We (1) measured biomechanically relevant bony features within the shoulder suspension apparatus in 101 male human specimens (62 of known handedness); and (2) modeled and analyzed the forces within the shoulder suspension apparatus from X-ray CT data. We identified eight right-handed characters and demonstrated the causal relationship between these right-handed characters and the magnitude and direction of forces acting on them. Our data suggest that the presence of the shoulder suspension apparatus in humans was a necessary precondition for human bipedality. © 2015 Wiley Periodicals, Inc.

  12. Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises.

    PubMed

    Svenson, Gavin J; Brannoch, Sydney K; Rodrigues, Henrique M; O'Hanlon, James C; Wieland, Frank

    2016-12-01

    Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods.

  13. Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises

    PubMed Central

    Svenson, Gavin J.; Brannoch, Sydney K.; Rodrigues, Henrique M.; O’Hanlon, James C.; Wieland, Frank

    2016-01-01

    Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods. PMID:27905469

  14. The neurophysiological and evolutionary considerations of close combat: A modular approach.

    PubMed

    Dervenis, Kostas; Tsialogiannis, Evangelos

    2017-01-01

    Close Combat may be identified as a physical confrontation involving armed or unarmed fighting, lethal and/or non-lethal methods, or even simply escape from and/or de-escalation of the confrontation. Our model hypothesizes that distinct areas of the brain are utilized for specific levels of violence, based on evolutionary criteria, and that these levels of violence bring into effect distinct physiological criteria and kinesiology. This model is outlined similar to Paul D. MacLean's triune brain theory, but incorporates distinct processes inherent to the autonomic nervous system (i.e. a "quadrune brain"), and correlates the observed level of violence to a particular response to a specific neural complex associated with very specific reactive kinesiology in the body. Our hypothesis is that the reverse also holds true: specific movements, scenarios and breathing will "activate" corresponding neural centres that in turn correlate to a respective level of violence. Moreover, socio-historic records bear out the premise that specific behavioural violations of social protocols act as "triggers" for assaultive and lethal force involving weapons, and it is very likely that these triggers (and the concomitant decision to engage in assault or lethal force) are processed through neural centres in what McLean has described as his "limbic system." A modular system of close combat is being researched and developed in accord with the above, readily adaptable to the level of violence professional peacekeepers and law enforcement officers may encounter in the course of their duties, but also directly relevant to the self-protection needs of civilians and youth. Distinct modular training regimes have been identified and developed for situations involving escape from a threat, submission of an adversary, and assaultive/lethal force, with the hope of strengthening neural bridges between the four neural complexes postulated in our model, and therefore via these bridges limiting adverse reactions to the psyche from combat stress.

  15. United States Marine Corps Post-Cold War Evolutionary Efforts: Implications for a Post-Operation Enduring Freedom/Operation Iraqi Freedom Force

    DTIC Science & Technology

    2017-05-25

    Research Question What lessons can the contemporary Marine Corps learn from its transition from the post - Cold War and Operation Desert Shield and...United States Marine Corps Post -Cold War Evolutionary Efforts: Implications for a Post -Operation Enduring Freedom/Operation Iraqi Freedom...

  16. Analysis of Knowledge-Sharing Evolutionary Game in University Teacher Team

    ERIC Educational Resources Information Center

    Huo, Mingkui

    2013-01-01

    The knowledge-sharing activity is a major drive force behind the progress and innovation of university teacher team. Based on the evolutionary game theory, this article analyzes the knowledge-sharing process model of this team, studies the influencing mechanism of various factors such as knowledge aggregate gap, incentive coefficient and risk…

  17. Humanism and multiculturalism: an evolutionary alliance.

    PubMed

    Comas-Diaz, Lillian

    2012-12-01

    Humanism and multiculturalism are partners in an evolutionary alliance. Humanistic and multicultural psychotherapies have historically influenced each other. Humanism represents the third force in psychotherapy, while multiculturalism embodies the fourth developmental stage. Multiculturalism embraces humanistic values grounded in collective and social justice contexts. Examples of multicultural humanistic constructs include contextualism, holism, and liberation. Certainly, the multicultural-humanistic connection is a necessary shift in the evolution of psychotherapy. Humanism and multiculturalism participate in the development of an inclusive and evolutionary psychotherapy. (c) 2012 APA, all rights reserved.

  18. Why flying dogs are rare: A general theory of luck in evolutionary transitions.

    PubMed

    Fleming, Leonore; Brandon, Robert

    2015-02-01

    There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. New radiometric ages for the BH-1 hominin from Balanica (Serbia): implications for understanding the role of the Balkans in Middle Pleistocene human evolution.

    PubMed

    Rink, William J; Mercier, Norbert; Mihailović, Dušan; Morley, Mike W; Thompson, Jeroen W; Roksandic, Mirjana

    2013-01-01

    Newly obtained ages, based on electron spin resonance combined with uranium series isotopic analysis, and infrared/post-infrared luminescence dating, provide a minimum age that lies between 397 and 525 ka for the hominin mandible BH-1 from Mala Balanica cave, Serbia. This confirms it as the easternmost hominin specimen in Europe dated to the Middle Pleistocene. Inferences drawn from the morphology of the mandible BH-1 place it outside currently observed variation of European Homo heidelbergensis. The lack of derived Neandertal traits in BH-1 and its contemporary specimens in Southeast Europe, such as Kocabaş, Vasogliano and Ceprano, coupled with Middle Pleistocene synapomorphies, suggests different evolutionary forces acting in the east of the continent where isolation did not play such an important role during glaciations.

  20. Experimental evidence that the Ornstein-Uhlenbeck model best describes the evolution of leaf litter decomposability

    PubMed Central

    Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K

    2014-01-01

    Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf ‘afterlife’ integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence. PMID:25535551

  1. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    PubMed

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Breeding novel solutions in the brain: a model of Darwinian neurodynamics.

    PubMed

    Szilágyi, András; Zachar, István; Fedor, Anna; de Vladar, Harold P; Szathmáry, Eörs

    2016-01-01

    Background : The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods : We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results : We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions : Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  3. Chaos and the (un)predictability of evolution in a changing environment

    PubMed Central

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-01-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104

  4. The role of biotic forces in driving macroevolution: beyond the Red Queen

    PubMed Central

    Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.

    2015-01-01

    A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685

  5. How evolutionary principles improve the understanding of human health and disease.

    PubMed

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  6. How evolutionary principles improve the understanding of human health and disease

    PubMed Central

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-01-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies. PMID:25567971

  7. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'.

    PubMed

    Gilroy, D L; Phillips, K P; Richardson, D S; van Oosterhout, C

    2017-07-01

    Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  8. Change and aging senescence as an adaptation.

    PubMed

    Martins, André C R

    2011-01-01

    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.

  9. The protein-protein interface evolution acts in a similar way to antibody affinity maturation.

    PubMed

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2010-02-05

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniques to evaluate prediction success rates of the computational method in affinity improvement in four different systems: antibody-receptor, antibody-peptide, receptor-membrane ligand, and receptor-soluble ligand. It was interesting to find that the same evolutionary information could improve the prediction success rates in all the four protein-protein complexes with an exceptional high accuracy (>57%). One of the most striking findings in our present study is that not only in the antibody-combining site but in other protein-protein interfaces almost all of the affinity-enhancing mutations are located at the germline hotspot sequences (RGYW or WA), indicating that DNA hot spot mechanisms may be widely used in the evolution of protein-protein interfaces. Our data suggest that the evolution of distinct protein-protein interfaces may use the same basic strategy under selection pressure to maintain interactions. Additionally, our data indicate that classical simulation techniques incorporating the evolutionary information derived from in vivo antibody affinity maturation can be utilized as a powerful tool to improve the binding affinity of protein-protein complex with a high accuracy.

  10. Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters

    NASA Astrophysics Data System (ADS)

    Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong

    2018-05-01

    This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.

  11. Chaos and unpredictability in evolution.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Factors Influencing Learner Conceptions of Force: Exploring the Interaction among Visuospatial Ability, Motivation, and Conceptions of Newtonian Mechanics in University Undergraduates from an Evolutionary Perspective

    ERIC Educational Resources Information Center

    Vallett, David Bruce

    2013-01-01

    This study examined the relationships among visuospatial ability, motivation to learn science, and learner conceptions of force across commonly measured demographics with university undergraduates with the aim of examining the support for an evolved sense of force and motion. Demographic variables of interest included age, ethnicity, and gender,…

  13. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  14. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  15. [Mobile genetic elements in plant sex evolution].

    PubMed

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  16. New Radiometric Ages for the BH-1 Hominin from Balanica (Serbia): Implications for Understanding the Role of the Balkans in Middle Pleistocene Human Evolution

    PubMed Central

    Rink, William J.; Mercier, Norbert; Mihailović, Dušan; Morley, Mike W.; Thompson, Jeroen W.; Roksandic, Mirjana

    2013-01-01

    Newly obtained ages, based on electron spin resonance combined with uranium series isotopic analysis, and infrared/post-infrared luminescence dating, provide a minimum age that lies between 397 and 525 ka for the hominin mandible BH-1 from Mala Balanica cave, Serbia. This confirms it as the easternmost hominin specimen in Europe dated to the Middle Pleistocene. Inferences drawn from the morphology of the mandible BH-1 place it outside currently observed variation of European Homo heidelbergensis. The lack of derived Neandertal traits in BH-1 and its contemporary specimens in Southeast Europe, such as Kocabaş, Vasogliano and Ceprano, coupled with Middle Pleistocene synapomorphies, suggests different evolutionary forces acting in the east of the continent where isolation did not play such an important role during glaciations. PMID:23405085

  17. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, A A; Rubinov, A N; Gaida, L S

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  18. The paradox of moral focus.

    PubMed

    Young, Liane; Phillips, Jonathan

    2011-05-01

    When we evaluate moral agents, we consider many factors, including whether the agent acted freely, or under duress or coercion. In turn, moral evaluations have been shown to influence our (non-moral) evaluations of these same factors. For example, when we judge an agent to have acted immorally, we are subsequently more likely to judge the agent to have acted freely, not under force. Here, we investigate the cognitive signatures of this effect in interpersonal situations, in which one agent ("forcer") forces another agent ("forcee") to act either immorally or morally. The structure of this relationship allowed us to ask questions about both the "forcer" and the "forcee." Paradoxically, participants judged that the "forcer" forced the "forcee" to act immorally (i.e. X forced Y), but that the "forcee" was not forced to act immorally (i.e. Y was not forced by X). This pattern obtained only for human agents who acted intentionally. Directly changing participants' focus from one agent to another (forcer versus forcee) also changed the target of moral evaluation and therefore force attributions. The full pattern of judgments may provide a window into motivated moral reasoning and focusing bias more generally; participants may have been motivated to attribute greater force to the immoral forcer and greater freedom to the immoral forcee. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Evolutionary Models of Irregular Warfare

    DTIC Science & Technology

    2013-03-01

    repro- duction. These adaptations include both physiological and behavioral strategies ranging from armour and immunity to complex nervous sys- tems...evolutionary principles to the level of grand strategy and international politics. This has given rise to some unexpected results: for example, work...forces, while only needing a small number of parameters to do so. Furthermore, they allow one to explore the effect of alternative strategies —whether

  20. Chaos and the (un)predictability of evolution in a changing environment.

    PubMed

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-02-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. Urotensin-II System in Genetic Control of Blood Pressure and Renal Function

    PubMed Central

    Debiec, Radoslaw; Christofidou, Paraskevi; Denniff, Matthew; Bloomer, Lisa D.; Bogdanski, Pawel; Wojnar, Lukasz; Musialik, Katarzyna; Charchar, Fadi J.; Thompson, John R.; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Samani, Nilesh J.; Lambert, David; Tomaszewski, Maciej

    2013-01-01

    Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates. PMID:24391740

  2. Differential paralog divergence modulates genome evolution across yeast species

    PubMed Central

    Lynch, Bryony; Huang, Mei; Alcantara, Erica; DeSevo, Christopher G.; Pai, Dave A.; Hoang, Margaret L.

    2017-01-01

    Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. PMID:28196070

  3. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies. PMID:16242022

  4. Bursts of transposable elements as an evolutionary driving force.

    PubMed

    Belyayev, A

    2014-12-01

    A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  6. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  7. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    PubMed

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  8. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  9. 32 CFR 842.110 - Claims not payable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5...) Claims from the combat activities of the armed forces during war or armed conflict. (c) Claims for...

  10. Not just a theory--the utility of mathematical models in evolutionary biology.

    PubMed

    Servedio, Maria R; Brandvain, Yaniv; Dhole, Sumit; Fitzpatrick, Courtney L; Goldberg, Emma E; Stern, Caitlin A; Van Cleve, Jeremy; Yeh, D Justin

    2014-12-01

    Progress in science often begins with verbal hypotheses meant to explain why certain biological phenomena exist. An important purpose of mathematical models in evolutionary research, as in many other fields, is to act as “proof-of-concept” tests of the logic in verbal explanations, paralleling the way in which empirical data are used to test hypotheses. Because not all subfields of biology use mathematics for this purpose, misunderstandings of the function of proof-of-concept modeling are common. In the hope of facilitating communication, we discuss the role of proof-of-concept modeling in evolutionary biology.

  11. Evolvable Hardware for Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Globus, Al; Hornby, Gregory; Larchev, Gregory; Kraus, William

    2004-01-01

    This article surveys the research of the Evolvable Systems Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.

  12. Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model

    PubMed Central

    Nené, Nuno R.; Dunham, Alistair S.; Illingworth, Christopher J. R.

    2018-01-01

    A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. PMID:29500183

  13. Viruses and mobile elements as drivers of evolutionary transitions

    PubMed Central

    2016-01-01

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520

  14. Viruses and mobile elements as drivers of evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-08-19

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.

  15. Differences in the Metabolic Rates of Exploited and Unexploited Fish Populations: A Signature of Recreational Fisheries Induced Evolution?

    PubMed Central

    Hessenauer, Jan-Michael; Vokoun, Jason C.; Suski, Cory D.; Davis, Justin; Jacobs, Robert; O’Donnell, Eileen

    2015-01-01

    Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR) and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6%) than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally. PMID:26039091

  16. Reconstructing nursing altruism using a biological evolutionary framework.

    PubMed

    Haigh, Carol A

    2010-06-01

    This paper presents a discussion of the role of altruism in development of the discipline of nursing and an exploration of how nursing altruism compares with current thinking in biological evolutionary theory. There is an assumption that the role of the nurse has its foundations in altruistic behaviours; however, the source of this altruism is never analysed or debated. A search of the biological altruism, altruism and health-related literature encompassing the years 1975-2007 was performed using Google Scholar. The first element of the study is a brief overview of nursing altruism as a way of establishing the conceptual boundaries. Additionally, the major tenets of biological evolution are explored to clarify the theoretical underpinnings of the hypotheses presented. A key premise of this study is that nursing altruism is not solely a manifestation of disinterested sacrifice for the benefit of others, but is more concerned with ensuring the survival of a clearly defined social group. A re-evaluation of altruism as a motivating factor in nursing and as an element of the therapeutic relationship is long overdue. It is time that the nursing profession examined professional driving forces using more than traditional philosophical frameworks. Nursing altruism is programmed to ensure the survival of the meme rather than to act in the best interest of patients. Certainly patients reap the benefits of this selfish altruism, but that can be argued to be a side effect rather than a result.

  17. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage.

    PubMed

    Moore, Talia Y; Rivera, Alberto M; Biewener, Andrew A

    2017-01-01

    Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus , a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis . When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

  18. Universal scaling in the branching of the tree of life.

    PubMed

    Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M

    2008-07-23

    Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

  19. A variational approach to niche construction.

    PubMed

    Constant, Axel; Ramstead, Maxwell J D; Veissière, Samuel P L; Campbell, John O; Friston, Karl J

    2018-04-01

    In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. © 2018 The Authors.

  20. A variational approach to niche construction

    PubMed Central

    Ramstead, Maxwell J. D.; Veissière, Samuel P. L.; Campbell, John O.; Friston, Karl J.

    2018-01-01

    In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. PMID:29643221

  1. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    PubMed Central

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  2. Research on Duplication Dynamics and Evolutionary Stable of Reverse Supply Chain

    NASA Astrophysics Data System (ADS)

    Huizhong, Dong; Hongli, Song

    An evolutionary game model of Reverse Supply Chain(RSC) is established based on duplication dynamics function and evolutionary stable strategy. Using the model framework, this paper provides insights into a deeper understanding on how each supplier make strategic decision independently in reverse supply chain to determine their performance. The main conclusion is as follow: Under the market mechanism, not unless the extra income derived from the implementation of RSC exceeds zero point would the suppliers implement RSC strategy. When those suppliers are passive to RSC, the effective solution is that the government takes macro-control measures, for example, to force those suppliers implement RSC through punishment mechanism.

  3. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  4. Temperature and Evolutionary Novelty as Forces behind the Evolution of General Intelligence

    ERIC Educational Resources Information Center

    Kanazawa, Satoshi

    2008-01-01

    How did human intelligence evolve to be so high? Lynn [Lynn, R. (1991). The evolution of race differences in intelligence. Mankind Quarterly, 32, 99-173] and Rushton [Rushton, J.P. (1995). Race, evolution, and behavior: A life history perspective. New Brunswick: Transaction] suggest that the main forces behind the evolution of human intelligence…

  5. An evolutionary perspective on the systems of adaptive immunity.

    PubMed

    Müller, Viktor; de Boer, Rob J; Bonhoeffer, Sebastian; Szathmáry, Eörs

    2018-02-01

    We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  6. Gender differences in erotic plasticity--evolutionary or sociocultural forces? Comment on Baumeister (2000)

    PubMed

    Hyde, J S; Durik, A M

    2000-05-01

    R. F. Baumeister (2000) argued that there are gender differences in erotic plasticity, meaning that women are more influenced by cultural and social factors than men are. He attributed the gender difference in erotic plasticity to evolutionary, biological forces. We propose an alternative account of the data using a multifactor sociocultural model that rests on 4 assertions: (a) Men have more power than women on many levels including the institutional and the interpersonal levels, (b) education increases women's power, (c) groups with less power (women) pay more attention to and adapt their behavior more to the group with more power (men) than the reverse, and (d) gender roles powerfully shape behavior, and heterosexuality is a more important element of the male role than the female role.

  7. Do arms races punctuate evolutionary stasis? Unified insights from phylogeny, phylogeography and microevolutionary processes.

    PubMed

    Toju, Hirokazu; Sota, Teiji

    2009-09-01

    One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.

  8. 32 CFR 806b.1 - Summary of revisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...

  9. 32 CFR 806b.1 - Summary of revisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...

  10. 32 CFR 806b.1 - Summary of revisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional; adds the E-Gov Act of 2002 requirement for a Privacy Impact Assessment for all information systems that...

  11. The Equal Pay Act: Higher Education and the Court's View.

    ERIC Educational Resources Information Center

    Greenlaw, Paul S.; Swanson, Austin D.

    1994-01-01

    Effects of the Equal Pay Act of 1963 for college and university employees are reviewed through an examination of trends in court decisions and legal treatment of the issues. It is concluded that case law has been evolutionary, with concepts of "equal,""work," and others not altered drastically by the courts in recent years.…

  12. Viscous/Inviscid Interaction Analysis of the Aerodynamic Performance of the NACA 65-213 Airfoil.

    DTIC Science & Technology

    1987-03-01

    flows . The principal forces that act on the body are those which act directly on the mass of the fluid element, the bodi’ forces , and those which act...shall again consider a 2-D flow , as indicated in Figure.2-. The resultant force in the x- direction, for one unit length in z is F= ph.r~u + a(𔃼.10...x,+.a. Where fx is the body force per-unit mass in the x direction. The most conmmon body force for the flow fields is that of gravity. Equation 2.10

  13. Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.

    PubMed

    Nené, Nuno R; Dunham, Alistair S; Illingworth, Christopher J R

    2018-05-01

    A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. Copyright © 2018 Nené et al.

  14. A neutral theory for interpreting correlations between species and genetic diversity in communities.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois

    2015-01-01

    Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.

  15. Drought survival and reproduction impose contrasting selection pressures on maximum body size and sexual size dimorphism in a snake, Seminatrix pygaea.

    PubMed

    Winne, Christopher T; Willson, John D; Whitfield Gibbons, J

    2010-04-01

    The causes and consequences of body size and sexual size dimorphism (SSD) have been central questions in evolutionary ecology. Two, often opposing selective forces are suspected to act on body size in animals: survival selection and reproductive (fecundity and sexual) selection. We have recently identified a system where a small aquatic snake species (Seminatrix pygaea) is capable of surviving severe droughts by aestivating within dried, isolated wetlands. We tested the hypothesis that the lack of aquatic prey during severe droughts would impose significant survivorship pressures on S. pygaea, and that the largest individuals, particularly females, would be most adversely affected by resource limitation. Our findings suggest that both sexes experience selection against large body size during severe drought when prey resources are limited, as nearly all S. pygaea are absent from the largest size classes and maximum body size and SSD are dramatically reduced following drought. Conversely, strong positive correlations between maternal body size and reproductive success in S. pygaea suggest that females experience fecundity selection for large size during non-drought years. Collectively, our study emphasizes the dynamic interplay between selection pressures that act on body size and supports theoretical predictions about the relationship between body size and survivorship in ectotherms under conditions of resource limitation.

  16. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins

    PubMed Central

    Knudsen, Bjarne; Miyamoto, Michael M.

    2001-01-01

    Changes in protein function can lead to changes in the selection acting on specific residues. This can often be detected as evolutionary rate changes at the sites in question. A maximum-likelihood method for detecting evolutionary rate shifts at specific protein positions is presented. The method determines significance values of the rate differences to give a sound statistical foundation for the conclusions drawn from the analyses. A statistical test for detecting slowly evolving sites is also described. The methods are applied to a set of Myc proteins for the identification of both conserved sites and those with changing evolutionary rates. Those positions with conserved and changing rates are related to the structures and functions of their proteins. The results are compared with an earlier Bayesian method, thereby highlighting the advantages of the new likelihood ratio tests. PMID:11734650

  17. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    PubMed

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  18. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

  19. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    PubMed

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  1. Sexual selection on female ornaments in the sex-role-reversed Gulf pipefish (Syngnathus scovelli).

    PubMed

    Flanagan, S P; Johnson, J B; Rose, E; Jones, A G

    2014-11-01

    Understanding how selection acts on traits individually and in combination is an important step in deciphering the mechanisms driving evolutionary change, but for most species, and especially those in which sexual selection acts more strongly on females than on males, we have no estimates of selection coefficients pertaining to the multivariate sexually selected phenotype. Here, we use a laboratory-based mesocosm experiment to quantify pre- and post-mating selection on female secondary sexual traits in the Gulf pipefish (Syngnathus scovelli), a sexually dimorphic, sex-role-reversed species in which ornamented females compete for access to choosy males. We calculate selection differentials and gradients on female traits, including ornament area, ornament number and body size for three episodes of selection related to female reproductive success (number of mates, number of eggs transferred and number of surviving embryos). Selection is strong on both ornament area and ornament size, and the majority of selection occurs during the premating episode of selection. Interestingly, selection on female body size, which has been detected in previous studies of Gulf pipefish, appears to be indirect, as evidenced by a multivariate analysis of selection gradients. Our results show that sexual selection favours either many bands or larger bands in female Gulf pipefish. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Evolutionary perspectives on stress and affective disorder.

    PubMed

    Gardner, R

    2001-01-01

    Three general approaches to evolutionary perspectives in psychiatry include the following domains. (1) information from general medicine and physiology that involves defenses against infectious disease and predators, with obsessive compulsive disorder and posttraumatic stress disorder (PTSD) amongst the psychiatric results of this. (2) Sociophysiology assumes that normal brain functions mediate social interactions, including social rank hierarchy, in-out group formation, and family bonding. At times these function maladroitly resulting in psychiatric symptoms, for example, mania, persecutory delusions, and depression. (3) Evolutionary psychology explains self-sacrificing and generous behavior despite how genes act selfishly in natural selection theory, via the helping of relatives, reciprocal altruism, and manipulation of social contracts. Copyright 2001 by W.B. Saunders Company

  3. Evolutionary Thinking in Microeconomic Models: Prestige Bias and Market Bubbles

    PubMed Central

    Bell, Adrian Viliami

    2013-01-01

    Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful) individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior. PMID:23544100

  4. Dosage compensation, the origin and the afterlife of sex chromosomes.

    PubMed

    Larsson, Jan; Meller, Victoria H

    2006-01-01

    Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.

  5. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  6. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    PubMed

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  7. Fitness costs and benefits of novel herbicide tolerance in a noxious weed

    PubMed Central

    Baucom, Regina S.; Mauricio, Rodney

    2004-01-01

    Glyphosate, the active ingredient in the herbicide RoundUp, has increased dramatically in use over the past decade and constitutes a potent anthropogenic source of selection. In the southeastern United States, weedy morning glories have begun to develop tolerance to glyphosate, representing a unique opportunity to examine the evolutionary genetics of a novel trait. We found genetic variation for tolerance, indicating the potential for the population to respond to selection by glyphosate. However, the following significant evolutionary constraint exists: in the absence of glyphosate, tolerant genotypes produced fewer seeds than susceptible genotypes. The combination of strong positive directional selection in the presence of glyphosate and strong negative directional selection in its absence may indicate that the selective landscape of land use could drive the evolutionary trajectory of glyphosate tolerance. Understanding these evolutionary forces is imperative for devising comprehensive management strategies to help slow the rate of the evolution of tolerance. PMID:15326309

  8. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  9. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role.

    PubMed

    Miklós, István; Zádori, Zoltán

    2012-02-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.

  10. Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    PubMed Central

    Miklós, István; Zádori, Zoltán

    2012-01-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. PMID:22319430

  11. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    PubMed Central

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  12. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  13. Counterfactuals and history: Contingency and convergence in histories of science and life.

    PubMed

    Hesketh, Ian

    2016-08-01

    This article examines a series of recent histories of science that have attempted to consider how science may have developed in slightly altered historical realities. These works have, moreover, been influenced by debates in evolutionary science about the opposing forces of contingency and convergence in regard to Stephen Jay Gould's notion of "replaying life's tape." The article argues that while the historians under analysis seem to embrace contingency in order to present their counterfactual narratives, for the sake of historical plausibility they are forced to accept a fairly weak role for contingency in shaping the development of science. It is therefore argued that Simon Conway Morris's theory of evolutionary convergence comes closer to describing the restrained counterfactual worlds imagined by these historians of science than does contingency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  15. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species

    PubMed Central

    Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.

    2016-01-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855

  16. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  17. Structural Genomics: Correlation Blocks, Population Structure, and Genome Architecture

    PubMed Central

    Hu, Xin-Sheng; Yeh, Francis C.; Wang, Zhiquan

    2011-01-01

    An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level. PMID:21886455

  18. Rapid, Value-based, Evolutionary Acquisition and Its Application to a USMC Tactical Service Oriented Architecture

    DTIC Science & Technology

    2009-06-01

    Availability C2PC Command and Control Personal Computer CAS Close Air Support CCA Clinger-Cohen Act CDR Critical Design Review CJCSI Chairman of the Joint... kids , Jackie and Anna and my future boy whose name is TBD, I think my time at NPS has made me a better person and hopefully a better father. Thank... can the USMC apply the essential principles of rapid, value-based, evolutionary acquisition to the development and procurement of a TSOA? 4 THIS

  19. Running with the Red Queen: the role of biotic conflicts in evolution

    PubMed Central

    Brockhurst, Michael A.; Chapman, Tracey; King, Kayla C.; Mank, Judith E.; Paterson, Steve; Hurst, Gregory D. D.

    2014-01-01

    What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts. PMID:25355473

  20. 32 CFR 842.110 - Claims not payable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...

  1. 32 CFR 842.110 - Claims not payable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...

  2. 32 CFR 842.110 - Claims not payable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...

  3. 32 CFR 842.110 - Claims not payable.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... International Agreements Claims Act. (4) The Air Force Admiralty Claims Act and the Admiralty Extensions Act. (5... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... providing employee benefits through insurance, local law, or custom and the United States pays for such...

  4. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae.

    PubMed

    Ellis, Tom J; Field, David L

    2016-06-01

    Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Human Variation in Short Regions Predisposed to Deep Evolutionary Conservation

    PubMed Central

    Loots, Gabriela G.; Ovcharenko, Ivan

    2010-01-01

    The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species. PMID:20093432

  6. 76 FR 77498 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended... (HQ USAF/SG), Air Force Medical Service Chief Information Officer's Office (AFMS CIO's office), 5201... Air Force medical facilities. Documentation includes: Patient's medical history, physical examination...

  7. 75 FR 48954 - Arbitration Panel Decision Under the Randolph-Sheppard Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... and its implementing regulations concerning the food services at Wright-Patterson Air Force Base in... permit to operate snack and beverage vending machines throughout the Wright-Patterson Air Force Base, and... income from the vending machines at the Wright-Patterson Air Force Base pursuant to the Act and...

  8. Left-right asymmetry of the gnathostome skull: its evolutionary, developmental, and functional aspects.

    PubMed

    Compagnucci, Claudia; Fish, Jennifer; Depew, Michael J

    2014-06-01

    Much of the gnathostome (jawed vertebrate) evolutionary radiation was dependent on the ability to sense and interpret the environment and subsequently act upon this information through utilization of a specialized mode of feeding involving the jaws. While the gnathostome skull, reflective of the vertebrate baüplan, typically is bilaterally symmetric with right (dextral) and left (sinistral) halves essentially representing mirror images along the midline, both adaptive and abnormal asymmetries have appeared. Herein we provide a basic primer on studies of the asymmetric development of the gnathostome skull, touching briefly on asymmetry as a field of study, then describing the nature of cranial development and finally underscoring evolutionary and functional aspects of left-right asymmetric cephalic development. © 2014 Wiley Periodicals, Inc.

  9. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  10. Sail Plan Configuration Optimization for a Modern Clipper Ship

    NASA Astrophysics Data System (ADS)

    Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz

    2002-11-01

    We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).

  11. A Basic Study on Countermeasure Against Aerodynamic Force Acting on Train Running Inside Tunnel Using Air Blowing

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Nakade, Koji

    A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.

  12. Phenotypic Evolution With and Beyond Genome Evolution.

    PubMed

    Félix, M-A

    2016-01-01

    DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. © 2016 Elsevier Inc. All rights reserved.

  13. How cancer shapes evolution, and how evolution shapes cancer

    PubMed Central

    Casás-Selves, Matias; DeGregori, James

    2013-01-01

    Evolutionary theories are critical for understanding cancer development at the level of species as well as at the level of cells and tissues, and for developing effective therapies. Animals have evolved potent tumor suppressive mechanisms to prevent cancer development. These mechanisms were initially necessary for the evolution of multi-cellular organisms, and became even more important as animals evolved large bodies and long lives. Indeed, the development and architecture of our tissues were evolutionarily constrained by the need to limit cancer. Cancer development within an individual is also an evolutionary process, which in many respects mirrors species evolution. Species evolve by mutation and selection acting on individuals in a population; tumors evolve by mutation and selection acting on cells in a tissue. The processes of mutation and selection are integral to the evolution of cancer at every step of multistage carcinogenesis, from tumor genesis to metastasis. Factors associated with cancer development, such as aging and carcinogens, have been shown to promote cancer evolution by impacting both mutation and selection processes. While there are therapies that can decimate a cancer cell population, unfortunately, cancers can also evolve resistance to these therapies, leading to the resurgence of treatment-refractory disease. Understanding cancer from an evolutionary perspective can allow us to appreciate better why cancers predominantly occur in the elderly, and why other conditions, from radiation exposure to smoking, are associated with increased cancers. Importantly, the application of evolutionary theory to cancer should engender new treatment strategies that could better control this dreaded disease. PMID:23705033

  14. Specific interactions between host and parasite genotypes do not act as a constraint on the evolution of antiviral resistance in Drosophila.

    PubMed

    Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M

    2012-04-01

    Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Requirements Definition for Force Level Command and Control in the Tactical Air Control System: An Evolutionary Approach Toward Meeting Near Term and Future Operational Needs.

    DTIC Science & Technology

    1985-01-01

    numerous major exercises, such as WINTEX- CIMEX , REFORGER, CRESTED EAGLE, and BRIGHT STAR. USAFE is now actively planning an evolutionary approach toward C2...during WINTEX- CIMEX 85, we have been investigating a number of approaches to enhancing joint air-ground operations and providing a means for better...throughout the ground battle elements. The USAREUR Distributed Decision Aid System (UD[1AS) was initially deployed in Exercise WINTEX- CIMEX 84. During

  16. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    PubMed

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.

    PubMed

    Planqué, R; Powell, S; Franks, N R; van den Berg, J B

    2016-11-01

    Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. 76 FR 53421 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2011-0021] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to Add a System of Records... Federal Register Liaison Officer, Department of Defense. F084 AFHRA A System Name: Air Force Historical...

  19. 76 FR 3113 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended... Center; major commands; field operating agencies; Military Personnel Sections at Air Force installations... mailing addresses are published as an appendix to the Air Force's compilation of systems of records...

  20. Two for the Price of One: Integration of NEPA and NHPA Procedures

    DTIC Science & Technology

    2013-09-01

    Air Force Base AFI Air Force Instruction AFPD Air Force Policy Directive AR Army Regulation AT/FP Anti-Terrorism/Force Protection BLM Bureau of...Magnuson-Stevens Fishery Conservation and Management Act NASA National Aeronautics and Space Administration NEPA National Environmental Policy Act...example, the US Forest Service (USFS), US Fish and Wildlife Service (FWS), and Bureau of Land Management ( BLM ) have programs which create military

  1. 8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... act or threatened act of violence, including any forceful detention, which results or threatens to..., molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence... from police, judges, medical personnel, school officials and social service agency personnel. The...

  2. 8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...

  3. 8 CFR 216.5 - Waiver of requirement to file joint petition to remove conditions by alien spouse.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... act or threatened act of violence, including any forceful detention, which results or threatens to result in physical or mental injury. Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor) or forced prostitution shall be considered acts of violence...

  4. Infrastructure Task Force National Environmental Policy Act Requirements - February 2011

    EPA Pesticide Factsheets

    This document summarizes in a matrix format the federal regulations requirements and guidance for complying with the National Environmental Policy Act for the Infrastructure Task Force federal partner agencies.

  5. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi.

    PubMed

    Seifert, Stephanie N; Khatchikian, Camilo E; Zhou, Wei; Brisson, Dustin

    2015-04-01

    Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits, such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B. burgdorferi, focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration, as investigations transition from analyses of single genes to genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm.

    PubMed

    Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L

    2016-09-01

    Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Biological hierarchies and the nature of extinction.

    PubMed

    Congreve, Curtis R; Falk, Amanda R; Lamsdell, James C

    2018-05-01

    Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant. © 2017 Cambridge Philosophical Society.

  8. Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion.

    PubMed

    Mak, Arthur F T; Zhang, Ming; Tam, Eric W C

    2010-08-15

    Forces acting on the body via various external surfaces during locomotion are needed to support the body under gravity, control posture, and overcome inertia. Examples include the forces acting on the body via the seating surfaces during wheelchair propulsion, the forces acting on the plantar foot tissues via the insole during gait, and the forces acting on the residual-limb tissues via the prosthetic socket during various movement activities. Excessive exposure to unwarranted stresses at the body-support interfaces could lead to tissue breakdowns commonly known as pressure ulcers, often presented as deep-tissue injuries around bony prominences or as surface damage on the skin. In this article, we review the literature that describes how the involved tissues respond to epidermal loading, taking into account both experimental and computational findings from in vivo and in vitro studies. In particular, we discuss related literature about internal tissue deformation and stresses, microcirculatory responses, and histological, cellular, and molecular observations.

  9. Neutral evolution in a biological population as diffusion in phenotype space: reproduction with local mutation but without selection.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-02

    The process of "evolutionary diffusion," i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  10. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  11. Adaptive Evolution of the Insulin Two-Gene System in Mouse

    PubMed Central

    Shiao, Meng-Shin; Liao, Ben-Yang; Long, Manyuan; Yu, Hon-Tsen

    2008-01-01

    Insulin genes in mouse and rat compose a two-gene system in which Ins1 was retroposed from the partially processed mRNA of Ins2. When Ins1 originated and how it was retained in genomes still remain interesting problems. In this study, we used genomic approaches to detect insulin gene copy number variation in rodent species and investigated evolutionary forces acting on both Ins1 and Ins2. We characterized the phylogenetic distribution of the new insulin gene (Ins1) by Southern analyses and confirmed by sequencing insulin genes in the rodent genomes. The results demonstrate that Ins1 originated right before the mouse–rat split (∼20 MYA), and both Ins1 and Ins2 are under strong functional constraints in these murine species. Interestingly, by examining a range of nucleotide polymorphisms, we detected positive selection acting on both Ins2 and Ins1 gene regions in the Mus musculus domesticus populations. Furthermore, three amino acid sites were also identified as having evolved under positive selection in two insulin peptides: two are in the signal peptide and one is in the C-peptide. Our data suggest an adaptive divergence in the mouse insulin two-gene system, which may result from the response to environmental change caused by the rise of agricultural civilization, as proposed by the thrifty-genotype hypothesis. PMID:18245324

  12. Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica and Oophaga lehmanni.

    PubMed

    Vargas-Salinas, Fernando; Amézquita, Adolfo

    2013-01-01

    According to the acoustic adaptation hypothesis, communication signals are evolutionary shaped in a way that minimizes its degradation and maximizes its contrast against the background noise. To compare the importance for call divergence of acoustic adaptation and hybridization, an evolutionary force allegedly promoting phenotypic variation, we compared the mate recognition signal of two species of poison frogs (Oophaga histrionica and O. lehmanni) at five localities: two (one per species) alongside noisy streams, two away from streams, and one interspecific hybrid. We recorded the calls of 47 males and characterized the microgeographic variation in their spectral and temporal features, measuring ambient noise level, body size, and body temperature as covariates. As predicted, frogs living in noisy habitats uttered high frequency calls and, in one species, were much smaller in size. These results support a previously unconsidered role of noise on streams as a selective force promoting an increase in call frequency and pleiotropic effects in body size. Regarding hybrid frogs, their calls overlapped in the signal space with the calls of one of the parental lineages. Our data support acoustic adaptation following two evolutionary routes but do not support the presumed role of hybridization in promoting phenotypic diversity.

  13. 78 FR 5789 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0002] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a System of Records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory...

  14. 77 FR 60411 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID USAF-2012-0019] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a system of records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory...

  15. Passive levitation in alternating magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  16. Passive levitation in alternating magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  17. 76 FR 11213 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ...: The Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5... the Air Force's compilation of systems of records notices.'' * * * * * Categories of records in the... maintenance of the system: Delete entry and replace with ``10 U.S.C. 8013, Secretary of the Air Force; 10 U.S...

  18. 75 FR 78684 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C... system: Air Force Active duty, Reserve and National Guard military personnel, government civilians, and... Regulations; 10 U.S.C. 8013, Secretary of the Air Force; 31 U.S.C. 3512, Executive agency accounting and other...

  19. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  20. Heterogeneous recombination among Hepatitis B virus genotypes.

    PubMed

    Castelhano, Nadine; Araujo, Natalia M; Arenas, Miguel

    2017-10-01

    The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 76 FR 10010 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... inventory of records systems subject to the Privacy Act of 1974, (5 U.S.C. 552a), as amended. DATES: The...: The Department of the Air Force systems of records notices subject to the Privacy Act of 1974, (5 U.S... 78150-7412 and at Military Personnel Sections at Air Force Installations. Official mailing addresses are...

  2. Relationship of forces acting on implant rods and degree of scoliosis correction.

    PubMed

    Salmingo, Remel Alingalan; Tadano, Shigeru; Fujisaki, Kazuhiro; Abe, Yuichiro; Ito, Manabu

    2013-02-01

    Adolescent idiopathic scoliosis is a complex spinal pathology characterized as a three-dimensional spine deformity combined with vertebral rotation. Various surgical techniques for correction of severe scoliotic deformity have evolved and became more advanced in applying the corrective forces. The objective of this study was to investigate the relationship between corrective forces acting on deformed rods and degree of scoliosis correction. Implant rod geometries of six adolescent idiopathic scoliosis patients were measured before and after surgery. An elasto-plastic finite element model of the implant rod before surgery was reconstructed for each patient. An inverse method based on Finite Element Analysis was used to apply forces to the implant rod model such that it was deformed the same after surgery. Relationship between the magnitude of corrective forces and degree of correction expressed as change of Cobb angle was evaluated. The effects of screw configuration on the corrective forces were also investigated. Corrective forces acting on rods and degree of correction were not correlated. Increase in number of implant screws tended to decrease the magnitude of corrective forces but did not provide higher degree of correction. Although greater correction was achieved with higher screw density, the forces increased at some level. The biomechanics of scoliosis correction is not only dependent to the corrective forces acting on implant rods but also associated with various parameters such as screw placement configuration and spine stiffness. Considering the magnitude of forces, increasing screw density is not guaranteed as the safest surgical strategy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Is the thumb a fifth finger? A study of digit interaction during force production tasks

    PubMed Central

    Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785

  4. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory.

    PubMed

    Wünsche, Andrea; Dinh, Duy M; Satterwhite, Rebecca S; Arenas, Carolina Diaz; Stoebel, Daniel M; Cooper, Tim F

    2017-03-01

    Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.

  5. Inventing Life-Forms: The Creation of an Extraterrestrial Species.

    ERIC Educational Resources Information Center

    Science Activities, 1996

    1996-01-01

    Presents activities in which students play the role of cadets performing missions for the fictitious SETI (Search for Extraterrestrial Intelligence) Academy. Guides students toward an understanding of evolutionary forces and how they are affected by the physical environment. (JRH)

  6. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  7. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).

    PubMed

    Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D

    2014-12-06

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae)

    PubMed Central

    Timerman, David; Greene, David F.; Urzay, Javier; Ackerman, Josef D.

    2014-01-01

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind–stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. PMID:25297315

  9. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome

    PubMed Central

    Gillings, Michael R.

    2013-01-01

    The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare. PMID:23386843

  10. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome.

    PubMed

    Gillings, Michael R

    2013-01-01

    The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare.

  11. Newton's Law: Not so Simple after All

    ERIC Educational Resources Information Center

    Robertson, William C.; Gallagher, Jeremiah; Miller, William

    2004-01-01

    One of the most basic concepts related to force and motion is Newton's first law, which essentially states, "An object at rest tends to remain at rest unless acted on by an unbalanced force. An object in motion in a straight line tends to remain in motion in a straight line unless acted upon by an unbalanced force." Judging by the time and space…

  12. Evolutionary rates for multivariate traits: the role of selection and genetic variation

    PubMed Central

    Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-01-01

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697

  13. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease.

    PubMed

    Rühli, Frank Jakobus; Henneberg, Maciej

    2013-04-29

    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.

  14. There must be a prokaryote somewhere: microbiology's search for itself

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1994-01-01

    While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows.

  15. 76 FR 72451 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ..., Department of Ecology and Evolutionary Biology, University of California--Santa Cruz, Long Marine Lab, 100... trophic relationships and feeding habits of marine mammals, based on the demonstration that isotopic...

  16. Design, calibration and testing of a force balance for a hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Vadassery, Pravin

    The forces acting on a flight vehicle are critical for determining its performance. Of particular interest is the hypersonic regime. Force measurements are much more complex in hypersonic flows, where those speeds are simulated in shock tunnels. A force balance for such facilities contains sensitive gages that measure stress waves and ultimately determine the different components of force acting on the model. An external force balance was designed and fabricated for the UTA Hypersonic shock tunnel to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function of the system. Forces were recovered using a deconvolution procedure. To validate the force balance, experiments were conducted on a blunt cone. The measured forces were compared to Newtonian theory.

  17. How Can We Study the Evolution of Animal Minds?

    PubMed Central

    Cauchoix, Maxime; Chaine, Alexis S.

    2016-01-01

    During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior. PMID:27014163

  18. How hardwired is human behavior?

    PubMed

    Nicholson, N

    1998-01-01

    Time and time again managers have tried to eliminate hierarchies, politics, and interorganizational rivalry--but to no avail. Why? Evolutionary psychologists would say that they are working against nature--emotional and behavioral "hardwiring" that is the legacy of our Stone Age ancestors. In this evolutionary psychology primer for executives, Nigel Nicholson explores many of the Science's central tenets. Of course, evolutionary psychology is still an emerging discipline, and its strong connection with the theory of natural selection has sparked significant controversy. But, as Nicholson suggests, evolutionary psychology is now well established enough that its insights into human instinct will prove illuminating to anyone seeking to understand why people act the way they do in organizational settings. Take gossip. According to evolutionary psychology, our Stone Age ancestors needed this skill to survive the socially unpredictable conditions of the Savannah Plain. Thus, over time, the propensity to gossip became part of our mental programming. Executives trying to eradicate gossip at work might as well try to change their employees' musical tastes. Better to put one's energy into making sure the "rumor mill" avoids dishonesty or unkindness as much as possible. Evolutionary psychology also explores the dynamics of the human group. Clans on the Savannah Plain, for example, appear to have had no more than 150 members. The message for managers? People will likely be most effective in small organizational units. As every executive knows, it pays to be an insightful student of human nature. Evolutionary psychology adds another important chapter to consider.

  19. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  20. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  1. Optimality Principles in the Regulation of Metabolic Networks

    PubMed Central

    Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646

  2. Optimality principles in the regulation of metabolic networks.

    PubMed

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  3. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    PubMed

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  4. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    PubMed

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  5. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    PubMed Central

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  6. An evolutionary approach to financial history.

    PubMed

    Ferguson, N

    2009-01-01

    Financial history is not conventionally thought of in evolutionary terms, but it should be. Traditional ways of thinking about finance, dating back to Hilferding, emphasize the importance of concentration and economies of scale. But these approaches overlook the rich "biodiversity" that characterizes the financial world. They also overlook the role of natural selection. To be sure, natural selection in the financial world is not exactly analogous to the processes first described by Darwin and elaborated on by modern biologists. There is conscious adaptation as well as random mutation. Moreover, there is something resembling "intelligent design" in finance, whereby regulators and legislators act in a quasidivine capacity, putting dinosaurs on life support. The danger is that such interventions in the natural processes of the market may ultimately distort the evolutionary process, by getting in the way of Schumpeter's "creative destruction."

  7. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    NASA Astrophysics Data System (ADS)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  8. Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.

    PubMed

    M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W

    2016-12-01

    The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.

  9. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  10. 76 FR 72724 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ..., Department of Ecology and Evolutionary Biology, University of California--Santa Cruz, Long Marine Lab, 100... increasingly used to study trophic relationships and feeding habits of marine mammals, based on the [[Page...

  11. Transposable elements as a molecular evolutionary force

    NASA Technical Reports Server (NTRS)

    Fedoroff, N. V.

    1999-01-01

    This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.

  12. Forces Acting on a Ball in an Air Jet

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S.

    2011-01-01

    The forces acting on a ball in an air jet have been measured using simple equipment. Such measurements allow quite a precise, non-ambiguous description and understanding of the physical mechanism which explains the famous levitating ball experiment. (Contains 7 figures.)

  13. Biomechanics of leukocyte rolling

    PubMed Central

    Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus

    2011-01-01

    Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934

  14. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-09-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.

  15. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  16. Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview

    NASA Astrophysics Data System (ADS)

    Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea

    2014-07-01

    The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.

  17. Depth-dependent resistance of granular media to vertical penetration.

    PubMed

    Brzinski, T A; Mayor, P; Durian, D J

    2013-10-18

    We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.

  18. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    NASA Astrophysics Data System (ADS)

    Yang, Yong

    2008-12-01

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  19. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease

    PubMed Central

    2013-01-01

    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations. PMID:23627943

  20. Two-phase vesicles: a study on evolutionary and stationary models.

    PubMed

    Sahebifard, MohammadMahdi; Shahidi, Alireza; Ziaei-Rad, Saeed

    2017-05-01

    In the current article, the dynamic evolution of two-phase vesicles is presented as an extension to a previous stationary model and based on an equilibrium of local forces. In the simplified model, ignoring the effects of membrane inertia, a dynamic equilibrium between the membrane bending potential and local fluid friction is considered in each phase. The equilibrium equations at the domain borders are completed by extended introduction of membrane section reactions. We show that in some cases, the results of stationary and evolutionary models are in agreement with each other and also with experimental observations, while in others the two models differ markedly. The value of our approach is that we can account for unresponsive points of uncertainty using our equations with the local velocity of the lipid membranes and calculating the intermediate states (shapes) in the consequent evolutionary, or response, path.

  1. De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints

    PubMed Central

    Smock, Robert G.; Yadid, Itamar; Dym, Orly; Clarke, Jane; Tawfik, Dan S.

    2016-01-01

    Summary Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence. PMID:26806127

  2. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    NASA Astrophysics Data System (ADS)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  3. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  4. Sequential interactions-in which one player plays first and another responds-promote cooperation in evolutionary-dynamical simulations of single-shot Prisoner's Dilemma and Snowdrift games.

    PubMed

    Laird, Robert A

    2018-09-07

    Cooperation is a central topic in evolutionary biology because (a) it is difficult to reconcile why individuals would act in a way that benefits others if such action is costly to themselves, and (b) it underpins many of the 'major transitions of evolution', making it essential for explaining the origins of successively higher levels of biological organization. Within evolutionary game theory, the Prisoner's Dilemma and Snowdrift games are the main theoretical constructs used to study the evolution of cooperation in dyadic interactions. In single-shot versions of these games, wherein individuals play each other only once, players typically act simultaneously rather than sequentially. Allowing one player to respond to the actions of its co-player-in the absence of any possibility of the responder being rewarded for cooperation or punished for defection, as in simultaneous or sequential iterated games-may seem to invite more incentive for exploitation and retaliation in single-shot games, compared to when interactions occur simultaneously, thereby reducing the likelihood that cooperative strategies can thrive. To the contrary, I use lattice-based, evolutionary-dynamical simulation models of single-shot games to demonstrate that under many conditions, sequential interactions have the potential to enhance unilaterally or mutually cooperative outcomes and increase the average payoff of populations, relative to simultaneous interactions-benefits that are especially prevalent in a spatially explicit context. This surprising result is attributable to the presence of conditional strategies that emerge in sequential games that can't occur in the corresponding simultaneous versions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Genome-Wide Analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) Genes in Plants Reveals the Eudicot-Wide PDAT Gene Expansion and Altered Selective Pressures Acting on the Core Eudicot PDAT Paralogs1[OPEN

    PubMed Central

    Pan, Xue; Peng, Fred Y.; Weselake, Randall J.

    2015-01-01

    PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs. PMID:25585619

  6. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  7. Resistance and relatedness on an evolutionary graph

    PubMed Central

    Maciejewski, Wes

    2012-01-01

    When investigating evolution in structured populations, it is often convenient to consider the population as an evolutionary graph—individuals as nodes, and whom they may act with as edges. There has, in recent years, been a surge of interest in evolutionary graphs, especially in the study of the evolution of social behaviours. An inclusive fitness framework is best suited for this type of study. A central requirement for an inclusive fitness analysis is an expression for the genetic similarity between individuals residing on the graph. This has been a major hindrance for work in this area as highly technical mathematics are often required. Here, I derive a result that links genetic relatedness between haploid individuals on an evolutionary graph to the resistance between vertices on a corresponding electrical network. An example that demonstrates the potential computational advantage of this result over contemporary approaches is provided. This result offers more, however, to the study of population genetics than strictly computationally efficient methods. By establishing a link between gene transfer and electric circuit theory, conceptualizations of the latter can enhance understanding of the former. PMID:21849384

  8. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  9. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  10. Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches.

    PubMed

    Fox, Ana Romina; Soto, Gabriela; Mozzicafreddo, Matteo; Garcia, Araceli Nora; Cuccioloni, Massimiliano; Angeletti, Mauro; Salerno, Juan Carlos; Ayub, Nicolás Daniel

    2014-01-01

    Acetoacetyl-CoA thiolase (EC 2.3.1.9), commonly named thiolase II, condenses two molecules of acetyl-CoA to give acetoacetyl-CoA and CoA. This enzyme acts in anabolic processes as the first step in the biosynthesis of isoprenoids and polyhydroxybutyrate in eukaryotes and bacteria, respectively. We have recently reported the evolutionary and functional equivalence of these enzymes, suggesting that thiolase II could be the rate limiting enzyme in these pathways and presented evidence indicating that this enzyme modulates the availability of reducing equivalents during abiotic stress adaptation in bacteria and plants. However, these results are not sufficient to clarify why thiolase II was evolutionary selected as a critical enzyme in the production of antioxidant compounds. Regarding this intriguing topic, we propose that thiolase II could sense changes in the acetyl-CoA/CoA ratio induced by the inhibition of the tricarboxylic acid cycle under abiotic stress. Thus, the high level of evolutionary and functional constraint of thiolase II may be due to the connection of this enzyme with an ancient and conserved metabolic route. © 2013.

  11. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    PubMed

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. 76 FR 32224 - Migratory Birds; Take of Migratory Birds by the Armed Forces

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Migratory Birds; Take of Migratory Birds by... Forces to incidentally take migratory birds during approved military readiness activities without violating the Migratory Bird Treaty Act (MBTA). The Authorization Act provided this interim authority to...

  13. The Evolution of the Human Genome

    PubMed Central

    Simonti, Corinne N.; Capra, John A.

    2015-01-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick. PMID:26338498

  14. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

    PubMed Central

    2010-01-01

    Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate. PMID:20433749

  15. Acoustic communication at the water's edge: evolutionary insights from a mudskipper.

    PubMed

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an "exaptation hypothesis", i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes.

  16. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications

    PubMed Central

    Lankau, Richard A; Strauss, Sharon Y

    2011-01-01

    Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977

  17. Acoustic Communication at the Water's Edge: Evolutionary Insights from a Mudskipper

    PubMed Central

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A.; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an “exaptation hypothesis”, i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes. PMID:21738663

  18. Evolutionary rates for multivariate traits: the role of selection and genetic variation.

    PubMed

    Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-08-19

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Adaptive evolution of body size subject to indirect effect in trophic cascade system.

    PubMed

    Wang, Xin; Fan, Meng; Hao, Lina

    2017-09-01

    Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 75 FR 13095 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2010-0007] Privacy Act of 1974... Federal Register Liaison Officer, Department of Defense. F031 AF SF B System Name: Security Forces... all Active Duty Military personnel, Reserve and Guard; Department of Defense (DoD) civilians and...

  1. 32 CFR 806b.3 - Violation penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT... law suit against the Air Force for failing to comply with the Privacy Act. The courts may find an...) Willfully maintaining a system of records that doesn't meet the public notice requirements. (b) Disclosing...

  2. 32 CFR 806b.3 - Violation penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT... law suit against the Air Force for failing to comply with the Privacy Act. The courts may find an...) Willfully maintaining a system of records that doesn't meet the public notice requirements. (b) Disclosing...

  3. 44 CFR 208.2 - Definitions of terms used in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Force personnel compensation, itemized fringe benefit rates and amounts including calculations, and... State or Local Government that has executed an MOA with DHS to organize and administer a Task Force. Stafford Act means the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121...

  4. 75 FR 42720 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... identifiers or contact information. FOR FURTHER INFORMATION CONTACT: Mr. Charles J. Shedrick, 703-696-6488. SUPPLEMENTARY INFORMATION: The Department of the Air Force systems of records notices subject to the Privacy Act... Warfighting Integration and Chief Information officer, ATTN: SAF/XCPPI, 1800 Air Force Pentagon, Washington...

  5. Japan's Democracy: How Much Change? Headline Series No. 305.

    ERIC Educational Resources Information Center

    Krauss, Ellis S.

    This booklet analyzes the changes that have occurred in Japan in the postwar period. The book is divided into four chapters. Chapter 1, "Revolutionary Change: American Occupation, 1945-52," focuses on the dramatic changes brought by Occupation forces. Chapter 2, "Evolutionary Change: Japan's Democracy from the Occupation through the…

  6. Reflections on a Seminal Force in International Accounting

    ERIC Educational Resources Information Center

    Cascini, Karen T.

    2007-01-01

    Accounting is a manifestation of several important environmental factors within a country, including economic, educational and political, and, as such, is evolutionary in accordance with those changing social structures. Because of the major impact that international accounting has had on countries' internal accounting systems, it is important to…

  7. A steep cline in Pinus muricata

    Treesearch

    Constance I. Millar

    1983-01-01

    Clines, including hybrid zones, have long been studied empirically and theoretically, especially for the opportunity they present to study evolutionary forces (Sumner, 1929; Haldane, 1948; Barber and Jackson, 195 7). Recent theoretical studies have emphasized that clines may be important in speciation (summarized in Endler, 1977). This emphasis has motivated...

  8. Complexion of forces in an anisotropic self-gravitating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandrup, H.E.

    Chandrasekhar and von Neumann developed a completely stochastic formalism to analyze the complexion of forces acting upon a test star situated in an infinite, homogeneous distribution of field stars. This formalism is generalized here to allow for more realistic inhomogeneous and anisotropic systems. It is demonstrated that the forces acting upon a test star decompose ''naturally'' into the incoherent sum of a mean force associated with the average spatial inhomogeneity and a fluctuating force associated with stochastic deviations from these mean conditions. Moreover, as in the special case considered by Chandrasekhar and von Neumann, one can apparently associate the fluctuatingmore » forces with the effects of particularly proximate field stars, thereby motivating the ''nearest neighbor'' interpretation first introduced by Chandrasekhar.« less

  9. Physical Inactivity, Obesity, and Type 2 Diabetes: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Eaton, S. Boyd; Eaton, Stanley B.

    2017-01-01

    Physical inactivity (and unhealthy nutrition) has distorted body composition and, in turn, reordered the proportions of myocyte and adipocyte insulin receptors. Insulin acting on adipocyte receptors produces less glucose uptake than does comparable interaction with myocyte receptors. Accordingly, in individuals with disproportionate muscle/fat…

  10. Interpopulation Comparison of Sex-Biased Mortality and Sexual Size Dimorphism in Sea-Run Masu Salmon, Oncorhynchus masou.

    PubMed

    Tamate, Tsuyoshi

    2015-08-01

    Evolutionary ecologists often expect that natural and sexual selection result in systematic co-occurrence patterns of sex-biased mortality and sexual size dimorphism (SSD) within animal species. However, whether such patterns actually occur in wild animals is poorly examined. The following expectation, the larger sex suffers higher mortality, was primarily tested here for apparently native sea-run masu salmon (Oncorhynchus masou) in three populations in Hokkaido, Japan. Field surveys on sex ratios, body sizes, and ages of smolts and returning adults revealed that two of the three populations exhibited an expected pattern, a female-biased marine mortality and SSD, but one population demonstrated an unexpected co-occurrence of male-biased marine mortality and female-biased SSD. These female-biased SSDs were attributed to faster marine growth of females because of no sex difference in smolt body size. It has been previously suggested that breeding selection favoring large size generally act more strongly in females than in males in Japanese anadromous masu, as there is a weak sexual selection on adult males but universally intensive natural selection on adult females. Thus, this hypothesis explains female-biased SSDs well in all study populations. Interpopulation variation in sex-biased mortality found here might result from differences in marine predation and/or fishing pressures, given that selection driving female-biased SSD makes females forage more aggressively than males during the marine phase. Taken together, these results raise the possibility that evolutionary forces have shaped adaptive sex-specific foraging strategies under relationships between growth and mortality, resulting in co-occurrence patterns of sex-biased mortality and SSD within animal species.

  11. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae).

    PubMed

    Lozier, Jeffrey D; Roderick, George K; Mills, Nicholas J

    2007-06-01

    Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.

  12. Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster

    PubMed Central

    2011-01-01

    Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging. PMID:21538136

  13. Numerical analysis for sea wave loading on the pile foundation of detached structures by using CADMAS-SURF

    NASA Astrophysics Data System (ADS)

    Matsuda, Tatsuya; Miura, Kinya; Sawada, Yayoi

    2017-10-01

    This study investigated the characteristics of wave forces loading on the detached structure that consisted of an upper structure and a pile foundation. In this study, structure stability was also considered on the results obtained from previous studies on the instability of seabed induced by wave force. When a wave force acted on the structure, an external force acted on the pile foundation as if pulling out the foundation on the outer harbor side and pushing it in on the inner harbor. The effective stress in seabed was increase so the pile foundation was considered to maintain sufficient bearing capacity. Subsequently, when the bearing capacity of the ground was decreased because the water pressure in the ground surface layer decreased, the pile foundation will be aggravated settled down. The external force acting on the pile foundation was not same on outer harbor and inner harbor with the form of the upper structure. As a result, we found that the strain will be generated on the structure.

  14. United States Air Force Response to Problems of Child Abuse within the Military Community.

    DTIC Science & Technology

    1985-01-01

    The Child Abuse Prevention and Treatment Act became national law in the United States. This act authorized a National Center on Child Abuse and...Neglect to compile information, operate a clearinghouse on programs showing promise of success in prevention, identification and treatment of child abuse , publish...Force base to investigate and evaluate suspected child abuse cases. This study focuses on child abuse in the Air Force community rather than in the

  15. Bob Meyer (right), acting deputy director of NASA Dryden, shakes hands with Les Bordelon, executive

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Bob Meyer (on the right), acting deputy director of NASA's Dryden Flight Research Center, Edwards, California, shakes hands with Les Bordelon, executive director of Edwards Air Force Base. The handshake represents Dryden's acceptance of an Air Force C-20A delivered from Ramstein Air Base, Germany. The aircraft will be modified to carry equipment and experiments in support of both NASA and U.S. Air Force projects. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance which shares some resources as cost-cutting measures.

  16. Apparatus and method for producing an artificial gravitational field

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason (Inventor)

    1993-01-01

    An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

  17. Properties of pseudo magnetism acting between bodies

    NASA Astrophysics Data System (ADS)

    Deva, Anish; Baruah, Abhinav Ray; Sarma, Arun

    A non-contact force has been found to be always acting between two bodies kept close to each other in different media. The properties of the force are different as compared to other non-contact forces such as gravitation and electrostatics, as was shown in our previous work. The aim of this paper is to find how the force behaves when two objects are brought near each other, one being completely immersed in the medium and the other kept just outside. The magnitude of the force in each medium has been calculated through experiments and then compared with each other. The discrepancies obtained between these magnitudes (10-5 N in water and 10-6 N in engine oil) and the varied oscillation patterns (amplitude and frequency) obtained from graphs have shown that the force behaves differently with different media. In general, the frequency of the force has been found to be of the order 10-2 Hz. The behaviour has also been found to depend on the nature of the material and shape of the object. This correlation has been ascertained by using a Gauss meter to measure the force acting between two objects and also that of an individual object. The polarity of the force i.e. whether attractive or repulsive, has been found to vary across the length of the objects and graphs have been plotted to demonstrate this property.

  18. Humans, Evolutionary and Ecologic Forces Shaped the Phylogeography of Recently Emerged Diseases

    PubMed Central

    Keim, Paul S.; Wagner, David M.

    2009-01-01

    Many infectious diseases have emerged and circulated around the world with the development of human civilizations and global commerce. Anthrax, plague and tularemia are three such zoonotic diseases that have been intensely studied through genome characterization and phylogeographic analyses. A few highly fit genotypes within each of the causative species represent the vast majority of observed disease cases. Mutational and selective forces working together create highly adapted pathogens, but this has to be coupled with ecological opportunities for global expansion. This Review describes the distributions of the bacteria that cause anthrax, plague and tularemia and investigates the forces that created a clonal structure in both these species, and specific groups within these species. PMID:19820723

  19. On the Evolution of Human Language.

    ERIC Educational Resources Information Center

    Lieberman, Philip

    Human linguistic ability depends, in part, on the gradual evolution of man's supralaryngeal vocal tract. The anatomic basis of human speech production is the result of a long evolutionary process in which the Darwinian process of natural selection acted to retain mutations. For auditory perception, the listener operates in terms of the acoustic…

  20. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  1. Improving aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  2. 75 FR 34709 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID USAF-2010-0016] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to amend a system of records.... Mitchell S. Bryman, Alternate OSD Federal Register Liaison Officer, Department of Defense. F044 AF SG E...

  3. 77 FR 43816 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2012-0012] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to alter a system of records... OSD Federal Register Liaison Officer, Department of Defense. F033 AFCA C SYSTEM NAME: USAF Information...

  4. 32 CFR 806b.53 - Training tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Training tools. 806b.53 Section 806b.53 National... Training § 806b.53 Training tools. Helpful resources include: (a) The Air Force Freedom of Information Act Web page which includes a Privacy Overview, Privacy Act training slides, the Air Force systems of...

  5. 75 FR 14580 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2010-0008] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to amend a system of records... S. Bryman, Alternate OSD Federal Register Liaison Officer, Department of Defense. F036 AFSPC A...

  6. 78 FR 68480 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ..., December 11, 2013, 6:00 p.m.-7:00 p.m. e.s.t. SUBJECT MATTER: A discussion of the results of the Task Force... NATIONAL SCIENCE FOUNDATION Sunshine Act Meetings; National Science Board The National Science Board's Task Force on Administrative Burdens, pursuant to NSF regulations (45 CFR Part 614), the...

  7. 76 FR 12084 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2011-0008] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice To Alter a System of Records... Liaison Officer, Department of Defense. F011 AF XO A System name: Aviation Resource Management System...

  8. 78 FR 5789 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0005] Privacy Act of 1974; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to alter a System of Records.... Aaron Siegel, Alternate OSD Federal Register Liaison Officer, Department of Defense. F036 AF PC U System...

  9. What to expect from an evolutionary hypothesis for a human disease: The case of type 2 diabetes.

    PubMed

    Watve, Milind; Diwekar-Joshi, Manawa

    2016-10-01

    Evolutionary medicine has a promise to bring in a conceptual revolution in medicine. However, as yet the field does not have the same theoretical rigour as that of many other fields in evolutionary studies. We discuss here with reference to type 2 diabetes mellitus (T2DM) what role an evolutionary hypothesis should play in the development of thinking in medicine. Starting with the thrifty gene hypothesis, evolutionary thinking in T2DM has undergone several transitions, modifications and refinements of the thrift family of hypotheses. In addition alternative hypotheses independent of thrift are also suggested. However, most hypotheses look at partial pictures; make selective use of supportive data ignoring inconvenient truths. Most hypotheses look at a superficial picture and avoid getting into the intricacies of underlying molecular, neuronal and physiological processes. Very few hypotheses have suggested clinical implications and none of them have been tested with randomized clinical trials. In the meanwhile the concepts in the pathophysiology of T2DM are undergoing radical changes and evolutionary hypotheses need to take them into account. We suggest an approach and a set of criteria to evaluate the relative merits of the alternative hypotheses. A number of hypotheses are likely to fail when critically evaluated against these criteria. It is possible that more than one selective process are at work in the evolution of propensity to T2DM, but the intercompatibility of the alternative selective forces and their relative contribution needs to be examined. The approach we describe could potentially lead to a sound evolutionary theory that is clinically useful and testable by randomized controlled clinical trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Hydrodynamic forces on inundated bridge decks

    DOT National Transportation Integrated Search

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  11. Mathematical modelling and numerical simulation of forces in milling process

    NASA Astrophysics Data System (ADS)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  12. 32 CFR 806b.1 - Summary of revisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the Air Force Privacy Program from Air Force Communications and Information Center to the Air Force Chief Information Officer; prescribes Air Force Visual Aid 33-276, Privacy Act Label as optional... are new or have major changes; changes appeal processing from Air Force Communications and Information...

  13. Dynamic response of sand particles impacted by a rigid spherical object

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  14. Mental capacity and decision making: defining capacity.

    PubMed

    Dimond, Bridgit

    The Mental Capacity Act 2005 came fully into force on 1st October 2007 (some sections came into force on 1 April 2007). This series of articles considers some of the key features of the Act, including the concepts of best interests, the lasting power of attorney, the role of the new Court of Protection, the Office of Public Guardian and the deputies of the Court, to name but a few. This first article looks at the central feature of the Act: how mental capacity is determined.

  15. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  16. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  17. The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii.

    PubMed

    Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M

    2017-07-01

    The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

  18. Population Genomics and the Statistical Values of Race: An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research

    PubMed Central

    Maglo, Koffi N.; Mersha, Tesfaye B.; Martin, Lisa J.

    2016-01-01

    The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to “frictional” effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the “cluster” and “cline” constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin's argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces, and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors, and evolutionary forces affecting disease causation and treatment response. PMID:26925096

  19. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  20. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  1. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  2. An evolutionary model of cooperation, fairness and altruistic punishment in public good games.

    PubMed

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment.

  3. An Evolutionary Model of Cooperation, Fairness and Altruistic Punishment in Public Good Games

    PubMed Central

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment. PMID:24260101

  4. Natural history collections as windows on evolutionary processes.

    PubMed

    Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W

    2016-02-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.

  5. Natural history collections as windows on evolutionary processes

    PubMed Central

    Holmes, Michael W.; Hammond, Talisin T.; Wogan, Guinevere O.U.; Walsh, Rachel E.; LaBarbera, Katie; Wommack, Elizabeth A.; Martins, Felipe M.; Crawford, Jeremy C.; Mack, Katya L.; Bloch, Luke M.; Nachman, Michael W.

    2016-01-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics, and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the lab, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short time scales in response to presumably strong selective pressures. In some instances evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. PMID:26757135

  6. Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster

    ERIC Educational Resources Information Center

    Costello, James Christopher

    2009-01-01

    Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…

  7. 32 CFR 806b.4 - Privacy Act complaints.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...

  8. 32 CFR 806b.4 - Privacy Act complaints.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...

  9. 32 CFR 806b.4 - Privacy Act complaints.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...

  10. 32 CFR 806b.4 - Privacy Act complaints.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...

  11. 32 CFR 806b.4 - Privacy Act complaints.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Privacy Act complaints. 806b.4 Section 806b.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM Overview of the Privacy Act Program § 806b.4 Privacy Act complaints. (a) Process Privacy Act...

  12. Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors.

    PubMed

    Borowsky, Richard

    2013-07-11

    The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.

  13. Sexual Hookup Culture: A Review

    PubMed Central

    Garcia, Justin R.; Reiber, Chris; Massey, Sean G.; Merriwether, Ann M.

    2013-01-01

    “Hookups,” or uncommitted sexual encounters, are becoming progressively more engrained in popular culture, reflecting both evolved sexual predilections and changing social and sexual scripts. Hook-up activities may include a wide range of sexual behaviors, such as kissing, oral sex, and penetrative intercourse. However, these encounters often transpire without any promise of, or desire for, a more traditional romantic relationship. A review of the literature suggests that these encounters are becoming increasingly normative among adolescents and young adults in North America, representing a marked shift in openness and acceptance of uncommitted sex. We reviewed the current literature on sexual hookups and considered the multiple forces influencing hookup culture, using examples from popular culture to place hooking up in context. We argue that contemporary hookup culture is best understood as the convergence of evolutionary and social forces during the developmental period of emerging adulthood. We suggest that researchers must consider both evolutionary mechanisms and social processes, and be considerate of the contemporary popular cultural climate in which hookups occur, in order to provide a comprehensive and synergistic biopsychosocial view of “casual sex” among emerging adults today. PMID:23559846

  14. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants.

    PubMed

    Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D

    2016-07-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Transcending Darwinism thinking laterally on the tree of life.

    PubMed

    Sapp, Jan

    2009-01-01

    The scope and significance of lateral gene transfer (LGT) has been discussed periodically since the early twentieth century. In sketching this history here we see that the pendulum of opinion has swung from one extreme that LGT is a rare phenomenon to the other that it is fundamental to evolution. That phages are sources of bacterial evolutionary innovation has been discussed since the 1920s in association with evidence that symbiosis is a major source of evolutionary innovation. Concepts of infectious heredity re-emerged with the rise of bacterial genetics after the Second World War, but LGT was generally discounted as a significant evolutionary force. LGT received increased attention in the 1960s and 1970s because of its role in antibiotic resistance outbreaks. Some speculated that the new molecular approaches to bacterial phylogenetics were ill-conceived because of LGT. With the rise of genomics in the 1990s, it became clear to phylogeneticists that LGT is the principal mode of generating evolutionary novelty in the prokaryotic world. All microbiologists agree today that the Darwinian concept of a bifurcating tree is an inadequate, if not misleading, representation of the evolutionary process in the microbial world. Phages are also reconceived not only as agents of bacterial gene exchange, but also as organisms in their own right, and fundamental in the evolution of new genes.

  16. Mega-evolutionary dynamics of the adaptive radiation of birds.

    PubMed

    Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H

    2017-02-16

    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.

  17. 76 FR 54742 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... phone at 703- 696-6488. SUPPLEMENTARY INFORMATION: The Department of the Air Force's notices for systems... individuals covered by the system: Air Force government civilians, vendors doing business with the U.S. Air Force, Air Force active duty military personnel, Air Force reserve personnel, and Air National Guard...

  18. 77 FR 77049 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...; System of Records AGENCY: Department of the Air Force, DoD. ACTION: Notice to delete a System of Records. SUMMARY: The Department of the Air Force is deleting a system of records notice in its existing inventory of record systems subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended. DATES: This...

  19. 78 FR 73508 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Force's notices for systems of records subject to the Privacy Act of 1974 (5 U.S.C. 552a), as amended....gov/privacy/SORNs/component/airforce/index.html . The proposed systems reports, as required by 5 U.S.C... Volunteer Records. System location: National Museum of the U.S. Air Force, 1100 Spaatz Street, Wright...

  20. 76 FR 12082 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ...: The Department of the Air Force's notices for systems of records subject to the Privacy Act of 1974 (5... U.S.C. 5014, Secretary of the Navy; 10 U.S.C. 8013, Secretary of the Air Force; 10 U.S.C. 5043... the military department's board determination and rating schedule. Routine uses of records maintained...

  1. The onset of chaos in orbital pilot-wave dynamics.

    PubMed

    Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  2. On the identification of a harmonic force on a viscoelastic plate from response data

    NASA Technical Reports Server (NTRS)

    D'Cruz, J.; Crisp, J. D. C.; Ryall, T. G.

    1992-01-01

    The problem of determining the force acting on a structure from measurements of the response of the structure to the force is an inverse problem. Presented is a method for determining the location, magnitude, and phase of a harmonic point force acting on a simply-supported classical viscoelastic rectangular plate from a number of displacement readings at discrete points on the plate. Presented also is a demonstration of the robustness of the solution technique to the effects of measurement noise as well as a means by which problems involving more general structural and loading configurations may be solved.

  3. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    PubMed

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

  4. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history.

    PubMed

    Morozov, Sergey Y; Milyutina, Irina A; Erokhina, Tatiana N; Ozerova, Liudmila V; Troitsky, Alexey V; Solovyev, Andrey G

    2018-01-01

    Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

  5. Yellow Fever Virus Exhibits Slower Evolutionary Dynamics than Dengue Virus ▿ †

    PubMed Central

    Sall, Amadou A.; Faye, Ousmane; Diallo, Mawlouth; Firth, Cadhla; Kitchen, Andrew; Holmes, Edward C.

    2010-01-01

    Although yellow fever has historically been one of the most important viral infections of humans, relatively little is known about the evolutionary processes that shape its genetic diversity. Similarly, there is limited information on the molecular epidemiology of yellow fever virus (YFV) in Africa even though it most likely first emerged on this continent. Through an analysis of complete E gene sequences, including a newly acquired viral collection from Central and West Africa (Senegal, Cameroon, Central African Republic, Côte d'Ivoire, Mali, and Mauritania), we show that YFV exhibits markedly lower rates of evolutionary change than dengue virus, despite numerous biological similarities between these two viruses. From this observation, along with a lack of clock-like evolutionary behavior in YFV, we suggest that vertical transmission, itself characterized by lower replication rates, may play an important role in the evolution of YFV in its enzootic setting. Despite a reduced rate of nucleotide substitution, phylogenetic patterns and estimates of times to common ancestry in YFV still accord well with the dual histories of colonialism and the slave trade, with areas of sylvatic transmission (such as Kedougou, Senegal) acting as enzootic/epidemic foci. PMID:19889759

  6. Co-niche construction between hosts and symbionts: ideas and evidence.

    PubMed

    Borges, Renee M

    2017-07-01

    Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.

  7. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  8. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    PubMed

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  9. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  10. Is the Red Wolf a Listable Unit Under the US Endangered Species Act?

    PubMed

    Waples, Robin S; Kays, Roland; Fredrickson, Richard J; Pacifici, Krishna; Mills, L Scott

    2018-06-08

    Defining units that can be afforded legal protection is a crucial, albeit challenging, step in conservation planning. As we illustrate with a case study of the red wolf (Canis rufus) from the southeastern United States, this step is especially complex when the evolutionary history of the focal taxon is uncertain. The US Endangered Species Act (ESA) allows listing of species, subspecies, or Distinct Population Segments (DPSs) of vertebrates. Red wolves were listed as an endangered species in 1973, and their status remains precarious. However, some recent genetic studies suggest that red wolves are part of a small wolf species (C. lycaon) specialized for heavily forested habitats of eastern North America, whereas other authors suggest that red wolves arose, perhaps within the last ~400 years, through hybridization between gray wolves (C. lupus) and coyotes (C. latrans). Using published genetic, morphological, behavioral, and ecological data, we evaluated whether each evolutionary hypothesis would lead to a listable unit for red wolves. Although the potential hybrid origin of red wolves, combined with abundant evidence for recent hybridization with coyotes, raises questions about status as a separate species or subspecies, we conclude that under any proposed evolutionary scenario red wolves meet both criteria to be considered a DPS: they are discrete compared with other conspecific populations, and they are Significant to the taxon to which they belong. As population-level units can qualify for legal protection under endangered-species legislation in many countries throughout the world, this general approach could potentially be applied more broadly.

  11. Evolution, mutations, and human longevity: European royal and noble families.

    PubMed

    Gavrilova, N S; Gavrilov, L A; Evdokushkina, G N; Semyonova, V G; Gavrilova, A L; Evdokushkina, N N; Kushnareva, Y E; Kroutko, V N; Andreyev AYu

    1998-08-01

    The evolutionary theory of aging predicts that the equilibrium gene frequency for deleterious mutations should increase with age at onset of mutation action because of weaker (postponed) selection against later-acting mutations. According to this mutation accumulation hypothesis, one would expect the genetic variability for survival (additive genetic variance) to increase with age. The ratio of additive genetic variance to the observed phenotypic variance (the heritability of longevity) can be estimated most reliably as the doubled slope of the regression line for offspring life span on paternal age at death. Thus, if longevity is indeed determined by late-acting deleterious mutations, one would expect this slope to become steeper at higher paternal ages. To test this prediction of evolutionary theory of aging, we computerized and analyzed the most reliable and accurate genealogical data on longevity in European royal and noble families. Offspring longevity for each sex (8409 records for males and 3741 records for females) was considered as a dependent variable in the multiple regression model and as a function of three independent predictors: paternal age at death (for estimation of heritability of life span), paternal age at reproduction (control for parental age effects), and cohort life expectancy (control for cohort and secular trends and fluctuations). We found that the regression slope for offspring longevity as a function of paternal longevity increases with paternal longevity, as predicted by the evolutionary theory of aging and by the mutation accumulation hypothesis in particular.

  12. Gene regulation by mechanical forces

    NASA Technical Reports Server (NTRS)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.

    1997-01-01

    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  13. Adaptive evolutionary conservation: towards a unified concept for defining conservation units.

    PubMed

    Fraser, D J; Bernatchez, L

    2001-12-01

    Recent years have seen a debate over various methods that could objectively prioritize conservation value below the species level. Most prominent among these has been the evolutionarily significant unit (ESU). We reviewed ESU concepts with the aim of proposing a more unified concept that would reconcile opposing views. Like species concepts, conflicting ESU concepts are all essentially aiming to define the same thing: segments of species whose divergence can be measured or evaluated by putting differential emphasis on the role of evolutionary forces at varied temporal scales. Thus, differences between ESU concepts lie more in the criteria used to define the ESUs themselves rather than in their fundamental essence. We provide a context-based framework for delineating ESUs which circumvents much of this situation. Rather than embroil in a befuddled debate over an optimal criterion, the key to a solution is accepting that differing criteria will work more dynamically than others and can be used alone or in combination depending on the situation. These assertions constitute the impetus behind adaptive evolutionary conservation.

  14. The evolution of ecosystem ascendency in a complex systems based model.

    PubMed

    Brinck, Katharina; Jensen, Henrik Jeldtoft

    2017-09-07

    General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    PubMed

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Experimental studies of animal social learning in the wild: Trying to untangle the mystery of human culture.

    PubMed

    Hill, Kim

    2010-08-01

    Here I discuss how studies on animal social learning may help us understand human culture. It is an evolutionary truism that complex biological adaptations always evolve from less complex but related adaptations, but occasionally evolutionary transitions lead to major biological changes whose end products are difficult to anticipate. Language-based cumulative adaptive culture in humans may represent an evolutionary transition of this type. Most of the social learning observed in animals (and even plants) may be due to mechanisms that cannot produce cumulative cultural adaptations. Likewise, much of the critical content of socially transmitted human culture seems to show no parallel in nonhuman species. Thus, with regard to the uniquely human extent and quality of culture, we are forced to ask: Are other species only a few small steps away from this transition, or do they lack multiple critical features that make us the only truly cultural species? Only future research into animal social learning can answer these questions.

  17. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  18. Dental abrasion as a cutting process.

    PubMed

    Lucas, Peter W; Wagner, Mark; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Michael, Shaji; Thai, Lidia A; Strait, David S; Swain, Michael V; van Casteren, Adam; Renno, Waleed M; Shekeban, Ali; Philip, Swapna M; Saji, Sreeja; Atkins, Anthony G

    2016-06-06

    A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential.

  19. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution.

    PubMed

    Filée, Jonathan

    2015-01-01

    Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

  20. An alternative derivation of the stationary distribution of the multivariate neutral Wright-Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data.

    PubMed

    Schrempf, Dominik; Hobolth, Asger

    2017-04-01

    Recently, Burden and Tang (2016) provided an analytical expression for the stationary distribution of the multivariate neutral Wright-Fisher model with low mutation rates. In this paper we present a simple, alternative derivation that illustrates the approximation. Our proof is based on the discrete multivariate boundary mutation model which has three key ingredients. First, the decoupled Moran model is used to describe genetic drift. Second, low mutation rates are assumed by limiting mutations to monomorphic states. Third, the mutation rate matrix is separated into a time-reversible part and a flux part, as suggested by Burden and Tang (2016). An application of our result to data from several great apes reveals that the assumption of stationarity may be inadequate or that other evolutionary forces like selection or biased gene conversion are acting. Furthermore we find that the model with a reversible mutation rate matrix provides a reasonably good fit to the data compared to the one with a non-reversible mutation rate matrix. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Candidate loci involved in domestication and improvement detected by a published 90K wheat SNP array

    PubMed Central

    Gao, Lifeng; Zhao, Guangyao; Huang, Dawei; Jia, Jizeng

    2017-01-01

    Selection is one of the most important forces in crop evolution. Common wheat is a major world food crop and a typical allopolyploid with a huge and complex genome. We applied four approaches to detect loci selected in wheat during domestication and improvement. A total of 7,984 candidate loci were detected, accounting for 23.3% of all 34,317 SNPs analysed, a much higher proportion than estimated in previous reports. We constructed a first generation wheat selection map which revealed the following new insights on genome-wide selection: (1) diversifying selection acted by increasing, decreasing or not affecting gene frequencies; (2) the number of loci under selection during domestication was much higher than that during improvement; (3) the contribution to wheat improvement by the D sub-genome was relatively small due to the bottleneck of hexaploidisation and diversity can be expanded by using synthetic wheat and introgression lines; and (4) clustered selection regions occur throughout the wheat genome, including the centromere regions. This study will not only help future wheat breeding and evolutionary studies, but will also accelerate study of other crops, especially polyploids. PMID:28327671

  2. Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, G. S.; Watson, J. A.

    2004-07-01

    Naturally occurring nano-structures is a much-neglected, but potentially rich, source of products that meet specifications imposed by natural selection. While the pharmaceutical industry has long recognized the value of natural compounds, the emerging industries based on nanotechnology have so far made little use of 'free' technology that has been 'invented' over evolutionary time-scales and driven by the imperatives of species survival. Ordered hexagonal packed array structures on cicada (e.g., Pflatoda claripennis) and termite (e.g., family Rhinotermitidae) wings have been investigated in this study. The spacings range from 200 to 1000 nm. The structures tend to have a rounded shape at the apex and protrude some 150-350 nm out from the surface plane. Wing structures with spacings at the lower end of the range are most likely optimized to serve as an anti-reflective coating (natural 'stealth technology') but may also act as a self-cleaning coating (the Lotus effect). Structures with spacings at the upper end of the range may provide mechanical strength to prevent load failure under flight and/or aid in the aerodynamic efficiency of the insect. This study demonstrates the multi-purpose design of natural structures.

  3. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo-and heterodimers when expressed in yeast

    USDA-ARS?s Scientific Manuscript database

    Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The...

  4. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection

    PubMed Central

    Soularue, J-P; Kremer, A

    2014-01-01

    The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591

  5. Plant Insecticidal Toxins in Ecological Networks

    PubMed Central

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-01-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology. PMID:22606374

  6. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs - diffuse co-evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.

  7. 78 FR 29123 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... DEPARTMENT OF DEFENSE Department of the Air Force [Docket ID: USAF-2013-0018] Proposed Collection; Comment Request AGENCY: Department of Defense/Department of the Air Force/Headquarters, Air Force Safety... Act of 1995, the Department of the Air Force announces a proposed public information collection and...

  8. Divergent evolutionary processes associated with colonization of offshore islands.

    PubMed

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  9. Manipulation of double-stranded DNA melting by force

    NASA Astrophysics Data System (ADS)

    Singh, Amit Raj; Granek, Rony

    2017-09-01

    By integrating elasticity—as described by the Gaussian network model—with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016), 10.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble. We study different types of force manipulation: (i) "end unzipping," with force acting at a single end base pair perpendicular to the helix, (ii) "midunzipping," with force acting at a middle base pair perpendicular to the helix, and (iii) "end shearing," where the force acts at opposite ends along the helix. By monitoring the free-energy landscape and probability distribution of intermediate denaturation states, we show that different dominant intermediate states are stabilized depending on the type of force manipulation used. In particular, the bubble state of the sequence L60B36, which we have previously found to be a stable state during thermal denaturation, is absent for end unzipping and end shearing, whereas very similar bubbles are stabilized by midunzipping, or when the force location is near the middle of the chain. Ours results offer a simple tool for stabilizing bubbles and loops using force manipulations at different temperatures, and may implicate on the mechanism in which DNA enzymes or motors open regions of the chain.

  10. 77 FR 60029 - Strengthening Protections Against Trafficking in Persons in Federal Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... persons'')--defined in section 103 of the TVPA, 22 U.S.C. 7102(8), to include sex trafficking in which a commercial sex act is induced by force, fraud, or coercion, or in which the person induced to perform such... procurement of commercial sex acts, or the use of forced labor in the performance of the contract or...

  11. Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Suh, Youngho; Lee, Changhoon

    2010-11-01

    The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.

  12. Analysis of Oblique Wave Interaction with a Comb-Type Caisson Breakwater

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Liu, Yong; Liang, Bingchen

    2018-04-01

    This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.

  13. Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers

    PubMed Central

    Schwingel, Melanie; Bastmeyer, Martin

    2013-01-01

    Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity. PMID:23372781

  14. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels.

    PubMed

    Cox, C D; Bavi, N; Martinac, B

    2017-01-01

    Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K + (K 2P ) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis

    PubMed Central

    Wilmanns, Matthias; Gräter, Frauke

    2009-01-01

    The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960

  16. Clownfishes evolution below and above the species level

    PubMed Central

    Litsios, Glenn; Faye, Laurélène; Salamin, Nicolas

    2018-01-01

    The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels. PMID:29467260

  17. The Creativity of Natural Selection? Part I: Darwin, Darwinism, and the Mutationists.

    PubMed

    Beatty, John

    2016-12-01

    This is the first of a two-part essay on the history of debates concerning the creativity of natural selection, from Darwin through the evolutionary synthesis and up to the present. Here I focus on the mid-late nineteenth century to the early twentieth, with special emphasis on early Darwinism and its critics, the self-styled "mutationists." The second part focuses on the evolutionary synthesis and some of its critics, especially the "neutralists" and "neo-mutationists." Like Stephen Gould, I consider the creativity of natural selection to be a key component of what has traditionally counted as "Darwinism." I argue that the creativity of natural selection is best understood in terms of (1) selection initiating evolutionary change, and (2) selection being responsible for the presence of the variation it acts upon, for example by directing the course of variation. I consider the respects in which both of these claims sound non-Darwinian, even though they have long been understood by supporters and critics alike to be virtually constitutive of Darwinism.

  18. A median third eye: pineal gland retraces evolution of vertebrate photoreceptive organs.

    PubMed

    Mano, Hiroaki; Fukada, Yoshitaka

    2007-01-01

    In many vertebrates, the pineal gland serves as a photoreceptive neuroendocrine organ. Morphological and functional similarities between the pineal and retinal photoreceptor cells indicate their close evolutionary relationship, and hence the comparative studies on the pineal gland and the retina are the keys to deciphering the evolutionary traces of the vertebrate photoreceptive organs. Several studies have suggested common genetic and molecular mechanisms responsible for their similarities, but largely unknown are those underlying pineal-specific development and physiological functions. Recent studies have identified several cis-acting DNA elements that participate in transcriptional control of the pineal-specific genes. Genetic approaches in the zebrafish have also contributed to elucidating the genetic network regulating the pineal development and neurogenesis. These efforts toward elucidating the molecular instrumentation intrinsic to the pineal gland, back to back with those to the retina, should lead to a comprehensive understanding of the evolutionary history of the vertebrate photoreceptive structures. This article summarizes the current status of research on these topics.

  19. Species-specific temperature sensitivity of TRPA1

    PubMed Central

    Laursen, Willem J; Anderson, Evan O; Hoffstaetter, Lydia J; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation. PMID:27227025

  20. Constraints, Trade-offs and the Currency of Fitness.

    PubMed

    Acerenza, Luis

    2016-03-01

    Understanding evolutionary trajectories remains a difficult task. This is because natural evolutionary processes are simultaneously affected by various types of constraints acting at the different levels of biological organization. Of particular importance are constraints where correlated changes occur in opposite directions, called trade-offs. Here we review and classify the main evolutionary constraints and trade-offs, operating at all levels of trait hierarchy. Special attention is given to life history trade-offs and the conflict between the survival and reproduction components of fitness. Cellular mechanisms underlying fitness trade-offs are described. At the metabolic level, a linear trade-off between growth and flux variability was found, employing bacterial genome-scale metabolic reconstructions. Its analysis indicates that flux variability can be considered as the currency of fitness. This currency is used for fitness transfer between fitness components during adaptations. Finally, a discussion is made regarding the constraints which limit the increase in the amount of fitness currency during evolution, suggesting that occupancy constraints are probably the main restrictions.

  1. Animal behaviour and algal camouflage jointly structure predation and selection.

    PubMed

    Start, Denon

    2018-05-01

    Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  2. Mutualism and evolutionary multiplayer games: revisiting the Red King.

    PubMed

    Gokhale, Chaitanya S; Traulsen, Arne

    2012-11-22

    Coevolution of two species is typically thought to favour the evolution of faster evolutionary rates helping a species keep ahead in the Red Queen race, where 'it takes all the running you can do to stay where you are'. In contrast, if species are in a mutualistic relationship, it was proposed that the Red King effect may act, where it can be beneficial to evolve slower than the mutualistic species. The Red King hypothesis proposes that the species which evolves slower can gain a larger share of the benefits. However, the interactions between the two species may involve multiple individuals. To analyse such a situation, we resort to evolutionary multiplayer games. Even in situations where evolving slower is beneficial in a two-player setting, faster evolution may be favoured in a multiplayer setting. The underlying features of multiplayer games can be crucial for the distribution of benefits. They also suggest a link between the evolution of the rate of evolution and group size.

  3. A solution to the collective action problem in between-group conflict with within-group inequality

    PubMed Central

    Gavrilets, Sergey; Fortunato, Laura

    2014-01-01

    Conflict with conspecifics from neighbouring groups over territory, mating opportunities and other resources is observed in many social organisms, including humans. Here we investigate the evolutionary origins of social instincts, as shaped by selection resulting from between-group conflict in the presence of a collective action problem. We focus on the effects of the differences between individuals on the evolutionary dynamics. Our theoretical models predict that high-rank individuals, who are able to usurp a disproportional share of resources in within-group interactions, will act seemingly altruistically in between-group conflict, expending more effort and often having lower reproductive success than their low-rank group-mates. Similar behaviour is expected for individuals with higher motivation, higher strengths or lower costs, or for individuals in a leadership position. Our theory also provides an evolutionary foundation for classical equity theory, and it has implications for the origin of coercive leadership and for reproductive skew theory. PMID:24667443

  4. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    PubMed Central

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  5. Endogenous Retroviruses in the Genomics Era.

    PubMed

    Johnson, Welkin E

    2015-11-01

    Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.

  6. 78 FR 28895 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... thanking Amy Reagan for her service on the Pro Bono Task Force (Resolution 2013-XXX) 4. Consider and act on... Corporate Secretary (Resolution 2013-XXX) 7. Public comment 8. Consider and act on other business 9...

  7. An Evolutionary Approach to Mathematics Education: Enhancing Learning through Contextual Modification

    ERIC Educational Resources Information Center

    Abate, Charles J.; Cantone, Kathleen A.

    2005-01-01

    Contemporary mathematics education is at a crossroads. It has become exposed to forces, both static and dynamic, that pose a challenge to its traditional place in academia. Mathematics has a long-established status as perhaps the most critical foundation for analytical knowledge. But the manner in which mathematics instructors choose to respond to…

  8. Factors Associated with Jealousy over Real and Imagined Infidelity: An Examination of the Social-Cognitive and Evolutionary Psychology Perspectives

    ERIC Educational Resources Information Center

    Harris, Christine R.

    2003-01-01

    Three hundred fifty-eight undergraduates completed anonymous questionnaires regarding jealousy over a mate's infidelity. More men than women predicted that sexual infidelity would be worse than emotional infidelity when given the forced-choice hypothetical measures used in previous work. When some of the implications of hypothetical infidelity…

  9. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    USDA-ARS?s Scientific Manuscript database

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  10. Carbon-constrained health care enterprise.

    PubMed

    Gell, Michael

    2010-02-01

    The health economy is a significant part of a national economy accounting typically for about 8% of GDP spent. As national economies respond to the dual challenges of severe economic turbulence on the global scale and climate change mitigation, the health economy is coming under increasing pressure to respond. Indications for sharp reductions in budgets and reductions in greenhouse gas emissions, such as carbon dioxide, are widespread. In this paper an analysis is undertaken of the diverse forces acting on a typical health care enterprise. The forces, both economic and carbon related, are investigated in terms of their effects through the enterprise and across its boundaries on the supply, demand and waste sides. The overall aim is to show how the enterprise and whole supply chains may flip synchronously into a low-carbon evolutionary pathway. By illustrating how different elements of the health care enterprise may respond to these developments, diverse opportunities for cost reduction, carbon reduction and product (goods and services) development are identified. These opportunities involve a variety of waste reduction and energy and materials conservation measures as well as new ways of collaborating with other enterprises going through similar transformations. The overall objective is to show that the carbon-constrained health care enterprise and the low-carbon health economy in which it sits may broaden its role in the coming decades to include a degree of responsibility for the health of the environment. This broader role is likely to supplement and entangle with the traditional role of the health economy, currently focused narrowly on human health, and lead to extensive organisational transformation, and infrastructure and product developments.

  11. Repeatable and heritable behavioural variation in a wild cooperative breeder

    PubMed Central

    Burke, Terry; Dugdale, Hannah L.

    2017-01-01

    Abstract Quantifying consistent differences in behaviour among individuals is vital to understanding the ecological and evolutionary significance of animal personality. To quantify personality, the phenotypic variation of a behavioural trait is partitioned to assess how it varies among individuals, which is also known as repeatability. If pedigree data are available, the phenotypic variation can then be further partitioned to estimate the additive genetic variance and heritability. Assessing the repeatability and heritability of personality traits therefore allows for a better understanding of what natural selection can act upon, enabling evolution. In a natural population of facultative cooperatively breeding Seychelles warbler (Acrocephalus sechellensis) on Cousin Island, a lack of breeding vacancies forces individuals into different life-history strategies, and these differences in reproductive state could generate behavioural differences among individuals in the population. We used this population to estimate the repeatability of 4 behavioural traits (novel environment exploration, novel object exploration, obstinacy/struggle rate, and escape response), and narrow-sense heritability (of behavior, h2B; behavior minus observer variance; and personality), and evolvability, of the repeatable behavioural traits. We also tested for an among-individual correlation between the repeatable traits. We found that, compared to estimates in other study species, the exploratory behaviours were moderately repeatable (0.23–0.37), there was a positive among-individual correlation (0.51) between novel environment and novel object exploration, and that novel environment exploration was moderately heritable (0.17; h2B was low as it includes observer variance). This study further clarifies the additive genetic variance available for selection to act upon in this cooperatively breeding bird. PMID:29622921

  12. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  13. Action-reaction at a distance

    NASA Astrophysics Data System (ADS)

    Brand, Howard

    2002-03-01

    Lenz's law is used to demonstrate that Newton's third law includes forces acting at a distance. The action-reaction pair is the force on a magnet falling through a conducting tube at terminal velocity, and a force on the tube.

  14. 45 CFR 1626.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...

  15. 45 CFR 1626.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...

  16. 45 CFR 1626.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...

  17. 45 CFR 1626.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cruelty includes, but is not limited to, being the victim of any act or threatened act of violence.... Psychological or sexual abuse or exploitation, including rape, molestation, incest (if the victim is a minor), or forced prostitution shall be considered acts of violence. Other abusive actions may also be acts...

  18. May the Force Be with You!

    ERIC Educational Resources Information Center

    Young, Timothy; Guy, Mark

    2011-01-01

    Students have a difficult time understanding force, especially when dealing with a moving object. Many forces can be acting on an object at the same time, causing it to stay in one place or move. By directly observing these forces, students can better understand the effect these forces have on an object. With a simple, student-built device called…

  19. A novel experimental mechanics method for measuring the light pressure acting on a solar sail membrane

    NASA Astrophysics Data System (ADS)

    Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan

    2017-02-01

    Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.

  20. 78 FR 10127 - Request for Nominations to the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Conservation Service Request for Nominations to the Agricultural Air Quality Task Force AGENCY: Natural... Nominations to the Agricultural Air Quality Task Force. SUMMARY: The Secretary of Agriculture invites... Force (AAQTF) which was established by the Federal Agriculture Improvement and Reform Act of 1996 to...

  1. 45 CFR 506.14 - “Force hostile to the United States” defined.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...

  2. 45 CFR 506.14 - “Force hostile to the United States” defined.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...

  3. 45 CFR 506.14 - “Force hostile to the United States” defined.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...

  4. 45 CFR 506.14 - “Force hostile to the United States” defined.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CLAIMS UNDER TITLE I OF THE WAR CLAIMS ACT OF 1948, AS AMENDED ELIGIBILITY REQUIREMENTS FOR COMPENSATION Prisoners of War § 506.14 “Force hostile to the United States” defined. Force hostile to the United States... Forces of the United States during the Vietnam conflict. ...

  5. A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.

    PubMed

    Raichlen, David A; Pontzer, Herman; Shapiro, Liza J

    2013-01-01

    The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.

  6. Automatic feature design for optical character recognition using an evolutionary search procedure.

    PubMed

    Stentiford, F W

    1985-03-01

    An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.

  7. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

    PubMed Central

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  8. Mega-evolutionary dynamics of the adaptive radiation of birds

    PubMed Central

    Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.

    2017-01-01

    The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475

  9. Mechanical forces and their second messengers in stimulating cell growth in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  10. 32 CFR 865.119 - Privacy Act information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...

  11. 32 CFR 865.119 - Privacy Act information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...

  12. 32 CFR 865.119 - Privacy Act information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...

  13. 32 CFR 865.119 - Privacy Act information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...

  14. 32 CFR 865.119 - Privacy Act information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Privacy Act information. 865.119 Section 865.119...-GENERAL PERSONNEL REVIEW BOARDS Air Force Discharge Review Board § 865.119 Privacy Act information. Information protected under the Privacy Act is involved in discharge review functions. The provisions of 32...

  15. Personifying self in physics problem situations involving forces as a student help strategy

    NASA Astrophysics Data System (ADS)

    Tabor-Morris, A. E.

    2013-03-01

    How can physics teachers best guide students regarding physics problem situations involving forces? A suggestion is made here to personify oneself as the object in question, that is, to pretend to be the object undergoing forces and then qualify and quantify those forces according to their vectors for the system at hand. This personification is not meant to empower the object to act, just to sense the forces it is experiencing. This strategy may be especially useful to beginning physics learners attacking problems that involve both multiple forces AND multiple objects, since each object acted upon needs to be considered separately, using the idea that one cannot be two places at once. An example of this type of problem expounded on here is Atwood's machine: two weights hung over a pulley with a single rope. Another example given is electromagnetic forces on one charge caused by other charges in the vicinity. Discussion is made on implementation of classroom strategies. Department of Physics

  16. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    PubMed

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  17. Goals are not selfish.

    PubMed

    von Hippel, William; von Hippel, Frank A

    2014-04-01

    The metaphor of selfish goals is misguided. Organisms can be considered vessels that further the interests of their genes, but not vessels that further the interests of their goals. Although goals can act at cross-purposes to each other and to longevity, such trade-offs are predicted by evolutionary theory. The metaphor of selfish goals provides no purchase on this problem.

  18. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.

    PubMed

    Dowling, Damian K

    2014-04-01

    Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.

  19. Reconstructed ancestral enzymes reveal that negative selection drove the evolution of substrate specificity in ADP-dependent kinases.

    PubMed

    Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria

    2017-09-22

    One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A piecewise smooth model of evolutionary game for residential mobility and segregation

    NASA Astrophysics Data System (ADS)

    Radi, D.; Gardini, L.

    2018-05-01

    The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.

  1. Biogeographic perspective of speciation among desert tortoises in the genus Gopherus: a preliminary evaluation

    USGS Publications Warehouse

    Edwards, Taylor; Vaughn, Mercy; Meléndez Torres, Cristina; Karl, Alice E.; Rosen, Philip C.; Berry, Kristin H.; Murph, Robert W.

    2013-01-01

    The enduring processes of time, climate, and adaptation have sculpted the distribution of organisms we observe in the Sonoran Desert. One such organism is Morafka’s desert tortoise, Gopherus morafkai. We apply a genomic approach to identify the evolutionary processes driving diversity in this species and present preliminary findings and emerging hypotheses. The Sonoran Desert form of the tortoise exhibits a continuum of genetic similarity spanning 850 km of Sonoran desertscrub extending from Empalme, Sonora, to Kingman, Arizona. However, at the ecotone between desertscrub and foothills thornscrub we identify a distinct, Sinaloan lineage and this occurrence suggests a more complex evolutionary history for G. morafkai. By using multiple loci from throughout the tortoise’s genome, we aim to determine if divergence between these lineages occurred in allopatry, and further to investigate for signatures of past or current genetic introgression. This international, collaborative project will assist state and federal agencies in developing management strategies that best preserve the evolutionary potential of Morafka’s desert tortoise. Ultimately, an understanding of the evolutionary history of desert tortoises will not only clarify the forces that have driven the divergence in this group, but also contribute to our knowledge of the biogeographic history of the Southwestern deserts and how diversity is maintained within them.

  2. The eco-evolutionary impacts of domestication and agricultural practices on wild species.

    PubMed

    Turcotte, Martin M; Araki, Hitoshi; Karp, Daniel S; Poveda, Katja; Whitehead, Susan R

    2017-01-19

    Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species. We do so by examining three processes by which agriculture drives evolution. First, differences in the traits of domesticated species, compared with their wild ancestors, alter the selective environment and create opportunities for wild species to specialize. Second, selection caused by agricultural practices, including both those meant to maximize productivity and those meant to control pest species, can lead to pest adaptation. Third, agriculture can cause non-selective changes in patterns of gene flow in wild species. We review evidence for these processes and then discuss their ecological and sociological impacts. We finish by identifying important knowledge gaps and future directions related to the eco-evolutionary impacts of agriculture including their extent, how to prevent the detrimental evolution of wild species, and finally, how to use evolution to minimize the ecological impacts of agriculture.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  3. Biological and geophysical feedbacks with fire in the Earth system

    NASA Astrophysics Data System (ADS)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  4. The eco-evolutionary impacts of domestication and agricultural practices on wild species

    PubMed Central

    Araki, Hitoshi; Karp, Daniel S.; Poveda, Katja

    2017-01-01

    Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species. We do so by examining three processes by which agriculture drives evolution. First, differences in the traits of domesticated species, compared with their wild ancestors, alter the selective environment and create opportunities for wild species to specialize. Second, selection caused by agricultural practices, including both those meant to maximize productivity and those meant to control pest species, can lead to pest adaptation. Third, agriculture can cause non-selective changes in patterns of gene flow in wild species. We review evidence for these processes and then discuss their ecological and sociological impacts. We finish by identifying important knowledge gaps and future directions related to the eco-evolutionary impacts of agriculture including their extent, how to prevent the detrimental evolution of wild species, and finally, how to use evolution to minimize the ecological impacts of agriculture. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920378

  5. Functional morphology of the cranio-mandibular complex of the Guira cuckoo (Aves).

    PubMed

    Pestoni, Sofía; Degrange, Federico Javier; Tambussi, Claudia Patricia; Demmel Ferreira, María Manuela; Tirao, Germán Alfredo

    2018-06-01

    The cranio-mandibular complex is an important structure involved in food capture and processing. Its morphology is related to the nature of the food item. Jaw muscles enable the motion of this complex and their study is essential for functional and evolutionary analysis. The present study compares available behavioral and dietary data obtained from the literature with novel results from functional morphological analyses of the cranio-mandibular complex of the Guira cuckoo (Guira guira) to understand its relationship with the zoophagous trophic habit of this species. The bite force was estimated based on muscle dissections, measurements of the physiological cross-sectional area, and biomechanical modeling of the skull. The results were compared with the available functional morphological data for other birds. The standardized bite force of G. guira is higher than predicted for exclusively zoophagous birds, but lower than for granivorous and/or omnivorous birds. Guira guira possesses the generalized jaw muscular system of neognathous birds, but some features can be related to its trophic habit. The external adductor muscles act mainly during food item processing and multiple aspects of this muscle group are interpreted to increase bite force, that is, their high values of muscle mass, their mechanical advantage (MA), and their perpendicular orientation when the beak is closed. The m. depressor mandibulae and the m. pterygoideus dorsalis et ventralis are interpreted to prioritize speed of action (low MA values), being most important during prey capture. The supposed ecological significance of these traits is the potential to widen the range of prey size that can be processed and the possibility of rapidly capturing agile prey through changes in the leverage of the muscles involved in opening and closing of the bill. This contributes to the trophic versatility of the species and its ability to thrive in different habitats, including urban areas. © 2018 Wiley Periodicals, Inc.

  6. Load Measurement on Foundations of Rockfall Protection Systems

    PubMed Central

    Volkwein, Axel; Kummer, Peter; Bitnel, Hueseyin; Campana, Lorenzo

    2016-01-01

    Rockfall protection barriers are connected to the ground using steel cables fixed with anchors and foundations for the steel posts. It is common practice to measure the forces in the cables, while to date measurements of forces in the foundations have been inadequately resolved. An overview is presented of existing methods to measure the loads on the post foundations of rockfall protection barriers. Addressing some of the inadequacies of existing approaches, a novel sensor unit is presented that is able to capture the forces acting on post foundations in all six degrees of freedom. The sensor unit consists of four triaxial force sensors placed between two steel plates. To correctly convert the measurements into the directional forces acting on the foundation a special in-situ calibration procedure is proposed that delivers a corresponding conversion matrix. PMID:26840315

  7. Cardiovascular responses of snakes to hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.

    1997-01-01

    Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to centrally mediated responses to fluid shifts.

  8. Solar forcing - implications for the volatile inventory on Mars and Venus. (Invited)

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard

    2015-04-01

    Planets in the solar system are exposed to a persistent solar forcing by solar irradiation and the solar wind. The forcing, most pronounced for the inner Earth-like planets, ionizes, heats, modifies chemically, and gradually erodes the upper atmosphere throughout the lifetime of the planets. Of the four inner planets, the Earth is at present the only one habitable. Our kin Venus and Mars have taken different evolutionary paths, the present lack of a hydrosphere being the most significant difference. However, there are ample evidence for that an early Noachian, water rich period existed on Mars. Similarly, arguments have been presented for an early water-rich period on Venus. The question is, what made Mars and Venus evolve in such a different way compared to the Earth? Under the assumption of similar initial conditions, the planets may have experienced different externally driven episodes (e.g. impacts) with time. Conversely, internal factors on Mars and Venus made them less resilient, unable to sustain solar forcing on an evolutionary time-scale. The latter has been quantified from simulations, combining atmospheric and ionospheric modeling and empiric data from solar-like stars (Sun in time). In a similar way, semi-empirical models based on experimental data were used to determine the mass-loss of volatiles back in time from Mars and Venus. This presentation will review further aspects of semi-empirical modeling based on ion and energetic neutral atom (ENA) escape data from Mars and Venus - on short term (days), mid-term (solar cycle proxies), long-term (Heliospheric flux proxies, 10 000 year), and on time scales corresponding to the solar evolution.

  9. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads from a Seamless Adaptive Compliant Trailing Edge Flap in Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete

    2016-01-01

    A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.

  10. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Peacock, Lori; Macleod, Olivia Js; Kay, Christopher; Gibson, Wendy; Higgins, Matthew K; Carrington, Mark

    2016-04-15

    The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host.

  11. Estimation of Coriolis Force and Torque Acting on Ares-1

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb

    2011-01-01

    A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).

  12. 77 FR 4584 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... of a National Academy of Sciences/National Research Council study CPP Task Force on Unsolicited Mid... and December 13 meeting minutes Discussion of the MS Task Force draft report CSB Task Force on Data... Task Force Closing Remarks From the Chairman Committee on Audit and Oversight (A&O) Open Session: 4-4...

  13. Large-scale patterns of forest fire occurrence in the Conterminous United States and Alaska, 2001-08

    Treesearch

    Kevin M. Potter

    2012-01-01

    Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...

  14. Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009

    Treesearch

    Kevin M. Potter

    2013-01-01

    Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...

  15. The Evolution of Adolescence and the Adolescence of Evolution: The Coming of Age of Humans and the Theory about the Forces that Made Them

    ERIC Educational Resources Information Center

    Hawley, Patricia H.

    2011-01-01

    Adolescence is a period characterized by well-documented growth and change, including reproductive, social, and cognitive development. Though not unheard of, modern evolutionary approaches to adolescence are still relatively uncommon. Recent treatises in developmental biology, however, have yielded new tools through which to explore human…

  16. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution.

    PubMed

    Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel

    2016-01-11

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

  17. Molding the business end of neurotoxins by diversifying evolution.

    PubMed

    Kozminsky-Atias, Adi; Zilberberg, Noam

    2012-02-01

    A diverse range of organisms utilize neurotoxins that target specific ion channels and modulate their activity. Typically, toxins are clustered into several multigene families, providing an organism with the upper hand in the never-ending predator-prey arms race. Several gene families, including those encoding certain neurotoxins, have been subject to diversifying selection forces, resulting in rapid gene evolution. Here we sought a spatial pattern in the distribution of both diversifying and purifying selection forces common to neurotoxin gene families. Utilizing the mechanistic empirical combination model, we analyzed various toxin families from different phyla affecting various receptors and relying on diverse modes of action. Through this approach, we were able to detect clear correlations between the pharmacological surface of a toxin and rapidly evolving domains, rich in positively selected residues. On the other hand, patches of negatively selected residues were restricted to the nontoxic face of the molecule and most likely help in stabilizing the tertiary structure of the toxin. We thus propose a mutual evolutionary strategy of venomous animals in which adaptive molecular evolution is directed toward the toxin active surface. Furthermore, we propose that the binding domains of unstudied toxins could be readily predicted using evolutionary considerations.

  18. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  19. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history

    PubMed Central

    Milyutina, Irina A.; Erokhina, Tatiana N.; Ozerova, Liudmila V.; Troitsky, Alexey V.; Solovyev, Andrey G.

    2018-01-01

    Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants. PMID:29682420

  20. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  1. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower.

    PubMed

    Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2015-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.

  2. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish

    PubMed Central

    Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel

    1996-01-01

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540

  3. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish.

    PubMed

    Zardoya, R; Abouheif, E; Meyer, A

    1996-11-12

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.

  5. 75 FR 22573 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Force Automated Education Management System (AFAEMS). System location: Headquarters United States Air... Education Branch, Education Division, Directorate of Personnel Force Development, Headquarters United States.... F036 AF PC U System name: Air Force Automated Education Management System (AFAEMS) (January 28, 2002...

  6. Children's Typically-Perceived-Situations of Force and No Force in the Context of Australia and Korea

    ERIC Educational Resources Information Center

    Joung, Yong Jae; Gunstone, Richard

    2010-01-01

    Typically-Perceived-Situation (TPS) refers to the situation rising spontaneously in an individual's mind when she/he first thinks of a phenomenon or concept. The purpose of this study is to go well beyond the many studies that describe conceptions of force and explore children's TPS of "force is acting on a thing" and "force is not…

  7. Surface Stresses and a Force Balance at a Contact Line.

    PubMed

    Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V

    2018-06-26

    Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.

  8. How to Love the Bomb: Trying to solve the prisoner's dilemma with evolutionary game theory

    NASA Astrophysics Data System (ADS)

    Castela, Vasco

    Economists traditionally see altruistic acts as irrational. However, in the Prisoner's Dilemma, a rational player can do worse than a moral player. The rules of the game imply that one cannot defend one's best interest if one tries to. Game theory has struggled to explain how an agent could have access to the strategically best outcome without behaving irrationally, but with little success. Can a complex systems approach do better?. Peter Danielson, using Evolutionary Game Theory, has avoided some of the assumptions of Game Theory by using a complexity approach to reframe the problem, and offers a solution of sorts. According to Danielson, the foundations of altruism are mechanisms of deterrence that rely on credible threat - we are nice for fear of retaliation. He is both right and wrong. It will be argued that utilitarian, consequentialist principles must have been at work to create the conditions for altruistic acts to be performed. It is wrong to expect, however, that the same reasons are the reasons for action. In order for a model of genuine altruism to be possible, an extra cog must be inserted in the mechanism of causality in order to distance moral action from its strategic advantages. If emotions fulfill this role, we can tell a story in which it is rational to act on altruistic motivations and materially advantageous to hold such motivations. Moral sentiments can be seen as a tool designed by evolution to help optimize cooperation in a social environment. The proposed account integrates the Humean theory of motivation with Robert Frank's commitment model and Aristotle's views on moral education, keeping an adequate story of how it can be in our material interest to be moral without having to renounce to the existence of genuine acts of altruism.

  9. Mothers who kill: evolutionary underpinnings and infanticide law.

    PubMed

    Friedman, Susan Hatters; Cavney, James; Resnick, Phillip J

    2012-01-01

    Women who kill their children present a profound challenge to accepted notions of motherhood and the protection offered by mothers to their children. Historically, societies have varied in the sanctions applied to perpetrators of such acts, across both time and place. Where penalties were once severe and punitive for mothers, in modern times some two dozen nations now have infanticide acts that reduce the penalties for mothers who kill their infants. Embedded within these acts are key criteria that relate (a) only to women who are (b) suffering the hormonal or mood effects of pregnancy/lactation at the time of the offence which is (c) usually restricted to within the first year after delivery. Criticisms of infanticide legislation have largely centered on inherent gender bias, misconceptions about the hormonal basis of postpartum psychiatric disorders, and the nexus and contribution of these disorders to the offending in relation to issues of culpability and sentencing. Important differences between female perpetrators relative to the age of the child victim have also highlighted problems in the implementation of infanticide legislation. For example, women who commit neonaticide (murder during the first day of life) differ substantially from mentally ill mothers who kill older children. However, despite these shortcomings, many nations have in recent years chosen to retain their infanticide acts. This article reviews the central controversies of infanticide legislation in relation to current research and fundamental fairness. Using evolutionary psychology as a theoretical framework to organize this discussion, it is argued that infanticide legislation is at best unnecessary and at worst misapplied, in that it exculpates criminal intent and fails to serve those for whom an infanticide defense might otherwise have been intended. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Sexual and Emotional Infidelity: Evolved Gender Differences in Jealousy Prove Robust and Replicable.

    PubMed

    Buss, David M

    2018-03-01

    Infidelity poses threats to high-investment mating relationships. Because of gender differences in some aspects of reproductive biology, such as internal female fertilization, the nature of these threats differs for men and women. Men, but not women, for example, have recurrently faced the problem of uncertainty in their genetic parenthood. Jealousy is an emotion hypothesized to have evolved to combat these threats. The 1992 article Sex Differences in Jealousy: Evolution, Physiology, and Psychology reported three empirical studies using two different methods, forced-choice and physiological experiments. Results supported the evolution-based hypotheses. The article became highly cited for several reasons. It elevated the status of jealousy as an important emotion to be explained by any comprehensive theory of human emotions. Subsequent meta-analyses robustly supported the evolutionary hypotheses. Moreover, the work supported the evolutionary meta-theory of gender differences, which posits differences only in domains in which the sexes have recurrently faced distinct adaptive problems. It also heralded the newly emerging field of evolutionary psychology as a useful perspective that possesses the scientific virtues of testability, falsifiability, and heuristic value in discovering previously unknown psychological phenomena.

  11. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  12. Responses of the plio-pleistocene freshwater gastropods of Kos (Greece, Aegean sea) to environmental changes

    NASA Astrophysics Data System (ADS)

    Willmann, Rainer

    In the Plio-Pleistocene freshwater gastropods of Kos, three different kinds of faunal responses to the changing environment can be referred to: 1) Varying species numbers as responses of the fauna as a whole, 2) evolutionary changes in shell morphology, and 3) non-hereditary modifications in shell colour as a reaction to varying salinity. Evolutionary changes in shell sculpture must be explained as an expression of adaption to certain environmental factors, which, however, are still unknown. Nevertheless, some extrinsic forces important for gastropod evolution can be determined. Separating mechanisms within the basin caused splitting of populations, and the populations separated from each other had different evolutionary trends (microgeographical differentiation, e.g. Mikrogoniochilus minutus). Micro-allopatry can also be observed in Rhodopyrgula rhodiensis from the Pliocene of Rhodes. Some more wide spread populations were split by the separation of the eastern Kos lake from inland waters in central Kos (Melanopsis gorceixi, Theodoxus doricus), and in the latter species they became reconnected, when there was subsequent contact between these waters. A similar development seems to have occurred in the Rhodian Viviparus rhodensis.

  13. The Ecological Rise of Whales Chronicled by the Fossil Record.

    PubMed

    Pyenson, Nicholas D

    2017-06-05

    The evolution of cetaceans is one of the best examples of macroevolution documented from the fossil record. While ecological transitions dominate each phase of cetacean history, this context is rarely stated explicitly. The first major ecological phase involves a transition from riverine and deltaic environments to marine ones, concomitant with dramatic evolutionary transformations documented in their early fossil record. The second major phase involves ecological shifts associated with evolutionary innovations: echolocation (facilitating hunting prey at depth) and filter-feeding (enhancing foraging efficiency on small prey). This latter phase involves body size shifts, attributable to changes in foraging depth and environmental forcing, as well as re-invasions of freshwater systems on continental basins by multiple lineages. Modern phenomena driving cetacean ecology, such as trophic dynamics and arms races, have an evolutionary basis that remains mostly unexamined. The fossil record of cetaceans provides an historical basis for understanding current ecological mechanisms and consequences, especially as global climate change rapidly alters ocean and river ecosystems at rates and scales comparable to those over geologic time. Published by Elsevier Ltd.

  14. Evolutionary Perspective on Collective Decision Making

    NASA Astrophysics Data System (ADS)

    Farrell, Dene; Sayama, Hiroki; Dionne, Shelley D.; Yammarino, Francis J.; Wilson, David Sloan

    Team decision making dynamics are investigated from a novel perspective by shifting agency from decision makers to representations of potential solutions. We provide a new way to navigate social dynamics of collective decision making by interpreting decision makers as constituents of an evolutionary environment of an ecology of evolving solutions. We demonstrate distinct patterns of evolution with respect to three forms of variation: (1) Results with random variations in utility functions of individuals indicate that groups demonstrating minimal internal variation produce higher true utility values of group solutions and display better convergence; (2) analysis of variations in behavioral patterns within a group shows that a proper balance between selective and creative evolutionary forces is crucial to producing adaptive solutions; and (3) biased variations of the utility functions diminish the range of variation for potential solution utility, leaving only the differential of convergence performance static. We generally find that group cohesion (low random variation within a group) and composition (appropriate variation of behavioral patterns within a group) are necessary for a successful navigation of the solution space, but performance in both cases is susceptible to group level biases.

  15. Bad to the bone: facial structure predicts unethical behaviour.

    PubMed

    Haselhuhn, Michael P; Wong, Elaine M

    2012-02-07

    Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour.

  16. Structural technology challenges for evolutionary growth of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doiron, Harold H.

    1990-01-01

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  17. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  18. Complete Description of Forces Acting on a Flying Beach Volleyball

    NASA Astrophysics Data System (ADS)

    Dumek, Jan; Šafařík, Pavel

    2018-06-01

    Complete description of all forces acting on a flying Beach Volleyball was made based on measurements in the wind tunnel. Forces (drag, lift and side force) were measured for different angle of attack β which varies from 0° to 47°. Velocity region was from 10 to 25 m/s and revolution region was from 0 to 12.5 rps. Moments (Roll, Yaw, Pitch) were detected. Results are described by means of non-dimensional numbers, such as Reynolds number Re, spin s, drag CD, lift CL and side force CS coefficients. Differences in results of CD, CL and CS were detected for various angle β and are further described in the article. Conclusions of the investigation can be utilized 1st by ball producers for practical use in development, 2nd for sport Methodist to build more exact methodology for Beach Volleyball, 3rd in basic and applied aerodynamic research.

  19. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  20. Propulsion Mechanism of Catalytic Microjet Engines

    PubMed Central

    Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214

  1. Implications of a Culturally Rich and Linguistically Diverse Musical Life for Music Teaching and Learning

    ERIC Educational Resources Information Center

    Fung, Annabella

    2016-01-01

    I am a Chinese-Australian musician-educator of over three decades. In this autoethnography, I act as an agent of change by presenting my life as a social project. This assists understanding of a larger relational, communal and political world that moves us to critical engagement, social action and change. Evolutionary psychology asserts that…

  2. Cell biology: scaling and the emergence of evolutionary cell biology.

    PubMed

    Phillips, Patrick C; Bowerman, Bruce

    2015-03-16

    A new study investigating the origins of diversity in the structure of the mitotic spindle in nematode embryos, at timescales spanning a few generations to hundreds of millions of years, finds that most features of the spindle evolve via a scaling relationship generated by natural selection acting directly upon embryo size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 78 FR 14293 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    .... SUPPLEMENTARY INFORMATION: The Department of the Air Force's notices for systems of records subject to the...: Delete entry and replace with ``10 U.S.C. 8013, Secretary of the Air Force; 10 U.S.C. 8032, The Air Staff... system interfaces. The interfaces are the Air Force Logistics Module, Air Force Military Personnel Data...

  4. Is holography ready for yet another life? or make holography great again

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.

    2016-08-01

    Holographic metrology, unlike most other applications of holography, has always thrived and continues to thrive by continuously incorporating new supporting technologies that make it more powerful and useful. Successes, failures, lives, and deaths are examined and recognized as evolutionary steps that position the field where opportunities are as great and as many as ever. This is a story of that evolution. Comparisons and analogies with other applications of holography such as data storage, archiving, the arts, entertainment, advertising, and security and their evolution are interesting. Critical events, successes, mistakes, and coincidences represent milestones of abandonment or failure to deliver in many holography communities that followed a different evolutionary path. Events and new technical developments continue to emerge in supporting fields that can revive and expand all holography applications. New opportunities are described with encouragement to act on them and take some risks. Don't wait until all of the required technology and hardware are available, because good scientists always act before then. The paper is about "making holography great again" and your opportunity to be a part of the upcoming revolution. Although the discussion focuses on holographic metrology, the same principles should apply to other holography communities.

  5. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less

  6. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  7. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    NASA Astrophysics Data System (ADS)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  8. Unintended Consequences of the Goldwater-Nichols Act (Joint Force Quarterly, Spring 1998)

    DTIC Science & Technology

    1998-01-01

    Armed Forces to achieve mili- tary success, the unified direction of DOD neces- sary for budgetary efficiency, and the separation of powers demanded by...its actions. The Constitution has stood for two centuries precisely because it flexibly applies simple concepts such as the separation of powers and...replaced, it has created a national military command structure that ignores the separation of powers . The amended National Security Act has consolidated

  9. Enhancing National Security in Hungary through the Development and Employment of Special Forces

    DTIC Science & Technology

    2006-06-01

    Low Intensity Conflict, Strategy, Hungary, Special Forces 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...of Hungary in NATO has brought a penetrating change. As the member of an alliance system, Hungary cannot interpret in an unchanged manner the...more confident that in particular cases, operators will act in ways that the head of the agency would have acted had he or she been in their shoes

  10. Baculovirus phylogeny and evolution.

    PubMed

    Herniou, Elisabeth A; Jehle, Johannes A

    2007-10-01

    The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.

  11. Integrating Competition for Food, Hosts, or Mates via Experimental Evolution.

    PubMed

    Rodrigues, Leonor R; Duncan, Alison B; Clemente, Salomé H; Moya-Laraño, Jordi; Magalhães, Sara

    2016-02-01

    Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evolutionary conservation of regulated longevity assurance mechanisms

    PubMed Central

    McElwee, Joshua J; Schuster, Eugene; Blanc, Eric; Piper, Matthew D; Thomas, James H; Patel, Dhaval S; Selman, Colin; Withers, Dominic J; Thornton, Janet M; Partridge, Linda; Gems, David

    2007-01-01

    Background To what extent are the determinants of aging in animal species universal? Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) is an evolutionarily conserved (public) regulator of longevity; yet it remains unclear whether the genes and biochemical processes through which IIS acts on aging are public or private (that is, lineage specific). To address this, we have applied a novel, multi-level cross-species comparative analysis to compare gene expression changes accompanying increased longevity in mutant nematodes, fruitflies and mice with reduced IIS. Results Surprisingly, there is little evolutionary conservation at the level of individual, orthologous genes or paralogous genes under IIS regulation. However, a number of gene categories are significantly enriched for genes whose expression changes in long-lived animals of all three species. Down-regulated categories include protein biosynthesis-associated genes. Up-regulated categories include sugar catabolism, energy generation, glutathione-S-transferases (GSTs) and several other categories linked to cellular detoxification (that is, phase 1 and phase 2 metabolism of xenobiotic and endobiotic toxins). Protein biosynthesis and GST activity have recently been linked to aging and longevity assurance, respectively. Conclusion These processes represent candidate, regulated mechanisms of longevity-control that are conserved across animal species. The longevity assurance mechanisms via which IIS acts appear to be lineage-specific at the gene level (private), but conserved at the process level (or semi-public). In the case of GSTs, and cellular detoxification generally, this suggests that the mechanisms of aging against which longevity assurance mechanisms act are, to some extent, lineage specific. PMID:17612391

  13. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  14. On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Alexandre A.; Pinheiro, Mario J.

    In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.

  15. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  16. 76 FR 14951 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... inventory of records systems subject to the Privacy Act of 1974, (5 U.S.C. 552a), as amended. DATES: The... INFORMATION: The Department of the Air Force systems of records notices subject to the Privacy Act of 1974, (5....C. 552a(b) of the Privacy Act of 1974, these records contained therein, may specifically be...

  17. Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field.

    PubMed

    Mitri, F G

    2005-08-01

    The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.

  18. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  19. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  20. Accounting for epistatic interactions improves the functional analysis of protein structures.

    PubMed

    Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier

    2013-11-01

    The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.

Top