Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L
2016-09-01
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Chaos and the (un)predictability of evolution in a changing environment
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-01-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104
Cardiovascular responses of snakes to hypergravity
NASA Technical Reports Server (NTRS)
Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.
1997-01-01
Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to centrally mediated responses to fluid shifts.
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Willmann, Rainer
In the Plio-Pleistocene freshwater gastropods of Kos, three different kinds of faunal responses to the changing environment can be referred to: 1) Varying species numbers as responses of the fauna as a whole, 2) evolutionary changes in shell morphology, and 3) non-hereditary modifications in shell colour as a reaction to varying salinity. Evolutionary changes in shell sculpture must be explained as an expression of adaption to certain environmental factors, which, however, are still unknown. Nevertheless, some extrinsic forces important for gastropod evolution can be determined. Separating mechanisms within the basin caused splitting of populations, and the populations separated from each other had different evolutionary trends (microgeographical differentiation, e.g. Mikrogoniochilus minutus). Micro-allopatry can also be observed in Rhodopyrgula rhodiensis from the Pliocene of Rhodes. Some more wide spread populations were split by the separation of the eastern Kos lake from inland waters in central Kos (Melanopsis gorceixi, Theodoxus doricus), and in the latter species they became reconnected, when there was subsequent contact between these waters. A similar development seems to have occurred in the Rhodian Viviparus rhodensis.
Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A
2008-08-27
The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.
Predator confusion is sufficient to evolve swarming behaviour
Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph
2013-01-01
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485
Predator confusion is sufficient to evolve swarming behaviour.
Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph
2013-08-06
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.
de la Mata, Raul; Hood, Sharon; Sala, Anna
2017-07-11
Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle ( Dendroctonus ponderosae ) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.
Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.
M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W
2016-12-01
The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.
Reed, Laura K.; LaFlamme, Brooke A.; Markow, Therese A.
2008-01-01
Background The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Methodology/Principal Findings Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. Conclusions/Significance The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation. PMID:18728782
Adaptive evolution of body size subject to indirect effect in trophic cascade system.
Wang, Xin; Fan, Meng; Hao, Lina
2017-09-01
Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-phase vesicles: a study on evolutionary and stationary models.
Sahebifard, MohammadMahdi; Shahidi, Alireza; Ziaei-Rad, Saeed
2017-05-01
In the current article, the dynamic evolution of two-phase vesicles is presented as an extension to a previous stationary model and based on an equilibrium of local forces. In the simplified model, ignoring the effects of membrane inertia, a dynamic equilibrium between the membrane bending potential and local fluid friction is considered in each phase. The equilibrium equations at the domain borders are completed by extended introduction of membrane section reactions. We show that in some cases, the results of stationary and evolutionary models are in agreement with each other and also with experimental observations, while in others the two models differ markedly. The value of our approach is that we can account for unresponsive points of uncertainty using our equations with the local velocity of the lipid membranes and calculating the intermediate states (shapes) in the consequent evolutionary, or response, path.
The evolution of distributed sensing and collective computation in animal populations
Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D
2015-01-01
Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003
Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.
Huang, Bing-Hong; Liao, Pei-Chun
2015-07-01
Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sala, Anna
2017-01-01
Long generation times limit species’ rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs. PMID:28652352
The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx
Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.
2004-01-01
The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131
A single gene causes both male sterility and segregation distortion in Drosophila hybrids.
Phadnis, Nitin; Orr, H Allen
2009-01-16
A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability-many of which have evolved rapidly under positive Darwinian selection-little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here, we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and U.S. subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation.
Evolutionary response of landraces to climate change in centers of crop diversity
Mercer, Kristin L; Perales, Hugo R
2010-01-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941
Evolutionary response of landraces to climate change in centers of crop diversity.
Mercer, Kristin L; Perales, Hugo R
2010-09-01
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.
Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191
Hybridization affects life-history traits and host specificity in Diorhabda spp
USDA-ARS?s Scientific Manuscript database
Hybridization is an influential evolutionary process that has been viewed alternatively as an evolutionary dead-end or as an important creative evolutionary force. In colonizing species, such as introduced biological control agents, hybridization can negate the effects of bottlenecks and genetic dri...
A single gene causes both male sterility and segregation distortion in Drosophila hybrids*
Phadnis, Nitin; Orr, H. Allen
2008-01-01
A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability— many of which have evolved rapidly under positive Darwinian selection— little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation. PMID:19074311
NASA Astrophysics Data System (ADS)
Zhao, Y.; Su, X. H.; Wang, M. H.; Li, Z. Y.; Li, E. K.; Xu, X.
2017-08-01
Water resources vulnerability control management is essential because it is related to the benign evolution of socio-economic, environmental and water resources system. Research on water resources system vulnerability is helpful to realization of water resources sustainable utilization. In this study, the DPSIR framework of driving forces-pressure-state-impact-response was adopted to construct the evaluation index system of water resources system vulnerability. Then the co-evolutionary genetic algorithm and projection pursuit were used to establish evaluation model of water resources system vulnerability. Tengzhou City in Shandong Province was selected as a study area. The system vulnerability was analyzed in terms of driving forces, pressure, state, impact and response on the basis of the projection value calculated by the model. The results show that the five components all belong to vulnerability Grade II, the vulnerability degree of impact and state were higher than other components due to the fierce imbalance in supply-demand and the unsatisfied condition of water resources utilization. It is indicated that the influence of high speed socio-economic development and the overuse of the pesticides have already disturbed the benign development of water environment to some extents. While the indexes in response represented lower vulnerability degree than the other components. The results of the evaluation model are coincident with the status of water resources system in the study area, which indicates that the model is feasible and effective.
Inference of Evolutionary Forces Acting on Human Biological Pathways
Daub, Josephine T.; Dupanloup, Isabelle; Robinson-Rechavi, Marc; Excoffier, Laurent
2015-01-01
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures. PMID:25971280
Transmissible cancers in an evolutionary context.
Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine
2016-07-01
Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.
Jacobs, D S; Bastian, A; Bam, L
2014-12-01
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Natural history collections as windows on evolutionary processes.
Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W
2016-02-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.
Natural history collections as windows on evolutionary processes
Holmes, Michael W.; Hammond, Talisin T.; Wogan, Guinevere O.U.; Walsh, Rachel E.; LaBarbera, Katie; Wommack, Elizabeth A.; Martins, Felipe M.; Crawford, Jeremy C.; Mack, Katya L.; Bloch, Luke M.; Nachman, Michael W.
2016-01-01
Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics, and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the lab, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short time scales in response to presumably strong selective pressures. In some instances evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. PMID:26757135
Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels.
Cox, C D; Bavi, N; Martinac, B
2017-01-01
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K + (K 2P ) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.
Reim, Elisabeth; Blesinger, Simone; Förster, Lisa; Fischer, Klaus
2018-05-29
Anthropogenic interference forces species to respond to changing environmental conditions. One possible response is dispersal and concomitant range shifts, allowing individuals to escape unfavourable conditions or to track the shifting climate niche. Range expansions depend on both dispersal capacity and the ability to establish populations beyond the former range. We here compare well-established core populations with recently established edge populations in the currently northward expanding butterfly Lycaena tityrus. Edge populations were characterized by shorter development times and smaller size, a higher sensitivity to high temperature and an enhanced exploratory behaviour. The differences between core and edge populations found suggest adaptation to local climates and an enhanced dispersal ability in edge populations. In particular, enhanced exploratory behaviour may be advantageous in all steps of the dispersal process and may have facilitated the current range expansion. This study describes differences associated with a current range expansion, knowledge which might be useful for a better understanding of species responses to environmental change. We further report on variation between males and females in morphology and flight behaviour, with males showing a longer flight endurance and more pronounced exploratory behaviour than females. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview
NASA Astrophysics Data System (ADS)
Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea
2014-07-01
The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.
Biological hierarchies and the nature of extinction.
Congreve, Curtis R; Falk, Amanda R; Lamsdell, James C
2018-05-01
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant. © 2017 Cambridge Philosophical Society.
Dynamic tests on the NASA Langley CSI evolutionary model
NASA Technical Reports Server (NTRS)
Troidl, H.; Elliott, K. B.
1993-01-01
A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.
NASA Astrophysics Data System (ADS)
Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni
2018-02-01
A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.
Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni
2018-01-02
A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.
Maglo, Koffi N.; Mersha, Tesfaye B.; Martin, Lisa J.
2016-01-01
The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to “frictional” effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the “cluster” and “cline” constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin's argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces, and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors, and evolutionary forces affecting disease causation and treatment response. PMID:26925096
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
Shaping communicative colour signals over evolutionary time
Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.
2016-01-01
Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661
Shaping communicative colour signals over evolutionary time.
Ossip-Drahos, Alison G; Oyola Morales, José R; Vital-García, Cuauhcihuatl; Zúñiga-Vega, J Jaime; Hews, Diana K; Martins, Emília P
2016-11-01
Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus ) represents an ancient loss of the belly patch by S. siniferus , and the second evolutionary shift, bounded by S. undulatus and S. virgatus , represents a more recent loss of blue belly patch by S. virgatus . Conspicuousness measurements suggest that the species with the recent loss ( S. virgatus ) is the least conspicuous. Results for two other species ( S. siniferus and S. merriami ) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch ( S. siniferus ) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours.
Structural technology challenges for evolutionary growth of Space Station Freedom
NASA Technical Reports Server (NTRS)
Doiron, Harold H.
1990-01-01
A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.
Diet, bite force and skull morphology in the generalist rodent morphotype.
Maestri, R; Patterson, B D; Fornel, R; Monteiro, L R; de Freitas, T R O
2016-11-01
For many vertebrate species, bite force plays an important functional role. Ecological characteristics of a species' niche, such as diet, are often associated with bite force. Previous evidence suggests a biomechanical trade-off between rodents specialized for gnawing, which feed mainly on seeds, and those specialized for chewing, which feed mainly on green vegetation. We tested the hypothesis that gnawers are stronger biters than chewers. We estimated bite force and measured skull and mandible shape and size in 63 genera of a major rodent radiation (the myomorph sigmodontines). Analysis of the influence of diet on bite force and morphology was made in a comparative framework. We then used phylogenetic path analysis to uncover the most probable causal relationships linking diet and bite force. Both granivores (gnawers) and herbivores (chewers) have a similar high bite force, leading us to reject the initial hypothesis. Path analysis reveals that bite force is more likely influenced by diet than the reverse causality. The absence of a trade-off between herbivores and granivores may be associated with the generalist nature of the myomorph condition seen in sigmodontine rodents. Both gnawing and chewing sigmodontines exhibit similar, intermediate phenotypes, at least compared to extreme gnawers (squirrels) and chewers (chinchillas). Only insectivorous rodents appear to be moving towards a different direction in the shape space, through some notable changes in morphology. In terms of diet, natural selection alters bite force through changes in size and shape, indicating that organisms adjust their bite force in tandem with changes in food items. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
A Perspective on Micro-Evo-Devo: Progress and Potential
Nunes, Maria D. S.; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P.
2013-01-01
The term “micro-evo-devo” refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field. PMID:24190920
A perspective on micro-evo-devo: progress and potential.
Nunes, Maria D S; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P
2013-11-01
The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.
Identification of an ant queen pheromone regulating worker sterility.
Holman, Luke; Jørgensen, Charlotte G; Nielsen, John; d'Ettorre, Patrizia
2010-12-22
The selective forces that shape and maintain eusocial societies are an enduring puzzle in evolutionary biology. Ordinarily sterile workers can usually reproduce given the right conditions, so the factors regulating reproductive division of labour may provide insight into why eusociality has persisted over evolutionary time. Queen-produced pheromones that affect worker reproduction have been implicated in diverse taxa, including ants, termites, wasps and possibly mole rats, but to date have only been definitively identified in the honeybee. Using the black garden ant Lasius niger, we isolate the first sterility-regulating ant queen pheromone. The pheromone is a cuticular hydrocarbon that comprises the majority of the chemical profile of queens and their eggs, and also affects worker behaviour, by reducing aggression towards objects bearing the pheromone. We further show that the pheromone elicits a strong response in worker antennae and that its production by queens is selectively reduced following an immune challenge. These results suggest that the pheromone has a central role in colony organization and support the hypothesis that worker sterility represents altruistic self-restraint in response to an honest quality signal.
Squamate hatchling size and the evolutionary causes of negative offspring size allometry.
Meiri, S; Feldman, A; Kratochvíl, L
2015-02-01
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Microbial multicellular development: mechanical forces in action.
Rivera-Yoshida, Natsuko; Arias Del Angel, Juan A; Benítez, Mariana
2018-06-06
Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptual Barriers to Progress Within Evolutionary Biology
Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy
2011-01-01
In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912
Conceptual Barriers to Progress Within Evolutionary Biology.
Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy
2009-08-01
In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.
Piga, Matteo; Mathieu, Alessandro
2014-01-01
It is recognised that the genetic profiles that give rise to chronic inflammatory diseases, under the influence of environmental agents, might have been implicated in the host defence mechanism against lethal infections in the past. Behçet's disease (BD) is an immune-mediated inflammatory disease, expressed as vasculitis, triggered by environmental factors in genetically susceptible individuals. We carried out a review of published data to draw up an evolutionary adaptation model, as Author's perspective, for genetic susceptibility factors and inflammatory immune response involved in BD pathogenesis. Two lethal infectious agents, Plasmodium Falciparum and Yersinia Pestis, are proposed as the putative driving forces that favoured the fixing of the major genetic susceptibility factors to BD, thus determining its geoepidemiology. Further studies are needed to confirm the validity of this evolutionary model which includes and integrates the key insights of previous hypotheses.
When is it socially acceptable to feel sick?
Lopes, Patricia C.
2014-01-01
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as ‘sickness behaviours’, frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes. PMID:24943375
Evolution and Vaccination of Influenza Virus.
Lam, Ham Ching; Bi, Xuan; Sreevatsan, Srinand; Boley, Daniel
2017-08-01
In this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results. We used the influenza surface Hemagglutinin (HA) gene for this study as the HA gene is the major target of the immune system. The visualization is achieved without using any clustering methods or prior information about the influenza sequences. Our results clearly showed that the evolutionary trajectories between vaccine-controlled and non-vaccine-controlled influenza viruses are different and vaccine as an evolution driving force cannot be completely eliminated.
Patterns and Processes of Vertebrate Evolution
NASA Astrophysics Data System (ADS)
Carroll, Robert Lynn
1997-04-01
This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.
Population genetics and demography unite ecology and evolution
Lowe, Winsor H.; Kovach, Ryan; Allendorf, Fred W.
2017-01-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco–evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.
Evolutionary responses to climate change in parasitic systems.
Chaianunporn, Thotsapol; Hovestadt, Thomas
2015-08-01
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.
Pang, Phillip S; Planet, Paul J; Glenn, Jeffrey S
2009-08-11
Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy.
McEvoy, Brian; Beleza, Sandra; Shriver, Mark D
2006-10-15
Skin pigmentation varies substantially across human populations in a manner largely coincident with ultraviolet radiation intensity. This observation suggests that natural selection in response to sunlight is a major force in accounting for pigmentation variability. We review recent progress in identifying the genes controlling this variation with a particular focus on the trait's evolutionary past and the potential role of testing for signatures of selection in aiding the discovery of functionally important genes. We have analyzed SNP data from the International HapMap project in 77 pigmentation candidate genes for such signatures. On the basis of these results and other similar work, we provide a tentative three-population model (West Africa, East Asia and North Europe) of the evolutionary-genetic architecture of human pigmentation. These results suggest a complex evolutionary history, with selection acting on different gene targets at different times and places in the human past. Some candidate genes may have been selected in the ancestral human population, others in the 'out of Africa' proto European-Asian population, whereas most appear to have selectively evolved solely in either Europeans or East Asians separately despite the pigmentation similarities between these two populations. Selection signatures can provide important clues to aid gene discovery. However, these should be viewed as complements, rather than replacements of, functional studies including linkage and association analyses, which can directly refine our understanding of the trait.
Crozier, L G; Hendry, A P; Lawson, P W; Quinn, T P; Mantua, N J; Battin, J; Shaw, R G; Huey, R B
2008-05-01
Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (Oncorhynchus nerka) salmon. We discuss the possible evolutionary responses in migration and spawning date egg and juvenile growth and development rates, thermal tolerance, and disease resistance. We know little about ocean migration pathways, so cannot confidently suggest the potential changes in this life stage. Climate change might produce conflicting selection pressures in different life stages, which will interact with plastic (i.e. nongenetic) changes in various ways. To clarify these interactions, we present a conceptual model of how changing environmental conditions shift phenotypic optima and, through plastic responses, phenotype distributions, affecting the force of selection. Our predictions are tentative because we lack data on the strength of selection, heritability, and ecological and genetic linkages among many of the traits discussed here. Despite the challenges involved in experimental manipulation of species with complex life histories, such research is essential for full appreciation of the biological effects of climate change.
The Granuloma in Tuberculosis: Dynamics of a Host–Pathogen Collusion
Ehlers, Stefan; Schaible, Ulrich E.
2012-01-01
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission. PMID:23308075
2013-01-01
Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134
Crozier, L G; Hendry, A P; Lawson, P W; Quinn, T P; Mantua, N J; Battin, J; Shaw, R G; Huey, R B
2008-01-01
Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (Oncorhynchus nerka) salmon. We discuss the possible evolutionary responses in migration and spawning date egg and juvenile growth and development rates, thermal tolerance, and disease resistance. We know little about ocean migration pathways, so cannot confidently suggest the potential changes in this life stage. Climate change might produce conflicting selection pressures in different life stages, which will interact with plastic (i.e. nongenetic) changes in various ways. To clarify these interactions, we present a conceptual model of how changing environmental conditions shift phenotypic optima and, through plastic responses, phenotype distributions, affecting the force of selection. Our predictions are tentative because we lack data on the strength of selection, heritability, and ecological and genetic linkages among many of the traits discussed here. Despite the challenges involved in experimental manipulation of species with complex life histories, such research is essential for full appreciation of the biological effects of climate change. PMID:25567630
Signatures of microevolutionary processes in phylogenetic patterns.
Costa, Carolina L N; Lemos-Costa, Paula; Marquitti, Flavia M D; Fernandes, Lucas D; Ramos, Marlon F; Schneider, David M; Martins, Ayana B; Aguiar, Marcus A M
2018-06-23
Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.
Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting
NASA Astrophysics Data System (ADS)
Sharma, Deepak; Barakat, Nada
2018-02-01
An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.
Population Genetics and Demography Unite Ecology and Evolution.
Lowe, Winsor H; Kovach, Ryan P; Allendorf, Fred W
2017-02-01
The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ruths, Troy; Nakhleh, Luay
2013-05-07
Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks. Although tests of neutrality and selection based on molecular sequence data exist, no such tests are currently available based on CRNs. In this work, we present a unique genotype model of CRNs that is grounded in a genomic context and demonstrate its use in identifying portions of the CRN with properties explainable by neutral evolutionary forces at the system, subsystem, and operon levels. We leverage our model against experimentally derived data from Escherichia coli. The results of this analysis show statistically significant and substantial neutral trends in properties previously identified as adaptive in origin--degree distribution, clustering coefficient, and motifs--within the E. coli CRN. Our model captures the tightly coupled genome-interactome of an organism and enables analyses of how evolutionary events acting at the genome level, such as mutation, and at the population level, such as genetic drift, give rise to neutral patterns that we can quantify in CRNs.
Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.
O'Hara, Niamh B; Rest, Joshua S; Franks, Steven J
2016-01-01
Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
2017-05-25
Research Question What lessons can the contemporary Marine Corps learn from its transition from the post - Cold War and Operation Desert Shield and...United States Marine Corps Post -Cold War Evolutionary Efforts: Implications for a Post -Operation Enduring Freedom/Operation Iraqi Freedom...
Analysis of Knowledge-Sharing Evolutionary Game in University Teacher Team
ERIC Educational Resources Information Center
Huo, Mingkui
2013-01-01
The knowledge-sharing activity is a major drive force behind the progress and innovation of university teacher team. Based on the evolutionary game theory, this article analyzes the knowledge-sharing process model of this team, studies the influencing mechanism of various factors such as knowledge aggregate gap, incentive coefficient and risk…
Humanism and multiculturalism: an evolutionary alliance.
Comas-Diaz, Lillian
2012-12-01
Humanism and multiculturalism are partners in an evolutionary alliance. Humanistic and multicultural psychotherapies have historically influenced each other. Humanism represents the third force in psychotherapy, while multiculturalism embodies the fourth developmental stage. Multiculturalism embraces humanistic values grounded in collective and social justice contexts. Examples of multicultural humanistic constructs include contextualism, holism, and liberation. Certainly, the multicultural-humanistic connection is a necessary shift in the evolution of psychotherapy. Humanism and multiculturalism participate in the development of an inclusive and evolutionary psychotherapy. (c) 2012 APA, all rights reserved.
Why flying dogs are rare: A general theory of luck in evolutionary transitions.
Fleming, Leonore; Brandon, Robert
2015-02-01
There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin
2014-02-01
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin
2014-01-01
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene. PMID:24170493
Pick, J L; Hutter, P; Tschirren, B
2016-06-01
Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness.
Pick, J L; Hutter, P; Tschirren, B
2016-01-01
Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness. PMID:26956564
Cenozoic Icehouse Forcing Mechanisms on Coccolithophorid Evolution
NASA Astrophysics Data System (ADS)
Henderiks, J.
2007-12-01
An overall macroevolutionary size decrease in marine unicellular calcifying algae, the coccolithophores, is punctuated by distinct size responses that correlate to major climatic and paleoceanographic events during the Cenozoic. Notably, major size decreases in the ancestors of the modern blooming species Emiliania huxleyi and Gephyrocapsa oceanica are recorded at the Eocene-Oligocene transition (34 Ma) and in the late Miocene (9 Ma). Coccolithophorid cell size (as reconstructed from individual coccolith biometry) is likely influenced by a variety of passive and active evolutionary selection pressures, with specific factors, such as resource availability and climatic change, determining trends in specific intervals of time. This study presents biometric data of the Noelaerhabdacaea, Calcidiscaceae and Coccolithaceae families, which together represent the bulk of coccolith-carbonate buried in Cenozoic deep-sea sediments, from multiple Deep Sea Drilling Project and Ocean Drilling Project sites covering temperate to tropical regions in the Atlantic, Indian and Pacific oceans. Despite distinct regional ecologic responses at each site, striking correspondences within the global data set call for global forcing mechanisms on the size evolution and ecological success of coccolithophores in an 'icehouse' world.
The role of biotic forces in driving macroevolution: beyond the Red Queen
Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.
2015-01-01
A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685
Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?
Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur
2016-01-01
Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.
Coevolution between invasive and native plants driven by chemical competition and soil biota.
Lankau, Richard A
2012-07-10
Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.
Change and aging senescence as an adaptation.
Martins, André C R
2011-01-01
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.
Evolutionary and plastic responses to climate change in terrestrial plant populations
Franks, Steven J; Weber, Jennifer J; Aitken, Sally N
2014-01-01
As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552
Williams' paradox and the role of phenotypic plasticity in sexual systems.
Leonard, Janet L
2013-10-01
As George Williams pointed out in 1975, although evolutionary explanations, based on selection acting on individuals, have been developed for the advantages of simultaneous hermaphroditism, sequential hermaphroditism and gonochorism, none of these evolutionary explanations adequately explains the current distribution of these sexual systems within the Metazoa (Williams' Paradox). As Williams further pointed out, the current distribution of sexual systems is explained largely by phylogeny. Since 1975, we have made a great deal of empirical and theoretical progress in understanding sexual systems. However, we still lack a theory that explains the current distribution of sexual systems in animals and we do not understand the evolutionary transitions between hermaphroditism and gonochorism. Empirical data, collected over the past 40 years, demonstrate that gender may have more phenotypic plasticity than was previously realized. We know that not only sequential hermaphrodites, but also simultaneous hermaphrodites have phenotypic plasticity that alters sex allocation in response to social and environmental conditions. A focus on phenotypic plasticity suggests that one sees a continuum in animals between genetically determined gonochorism on the one hand and simultaneous hermaphroditism on the other, with various types of sequential hermaphroditism and environmental sex determination as points along the spectrum. Here I suggest that perhaps the reason we have been unable to resolve Williams' Paradox is because the problem was not correctly framed. First, because, for example, simultaneous hermaphroditism provides reproductive assurance or dioecy ensures outcrossing does not mean that there are no other evolutionary paths that can provide adaptive responses to those selective pressures. Second, perhaps the question we need to ask is: What selective forces favor increased versus reduced phenotypic plasticity in gender expression? It is time to begin to look at the question of sexual system as one of understanding the timing and degree of phenotypic plasticity in gender expression in the life history in terms of selection acting on a continuum, rather than on a set of discrete sexual systems.
Yan, Jun; Cai, Zhonghua
2010-12-10
The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable. Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family. The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family.
ERIC Educational Resources Information Center
Vallett, David Bruce
2013-01-01
This study examined the relationships among visuospatial ability, motivation to learn science, and learner conceptions of force across commonly measured demographics with university undergraduates with the aim of examining the support for an evolved sense of force and motion. Demographic variables of interest included age, ethnicity, and gender,…
Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.
Park, A W; Jokela, J; Michalakis, Y
2010-05-01
The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.
Postfire responses of the woody flora of Central Chile: Insights from a germination experiment
Paula, Susana; Cavieres, Lohengrin A.; Pausas, Juli G.
2017-01-01
Fire is a selective agent shaping plant traits and community assembly in fire-prone ecosystems. However, in ecosystems with no fire history, it can be a cause of land degradation when it is suddenly introduced by humans, as plant species may not be able to respond to such novel disturbance. Unlike other Mediterranean-type ecosystems (MTE) of the world, natural fires have not been frequent during the Quaternary in the matorral of Central Chile, and thus, plant adaptive responses are expected to be uncommon. We evaluated the effect of heat shock on seed survival and germination of 21 native woody plants of the Chilean matorral and compiled information on smoke-stimulation and resprouting, to evaluate the importance of fire-adaptive responses in the context of the other MTE. We found that in the Chilean woody flora negative seed responses to fire cues were more frequent than positive responses. Although resprouting is a relatively widespread trait, fire-stimulated germination is not as common in the Chilean matorral as in other MTE. The seeds of seven endemic species were strongly damaged by fire cues and this should be considered in post-fire restoration planning. However, our results also showed that many species were resistant to elevated doses of heat shock and in some, germination was even stimulated. Thus, future research should focus on the evolutionary causes of these responses. These findings could help to develop strategies for fire management in the Chilean matorral. In addition, they will improve our understanding of the evolutionary forces that shaped this plant community and to better frame this region among the other MTE worldwide. PMID:28704449
Postfire responses of the woody flora of Central Chile: Insights from a germination experiment.
Gómez-González, Susana; Paula, Susana; Cavieres, Lohengrin A; Pausas, Juli G
2017-01-01
Fire is a selective agent shaping plant traits and community assembly in fire-prone ecosystems. However, in ecosystems with no fire history, it can be a cause of land degradation when it is suddenly introduced by humans, as plant species may not be able to respond to such novel disturbance. Unlike other Mediterranean-type ecosystems (MTE) of the world, natural fires have not been frequent during the Quaternary in the matorral of Central Chile, and thus, plant adaptive responses are expected to be uncommon. We evaluated the effect of heat shock on seed survival and germination of 21 native woody plants of the Chilean matorral and compiled information on smoke-stimulation and resprouting, to evaluate the importance of fire-adaptive responses in the context of the other MTE. We found that in the Chilean woody flora negative seed responses to fire cues were more frequent than positive responses. Although resprouting is a relatively widespread trait, fire-stimulated germination is not as common in the Chilean matorral as in other MTE. The seeds of seven endemic species were strongly damaged by fire cues and this should be considered in post-fire restoration planning. However, our results also showed that many species were resistant to elevated doses of heat shock and in some, germination was even stimulated. Thus, future research should focus on the evolutionary causes of these responses. These findings could help to develop strategies for fire management in the Chilean matorral. In addition, they will improve our understanding of the evolutionary forces that shaped this plant community and to better frame this region among the other MTE worldwide.
Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes
Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela
2013-01-01
Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID:24137105
Evolutionary responses of native plant species to invasive plants: a review.
Oduor, Ayub M O
2013-12-01
Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.
The evolutionary and behavioral modification of consumer responses to environmental change.
Abrams, Peter A
2014-02-21
How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.
Genetic responses to rapid change in the environment during the anthropocene
Tallmon, David A.; Kovach, Ryan
2017-01-01
Humans have greatly affected the genetic composition of many different organisms during the Anthropocene. Humans cause genetic changes by affecting the direction and magnitude of evolutionary forces that act to create the Earth's biota. In many cases, we expect the outcome of human actions to be extinction and hybridization of existing species, but other outcomes, such as adaptation, also occur. Given the reach of humans throughout the globe, and recent biotechnology advances that make it possible to move individual genes between species or to remove them, it is likely that human influence on the genetic composition of other organisms will become even more widespread as the Anthropocene progresses.
Evolutionary Models of Irregular Warfare
2013-03-01
repro- duction. These adaptations include both physiological and behavioral strategies ranging from armour and immunity to complex nervous sys- tems...evolutionary principles to the level of grand strategy and international politics. This has given rise to some unexpected results: for example, work...forces, while only needing a small number of parameters to do so. Furthermore, they allow one to explore the effect of alternative strategies —whether
Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish.
Gingerich, Andrew James; Philipp, David P; Suski, Cory D
2010-03-01
The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.
The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass,more » while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.« less
Bursts of transposable elements as an evolutionary driving force.
Belyayev, A
2014-12-01
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Applying Evolutionary Anthropology
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561
Applying evolutionary anthropology.
Gibson, Mhairi A; Lawson, David W
2015-01-01
Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.
Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.
Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J
2018-05-11
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Weaver, Steven; Shank, Stephen D; Spielman, Stephanie J; Li, Michael; Muse, Spencer V; Kosakovsky Pond, Sergei L
2018-01-02
Inference of how evolutionary forces have shaped extant genetic diversity is a cornerstone of modern comparative sequence analysis. Advances in sequence generation and increased statistical sophistication of relevant methods now allow researchers to extract ever more evolutionary signal from the data, albeit at an increased computational cost. Here, we announce the release of Datamonkey 2.0, a completely re-engineered version of the Datamonkey web-server for analyzing evolutionary signatures in sequence data. For this endeavor, we leveraged recent developments in open-source libraries that facilitate interactive, robust, and scalable web application development. Datamonkey 2.0 provides a carefully curated collection of methods for interrogating coding-sequence alignments for imprints of natural selection, packaged as a responsive (i.e. can be viewed on tablet and mobile devices), fully interactive, and API-enabled web application. To complement Datamonkey 2.0, we additionally release HyPhy Vision, an accompanying JavaScript application for visualizing analysis results. HyPhy Vision can also be used separately from Datamonkey 2.0 to visualize locally-executed HyPhy analyses. Together, Datamonkey 2.0 and HyPhy Vision showcase how scientific software development can benefit from general-purpose open-source frameworks. Datamonkey 2.0 is freely and publicly available at http://www.datamonkey. org, and the underlying codebase is available from https://github.com/veg/datamonkey-js. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien; Cryer, Nicolai; Faivre, Nicolas; Santoni, Sylvain; Severac, Dany; Mikkelsen, Teis N; Larsen, Klaus S; Beier, Claus; Sørensen, Jesper G; Holmstrup, Martin; Ehlers, Bodil K
2016-07-01
Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Evolvable Hardware for Space Applications
NASA Technical Reports Server (NTRS)
Lohn, Jason; Globus, Al; Hornby, Gregory; Larchev, Gregory; Kraus, William
2004-01-01
This article surveys the research of the Evolvable Systems Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.
Botanical smuts and hermaphrodites: Lydia Becker, Darwin's botany, and education reform.
Gianquitto, Tina
2013-06-01
In 1868, Lydia Becker (1827-1890), the renowned Manchester suffragist, announced in a talk before the British Association for the Advancement of Science that the mind had no sex. A year later, she presented original botanical research at the BAAS, contending that a parasitic fungus forced normally single-sex female flowers of Lychnis diurna to develop stamens and become hermaphroditic. This essay uncovers the complex relationship between Lydia Becker's botanical research and her stance on women's rights by investigating how her interest in evolutionary theory, as well as her correspondence with Charles Darwin, critically informed her reform agendas by providing her with a new vocabulary for advocating for equality. One of the facts that Becker took away from her work on Lychnis was that even supposedly fixed, dichotomous categories such as biological sex became unfocused under the evolutionary lens. The details of evolutionary theory, from specific arguments on structural adaptations to more encompassing theories on heredity (i.e., pangenesis), informed Becker's understanding of human physiology. At the same time, Becker's belief in the fundamental equality of the sexes enabled her to perceive the distinction between inherent, biological differences and culturally contingent ones. She applied biological principles to social constructs as she asked: Do analogous evolutionary forces act on humans?
Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling
2017-11-02
Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.
Green, Melanie C; Sabini, John
2006-05-01
The authors used a representative national sample (N = 777) to test the evolutionary hypothesis that men would be more bothered by sexual infidelity and women by emotional infidelity, the Jealousy as a Specific Innate Module (JSIM) effect. Our alternative conceptualization of jealousy suggests that there are distinct emotional components of jealousy that did not evolve differently by gender. The authors looked for effects of age, socioeconomic status (SES), and type of measure (continuous or dichotomous) on jealousy. The authors did not find age or SES effects. Forced-choice items provided support for our alternative view; both genders showed more anger and blame over sexual infidelity but more hurt feelings over emotional infidelity. Continuous measures indicated more emotional response to sexual than emotional infidelity among both genders. 2006 APA, all rights reserved
Bat Flight and Zoonotic Viruses
Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.
2014-01-01
Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692
Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity?
Correa, Silvia G; Maccioni, Mariana; Rivero, Virginia E; Iribarren, Pablo; Sotomayor, Claudia E; Riera, Clelia M
2007-01-01
The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.
Bat flight and zoonotic viruses
O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.
2014-01-01
Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.
Universal scaling in the branching of the tree of life.
Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M
2008-07-23
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.
A variational approach to niche construction.
Constant, Axel; Ramstead, Maxwell J D; Veissière, Samuel P L; Campbell, John O; Friston, Karl J
2018-04-01
In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. © 2018 The Authors.
A variational approach to niche construction
Ramstead, Maxwell J. D.; Veissière, Samuel P. L.; Campbell, John O.; Friston, Karl J.
2018-01-01
In evolutionary biology, niche construction is sometimes described as a genuine evolutionary process whereby organisms, through their activities and regulatory mechanisms, modify their environment such as to steer their own evolutionary trajectory, and that of other species. There is ongoing debate, however, on the extent to which niche construction ought to be considered a bona fide evolutionary force, on a par with natural selection. Recent formulations of the variational free-energy principle as applied to the life sciences describe the properties of living systems, and their selection in evolution, in terms of variational inference. We argue that niche construction can be described using a variational approach. We propose new arguments to support the niche construction perspective, and to extend the variational approach to niche construction to current perspectives in various scientific fields. PMID:29643221
Neuroendocrine-Immune Circuits, Phenotypes, and Interactions
Ashley, Noah T.; Demas, Gregory E.
2016-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499
Neuroendocrine-immune circuits, phenotypes, and interactions.
Ashley, Noah T; Demas, Gregory E
2017-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Rubalcaba, J G; Polo, V; Maia, R; Rubenstein, D R; Veiga, J P
2016-08-01
Although sexual selection is typically considered the predominant force driving the evolution of ritualized sexual behaviours, natural selection may also play an important and often underappreciated role. The use of green aromatic plants among nesting birds has been interpreted as a component of extended phenotype that evolved either via natural selection due to potential sanitary functions or via sexual selection as a signal of male attractiveness. Here, we compared both hypotheses using comparative methods in starlings, a group where this behaviour is widespread. We found that the use of green plants was positively related to male-biased size dimorphism and that it was most likely to occur among cavity-nesting species. These results suggest that this behaviour is likely favoured by sexual selection, but also related to its sanitary use in response to higher parasite loads in cavities. We speculate that the use of green plants in starlings may be facilitated by cavity nesting and was subsequently co-opted as a sexual signal by males. Our results represent an example of how an extended phenotypic component of males becomes sexually selected by females. Thus, both natural selection and sexual selection are necessary to fully understand the evolution of ritualized behaviours involved in courtship. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Hsieh, Y-C; Chung, J-D; Wang, C-N; Chang, C-T; Chen, C-Y; Hwang, S-Y
2013-01-01
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale. PMID:23591517
Autoimmunity as a Driving Force of Cognitive Evolution
Nataf, Serge
2017-01-01
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3). PMID:29123465
Y chromosome evolution: emerging insights into processes of Y chromosome degeneration
Bachtrog, Doris
2014-01-01
The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112
Research on Duplication Dynamics and Evolutionary Stable of Reverse Supply Chain
NASA Astrophysics Data System (ADS)
Huizhong, Dong; Hongli, Song
An evolutionary game model of Reverse Supply Chain(RSC) is established based on duplication dynamics function and evolutionary stable strategy. Using the model framework, this paper provides insights into a deeper understanding on how each supplier make strategic decision independently in reverse supply chain to determine their performance. The main conclusion is as follow: Under the market mechanism, not unless the extra income derived from the implementation of RSC exceeds zero point would the suppliers implement RSC strategy. When those suppliers are passive to RSC, the effective solution is that the government takes macro-control measures, for example, to force those suppliers implement RSC through punishment mechanism.
Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
Mitchell, Jessica; Legendre, Lucas J; Lefèvre, Christine; Cubo, Jorge
2017-06-01
The furcula is a specialized bone in birds involved in flight function. Its morphology has been shown to reflect different flight styles from soaring/gliding birds, subaqueous flight to high-frequency flapping flyers. The strain experienced by furculae can vary depending on flight type. Bone remodeling is a response to damage incurred from different strain magnitudes and types. In this study, we tested whether a bone microstructural feature, namely Haversian bone density, differs in birds with different flight styles, and reassessed previous work using phylogenetic comparative methods that assume an evolutionary model with additional taxa. We show that soaring birds have higher Haversian bone densities than birds with a flapping style of flight. This result is probably linked to the fact that the furculae of soaring birds provide less protraction force and more depression force than furculae of birds showing other kinds of flight. The whole bone area is another explanatory factor, which confirms the fact that size is an important consideration in Haversian bone development. All birds, however, display Haversian bone development in their furculae, and other factors like age could be affecting the response of Haversian bone development. Copyright © 2017 Elsevier GmbH. All rights reserved.
Speciation in rapidly diverging systems: lessons from Lake Malawi.
Danley, P D; Kocher, T D
2001-05-01
Rapid evolutionary radiations provide insight into the fundamental processes involved in species formation. Here we examine the diversification of one such group, the cichlid fishes of Lake Malawi, which have radiated from a single ancestor into more than 400 species over the past 700 000 years. The phylogenetic history of this group suggests: (i) that their divergence has proceeded in three major bursts of cladogenesis; and (ii) that different selective forces have dominated each cladogenic event. The first episode resulted in the divergence of two major lineages, the sand- and rock-dwellers, each adapted to a major benthic macrohabitat. Among the rock-dwellers, competition for trophic resources then drove a second burst of cladogenesis, which resulted in the differentiation of trophic morphology. The third episode of cladogenesis is associated with differentiation of male nuptial colouration, most likely in response to divergent sexual selection. We discuss models of speciation in relation to this observed pattern. We advocate a model, divergence with gene flow, which reconciles the disparate selective forces responsible for the diversification of this group and suggest that the nonadaptive nature of the tertiary episode has significantly contributed to the extraordinary species richness of this group.
Temperature and Evolutionary Novelty as Forces behind the Evolution of General Intelligence
ERIC Educational Resources Information Center
Kanazawa, Satoshi
2008-01-01
How did human intelligence evolve to be so high? Lynn [Lynn, R. (1991). The evolution of race differences in intelligence. Mankind Quarterly, 32, 99-173] and Rushton [Rushton, J.P. (1995). Race, evolution, and behavior: A life history perspective. New Brunswick: Transaction] suggest that the main forces behind the evolution of human intelligence…
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.
Mank, Judith E
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285
The evolution of vertical climbing in primates: evidence from reaction forces.
Hanna, Jandy B; Granatosky, Michael C; Rana, Pooja; Schmitt, Daniel
2017-09-01
Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches. © 2017. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Bilstein, R. E.
1974-01-01
Management of the Saturn launch vehicles was an evolutionary process, requiring constant interaction between NASA Headquarters, the Marshall Space Flight Center (particularly the Saturn 5 Program Office), and the various prime contractors. Successful Saturn management was a blend of the decades of experience of the von Braun team, management concepts from the Army, Navy, Air Force, and Government, and private industry. The Saturn 5 Program Office shared a unique relationship with the Apollo Program Office at NASA Headquarters. Much of the success of the Saturn 5 Program Office was based on its painstaking attention to detail, emphasis on individual responsibilities (backed up by comprehensive program element plans and management matrices), and a high degree of visibility as embodied in the Program Control Center.
McNamara, K B; Simmons, L W
2017-09-01
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.
Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric
2017-05-05
Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.
Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V
2015-06-10
Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.
Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.
2015-01-01
Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296
Hyde, J S; Durik, A M
2000-05-01
R. F. Baumeister (2000) argued that there are gender differences in erotic plasticity, meaning that women are more influenced by cultural and social factors than men are. He attributed the gender difference in erotic plasticity to evolutionary, biological forces. We propose an alternative account of the data using a multifactor sociocultural model that rests on 4 assertions: (a) Men have more power than women on many levels including the institutional and the interpersonal levels, (b) education increases women's power, (c) groups with less power (women) pay more attention to and adapt their behavior more to the group with more power (men) than the reverse, and (d) gender roles powerfully shape behavior, and heterosexuality is a more important element of the male role than the female role.
Female promiscuity promotes the evolution of faster sperm in cichlid fishes
Fitzpatrick, John L.; Montgomerie, Robert; Desjardins, Julie K.; Stiver, Kelly A.; Kolm, Niclas; Balshine, Sigal
2009-01-01
Sperm competition, the contest among ejaculates from rival males to fertilize ova of a female, is a common and powerful evolutionary force influencing ejaculate traits. During competitive interactions between ejaculates, longer and faster spermatozoa are expected to have an edge; however, to date, there has been mixed support for this key prediction from sperm competition theory. Here, we use the spectacular radiation of cichlid fishes from Lake Tanganyika to examine sperm characteristics in 29 closely related species. We provide phylogenetically robust evidence that species experiencing greater levels of sperm competition have faster-swimming sperm. We also show that sperm competition selects for increases in the number, size, and longevity of spermatozoa in the ejaculate of a male, and, contrary to expectations from theory, we find no evidence of trade-offs among sperm traits in an interspecific analysis. Also, sperm swimming speed is positively correlated with sperm length among, but not within, species. These different responses to sperm competition at intra- and interspecific levels provide a simple, powerful explanation for equivocal results from previous studies. Using phylogenetic analyses, we also reconstructed the probable evolutionary route of trait evolution in this taxon, and show that, in response to increases in the magnitude of sperm competition, the evolution of sperm traits in this clade began with the evolution of faster (thus, more competitive) sperm. PMID:19164576
Female mating preferences determine system-level evolution in a gene network model.
Fierst, Janna L
2013-06-01
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.
Abdullah, Zayed S; Ficken, Katherine J; Greenfield, Bethany P J; Butt, Tariq M
2014-06-01
Pollinophagy is widely documented in the order Thysanoptera, with representative individuals from six of the nine divergent families known to feed on pollen. Various pollens of the genus Pinus increase the development time, fecundity, longevity, and settling preference of Western Flower Thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Certain species of flower thrips discriminate among pollen types, but no studies have elucidated the olfactory cues that play a role in their pollen preferences. In this study, the volatile organic compounds emitted by pollens of the genus Pinus were elucidated. Various chemicals from pollen headspace elicited electrophysiological responses from WFT antennae. The compound (S)-(-)-verbenone, identified in pollen headspace, attracted WFT in a 4-arm olfactometer. This compound has potential for use in integrated pest management programs against the pest. We present the hypothesis that this polyphagous insect may have retained ancestral 'relict' olfactory receptors through the course of evolution, to explain this attraction to pine pollen. This attraction has allowed the insect to find and exploit an unusual nutrient source that significantly increases its fitness. The study demonstrates how fossil record analysis and subsequent evolutionary knowledge can aid in explaining possibilities as to why some insects sense and respond to chemicals that would otherwise seem peculiar to their ecology, allowing insight into the evolutionary forces that may shape insect olfactory systems over time.
Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias
2014-07-26
Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
USDA-ARS?s Scientific Manuscript database
Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...
Induced and permanent magnetism on the moon - Structural and evolutionary implications.
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Dyal, P.; Colburn, D. S.; Mihalov, J. D.; Parkin, C. W.; Smith, B. F.; Schubert, G.; Schwartz, K.
1971-01-01
It is shown that the moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples. The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the earth though no extant model is free of difficulties.
Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.
Bachtrog, Doris
2013-02-01
The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
Sleator, Roy D
2011-04-01
The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.
Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.
Woestmann, L; Kvist, J; Saastamoinen, M
2017-03-01
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. © 2016 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.
Evolutionary potential of marine phytoplankton under ocean acidification.
Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A
2014-01-01
Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.
Evolutionary Thinking in Microeconomic Models: Prestige Bias and Market Bubbles
Bell, Adrian Viliami
2013-01-01
Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful) individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior. PMID:23544100
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.
Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A
2014-11-21
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.
Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F
2016-06-01
Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.
Fitness costs and benefits of novel herbicide tolerance in a noxious weed
Baucom, Regina S.; Mauricio, Rodney
2004-01-01
Glyphosate, the active ingredient in the herbicide RoundUp, has increased dramatically in use over the past decade and constitutes a potent anthropogenic source of selection. In the southeastern United States, weedy morning glories have begun to develop tolerance to glyphosate, representing a unique opportunity to examine the evolutionary genetics of a novel trait. We found genetic variation for tolerance, indicating the potential for the population to respond to selection by glyphosate. However, the following significant evolutionary constraint exists: in the absence of glyphosate, tolerant genotypes produced fewer seeds than susceptible genotypes. The combination of strong positive directional selection in the presence of glyphosate and strong negative directional selection in its absence may indicate that the selective landscape of land use could drive the evolutionary trajectory of glyphosate tolerance. Understanding these evolutionary forces is imperative for devising comprehensive management strategies to help slow the rate of the evolution of tolerance. PMID:15326309
Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution
Mannakee, Brian K.; Gutenkunst, Ryan N.
2016-01-01
The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265
Miklós, István; Zádori, Zoltán
2012-02-01
HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.
Miklós, István; Zádori, Zoltán
2012-01-01
HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. PMID:22319430
IBSEM: An Individual-Based Atlantic Salmon Population Model.
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.
Lymphatic regulation in nonmammalian vertebrates.
Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C
2013-08-01
All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.
Quantifying rates of evolutionary adaptation in response to ocean acidification.
Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W
2011-01-01
The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.
Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir
2011-01-01
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353
Andrews, Paul W.; Kornstein, Susan G.; Halberstadt, Lisa J.; Gardner, Charles O.; Neale, Michael C.
2011-01-01
Some evolutionary researchers have argued that current diagnostic criteria for major depressive disorder (MDD) may not accurately distinguish true instances of disorder from a normal, adaptive stress response. According to disorder advocates, neurochemicals like the monoamine neurotransmitters (serotonin, norepinephrine, and dopamine) are dysregulated in major depression. Monoamines are normally under homeostatic control, so the monoamine disorder hypothesis implies a breakdown in homeostatic mechanisms. In contrast, adaptationist hypotheses propose that homeostatic mechanisms are properly functioning in most patients meeting current criteria for MDD. If the homeostatic mechanisms regulating monoamines are functioning properly in these patients, then oppositional tolerance should develop with prolonged antidepressant medication (ADM) therapy. Oppositional tolerance refers to the forces that develop when a homeostatic mechanism has been subject to prolonged pharmacological perturbation that attempt to bring the system back to equilibrium. When pharmacological intervention is discontinued, the oppositional forces cause monoamine levels to overshoot their equilibrium levels. Since depressive symptoms are under monoaminergic control, this overshoot should cause a resurgence of depressive symptoms that is proportional to the perturbational effect of the ADM. We test this prediction by conducting a meta-analysis of ADM discontinuation studies. We find that the risk of relapse after ADM discontinuation is positively associated with the degree to which ADMs enhance serotonin and norepinephrine in prefrontal cortex, after controlling for covariates. The results are consistent with oppositional tolerance, and provide no evidence of malfunction in the monoaminergic regulatory mechanisms in patients meeting current diagnostic criteria for MDD. We discuss the evolutionary and clinical implications of our findings. PMID:21779273
Demographic Events and Evolutionary Forces Shaping European Genetic Diversity
Veeramah, Krishna R.; Novembre, John
2014-01-01
Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709
Counterfactuals and history: Contingency and convergence in histories of science and life.
Hesketh, Ian
2016-08-01
This article examines a series of recent histories of science that have attempted to consider how science may have developed in slightly altered historical realities. These works have, moreover, been influenced by debates in evolutionary science about the opposing forces of contingency and convergence in regard to Stephen Jay Gould's notion of "replaying life's tape." The article argues that while the historians under analysis seem to embrace contingency in order to present their counterfactual narratives, for the sake of historical plausibility they are forced to accept a fairly weak role for contingency in shaping the development of science. It is therefore argued that Simon Conway Morris's theory of evolutionary convergence comes closer to describing the restrained counterfactual worlds imagined by these historians of science than does contingency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Krause, Mark A
2015-07-01
Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.
The neurophysiological and evolutionary considerations of close combat: A modular approach.
Dervenis, Kostas; Tsialogiannis, Evangelos
2017-01-01
Close Combat may be identified as a physical confrontation involving armed or unarmed fighting, lethal and/or non-lethal methods, or even simply escape from and/or de-escalation of the confrontation. Our model hypothesizes that distinct areas of the brain are utilized for specific levels of violence, based on evolutionary criteria, and that these levels of violence bring into effect distinct physiological criteria and kinesiology. This model is outlined similar to Paul D. MacLean's triune brain theory, but incorporates distinct processes inherent to the autonomic nervous system (i.e. a "quadrune brain"), and correlates the observed level of violence to a particular response to a specific neural complex associated with very specific reactive kinesiology in the body. Our hypothesis is that the reverse also holds true: specific movements, scenarios and breathing will "activate" corresponding neural centres that in turn correlate to a respective level of violence. Moreover, socio-historic records bear out the premise that specific behavioural violations of social protocols act as "triggers" for assaultive and lethal force involving weapons, and it is very likely that these triggers (and the concomitant decision to engage in assault or lethal force) are processed through neural centres in what McLean has described as his "limbic system." A modular system of close combat is being researched and developed in accord with the above, readily adaptable to the level of violence professional peacekeepers and law enforcement officers may encounter in the course of their duties, but also directly relevant to the self-protection needs of civilians and youth. Distinct modular training regimes have been identified and developed for situations involving escape from a threat, submission of an adversary, and assaultive/lethal force, with the hope of strengthening neural bridges between the four neural complexes postulated in our model, and therefore via these bridges limiting adverse reactions to the psyche from combat stress.
Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.
2016-01-01
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855
Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K
2016-03-01
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.
Structural Genomics: Correlation Blocks, Population Structure, and Genome Architecture
Hu, Xin-Sheng; Yeh, Francis C.; Wang, Zhiquan
2011-01-01
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level. PMID:21886455
Island Rule, quantitative genetics and brain–body size evolution in Homo floresiensis
2017-01-01
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis, a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60–90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus, which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. PMID:28637851
Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.
Diniz-Filho, José Alexandre Felizola; Raia, Pasquale
2017-06-28
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).
Testing for a genetic response to sexual selection in a wild Drosophila population.
Gosden, T P; Thomson, J R; Blows, M W; Schaul, A; Chenoweth, S F
2016-06-01
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)-5,9-C27 : 2 . Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Neutral Theory and Rapidly Evolving Viral Pathogens.
Frost, Simon D W; Magalis, Brittany Rife; Kosakovsky Pond, Sergei L
2018-06-01
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Investigating the case of human nose shape and climate adaptation
Zaidi, Arslan A.; Claes, Peter; McEcoy, Brian; Shriver, Mark D.
2017-01-01
The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst–Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection. PMID:28301464
Mukherjee, Krishanu; Campos, Henry; Kolaczkowski, Bryan
2013-03-01
RNA interference (RNAi) is a eukaryotic molecular system that serves two primary functions: 1) gene regulation and 2) protection against selfish elements such as viruses and transposable DNA. Although the biochemistry of RNAi has been detailed in model organisms, very little is known about the broad-scale patterns and forces that have shaped RNAi evolution. Here, we provide a comprehensive evolutionary analysis of the Dicer protein family, which carries out the initial RNA recognition and processing steps in the RNAi pathway. We show that Dicer genes duplicated and diversified independently in early animal and plant evolution, coincident with the origins of multicellularity. We identify a strong signature of long-term protein-coding adaptation that has continually reshaped the RNA-binding pocket of the plant Dicer responsible for antiviral immunity, suggesting an evolutionary arms race with viral factors. We also identify key changes in Dicer domain architecture and sequence leading to specialization in either gene-regulatory or protective functions in animal and plant paralogs. As a whole, these results reveal a dynamic picture in which the evolution of Dicer function has driven elaboration of parallel RNAi functional pathways in animals and plants.
Investigating the case of human nose shape and climate adaptation.
Zaidi, Arslan A; Mattern, Brooke C; Claes, Peter; McEvoy, Brian; Hughes, Cris; Shriver, Mark D
2017-03-01
The evolutionary reasons for variation in nose shape across human populations have been subject to continuing debate. An import function of the nose and nasal cavity is to condition inspired air before it reaches the lower respiratory tract. For this reason, it is thought the observed differences in nose shape among populations are not simply the result of genetic drift, but may be adaptations to climate. To address the question of whether local adaptation to climate is responsible for nose shape divergence across populations, we use Qst-Fst comparisons to show that nares width and alar base width are more differentiated across populations than expected under genetic drift alone. To test whether this differentiation is due to climate adaptation, we compared the spatial distribution of these variables with the global distribution of temperature, absolute humidity, and relative humidity. We find that width of the nares is correlated with temperature and absolute humidity, but not with relative humidity. We conclude that some aspects of nose shape may indeed have been driven by local adaptation to climate. However, we think that this is a simplified explanation of a very complex evolutionary history, which possibly also involved other non-neutral forces such as sexual selection.
Genealogies of rapidly adapting populations
Neher, Richard A.; Hallatschek, Oskar
2013-01-01
The genetic diversity of a species is shaped by its recent evolutionary history and can be used to infer demographic events or selective sweeps. Most inference methods are based on the null hypothesis that natural selection is a weak or infrequent evolutionary force. However, many species, particularly pathogens, are under continuous pressure to adapt in response to changing environments. A statistical framework for inference from diversity data of such populations is currently lacking. Towards this goal, we explore the properties of genealogies in a model of continual adaptation in asexual populations. We show that lineages trace back to a small pool of highly fit ancestors, in which almost simultaneous coalescence of more than two lineages frequently occurs. Whereas such multiple mergers are unlikely under the neutral coalescent, they create a unique genetic footprint in adapting populations. The site frequency spectrum of derived neutral alleles, for example, is nonmonotonic and has a peak at high frequencies, whereas Tajima’s D becomes more and more negative with increasing sample size. Because multiple merger coalescents emerge in many models of rapid adaptation, we argue that they should be considered as a null model for adapting populations. PMID:23269838
Running with the Red Queen: the role of biotic conflicts in evolution
Brockhurst, Michael A.; Chapman, Tracey; King, Kayla C.; Mank, Judith E.; Paterson, Steve; Hurst, Gregory D. D.
2014-01-01
What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts. PMID:25355473
Helle, Samuli; Helama, Samuli; Lertola, Kalle
2009-11-01
1. Human sex ratio at birth at the population level has been suggested to vary according to exogenous stressors such as wars, ambient temperature, ecological disasters and economic crises, but their relative effects on birth sex ratio have not been investigated. It also remains unclear whether such associations represent environmental forcing or adaptive parental response, as parents may produce the sex that has better survival prospects and fitness in a given environmental challenge. 2. We examined the simultaneous role of wars, famine, ambient temperature, economic development and total mortality rate on the annual variation of offspring birth sex ratio and whether this variation, in turn, was related to sex-specific infant mortality rate in Finland during 1865-2003. 3. Our findings show an increased excess of male births during the World War II and during warm years. Instead, economic development, famine, short-lasting Finnish civil war and total mortality rate were not related to birth sex ratio. Moreover, we found no association between annual birth sex ratio and sex-biased infant mortality rate among the concurrent cohort. 4. Our results propose that some exogenous challenges like ambient temperature and war can skew human birth sex ratio and that these deviations likely represent environmental forcing rather than adaptive parental response to such challenges.
Mouse Models as Predictors of Human Responses: Evolutionary Medicine.
Uhl, Elizabeth W; Warner, Natalie J
Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.
Why are some people left-handed? An evolutionary perspective
Llaurens, V.; Raymond, M.; Faurie, C.
2008-01-01
Since prehistoric times, left-handed individuals have been ubiquitous in human populations, exhibiting geographical frequency variations. Evolutionary explanations have been proposed for the persistence of the handedness polymorphism. Left-handedness could be favoured by negative frequency-dependent selection. Data have suggested that left-handedness, as the rare hand preference, could represent an important strategic advantage in fighting interactions. However, the fact that left-handedness occurs at a low frequency indicates that some evolutionary costs could be associated with left-handedness. Overall, the evolutionary dynamics of this polymorphism are not fully understood. Here, we review the abundant literature available regarding the possible mechanisms and consequences of left-handedness. We point out that hand preference is heritable, and report how hand preference is influenced by genetic, hormonal, developmental and cultural factors. We review the available information on potential fitness costs and benefits acting as selective forces on the proportion of left-handers. Thus, evolutionary perspectives on the persistence of this polymorphism in humans are gathered for the first time, highlighting the necessity for an assessment of fitness differences between right- and left-handers. PMID:19064347
Cultural transmission results in convergence towards colour term universals
Xu, Jing; Dowman, Mike; Griffiths, Thomas L.
2013-01-01
As in biological evolution, multiple forces are involved in cultural evolution. One force is analogous to selection, and acts on differences in the fitness of aspects of culture by influencing who people choose to learn from. Another force is analogous to mutation, and influences how culture changes over time owing to errors in learning and the effects of cognitive biases. Which of these forces need to be appealed to in explaining any particular aspect of human cultures is an open question. We present a study that explores this question empirically, examining the role that the cognitive biases that influence cultural transmission might play in universals of colour naming. In a large-scale laboratory experiment, participants were shown labelled examples from novel artificial systems of colour terms and were asked to classify other colours on the basis of those examples. The responses of each participant were used to generate the examples seen by subsequent participants. By simulating cultural transmission in the laboratory, we were able to isolate a single evolutionary force—the effects of cognitive biases, analogous to mutation—and examine its consequences. Our results show that this process produces convergence towards systems of colour terms similar to those seen across human languages, providing support for the conclusion that the effects of cognitive biases, brought out through cultural transmission, can account for universals in colour naming. PMID:23486436
Sail Plan Configuration Optimization for a Modern Clipper Ship
NASA Astrophysics Data System (ADS)
Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz
2002-11-01
We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).
Dworkin, Ian; Wagner, Aaron P.
2014-01-01
Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847
Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W
2011-08-01
The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral arrangement. One of the youngest arrangements, Arrowhead, has one of the highest population frequencies suggesting that selection has been responsible for its rapid increase.
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
1985-01-01
numerous major exercises, such as WINTEX- CIMEX , REFORGER, CRESTED EAGLE, and BRIGHT STAR. USAFE is now actively planning an evolutionary approach toward C2...during WINTEX- CIMEX 85, we have been investigating a number of approaches to enhancing joint air-ground operations and providing a means for better...throughout the ground battle elements. The USAREUR Distributed Decision Aid System (UD[1AS) was initially deployed in Exercise WINTEX- CIMEX 84. During
Methylome evolution in plants.
Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank
2016-12-20
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.
Planqué, R; Powell, S; Franks, N R; van den Berg, J B
2016-11-01
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
ERIC Educational Resources Information Center
Erlich, Nicole; Lipp, Ottmar V.; Slaughter, Virginia
2013-01-01
Adult humans demonstrate differential processing of stimuli that were recurrent threats to safety and survival throughout evolutionary history. Recent studies suggest that differential processing of evolutionarily ancient threats occurs in human infants, leading to the proposal of an inborn mechanism for rapid identification of, and response to,…
Coulson, Tim; MacNulty, Daniel R; Stahler, Daniel R; vonHoldt, Bridgett; Wayne, Robert K; Smith, Douglas W
2011-12-02
Environmental change has been observed to generate simultaneous responses in population dynamics, life history, gene frequencies, and morphology in a number of species. But how common are such eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they require a specific type of change? Can we accurately predict eco-evolutionary responses? We address these questions using theory and data from the study of Yellowstone wolves. We show that environmental change is expected to generate eco-evolutionary change, that changes in the average environment will affect wolves to a greater extent than changes in how variable it is, and that accurate prediction of the consequences of environmental change will probably prove elusive.
Low-Resolution Vision-at the Hub of Eye Evolution.
Nilsson, Dan-E; Bok, Michael J
2017-11-01
Simple roles for photoreception are likely to have preceded more demanding ones such as vision. The driving force behind this evolution is the improvement and elaboration of animal behaviors using photoreceptor input. Because the basic role for all senses aimed at the external world is to guide behavior, we argue here that understanding this "behavioral drive" is essential for unraveling the evolutionary past of the senses. Photoreception serves many different types of behavior, from simple shadow responses to visual communication. Based on minimum performance requirements for different types of tasks, photoreceptors have been argued to have evolved from non-directional receptors, via directional receptors, to low-resolution vision, and finally to high-resolution vision. Through this sequence, the performance requirements on the photoreceptors have gradually changed from broad to narrow angular sensitivity, from slow to fast response, and from low to high contrast sensitivity during the evolution from simple to more advanced and demanding behaviors. New behaviors would only evolve if their sensory performance requirements to some degree overlap with the requirements of already existing behaviors. This need for sensory "performance continuity" must have determined the order by which behaviors have evolved and thus been an important factor guiding animal evolution. Naturally, new behaviors are most likely to evolve from already existing behaviors with similar neural processing needs and similar motor responses, pointing to "neural continuity" as another guiding factor in sensory evolution. Here we use these principles to derive an evolutionary tree for behaviors driven by photoreceptor input. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi.
Seifert, Stephanie N; Khatchikian, Camilo E; Zhou, Wei; Brisson, Dustin
2015-04-01
Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits, such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B. burgdorferi, focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration, as investigations transition from analyses of single genes to genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
How Much Can Evolutionary Psychology Inform the Educational Sciences?
ERIC Educational Resources Information Center
Halpern, Diane F.
2008-01-01
In response to a stimulating article by David C. Geary on the value of understanding the evolutionary basis of learning as a guide to instruction, I raise several objections. When evolutionary theory is used to explain everything from sex differences in math and reading to why children are bored in school, it loses its explanatory power. There is…
An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS
Daschner, Alvaro
2017-01-01
Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting. PMID:28119688
An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS.
Daschner, Alvaro
2016-01-01
Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting.
IBSEM: An Individual-Based Atlantic Salmon Population Model
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256
Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.
Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N
2016-06-01
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evolution in biodiversity policy – current gaps and future needs
Santamaría, Luis; Méndez, Pablo F
2012-01-01
The intensity and speed of human alterations to the planet's ecosystems are yielding our static, ahistorical view of biodiversity obsolete. Human actions frequently trigger fast evolutionary responses, affect extant genetic variation and result in the establishment of new communities and co-evolutionary networks for which we lack past analogues. Contemporary evolution interplays with ecological changes to determine the response of organisms and ecosystems to anthropogenic pressures. Examples on wild species include responses to harvest (e.g. fisheries, hunting, angling), habitat loss and fragmentation (e.g. genetic effects of isolation), biotic exchange (e.g. evolutionary responses to control measures), climate change (e.g. local adaptation and its interplay with dispersal processes) and the responses of endangered species to conservation measures. A review of international and EU biodiversity policies showed numerous opportunities for the integration of evolutionary knowledge, with the realistic prospect of improving their efficacy. Such opportunities should be extended to other sectoral policies of direct relevance for biodiversity – notably nature conservation, fisheries, agriculture, water resources, spatial planning and climate change. These avenues for improvement are, however, challenged by the low level of enforcement of biodiversity policies, linked to the nonbinding nature of most biodiversity-policy documents, and the decreasing representation of biodiversity in EU's research policy. PMID:25568042
Evolution of plasticity and adaptive responses to climate change along climate gradients.
Kingsolver, Joel G; Buckley, Lauren B
2017-08-16
The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).
Lewandowska, Magda; Jędrychowska-Dańska, Krystyna; Zamerska, Alicja; Płoszaj, Tomasz; Witas, Henryk W
2017-01-01
For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the F ST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants. Copyright © 2016 Elsevier B.V. All rights reserved.
Vargas-Salinas, Fernando; Amézquita, Adolfo
2013-01-01
According to the acoustic adaptation hypothesis, communication signals are evolutionary shaped in a way that minimizes its degradation and maximizes its contrast against the background noise. To compare the importance for call divergence of acoustic adaptation and hybridization, an evolutionary force allegedly promoting phenotypic variation, we compared the mate recognition signal of two species of poison frogs (Oophaga histrionica and O. lehmanni) at five localities: two (one per species) alongside noisy streams, two away from streams, and one interspecific hybrid. We recorded the calls of 47 males and characterized the microgeographic variation in their spectral and temporal features, measuring ambient noise level, body size, and body temperature as covariates. As predicted, frogs living in noisy habitats uttered high frequency calls and, in one species, were much smaller in size. These results support a previously unconsidered role of noise on streams as a selective force promoting an increase in call frequency and pleiotropic effects in body size. Regarding hybrid frogs, their calls overlapped in the signal space with the calls of one of the parental lineages. Our data support acoustic adaptation following two evolutionary routes but do not support the presumed role of hybridization in promoting phenotypic diversity.
Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.
Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej
2016-11-01
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Evolutionary origins of a novel host plant detoxification gene in butterflies.
Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko
2008-05-01
Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.
Heterogeneous recombination among Hepatitis B virus genotypes.
Castelhano, Nadine; Araujo, Natalia M; Arenas, Miguel
2017-10-01
The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.
Endogenous time-varying risk aversion and asset returns.
Berardi, Michele
2016-01-01
Stylized facts about statistical properties for short horizon returns in financial markets have been identified in the literature, but a satisfactory understanding for their manifestation is yet to be achieved. In this work, we show that a simple asset pricing model with representative agent is able to generate time series of returns that replicate such stylized facts if the risk aversion coefficient is allowed to change endogenously over time in response to unexpected excess returns under evolutionary forces. The same model, under constant risk aversion, would instead generate returns that are essentially Gaussian. We conclude that an endogenous time-varying risk aversion represents a very parsimonious way to make the model match real data on key statistical properties, and therefore deserves careful consideration from economists and practitioners alike.
Some basic properties of immune selection.
Iwasa, Yoh; Michor, Franziska; Nowak, Martin
2004-07-21
We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.
Evolutionary domestication in Drosophila subobscura.
Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M
2007-03-01
The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.
The marine mammal dive response is exercise modulated to maximize aerobic dive duration.
Davis, Randall W; Williams, Terrie M
2012-08-01
When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.
2014-01-01
Background Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness. PMID:25927537
Inventing Life-Forms: The Creation of an Extraterrestrial Species.
ERIC Educational Resources Information Center
Science Activities, 1996
1996-01-01
Presents activities in which students play the role of cadets performing missions for the fictitious SETI (Search for Extraterrestrial Intelligence) Academy. Guides students toward an understanding of evolutionary forces and how they are affected by the physical environment. (JRH)
Rainford, James L; Hofreiter, Michael; Mayhew, Peter J
2016-01-08
Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda (insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate the link between size and diversity within this ancient and highly diverse lineage. The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes including significant phylogenetic conservatism. Based on our findings we suggest that the use of models derived from well-studied but atypical clades, such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large timescales tend to converge on apparently neutral evolutionary processes. We also identify limitations on available data within the clade and modeling approaches for the resolution of trees of higher taxa, the resolution of which may collectively enhance our understanding of this key component of terrestrial ecosystems.
Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U
2016-05-01
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Evolutionarily conserved coding properties of auditory neurons across grasshopper species
Neuhofer, Daniela; Wohlgemuth, Sandra; Stumpner, Andreas; Ronacher, Bernhard
2008-01-01
We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the ‘efficient coding’ hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. PMID:18505715
Evolutionary genetics of maternal effects
Wolf, Jason B.; Wade, Michael J.
2016-01-01
Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266
Tschirren, B; Råberg, L; Westerdahl, H
2011-06-01
Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain
2011-01-01
Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST
Alexander, H J; Richardson, J M L; Anholt, B R
2014-09-01
Polygenic sex determination (PSD) is relatively rare and theoretically evolutionary unstable, yet has been reported across a range of taxa. Evidence for multilocus PSD is provided by (i) large between-family variance in sex ratio, (ii) paternal and maternal effects on family sex ratio and (iii) response to selection for family sex ratio. This study tests the polygenic hypothesis of sex determination in the harpacticoid copepod Tigriopus californicus using the criterion of response to selection. We report the first multigenerational quantitative evidence that clutch sex ratio responds to artificial selection in both directions (selection for male- and female-biased families) and in multiple populations of T. californicus. In the five of six lines that showed a response to selection, realized heritability estimated by multigenerational analysis ranged from 0.24 to 0.58. Divergence of clutch sex ratio between selection lines is rapid, with response to selection detectable within the first four generations of selection. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Ecological networks to unravel the routes to horizontal transposon transfers.
Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique
2017-02-01
Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.
Rühli, Frank Jakobus; Henneberg, Maciej
2013-04-29
Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.
There must be a prokaryote somewhere: microbiology's search for itself
NASA Technical Reports Server (NTRS)
Woese, C. R.
1994-01-01
While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows.
Allen, Cerisse E; Beldade, Patrícia; Zwaan, Bas J; Brakefield, Paul M
2008-03-26
There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes.
Kribs-Zaleta, Christopher M
2014-07-21
The notion of evolutionary trade-off (one attribute increasing at the expense of another) is central to the evolution of traits, well-studied especially in life-history theory, where a framework first developed by Levins illustrates how internal (genetics) and external (fitness landscapes) forces interact to shape an organism׳s ongoing adaptation. This manuscript extends this framework to the context of vector-borne pathogens, with the example of Trypanosoma cruzi (the etiological agent of Chagas׳ disease) adapting via trade-off among three different infection routes to hosts-stercorarian, vertical, and oral-in response to an epidemiological landscape that involves both hosts and vectors (where, in particular, parasite evolution depends not on parasite density but on relative host and vector densities). Using a fitness measure derived from an invasion reproductive number, this study analyzes several different trade-off scenarios in cycles involving raccoons or woodrats, including a proper three-way trade-off (two independent parameters). Results indicate that selection favors oral transmission to raccoons but classical stercorarian transmission to woodrats even under the same predation rate, with vertical (congenital) transmission favored only when aligned with dominant oral transmission or (at trace levels) under a weak (convex) trade-off. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Hailing; Cao, Yingping; Shang, Chen; Li, Jikai; Wang, Jianli; Wu, Zhenying; Ma, Lichao; Qi, Tianxiong; Fu, Chunxiang; Hu, Baozhong
2017-01-01
The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions. PMID:28945786
Dispersal-competition tradeoff in microbiomes in the quest for land colonization.
Dini-Andreote, Francisco; van Elsas, Jan Dirk; Olff, Han; Salles, Joana Falcão
2018-06-21
Ancestor microbes started colonizing inland habitats approximately 2.7 to 3.5 billion years ago. With some exceptions, the key physiological adaptations of microbiomes associated with marine-to-land transitions have remained elusive. This is essentially caused by the lack of suitable systems that depict changes in microbiomes across sufficiently large time scales. Here, we investigate the adaptive routes taken by microbiomes along a contemporary gradient of land formation. Using functional trait-based metagenomics, we show that a switch from a microbial 'dispersal' to a 'competition' response modus best characterizes the microbial trait changes during this eco-evolutionary trajectory. The 'dispersal' modus prevails in microbiomes at the boundary sites between land and sea. It encompasses traits conferring cell chemosensory and motile behaviors, thus allowing the local microbes to exploit short-lived nutritional patches in high-diffusion microhabitats. A systematic transition towards the 'competition' modus occurs progressively as the soil matures, which is likely due to forces of viscosity or strain that favor traits for competition and chemical defense. Concomitantly, progressive increases in the abundances of genes encoding antibiotic resistance and complex organic substrate degradation were found. Our findings constitute a novel perspective on the ecology and evolution of microbiome traits, tracking back one of the most seminal transitions in the evolutionary history of life.
Kasl, Emily L; McAllister, Chris T; Robison, Henry W; Connior, Matthew B; Font, William F; Criscione, Charles D
2015-12-01
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.
2012-01-01
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen. PMID:22829777
Franks, Steven J; Kane, Nolan C; O'Hara, Niamh B; Tittes, Silas; Rest, Joshua S
2016-08-01
There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome-wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late-season drought in California. These ancestor-descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome-wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
High evolutionary potential of marine zooplankton
Peijnenburg, Katja T C A; Goetze, Erica
2013-01-01
Abstract Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change. PMID:24567838
Biewener, Andrew A.; Wakeling, James M.; Lee, Sabrina S.; Arnold, Allison S.
2014-01-01
We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle–tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle’s architecture and series elasticity. Activation of the model’s single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency–time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle–tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function. PMID:24928073
Evolutionary genomics and HIV restriction factors.
Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio
2015-03-01
To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.
Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A
2017-08-01
If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.
Evolution of a predator-induced, nonlinear reaction norm.
Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P
2017-08-30
Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.
Evolutionary game theory and multiple chemical sensitivity.
Newlin, D B
1999-01-01
Newlin's [Newlin D.B. Evolutionary game theory of tolerance and sensitization in substance abuse. Paper presented to the Research Society on Alcoholism, Hilton Head, SC, 1998] evolutionary game theory of addictive behavior specifies how evolutionarily stable strategies for survival and reproduction may lead to addiction. The game theory of multiple chemical sensitivity (MCS) assumes that: (1) the MCS patient responds to low-level toxicants as stressors or as direct threats to their survival and reproductive fitness, (2) this activates the cortico-mesolimbic dopamine system, (3) this system is a survival motivation center--not a 'reward center', (4) the subject emits a counter-response that is in the same direction as the naive response to the chemicals, (5) previously neutral stimuli associated with chemicals also trigger conditioned responses that mimic those to the chemicals, (6) these counter-responses further activate the dopaminergic survival motivation system, and (7) this produces a positive feedback loop that leads to strong neural sensitization in these structures and in behavior controlled by this system, despite a small initial response. Psychologically, the MCS patient with a sensitized cortico-mesolimbic dopamine system is behaving as though his/her survival is directly threatened by these chemicals. Non-MCS subjects have counter-responses opposite in direction to those of the chemicals and show tolerance. An autoshaping/sign-tracking model of this game is discussed. This evolutionary game makes several specific, testable predictions about differences between MCS subjects, non-MCS controls, and substance abusers in laboratory experiments, and between sensitized and nonsensitized animals.
Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J
2011-02-01
In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.
Ometto, Lino; Li, Mingai; Bresadola, Luisa; Barbaro, Enrico; Neteler, Markus; Varotto, Claudio
2015-01-01
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species. PMID:25933225
Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.
2016-01-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206
Transposable elements as a molecular evolutionary force
NASA Technical Reports Server (NTRS)
Fedoroff, N. V.
1999-01-01
This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.
Climate change and timing of avian breeding and migration: evolutionary versus plastic changes
Charmantier, Anne; Gienapp, Phillip
2014-01-01
There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables. Within the abundant literature on climate change effects on bird phenology, only a small fraction of studies are based on individual data, yet individual data are required to quantify the relative importance of plastic versus evolutionary responses. While plasticity seems common and often adaptive, no study so far has provided direct evidence for an evolutionary response of bird phenology to current climate change. This assessment leads us to notice the alarming lack of tests for microevolutionary changes in bird phenology in response to climate change, in contrast with the abundant claims on this issue. In short, at present we cannot draw reliable conclusions on the processes underlying the observed patterns of advanced phenology in birds. Rapid improvements in techniques for gathering and analysing individual data offer exciting possibilities that should encourage research activity to fill this knowledge gap. PMID:24454545
Genomic signatures of evolutionary transitions from solitary to group living
USDA-ARS?s Scientific Manuscript database
Eusociality has evolved rarely, but repeatedly, in vertebrates and invertebrates, and resulted inconvergent morphological, physiological, and behavioural innovations. It is unknown whether similar evolutionary processes are responsible for the repeated origins and further elaborations of eusociality...
Parker, G A; Ball, M A; Chubb, J C
2015-02-01
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Evolutionary trade-offs in kidney injury and repair.
Lei, Yutian; Anders, Hans-Joachim
2017-11-01
Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.
van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H C; Visser, Marcel E
2017-06-19
More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
2017-01-01
More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483865
Y fuse? Sex chromosome fusions in fishes and reptiles.
Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun
2015-05-01
Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.
Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles
Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun
2015-01-01
Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542
A behavioral perspective on fishing-induced evolution.
Uusi-Heikkilä, Silva; Wolter, Christian; Klefoth, Thomas; Arlinghaus, Robert
2008-08-01
The potential for excessive and/or selective fishing to act as an evolutionary force has been emphasized recently. However, most studies have focused on evolution of life-history traits in response to size-selective harvesting. Here we draw attention to fishing-induced evolution of behavioral and underlying physiological traits. We contend that fishing-induced selection directly acting on behavioral rather than on life-history traits per se can be expected in all fisheries that operate with passive gears such as trapping, angling and gill-netting. Recent artificial selection experiments in the nest-guarding largemouth bass Micropterus salmoides suggest that fishing-induced evolution of behavioral traits that reduce exposure to fishing gear might be maladaptive, potentially reducing natural recruitment. To improve understanding and management of fisheries-induced evolution, we encourage greater application of methods from behavioral ecology, physiological ecology and behavioral genetics.
Female ornamentation and territorial conflicts in collared flycatchers ( Ficedula albicollis)
NASA Astrophysics Data System (ADS)
Hegyi, Gergely; Garamszegi, László Zsolt; Eens, Marcel; Török, János
2008-10-01
Female ornaments in species with conventional sex roles often indicate individual quality, but the evolutionary forces maintaining them are less clear. Sexual competition for breeding opportunities may represent an important role for female signals, especially in polygynous species, but there is little experimental evidence for this. The wing patch size (WPS) of female collared flycatchers indicates age and body condition and predicts social mating patterns. We challenged nest-building females with decoy females of varying WPS and found that the aggressive response of residents increased with decoy WPS, suggesting a role for this female ornament in territorial competition. Our results explain why female WPS predicts territorial distances when mated to a polygynous male and indicate that the role of WPS in female competitive interactions is similar to that in males of the same population.
Reliability-based optimization of an active vibration controller using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng
2017-02-07
Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies.
2013-01-01
Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations. PMID:23627943
De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints
Smock, Robert G.; Yadid, Itamar; Dym, Orly; Clarke, Jane; Tawfik, Dan S.
2016-01-01
Summary Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence. PMID:26806127
The Genomic Basis for Evolved Pollution Tolerance in Killifish (Fundulus heterclitus).
Uncovering the molecular mechanisms of adaptive variation is a leading challenge in evolutionary biology. Identifying genes that influence ecological traits can provide insight into the evolutionary processes behind genomic responses to environmental change. Here, we examine the...
Evolutionary computation in zoology and ecology.
Boone, Randall B
2017-12-01
Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.
Evolutionary computation in zoology and ecology
2017-01-01
Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029
Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf
2014-03-01
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf
2014-01-01
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries. PMID:26430388
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
An evolutionary perspective on the systems of adaptive immunity.
Müller, Viktor; de Boer, Rob J; Bonhoeffer, Sebastian; Szathmáry, Eörs
2018-02-01
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
The Evolution of the Human Genome
Simonti, Corinne N.; Capra, John A.
2015-01-01
Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick. PMID:26338498
Loss of genetic diversity as a consequence of selection in response to high pCO2.
Lloyd, Melanie M; Makukhov, April D; Pespeni, Melissa H
2016-10-01
Standing genetic variation may allow for rapid evolutionary response to the geologically unprecedented changes in global conditions. However, there is little known about the consequences of such rapid evolutionary change. Here, we measure genetic responses to experimental low and high p CO 2 levels in purple sea urchin larvae, Strongylocentrotus purpuratus . We found greater loss of nucleotide diversity in high p CO 2 levels (18.61%; 900 μatm) compared to low p CO 2 levels (10.12%; 400 μatm). In the wild, this loss could limit the evolutionary capacity of future generations. In contrast, we found minimal evidence that purple sea urchin larvae physiologically respond to high p CO 2 through alternative splicing of transcripts (11 genes), despite a strong signal of alternative splicing between different developmental stages (1193 genes). However, in response to high p CO 2 , four of the 11 alternatively spliced transcripts encoded ribosomal proteins, suggesting the regulation of translation as a potential response mechanism. The results of this study indicate that while the purple urchin presently may have enough standing genetic variation in response to rapid environmental change, this reservoir of resilience is a finite resource and could quickly diminish.
Evolution and behavioural responses to human-induced rapid environmental change
Sih, Andrew; Ferrari, Maud C O; Harris, David J
2011-01-01
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work. PMID:25567979
Evolution and behavioural responses to human-induced rapid environmental change.
Sih, Andrew; Ferrari, Maud C O; Harris, David J
2011-03-01
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.
NASA Astrophysics Data System (ADS)
Collins, S.
2010-07-01
Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.
Japan's Democracy: How Much Change? Headline Series No. 305.
ERIC Educational Resources Information Center
Krauss, Ellis S.
This booklet analyzes the changes that have occurred in Japan in the postwar period. The book is divided into four chapters. Chapter 1, "Revolutionary Change: American Occupation, 1945-52," focuses on the dramatic changes brought by Occupation forces. Chapter 2, "Evolutionary Change: Japan's Democracy from the Occupation through the…
Reflections on a Seminal Force in International Accounting
ERIC Educational Resources Information Center
Cascini, Karen T.
2007-01-01
Accounting is a manifestation of several important environmental factors within a country, including economic, educational and political, and, as such, is evolutionary in accordance with those changing social structures. Because of the major impact that international accounting has had on countries' internal accounting systems, it is important to…
A steep cline in Pinus muricata
Constance I. Millar
1983-01-01
Clines, including hybrid zones, have long been studied empirically and theoretically, especially for the opportunity they present to study evolutionary forces (Sumner, 1929; Haldane, 1948; Barber and Jackson, 195 7). Recent theoretical studies have emphasized that clines may be important in speciation (summarized in Endler, 1977). This emphasis has motivated...
Differences in evolutionary pressure acting within highly conserved ortholog groups.
Przytycka, Teresa M; Jothi, Raja; Aravind, L; Lipman, David J
2008-07-17
In highly conserved widely distributed ortholog groups, the main evolutionary force is assumed to be purifying selection that enforces sequence conservation, with most divergence occurring by accumulation of neutral substitutions. Using a set of ortholog groups from prokaryotes, with a single representative in each studied organism, we asked the question if this evolutionary pressure is acting similarly on different subgroups of orthologs defined as major lineages (e.g. Proteobacteria or Firmicutes). Using correlations in entropy measures as a proxy for evolutionary pressure, we observed two distinct behaviors within our ortholog collection. The first subset of ortholog groups, called here informational, consisted mostly of proteins associated with information processing (i.e. translation, transcription, DNA replication) and the second, the non-informational ortholog groups, mostly comprised of proteins involved in metabolic pathways. The evolutionary pressure acting on non-informational proteins is more uniform relative to their informational counterparts. The non-informational proteins show higher level of correlation between entropy profiles and more uniformity across subgroups. The low correlation of entropy profiles in the informational ortholog groups suggest that the evolutionary pressure acting on the informational ortholog groups is not uniform across different clades considered this study. This might suggest "fine-tuning" of informational proteins in each lineage leading to lineage-specific differences in selection. This, in turn, could make these proteins less exchangeable between lineages. In contrast, the uniformity of the selective pressure acting on the non-informational groups might allow the exchange of the genetic material via lateral gene transfer.
Acceptance of evolutionary explanations as they are applied to plants, animals, and humans
NASA Astrophysics Data System (ADS)
Thanukos, Anastasia
In four investigations using Likert-scale questionnaires and think-aloud protocols with 173 university students in total, the willingness to accept evolutionary explanations regarding plant, animal, and human characteristics was examined. Participants were presented with evolutionary explanations for features and behaviors and were asked to rate how much they agreed with evolution as an explanation for each scenario. Some were also asked to explain their reasoning in think-aloud protocols or to discuss item ratings with one another. Overall, participants thought evolutionary explanations appropriate, with median ratings in the upper quarter of the rating scale. They were slightly more willing to ascribe evolutionary explanations to plant than to human phenomena; however, this general effect was mediated by more specific aspects of the evolutionary scenarios in question. Participants who were generally negative regarding evolution were particularly negative towards human evolution. Those who were positive or neutral towards evolution in general were more willing to accept human evolution, but were more likely to use evolution to explain similarities between humans and other species than to explain particular human adaptations. For example, they were more likely to agree that evolution is responsible for the DNA similarities between humans and chimpanzees than that evolution is responsible for human behavioral characteristics, such as the fight or flight response. Think-aloud protocols suggest that, while people are more familiar with human evolutionary relationships than plant evolutionary relationships, they may be less likely to see human characteristics as adaptively valuable. One plausible explanation for these patterns is that an evolutionary explanation is judged jointly by its availability in an individual's memory and its plausibility (i.e., its congruence with the individual's worldview). Popular media coverage, with its focus on controversy and litigation, makes it likely that awareness of human evolution is high, compared with plant evolution (which may not even "enter the radar screen" when most people think of evolution). Some aspects of human evolution, such as the basic relationship between all primates, may have become so pedestrian that they do not threaten many individuals' worldviews. However, even for those positively disposed towards evolution, extending the ramifications of human evolution by suggesting that evolution shapes our behaviors and physical traits may pose a threat to their sense of personal agency. This threat is not associated with plant evolution.
Using genomics to characterize evolutionary potential for conservation of wild populations
Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul
2014-01-01
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064
Adaptive evolution of Mediterranean pines.
Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C
2013-09-01
Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P
2016-07-01
Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
A strategy with novel evolutionary features for the iterated prisoner's dilemma.
Li, Jiawei; Kendall, Graham
2009-01-01
In recent iterated prisoner's dilemma tournaments, the most successful strategies were those that had identification mechanisms. By playing a predetermined sequence of moves and learning from their opponents' responses, these strategies managed to identify their opponents. We believe that these identification mechanisms may be very useful in evolutionary games. In this paper one such strategy, which we call collective strategy, is analyzed. Collective strategies apply a simple but efficient identification mechanism (that just distinguishes themselves from other strategies), and this mechanism allows them to only cooperate with their group members and defect against any others. In this way, collective strategies are able to maintain a stable population in evolutionary iterated prisoner's dilemma. By means of an invasion barrier, this strategy is compared with other strategies in evolutionary dynamics in order to demonstrate its evolutionary features. We also find that this collective behavior assists the evolution of cooperation in specific evolutionary environments.
Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W
2012-03-01
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.
Evolutionary consequences of multidriver environmental change in an aquatic primary producer.
Brennan, Georgina L; Colegrave, Nick; Collins, Sinéad
2017-09-12
Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.
Lehtinen, Sonja; Fraser, Christophe
2017-01-01
The frequency of resistance to antibiotics in Streptococcus pneumoniae has been stable over recent decades. For example, penicillin non-susceptibility in Europe has fluctuated between 12% and 16% without any major time trend. In spite of long-term stability, resistance fluctuates over short time scales, presumably in part due to seasonal fluctuations in antibiotic prescriptions. Here, we develop a model that describes the evolution of antibiotic resistance under selection by multiple antibiotics prescribed at seasonally changing rates. This model was inspired by, and fitted to, published data on monthly antibiotics prescriptions and frequency of resistance in two communities in Israel over 5 years. Seasonal fluctuations in antibiotic usage translate into small fluctuations of the frequency of resistance around the average value. We describe these dynamics using a perturbation approach that encapsulates all ecological and evolutionary forces into a generic model, whose parameters quantify a force stabilizing the frequency of resistance around the equilibrium and the sensitivity of the population to antibiotic selection. Fitting the model to the data revealed a strong stabilizing force, typically two to five times stronger than direct selection due to antibiotics. The strong stabilizing force explains that resistance fluctuates in phase with usage, as antibiotic selection alone would result in resistance fluctuating behind usage with a lag of three months when antibiotic use is seasonal. While most antibiotics selected for increased resistance, intriguingly, cephalosporins selected for decreased resistance to penicillins and macrolides, an effect consistent in the two communities. One extra monthly prescription of cephalosporins per 1000 children decreased the frequency of penicillin-resistant strains by 1.7%. This model emerges under minimal assumptions, quantifies the forces acting on resistance and explains up to 43% of the temporal variation in resistance. PMID:28566489
Predictability, Force and (Anti-)Resonance in Complex Object Control.
Maurice, Pauline; Hogan, Neville; Sternad, Dagmar
2018-04-18
Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary advantage. This study examined the strategies humans choose when manipulating an object with underactuated internal dynamics, such as a cup of coffee. The object's dynamics renders the temporal evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans decrease interaction forces between hand and object; 2) humans increase the predictability of the object dynamics; 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that humans chose either a high-frequency strategy with anti-phase cup-and-ball movements or a low-frequency strategy with in-phase cup-and-ball movements. Counter Hypothesis 1, they did not decrease interaction force; instead, they increased the predictability of the interaction dynamics, quantified by mutual information, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the coupled hand-object system revealed two resonance frequencies separated by an anti-resonance frequency. The low-frequency strategy exploited one resonance, while the high-frequency strategy afforded more choice, consistent with the frequency response of the coupled system; both strategies avoided the anti-resonance. Hence, humans did not prioritize interaction force, but rather strategies that rendered interactions predictable. These findings highlight that physical interactions with complex objects pose control challenges not present in unconstrained movements.
Biology Needs Evolutionary Software Tools: Let’s Build Them Right
Team, Galaxy; Goecks, Jeremy; Taylor, James
2018-01-01
Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462
Humans, Evolutionary and Ecologic Forces Shaped the Phylogeography of Recently Emerged Diseases
Keim, Paul S.; Wagner, David M.
2009-01-01
Many infectious diseases have emerged and circulated around the world with the development of human civilizations and global commerce. Anthrax, plague and tularemia are three such zoonotic diseases that have been intensely studied through genome characterization and phylogeographic analyses. A few highly fit genotypes within each of the causative species represent the vast majority of observed disease cases. Mutational and selective forces working together create highly adapted pathogens, but this has to be coupled with ecological opportunities for global expansion. This Review describes the distributions of the bacteria that cause anthrax, plague and tularemia and investigates the forces that created a clonal structure in both these species, and specific groups within these species. PMID:19820723
Evolution of biological complexity
Adami, Christoph; Ofria, Charles; Collier, Travis C.
2000-01-01
To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045
Improving aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.
1976-01-01
Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.
Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L
2008-01-01
The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to re-evolve historical adaptations.
What to expect from an evolutionary hypothesis for a human disease: The case of type 2 diabetes.
Watve, Milind; Diwekar-Joshi, Manawa
2016-10-01
Evolutionary medicine has a promise to bring in a conceptual revolution in medicine. However, as yet the field does not have the same theoretical rigour as that of many other fields in evolutionary studies. We discuss here with reference to type 2 diabetes mellitus (T2DM) what role an evolutionary hypothesis should play in the development of thinking in medicine. Starting with the thrifty gene hypothesis, evolutionary thinking in T2DM has undergone several transitions, modifications and refinements of the thrift family of hypotheses. In addition alternative hypotheses independent of thrift are also suggested. However, most hypotheses look at partial pictures; make selective use of supportive data ignoring inconvenient truths. Most hypotheses look at a superficial picture and avoid getting into the intricacies of underlying molecular, neuronal and physiological processes. Very few hypotheses have suggested clinical implications and none of them have been tested with randomized clinical trials. In the meanwhile the concepts in the pathophysiology of T2DM are undergoing radical changes and evolutionary hypotheses need to take them into account. We suggest an approach and a set of criteria to evaluate the relative merits of the alternative hypotheses. A number of hypotheses are likely to fail when critically evaluated against these criteria. It is possible that more than one selective process are at work in the evolution of propensity to T2DM, but the intercompatibility of the alternative selective forces and their relative contribution needs to be examined. The approach we describe could potentially lead to a sound evolutionary theory that is clinically useful and testable by randomized controlled clinical trials. Copyright © 2016 Elsevier GmbH. All rights reserved.
Plastic and evolutionary responses to climate change in fish
Crozier, Lisa G; Hutchings, Jeffrey A
2014-01-01
The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549
Plastic and evolutionary responses to climate change in fish.
Crozier, Lisa G; Hutchings, Jeffrey A
2014-01-01
The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.
Chadha, Sonia; Sharma, Mradul
2014-01-01
A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911
Earth--moon evolution: implications for the mechanism of the biological clock?
Shweiki, D
2001-04-01
The geophysical characteristics of the planet Earth dictate the physiological traits of living organisms. Changes in the geophysical conditions over the course of geological time are responsible for major evolutionary changes in life emergence and evolvement. Calendar day length is one of earth's geophysical characteristics which is under a constant, if extremely small, progressive change. This enforces an adjustment of circadian rhythmicity throughout geological time. The calendar day has extended approximately 9 hours in the last 3.5 billion years. Two mechanisms for circadian-rhythm adjustment are suggested: a directional selection mechanism -- an endogenous -- oriented explanation regarding a genetic drift in the population's endogenous oscillation toward a lengthened daily cycle; and an exogenous calibration mechanism - a hypothesis on the existence of a geophysical responsive element which senses a geophysical stimuli and calibrates the inner cellular oscillation in accordance with the length of the calendar day. A distinguishing experiment between the two explanations is suggested and discussed. Circadian rhythm mechanism and the evolution of circadian rhythmicity are tightly connected. Circadian rhythms' evolutionary theories are discussed in light of their contribution to our understanding of the selective pressures being applied throughout geological time and of how, once the clock has been established, it maintains an ongoing adjustment to a continuous change in the length of day.I argue that the exogenous calibration mechanism combines with the endosymbiont coordination theory, together, present an explanation to the path by which the calendar day adjustment was acquired and maintained. This hypothesis suggests a role for gravity cyclic force and for cytoskeleton's components in calendar day adjustment mechanism and circadian rhythm entrainment. Copyright 2001 Harcourt Publishers Ltd.
Bujarski, Jozef J.
2013-01-01
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA–RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA–RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented. PMID:23533000
Bujarski, Jozef J
2013-01-01
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.
Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M
2017-07-01
The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.
Darwinian evolution in the light of genomics
Koonin, Eugene V.
2009-01-01
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802
An evolutionary model of cooperation, fairness and altruistic punishment in public good games.
Hetzer, Moritz; Sornette, Didier
2013-01-01
We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment.
An Evolutionary Model of Cooperation, Fairness and Altruistic Punishment in Public Good Games
Hetzer, Moritz; Sornette, Didier
2013-01-01
We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment. PMID:24260101
Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster
ERIC Educational Resources Information Center
Costello, James Christopher
2009-01-01
Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…
NASA Astrophysics Data System (ADS)
Erba, E.; Bottini, C.; Tiraboschi, D.
2008-12-01
Through the Phanerozoic, biota have been intimately linked to Earth's degassing inducing major changes in composition and structure of the ocean-atmosphere system. Emplacement of large igneous provinces (LIPs) has been the primary natural source of atmCO2 with dramatic consequences on climate and ecosystems. During the mid-Cretaceous the Ontong Java-Manihiki and Caribbean Plateaus LIPs are recognized as responsible of pCO2 as high as 2000 ppm. Coeval biocalcification crises occurred in pelagic and neritic settings, suggesting a causal link between high concentrations of carbon dioxide and drops in benthic and planktonic calcifiers' efficiency. Within the oceanic biosphere, calcareous nannoplankton play a key-role as: (1) is widespread and consists of cosmopolitan and endemic taxa; (2) has a 220 My-long evolutionary history; (3) is one the most effective calcite producers; (4) is relevant for the C cycle; (5) is extremely sensitive to environmental variations. Diversity pulses of Cretaceous calcareous nannoplankton are grossly coeval with LIP construction, climate and sea-level changes, variations in ocean structure and composition, suggesting that evolutionary patterns are closely linked to environmental modifications. We explored time-intervals of LIP formation marked by nannoplankton adaptation/evolution, quantifying evolutionary rates, species richness, abundance, calcite production and morphometry. High-resolution investigations of the initial phase of both early Aptian oceanic anoxic event (OAE) 1a and latest Cenomanian OAE 2 pointed out major evolutionary changes, decreases in heavily calcified nannoliths and occurrence of dwarf coccoliths. Nannoplankton calcification crises and dwarfism is here interpreted as forced by rapidly increasing pCO2 during formation of the Ontong Java-Maniniki and Caribbean Plateaus. Alternatively or concurrently, calcification crash and dwarfism might result from enhanced fertility associated to OAE1a and OAE2 regardless of ocean alkalinity. However, such global nutrification episodes must be linked as well to LIP construction via supply of biolimiting metals. Contrary to common reasoning, we stress the fact that emplacement of Cretaceous LIPs did not cause extinctions among calcareous nannoplankton.
Genomic view on the peopling of India
2012-01-01
India is known for its vast human diversity, consisting of more than four and a half thousand anthropologically well-defined populations. Each population differs in terms of language, culture, physical features and, most importantly, genetic architecture. The size of populations varies from a few hundred to millions. Based on the social structure, Indians are classified into various caste, tribe and religious groups. These social classifications are very rigid and have remained undisturbed by emerging urbanisation and cultural changes. The variable social customs, strict endogamy marriage practices, long-term isolation and evolutionary forces have added immensely to the diversification of the Indian populations. These factors have also led to these populations acquiring a set of Indian-specific genetic variations responsible for various diseases in India. Interestingly, most of these variations are absent outside the Indian subcontinent. Thus, this review is focused on the peopling of India, the caste system, marriage practice and the resulting health and forensic implications. PMID:23020857
Genomic view on the peopling of India.
Tamang, Rakesh; Thangaraj, Kumarasamy
2012-10-01
India is known for its vast human diversity, consisting of more than four and a half thousand anthropologically well-defined populations. Each population differs in terms of language, culture, physical features and, most importantly, genetic architecture. The size of populations varies from a few hundred to millions. Based on the social structure, Indians are classified into various caste, tribe and religious groups. These social classifications are very rigid and have remained undisturbed by emerging urbanisation and cultural changes. The variable social customs, strict endogamy marriage practices, long-term isolation and evolutionary forces have added immensely to the diversification of the Indian populations. These factors have also led to these populations acquiring a set of Indian-specific genetic variations responsible for various diseases in India. Interestingly, most of these variations are absent outside the Indian subcontinent. Thus, this review is focused on the peopling of India, the caste system, marriage practice and the resulting health and forensic implications.
Phylogenetic divergence of cell biological features
2018-01-01
Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits. PMID:29927740
Tag SNP selection via a genetic algorithm.
Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh
2010-10-01
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
The evolution of contralateral control of the body by the brain: is it a protective mechanism?
Whitehead, Lorne; Banihani, Saleh
2014-01-01
Contralateral control, the arrangement whereby most of the human motor and sensory fibres cross the midline in order to provide control for contralateral portions of the body, presents a puzzle from an evolutionary perspective. What caused such a counterintuitive and complex arrangement to become dominant? In this paper we offer a new perspective on this question by showing that in a complex interactive control system there could be a significant net survival advantage with contralateral control, associated with the effect of injuries of intermediate severity. In such cases an advantage could arise from a combination of non-linear system response combined with correlations between injuries on the same side of the head and body. We show that a simple mathematical model of these ideas emulates such an advantage. Based on this model, we conclude that effects of this kind are a plausible driving force for the evolution of contralateral control.
Borowsky, Richard
2013-07-11
The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.
Sexual Hookup Culture: A Review
Garcia, Justin R.; Reiber, Chris; Massey, Sean G.; Merriwether, Ann M.
2013-01-01
“Hookups,” or uncommitted sexual encounters, are becoming progressively more engrained in popular culture, reflecting both evolved sexual predilections and changing social and sexual scripts. Hook-up activities may include a wide range of sexual behaviors, such as kissing, oral sex, and penetrative intercourse. However, these encounters often transpire without any promise of, or desire for, a more traditional romantic relationship. A review of the literature suggests that these encounters are becoming increasingly normative among adolescents and young adults in North America, representing a marked shift in openness and acceptance of uncommitted sex. We reviewed the current literature on sexual hookups and considered the multiple forces influencing hookup culture, using examples from popular culture to place hooking up in context. We argue that contemporary hookup culture is best understood as the convergence of evolutionary and social forces during the developmental period of emerging adulthood. We suggest that researchers must consider both evolutionary mechanisms and social processes, and be considerate of the contemporary popular cultural climate in which hookups occur, in order to provide a comprehensive and synergistic biopsychosocial view of “casual sex” among emerging adults today. PMID:23559846
Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D
2016-07-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.
Transcending Darwinism thinking laterally on the tree of life.
Sapp, Jan
2009-01-01
The scope and significance of lateral gene transfer (LGT) has been discussed periodically since the early twentieth century. In sketching this history here we see that the pendulum of opinion has swung from one extreme that LGT is a rare phenomenon to the other that it is fundamental to evolution. That phages are sources of bacterial evolutionary innovation has been discussed since the 1920s in association with evidence that symbiosis is a major source of evolutionary innovation. Concepts of infectious heredity re-emerged with the rise of bacterial genetics after the Second World War, but LGT was generally discounted as a significant evolutionary force. LGT received increased attention in the 1960s and 1970s because of its role in antibiotic resistance outbreaks. Some speculated that the new molecular approaches to bacterial phylogenetics were ill-conceived because of LGT. With the rise of genomics in the 1990s, it became clear to phylogeneticists that LGT is the principal mode of generating evolutionary novelty in the prokaryotic world. All microbiologists agree today that the Darwinian concept of a bifurcating tree is an inadequate, if not misleading, representation of the evolutionary process in the microbial world. Phages are also reconceived not only as agents of bacterial gene exchange, but also as organisms in their own right, and fundamental in the evolution of new genes.
Mega-evolutionary dynamics of the adaptive radiation of birds.
Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H
2017-02-16
The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.
Senescence in immune priming and attractiveness in a beetle.
Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I
2012-07-01
Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Hallsson, L R; Björklund, M
2012-08-01
Temperature changes in the environment, which realistically include environmental fluctuations, can create both plastic and evolutionary responses of traits. Sexes might differ in either or both of these responses for homologous traits, which in turn has consequences for sexual dimorphism and its evolution. Here, we investigate both immediate changes in and the evolution of sexual dimorphism in response to a changing environment (with and without fluctuations) using the seed beetle Callosobruchus maculatus. We investigate sex differences in plasticity and also the genetic architecture of body mass and developmental time dimorphism to test two existing hypotheses on sex differences in plasticity (adaptive canalization hypothesis and condition dependence hypothesis). We found a decreased sexual size dimorphism in higher temperature and that females responded more plastically than males, supporting the condition dependence hypothesis. However, selection in a fluctuating environment altered sex-specific patterns of genetic and environmental variation, indicating support for the adaptive canalization hypothesis. Genetic correlations between sexes (r(MF) ) were affected by fluctuating selection, suggesting facilitated independent evolution of the sexes. Thus, the selective past of a population is highly important for the understanding of the evolutionary dynamics of sexual dimorphism. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Cis-regulatory Evolution of Chalcone-Synthase Expression in the Genus Arabidopsis
de Meaux, Juliette; Pop, A.; Mitchell-Olds, T.
2006-01-01
The contribution of cis-regulation to adaptive evolutionary change is believed to be essential, yet little is known about the evolutionary rules that govern regulatory sequences. Here, we characterize the short-term evolutionary dynamics of a cis-regulatory region within and among two closely related species, A. lyrata and A. halleri, and compare our findings to A. thaliana. We focused on the cis-regulatory region of chalcone synthase (CHS), a key enzyme involved in the synthesis of plant secondary metabolites. We observed patterns of nucleotide diversity that differ among species but do not depart from neutral expectations. Using intra- and interspecific F1 progeny, we have evaluated functional cis-regulatory variation in response to light and herbivory, environmental cues, which are known to induce CHS expression. We find that substantial cis-regulatory variation segregates within and among populations as well as between species, some of which results from interspecific genetic introgression. We further demonstrate that, in A. thaliana, CHS cis-regulation in response to herbivory is greater than in A. lyrata or A. halleri. Our work indicates that the evolutionary dynamics of a cis-regulatory region is characterized by pervasive functional variation, achieved mostly by modification of response modules to one but not all environmental cues. Our study did not detect the footprint of selection on this variation. PMID:17028316
Santos, Mauro; Castañeda, Luis E; Rezende, Enrico L
2012-01-01
The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h2 = 0.25, realized heritabilities of knockdown temperature are around 0.08–0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster. PMID:23170220
Tufto, Jarle
2015-08-01
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Indirect evolutionary rescue: prey adapts, predator avoids extinction
Yamamichi, Masato; Miner, Brooks E
2015-01-01
Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196
Johnston, I A; Altringham, J D
1985-09-01
Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.
Weller, Andreas M.; Rödelsperger, Christian; Eberhardt, Gabi; Molnar, Ruxandra I.; Sommer, Ralf J.
2014-01-01
Base substitution mutations are a major source of genetic novelty and mutation accumulation line (MAL) studies revealed a nearly universal AT bias in de novo mutation spectra. While a comparison of de novo mutation spectra with the actual nucleotide composition in the genome suggests the existence of general counterbalancing mechanisms, little is known about the evolutionary and historical details of these opposing forces. Here, we correlate MAL-derived mutation spectra with patterns observed from population resequencing. Variation observed in natural populations has already been subject to evolutionary forces. Distinction between rare and common alleles, the latter of which are close to fixation and of presumably older age, can provide insight into mutational processes and their influence on genome evolution. We provide a genome-wide analysis of de novo mutations in 22 MALs of the nematode Pristionchus pacificus and compare the spectra with natural variants observed in resequencing of 104 natural isolates. MALs show an AT bias of 5.3, one of the highest values observed to date. In contrast, the AT bias in natural variants is much lower. Specifically, rare derived alleles show an AT bias of 2.4, whereas common derived alleles close to fixation show no AT bias at all. These results indicate the existence of a strong opposing force and they suggest that the GC content of the P. pacificus genome is in equilibrium. We discuss GC-biased gene conversion as a potential mechanism acting against AT-biased mutations. This study provides insight into genome evolution by combining MAL studies with natural variation. PMID:24414549
The Emergence of Land Use as a Global Force in the Earth System
NASA Astrophysics Data System (ADS)
Ellis, E. C.
2015-12-01
Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.
Niche construction theory: a practical guide for ecologists.
Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N
2013-03-01
Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.
Evidence for rapid evolutionary change in an invasive plant in response to biological control.
Stastny, M; Sargent, R D
2017-05-01
We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Adaptive evolutionary conservation: towards a unified concept for defining conservation units.
Fraser, D J; Bernatchez, L
2001-12-01
Recent years have seen a debate over various methods that could objectively prioritize conservation value below the species level. Most prominent among these has been the evolutionarily significant unit (ESU). We reviewed ESU concepts with the aim of proposing a more unified concept that would reconcile opposing views. Like species concepts, conflicting ESU concepts are all essentially aiming to define the same thing: segments of species whose divergence can be measured or evaluated by putting differential emphasis on the role of evolutionary forces at varied temporal scales. Thus, differences between ESU concepts lie more in the criteria used to define the ESUs themselves rather than in their fundamental essence. We provide a context-based framework for delineating ESUs which circumvents much of this situation. Rather than embroil in a befuddled debate over an optimal criterion, the key to a solution is accepting that differing criteria will work more dynamically than others and can be used alone or in combination depending on the situation. These assertions constitute the impetus behind adaptive evolutionary conservation.
The evolution of ecosystem ascendency in a complex systems based model.
Brinck, Katharina; Jensen, Henrik Jeldtoft
2017-09-07
General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C
2016-02-10
Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses. Copyright © 2016 Elsevier Inc. All rights reserved.
Hill, Kim
2010-08-01
Here I discuss how studies on animal social learning may help us understand human culture. It is an evolutionary truism that complex biological adaptations always evolve from less complex but related adaptations, but occasionally evolutionary transitions lead to major biological changes whose end products are difficult to anticipate. Language-based cumulative adaptive culture in humans may represent an evolutionary transition of this type. Most of the social learning observed in animals (and even plants) may be due to mechanisms that cannot produce cumulative cultural adaptations. Likewise, much of the critical content of socially transmitted human culture seems to show no parallel in nonhuman species. Thus, with regard to the uniquely human extent and quality of culture, we are forced to ask: Are other species only a few small steps away from this transition, or do they lack multiple critical features that make us the only truly cultural species? Only future research into animal social learning can answer these questions.
Robbins, T R; Langkilde, T
2012-10-01
Responses to novel threats (e.g. invasive species) can involve genetic changes or plastic shifts in phenotype. There is controversy over the relative importance of these processes for species survival of such perturbations, but we are realizing they are not mutually exclusive. Native eastern fence lizards (Sceloporus undulatus) have adapted to top-down predation pressure imposed by the invasive red imported fire ant (Solenopsis invicta) via changes in adult (but not juvenile) lizard antipredator behaviour. Here, we examine the largely ignored, but potentially equally important, bottom-up effect of fire ants as toxic prey for lizards. We test how fire ant consumption (or avoidance) is affected by lifetime (via plasticity) and evolutionary (via natural selection) exposure to fire ants by comparing field-caught and laboratory-reared lizards, respectively, from fire ant-invaded and uninvaded populations. More naive juveniles from invaded populations ate fire ants than did adults, reflecting a natural ontogenetic dietary shift away from ants. Laboratory-reared lizards from the invaded site were less likely to eat fire ants than were those from the uninvaded site, suggesting a potential evolutionary shift in feeding behaviour. Lifetime and evolutionary exposure interacted across ontogeny, however, and field-caught lizards from the invaded site exhibited opposite ontogenetic trends; adults were more likely to eat fire ants than were juveniles. Our results suggest that plastic and evolutionary processes may both play important roles in permitting species survival of novel threats. We further reveal how complex interactions can shape adaptive responses to multimodal impacts imposed by invaders: in our system, fire ants impose stronger bottom-up selection than top-down selection, with each selection regime changing differently across lizard ontogeny. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
ERIC Educational Resources Information Center
Novick, Laura R.; Catley, Kefyn M.
2014-01-01
Science is an important domain for investigating students' responses to information that contradicts their prior knowledge. In previous studies of this topic, this information was communicated verbally. The present research used diagrams, specifically trees (cladograms) depicting evolutionary relationships among taxa. Effects of college…
Whither wildlife without fire?
L.A. Brennan; R.T. Engstrom; W.E. Palmer
1998-01-01
Fire is a major ecosystem process that has been pervasive across the southern forest landscape on an evolutionary time scale. Wildlife evolved in response to frequent lightning-ignited burns that shaped the biota of the Southeast. Despite the dominant role that fire has played on an evolutionary scale, the use of prescribed fire as a forest wildlife management tool...
Accounting for rate variation among lineages in comparative demographic analyses
Hope, Andrew G.; Ho, Simon Y. W.; Malaney, Jason L.; Cook, Joseph A.; Talbot, Sandra L.
2014-01-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies.
Monitoring of the Conformational Space of Dipeptides by Generative Topographic Mapping.
Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre
2018-01-01
This work describes a procedure to build generative topographic maps (GTM) as 2D representation of the conformational space (CS) of dipeptides. GTMs with excellent propensities to support highly predictive landscapes of various conformational properties were reported for three dipeptides (AA, KE and KR). CS monitoring via GTMproceeds through the projection of conformer ensembles on the map, producing cumulated responsibility (CR) vectors characteristic of the CS areas covered by the ensemble. Overlap of the CS areas visited by two distinct simulations can be expressed by the Tanimoto coefficient Tc of the associated CRs. This idea was used to monitor the reproducibility of the stochastic evolutionary conformer generation process implemented in S4MPLE. It could be shown that conformers produced by <500 S4MPLE runs reproducibly cover the relevant CS zone at given setup of the driving force field. The propensity of a simulation to visit the native CS zone can thus be quantitatively estimated, as the Tc score with respect to the "native" CR, as defined by the ensemble of dipeptide geometries extracted from PDB proteins. It could be shown that low-energy CS regions were indeed found to fall within the native zone. The Tc overlap score behaved as a smooth function of force field parameters. This opens the perspective of a novel force field parameter tuning procedure, bound to simultaneously optimize the behavior of the in Silico simulations for every possible dipeptide. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evo-devo of infantile and childhood growth.
Hochberg, Ze'ev; Albertsson-Wikland, Kerstin
2008-07-01
Human size is a tradeoff between the evolutionary advantages and disadvantages of being small or big. We now propose that adult size is determined to an important extent during transition from infancy to childhood. This transition is marked by a growth spurt. A delay in the transition has a lifelong impact on stature and is responsible for 44% of children with short stature in developed countries and many more in developing countries. Here, we present the data and theory of an evolutionary adaptive strategy of plasticity in the timing of transition from infancy into childhood to match the prevailing energy supply. We propose that humans have evolved to withstand energy crises by decreasing their body size, and that evolutionary short-term adaptations to energy crises trigger a predictive adaptive response that modify the transition into childhood, culminating in short stature.
Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent
Press, William H.; Dyson, Freeman J.
2012-01-01
The two-player Iterated Prisoner’s Dilemma game is a model for both sentient and evolutionary behaviors, especially including the emergence of cooperation. It is generally assumed that there exists no simple ultimatum strategy whereby one player can enforce a unilateral claim to an unfair share of rewards. Here, we show that such strategies unexpectedly do exist. In particular, a player X who is witting of these strategies can (i) deterministically set her opponent Y’s score, independently of his strategy or response, or (ii) enforce an extortionate linear relation between her and his scores. Against such a player, an evolutionary player’s best response is to accede to the extortion. Only a player with a theory of mind about his opponent can do better, in which case Iterated Prisoner’s Dilemma is an Ultimatum Game. PMID:22615375
Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis
Wilmanns, Matthias; Gräter, Frauke
2009-01-01
The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960
Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.
2011-01-01
Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change. PMID:21738573
ERIC Educational Resources Information Center
Abate, Charles J.; Cantone, Kathleen A.
2005-01-01
Contemporary mathematics education is at a crossroads. It has become exposed to forces, both static and dynamic, that pose a challenge to its traditional place in academia. Mathematics has a long-established status as perhaps the most critical foundation for analytical knowledge. But the manner in which mathematics instructors choose to respond to…
ERIC Educational Resources Information Center
Harris, Christine R.
2003-01-01
Three hundred fifty-eight undergraduates completed anonymous questionnaires regarding jealousy over a mate's infidelity. More men than women predicted that sexual infidelity would be worse than emotional infidelity when given the forced-choice hypothetical measures used in previous work. When some of the implications of hypothetical infidelity…
USDA-ARS?s Scientific Manuscript database
Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...
Tanentzap, Andrew J; Lee, William G
2017-01-01
Abiotic filters have been found either to increase or reduce evolutionary relatedness in plant communities, making it difficult to generalize responses of this major feature of biodiversity to future environmental change. Here, we hypothesized that the responses of phylogenetic structure to environmental change ultimately depend on how species have evolved traits for tolerating the resulting abiotic changes. Working within ephemeral wetlands, we tested whether species were increasingly related as flooding duration intensified. We also identified the mechanisms underlying increased relatedness by measuring root aerenchyma volume (RAV), a trait which promotes waterlogging tolerance. We found that species-specific responses to flooding explained most of the variation in occurrence for 63 vascular plant species across 5170 plots. For a subset of 22 species, we attributed these responses to variation in RAV. Large RAV specifically increased occurrence when flooding lasted for longer time periods, because large RAV reduced above-ground biomass loss. As large RAV was evolutionarily conserved within obligate wetland species, communities were more phylogenetically related as flooding increased. Our study shows how reconstructing the evolutionary history of traits that influence the responses of species to environmental change can help to predict future patterns in phylogenetic structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses.
Durrant, Matthew; Boyer, Justin; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing
2017-08-01
Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
Automatic feature design for optical character recognition using an evolutionary search procedure.
Stentiford, F W
1985-03-01
An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.
Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium
Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe
2014-01-01
Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493
War, Trauma and Children's Development: Observations from a Modern Evolutionary Perspective
ERIC Educational Resources Information Center
Belsky, Jay
2008-01-01
Lethal intergroup conflict has been part of the human experience ever since our species emerged on the African savannah. Modern evolutionary thinking suggests that children's development could have evolved a variety of responses to it, some of which are highlighted upon considering, from the field of behavioural ecology, life-history theory and,…
Mega-evolutionary dynamics of the adaptive radiation of birds
Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.
2017-01-01
The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475
Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna
2016-01-01
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640
Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna
2016-05-17
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Soule, Tanya; Gao, Qunjie; Stout, Valerie; Garcia-Pichel, Ferran
2013-01-01
Cyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures. Of those genes, 473 were up-regulated, while only 100 were down-regulated. Many of the down-regulated genes were involved in photosynthetic pigment biosynthesis, indicating a significant shift in this metabolism. As expected, we detected the up-regulation of genes encoding antioxidant enzymes and the sunscreen, scytonemin. However, a majority of the up-regulated genes, 47%, were unassignable bioinformatically to known functional categories, suggesting that the UVA stress response is not well understood. Interestingly, the most dramatic up-regulation involved several contiguous genes of unassigned metabolism on plasmid A. This is the first global UVA stress response analysis of any phototrophic microorganism and the differential expression of 8% of the genes of the Nostoc genome indicates that adaptation to UVA in Nostoc has been an evolutionary force of significance. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Mechanical forces and their second messengers in stimulating cell growth in vitro
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1992-01-01
Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.
Vlček, Jakub; Hoeck, Paquita E A; Keller, Lukas F; Wayhart, Jessica P; Dolinová, Iva; Štefka, Jan
2016-10-01
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection. © 2016 John Wiley & Sons Ltd.
A neutral theory for interpreting correlations between species and genetic diversity in communities.
Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois
2015-01-01
Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.
Morphological constraints on changing avian migration phenology.
Møller, A P; Rubolini, D; Saino, N
2017-06-01
Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi
2013-01-01
The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833
Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.
Dowling, Damian K
2014-04-01
Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.
Castro-Fernandez, Víctor; Herrera-Morande, Alejandra; Zamora, Ricardo; Merino, Felipe; Gonzalez-Ordenes, Felipe; Padilla-Salinas, Felipe; Pereira, Humberto M; Brandão-Neto, Jose; Garratt, Richard C; Guixe, Victoria
2017-09-22
One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales , Methanosarcinales , and Methanococcales , as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sankar, Sathish; Upadhyay, Mohita; Ramamurthy, Mageshbabu; Vadivel, Kumaran; Sagadevan, Kalaiselvan; Nandagopal, Balaji; Vivekanandan, Perumal; Sridharan, Gopalan
2015-01-01
Hantaviruses are important emerging zoonotic pathogens. The current understanding of hantavirus evolution is complicated by the lack of consensus on co-divergence of hantaviruses with their animal hosts. In addition, hantaviruses have long-term associations with their reservoir hosts. Analyzing the relative abundance of dinucleotides may shed new light on hantavirus evolution. We studied the relative abundance of dinucleotides and the evolutionary pressures shaping different hantavirus segments. A total of 118 sequences were analyzed; this includes 51 sequences of the S segment, 43 sequences of the M segment and 23 sequences of the L segment. The relative abundance of dinucleotides, effective codon number (ENC), codon usage biases were analyzed. Standard methods were used to investigate the relative roles of mutational pressure and translational selection on the three hantavirus segments. All three segments of hantaviruses are CpG depleted. Mutational pressure is the predominant evolutionary force leading to CpG depletion among hantaviruses. Interestingly, the S segment of hantaviruses is GpU depleted and in contrast to CpG depletion, the depletion of GpU dinucleotides from the S segment is driven by translational selection. Our findings also suggest that mutational pressure is the primary evolutionary pressure acting on the S and the M segments of hantaviruses. While translational selection plays a key role in shaping the evolution of the L segment. Our findings highlight how different evolutionary pressures may contribute disproportionally to the evolution of the three hantavirus segments. These findings provide new insights on the current understanding of hantavirus evolution. There is a dichotomy among evolutionary pressures shaping a) the relative abundance of different dinucleotides in hantavirus genomes b) the evolution of the three hantavirus segments.
How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology
2016-01-01
An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753
The QTN program and the alleles that matter for evolution: all that's gold does not glitter.
Rockman, Matthew V
2012-01-01
The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
A piecewise smooth model of evolutionary game for residential mobility and segregation
NASA Astrophysics Data System (ADS)
Radi, D.; Gardini, L.
2018-05-01
The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.
Edwards, Taylor; Vaughn, Mercy; Meléndez Torres, Cristina; Karl, Alice E.; Rosen, Philip C.; Berry, Kristin H.; Murph, Robert W.
2013-01-01
The enduring processes of time, climate, and adaptation have sculpted the distribution of organisms we observe in the Sonoran Desert. One such organism is Morafka’s desert tortoise, Gopherus morafkai. We apply a genomic approach to identify the evolutionary processes driving diversity in this species and present preliminary findings and emerging hypotheses. The Sonoran Desert form of the tortoise exhibits a continuum of genetic similarity spanning 850 km of Sonoran desertscrub extending from Empalme, Sonora, to Kingman, Arizona. However, at the ecotone between desertscrub and foothills thornscrub we identify a distinct, Sinaloan lineage and this occurrence suggests a more complex evolutionary history for G. morafkai. By using multiple loci from throughout the tortoise’s genome, we aim to determine if divergence between these lineages occurred in allopatry, and further to investigate for signatures of past or current genetic introgression. This international, collaborative project will assist state and federal agencies in developing management strategies that best preserve the evolutionary potential of Morafka’s desert tortoise. Ultimately, an understanding of the evolutionary history of desert tortoises will not only clarify the forces that have driven the divergence in this group, but also contribute to our knowledge of the biogeographic history of the Southwestern deserts and how diversity is maintained within them.
The eco-evolutionary impacts of domestication and agricultural practices on wild species.
Turcotte, Martin M; Araki, Hitoshi; Karp, Daniel S; Poveda, Katja; Whitehead, Susan R
2017-01-19
Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species. We do so by examining three processes by which agriculture drives evolution. First, differences in the traits of domesticated species, compared with their wild ancestors, alter the selective environment and create opportunities for wild species to specialize. Second, selection caused by agricultural practices, including both those meant to maximize productivity and those meant to control pest species, can lead to pest adaptation. Third, agriculture can cause non-selective changes in patterns of gene flow in wild species. We review evidence for these processes and then discuss their ecological and sociological impacts. We finish by identifying important knowledge gaps and future directions related to the eco-evolutionary impacts of agriculture including their extent, how to prevent the detrimental evolution of wild species, and finally, how to use evolution to minimize the ecological impacts of agriculture.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Biological and geophysical feedbacks with fire in the Earth system
NASA Astrophysics Data System (ADS)
Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.
2018-03-01
Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.
The eco-evolutionary impacts of domestication and agricultural practices on wild species
Araki, Hitoshi; Karp, Daniel S.; Poveda, Katja
2017-01-01
Agriculture is a dominant evolutionary force that drives the evolution of both domesticated and wild species. However, the various mechanisms of agriculture-induced evolution and their socio-ecological consequences are not often synthetically discussed. Here, we explore how agricultural practices and evolutionary changes in domesticated species cause evolution in wild species. We do so by examining three processes by which agriculture drives evolution. First, differences in the traits of domesticated species, compared with their wild ancestors, alter the selective environment and create opportunities for wild species to specialize. Second, selection caused by agricultural practices, including both those meant to maximize productivity and those meant to control pest species, can lead to pest adaptation. Third, agriculture can cause non-selective changes in patterns of gene flow in wild species. We review evidence for these processes and then discuss their ecological and sociological impacts. We finish by identifying important knowledge gaps and future directions related to the eco-evolutionary impacts of agriculture including their extent, how to prevent the detrimental evolution of wild species, and finally, how to use evolution to minimize the ecological impacts of agriculture. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920378
Turning randomness into meaning at the molecular level using Muller's morphs.
Henson, Kathleen; Cooper, Melanie M; Klymkowsky, Michael W
2012-04-15
While evolutionary theory follows from observable facts and logical inferences (Mayr, 1985), historically, the origin of novel inheritable variations was a major obstacle to acceptance of natural selection (Bowler, 1992; Bowler, 2005). While molecular mechanisms address this issue (Jablonka and Lamb, 2005), analysis of responses to the Biological Concept Inventory (BCI) (Klymkowsky et al., 2010), revealed that molecular biology majors rarely use molecular level ideas in their discourse, implying that they do not have an accessible framework within which to place evolutionary variation. We developed a "Socratic tutorial" focused on Muller's categorization of mutations' phenotypic effects (Muller, 1932). Using a novel vector-based method to analyzed students' essay responses, we found that a single interaction with this tutorial led to significant changes in thinking toward a clearer articulation of the effects of mutational change. We suggest that Muller's morphs provides an effective framework for facilitating student learning about mutational effects and evolutionary mechanisms.
Comparative genomics explains the evolutionary success of reef-forming corals.
Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas Pm; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G
2016-05-24
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years.
Evolution of a genetic polymorphism with climate change in a Mediterranean landscape
Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri
2013-01-01
Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198
Solar forcing - implications for the volatile inventory on Mars and Venus. (Invited)
NASA Astrophysics Data System (ADS)
Lundin, Rickard
2015-04-01
Planets in the solar system are exposed to a persistent solar forcing by solar irradiation and the solar wind. The forcing, most pronounced for the inner Earth-like planets, ionizes, heats, modifies chemically, and gradually erodes the upper atmosphere throughout the lifetime of the planets. Of the four inner planets, the Earth is at present the only one habitable. Our kin Venus and Mars have taken different evolutionary paths, the present lack of a hydrosphere being the most significant difference. However, there are ample evidence for that an early Noachian, water rich period existed on Mars. Similarly, arguments have been presented for an early water-rich period on Venus. The question is, what made Mars and Venus evolve in such a different way compared to the Earth? Under the assumption of similar initial conditions, the planets may have experienced different externally driven episodes (e.g. impacts) with time. Conversely, internal factors on Mars and Venus made them less resilient, unable to sustain solar forcing on an evolutionary time-scale. The latter has been quantified from simulations, combining atmospheric and ionospheric modeling and empiric data from solar-like stars (Sun in time). In a similar way, semi-empirical models based on experimental data were used to determine the mass-loss of volatiles back in time from Mars and Venus. This presentation will review further aspects of semi-empirical modeling based on ion and energetic neutral atom (ENA) escape data from Mars and Venus - on short term (days), mid-term (solar cycle proxies), long-term (Heliospheric flux proxies, 10 000 year), and on time scales corresponding to the solar evolution.
Leakey, Andrew D. B.; Lau, Jennifer A.
2012-01-01
Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO2]. PMID:22232771
Leakey, Andrew D B; Lau, Jennifer A
2012-02-19
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)].
Akgül, Gülfirde; Della Casa, Philippe; Rühli, Frank; Warinner, Christina
2014-01-01
Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies. These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71–80%, our results suggest that genetic lactase persistence likely reached modern levels before the historic population declines associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in this region. This new evidence sheds light on the dynamic evolutionary history of the European lactase persistence trait and its global cultural implications. PMID:24465990
The current status of REH theory. [Random Evolutionary Hits in biological molecular evolution
NASA Technical Reports Server (NTRS)
Holmquist, R.; Jukes, T. H.
1981-01-01
A response is made to the evaluation of Fitch (1980) of REH (random evolutionary hits) theory for the evolutionary divergence of proteins and nucleic acids. Correct calculations for the beta hemoglobin mRNAs of the human, mouse and rabbit in the absence and presence of selective constraints are summarized, and it is shown that the alternative evolutionary analysis of Fitch underestimates the total fixed mutations. It is further shown that the model used by Fitch to test for the completeness of the count of total base substitutions is in fact a variant of REH theory. Considerations of the variance inherent in evolutionary estimations are also presented which show the REH model to produce no more variance than other evolutionary models. In the reply, it is argued that, despite the objections raised, REH theory applied to proteins gives inaccurate estimates of total gene substitutions. It is further contended that REH theory developed for nucleic sequences suffers from problems relating to the frequency of nucleotide substitutions, the identity of the codons accepting silent and amino acid-changing substitutions, and estimate uncertainties.
An evolutionary game approach for determination of the structural conflicts in signed networks
Tan, Shaolin; Lü, Jinhu
2016-01-01
Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581
Large-scale patterns of forest fire occurrence in the Conterminous United States and Alaska, 2001-08
Kevin M. Potter
2012-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009
Kevin M. Potter
2013-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
ERIC Educational Resources Information Center
Hawley, Patricia H.
2011-01-01
Adolescence is a period characterized by well-documented growth and change, including reproductive, social, and cognitive development. Though not unheard of, modern evolutionary approaches to adolescence are still relatively uncommon. Recent treatises in developmental biology, however, have yielded new tools through which to explore human…
Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel
2016-01-11
The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.
Molding the business end of neurotoxins by diversifying evolution.
Kozminsky-Atias, Adi; Zilberberg, Noam
2012-02-01
A diverse range of organisms utilize neurotoxins that target specific ion channels and modulate their activity. Typically, toxins are clustered into several multigene families, providing an organism with the upper hand in the never-ending predator-prey arms race. Several gene families, including those encoding certain neurotoxins, have been subject to diversifying selection forces, resulting in rapid gene evolution. Here we sought a spatial pattern in the distribution of both diversifying and purifying selection forces common to neurotoxin gene families. Utilizing the mechanistic empirical combination model, we analyzed various toxin families from different phyla affecting various receptors and relying on diverse modes of action. Through this approach, we were able to detect clear correlations between the pharmacological surface of a toxin and rapidly evolving domains, rich in positively selected residues. On the other hand, patches of negatively selected residues were restricted to the nontoxic face of the molecule and most likely help in stabilizing the tertiary structure of the toxin. We thus propose a mutual evolutionary strategy of venomous animals in which adaptive molecular evolution is directed toward the toxin active surface. Furthermore, we propose that the binding domains of unstudied toxins could be readily predicted using evolutionary considerations.
Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis.
Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard
2017-04-01
Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis , consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals.
Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis
Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard
2017-01-01
Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals. PMID:28439543
Genomics in a changing arctic: critical questions await the molecular ecologist.
Wullschleger, Stan D; Breen, Amy L; Iversen, Colleen M; Olson, Matthew S; Näsholm, Torgny; Ganeteg, Ulrika; Wallenstein, Matthew D; Weston, David J
2015-05-01
Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate. © 2015 John Wiley & Sons Ltd.
Constraint, natural selection, and the evolution of human body form
Savell, Kristen R. R.; Auerbach, Benjamin M.; Roseman, Charles C.
2016-01-01
Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics. PMID:27482101
Constraint, natural selection, and the evolution of human body form.
Savell, Kristen R R; Auerbach, Benjamin M; Roseman, Charles C
2016-08-23
Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics.
Jansen, M; Geerts, A N; Rago, A; Spanier, K I; Denis, C; De Meester, L; Orsini, L
2017-04-01
Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long-term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm- and cold-adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST-linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna. © 2017 John Wiley & Sons Ltd.
Accounting for rate variation among lineages in comparative demographic analyses.
Hope, Andrew G; Ho, Simon Y W; Malaney, Jason L; Cook, Joseph A; Talbot, Sandra L
2014-09-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Formation of dominant mode by evolution in biological systems
NASA Astrophysics Data System (ADS)
Furusawa, Chikara; Kaneko, Kunihiko
2018-04-01
A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.
Erwin, Douglas H
2017-10-13
Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson's interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson's own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.
An Evolutionary Perspective on Mate Rejection.
Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate
2016-01-01
We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.
Sexual and Emotional Infidelity: Evolved Gender Differences in Jealousy Prove Robust and Replicable.
Buss, David M
2018-03-01
Infidelity poses threats to high-investment mating relationships. Because of gender differences in some aspects of reproductive biology, such as internal female fertilization, the nature of these threats differs for men and women. Men, but not women, for example, have recurrently faced the problem of uncertainty in their genetic parenthood. Jealousy is an emotion hypothesized to have evolved to combat these threats. The 1992 article Sex Differences in Jealousy: Evolution, Physiology, and Psychology reported three empirical studies using two different methods, forced-choice and physiological experiments. Results supported the evolution-based hypotheses. The article became highly cited for several reasons. It elevated the status of jealousy as an important emotion to be explained by any comprehensive theory of human emotions. Subsequent meta-analyses robustly supported the evolutionary hypotheses. Moreover, the work supported the evolutionary meta-theory of gender differences, which posits differences only in domains in which the sexes have recurrently faced distinct adaptive problems. It also heralded the newly emerging field of evolutionary psychology as a useful perspective that possesses the scientific virtues of testability, falsifiability, and heuristic value in discovering previously unknown psychological phenomena.
Degeneration of the Y chromosome in evolutionary aging models
NASA Astrophysics Data System (ADS)
Lobo, M. P.; Onody, R. N.
2005-06-01
The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.
The Ecological Rise of Whales Chronicled by the Fossil Record.
Pyenson, Nicholas D
2017-06-05
The evolution of cetaceans is one of the best examples of macroevolution documented from the fossil record. While ecological transitions dominate each phase of cetacean history, this context is rarely stated explicitly. The first major ecological phase involves a transition from riverine and deltaic environments to marine ones, concomitant with dramatic evolutionary transformations documented in their early fossil record. The second major phase involves ecological shifts associated with evolutionary innovations: echolocation (facilitating hunting prey at depth) and filter-feeding (enhancing foraging efficiency on small prey). This latter phase involves body size shifts, attributable to changes in foraging depth and environmental forcing, as well as re-invasions of freshwater systems on continental basins by multiple lineages. Modern phenomena driving cetacean ecology, such as trophic dynamics and arms races, have an evolutionary basis that remains mostly unexamined. The fossil record of cetaceans provides an historical basis for understanding current ecological mechanisms and consequences, especially as global climate change rapidly alters ocean and river ecosystems at rates and scales comparable to those over geologic time. Published by Elsevier Ltd.
Evolutionary Perspective on Collective Decision Making
NASA Astrophysics Data System (ADS)
Farrell, Dene; Sayama, Hiroki; Dionne, Shelley D.; Yammarino, Francis J.; Wilson, David Sloan
Team decision making dynamics are investigated from a novel perspective by shifting agency from decision makers to representations of potential solutions. We provide a new way to navigate social dynamics of collective decision making by interpreting decision makers as constituents of an evolutionary environment of an ecology of evolving solutions. We demonstrate distinct patterns of evolution with respect to three forms of variation: (1) Results with random variations in utility functions of individuals indicate that groups demonstrating minimal internal variation produce higher true utility values of group solutions and display better convergence; (2) analysis of variations in behavioral patterns within a group shows that a proper balance between selective and creative evolutionary forces is crucial to producing adaptive solutions; and (3) biased variations of the utility functions diminish the range of variation for potential solution utility, leaving only the differential of convergence performance static. We generally find that group cohesion (low random variation within a group) and composition (appropriate variation of behavioral patterns within a group) are necessary for a successful navigation of the solution space, but performance in both cases is susceptible to group level biases.
Bad to the bone: facial structure predicts unethical behaviour.
Haselhuhn, Michael P; Wong, Elaine M
2012-02-07
Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Climate change and mammals: evolutionary versus plastic responses.
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.
Climate change and mammals: evolutionary versus plastic responses
Boutin, Stan; Lane, Jeffrey E
2014-01-01
Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made. PMID:24454546
Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R
2017-06-01
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Correlated evolution of personality, morphology and performance
Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian
2018-01-01
Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712
Evolutionary distance from human homologs reflects allergenicity of animal food proteins.
Jenkins, John A; Breiteneder, Heimo; Mills, E N Clare
2007-12-01
In silico analysis of allergens can identify putative relationships among protein sequence, structure, and allergenic properties. Such systematic analysis reveals that most plant food allergens belong to a restricted number of protein superfamilies, with pollen allergens behaving similarly. We have investigated the structural relationships of animal food allergens and their evolutionary relatedness to human homologs to define how closely a protein must resemble a human counterpart to lose its allergenic potential. Profile-based sequence homology methods were used to classify animal food allergens into Pfam families, and in silico analyses of their evolutionary and structural relationships were performed. Animal food allergens could be classified into 3 main families--tropomyosins, EF-hand proteins, and caseins--along with 14 minor families each composed of 1 to 3 allergens. The evolutionary relationships of each of these allergen superfamilies showed that in general, proteins with a sequence identity to a human homolog above approximately 62% were rarely allergenic. Single substitutions in otherwise highly conserved regions containing IgE epitopes in EF-hand parvalbumins may modulate allergenicity. These data support the premise that certain protein structures are more allergenic than others. Contrasting with plant food allergens, animal allergens, such as the highly conserved tropomyosins, challenge the capability of the human immune system to discriminate between foreign and self-proteins. Such immune responses run close to becoming autoimmune responses. Exploiting the closeness between animal allergens and their human homologs in the development of recombinant allergens for immunotherapy will need to consider the potential for developing unanticipated autoimmune responses.
Pruett, Jake A; Zúñiga-Vega, J Jaime; Campos, Stephanie M; Soini, Helena A; Novotny, Milos V; Vital-García, Cuauhcihuatl; Martins, Emília P; Hews, Diana K
2016-11-01
Animals rely on multimodal signals to obtain information from conspecifics through alternative sensory systems, and the evolutionary loss of a signal in one modality may lead to compensation through increased use of signals in an alternative modality. We investigated associations between chemical signaling and evolutionary loss of abdominal color patches in males of four species (two plain-bellied and two colorful-bellied) of Sceloporus lizards. We conducted field trials to compare behavioral responses of male lizards to swabs with femoral gland (FG) secretions from conspecific males and control swabs (clean paper). We also analyzed the volatile organic compound (VOC) composition of male FG secretions by stir bar extraction and gas chromatography-mass spectrometry (GC-MS) to test the hypothesis that loss of the visual signal is associated with elaboration of the chemical signal. Males of plain-bellied, but not colorful-bellied species exhibited different rates of visual displays when exposed to swabs of conspecific FG secretions relative to control swabs. The VOC composition of male Sceloporus FG secretions was similar across all four species, and no clear association between relative abundances of VOCs and evolutionary loss of abdominal color patches was observed. The emerging pattern is that behavioral responses to conspecific chemical signals are species- and context-specific in male Sceloporus, and compensatory changes in receivers, but not signalers may be involved in mediating increased responsiveness to chemical signals in males of plain-bellied species.
Baculovirus phylogeny and evolution.
Herniou, Elisabeth A; Jehle, Johannes A
2007-10-01
The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.
Why Be Temperate: Lessons from Bacteriophage λ.
Gandon, Sylvain
2016-05-01
Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrating Competition for Food, Hosts, or Mates via Experimental Evolution.
Rodrigues, Leonor R; Duncan, Alison B; Clemente, Salomé H; Moya-Laraño, Jordi; Magalhães, Sara
2016-02-01
Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment resistance in urothelial carcinoma: an evolutionary perspective.
Vlachostergios, Panagiotis J; Faltas, Bishoy M
2018-05-02
The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.
Evolutionary pattern search algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-09-19
This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less
Accounting for epistatic interactions improves the functional analysis of protein structures.
Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier
2013-11-01
The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.
Feinberg, Andrew P; Irizarry, Rafael A
2010-01-26
Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.
Herath, B; Dochtermann, N A; Johnson, J I; Leonard, Z; Bowsher, J H
2015-12-01
Many exaggerated and novel traits are strongly influenced by sexual selection. Although sexual selection is a powerful evolutionary force, underlying genetic interactions can constrain evolutionary outcomes. The relative strength of selection vs. constraint has been a matter of debate for the evolution of male abdominal appendages in sepsid flies. These abdominal appendages are involved in courtship and mating, but their function has not been directly tested. We performed mate choice experiments to determine whether sexual selection acts on abdominal appendages in the sepsid Themira biloba. We tested whether appendage bristle length influenced successful insemination by surgically trimming the bristles. Females paired with males that had shortened bristles laid only unfertilized eggs, indicating that long bristles are necessary for successful insemination. We also tested whether the evolution of bristle length was constrained by phenotypic correlations with other traits. Analyses of phenotypic covariation indicated that bristle length was highly correlated with other abdominal appendage traits, but was not correlated with abdominal sternite size. Thus, abdominal appendages are not exaggerated traits like many sexual ornaments, but vary independently from body size. At the same time, strong correlations between bristle length and appendage length suggest that selection on bristle length is likely to result in a correlated increase in appendage length. Bristle length is under sexual selection in T. biloba and has the potential to evolve independently from abdomen size. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya.
Wu, Meng; Moore, Richard C
2015-06-01
Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.
Accounting for epistatic interactions improves the functional analysis of protein structures
Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier
2013-01-01
Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383
Austerlitz, Frédéric; Heyer, Evelyne
2018-06-01
Here, we present a synthetic view on how Kimura's Neutral theory has helped us gaining insight on the different evolutionary forces that shape human evolution. We put this perspective in the frame of recent emerging challenges: the use of whole genome data for reconstructing population histories, natural selection on complex polygenic traits, and integrating cultural processes in human evolution.
Dynamics, Stability, and Evolutionary Patterns of Mesoscale Intrathermocline Vortices
2016-12-01
physical oceanography, namely, the link between the basin-scale forcing of the ocean by air-sea fluxes and the dissipation of energy and thermal variance...at the microscale. 14. SUBJECT TERMS Meddy, intrathermocline, double diffusion, energy cascade, eddy, MITgcm, numerical simulation, interleaving...lateral intrusions, lateral diffusivity, heat flux 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18
Air Force Flight Screening: Evolutionary Changes, 1917-2003
2004-12-01
US), FFA (Switzerland), Siai Marchetti (Italy), SAAB (Sweden), Slingsby (United Kingdom), Glassair (US), Piper (US), American General (US), and...Jumper, USAF/CC, [Academy Flight Screening program], 10 Apr 03, 3) BBP , 557 FTS/CC, “USAF 66 As the...Academy Flight Screening (AFS) Program,” 4 Feb 03, 4) BBP , 557 FTS/CC, “AFS Funding,” 22 Jan 03, 5) Position Paper, 557 FTS/CC
U.S. Hegemony in a Globalized World
2009-03-01
peaceful world order. Immanuel Kant , a key thinker of the liberal school, asserted that because of the calamity of persistent war, reason and experience...and norms cannot be created overnight; they must be sufficiently mature to defeat competitors vying for power. Kant recognized that individual reason...evolutionary process that cannot be rushed or forced. Interventionist attempts to impose democracy is not generally consistent with Kantian liberal thought
The fundamentals of adaptive grid movement
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1990-01-01
Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.
Aita, Takuyo; Husimi, Yuzuru
2003-11-21
We have theoretically studied the statistical properties of adaptive walks (or hill-climbing) on a Mt. Fuji-type fitness landscape in the multi-dimensional sequence space through mathematical analysis and computer simulation. The adaptive walk is characterized by the "mutation distance" d as the step-width of the walker and the "population size" N as the number of randomly generated d-fold point mutants to be screened. In addition to the fitness W, we introduced the following quantities analogous to thermodynamical concepts: "free fitness" G(W) is identical with W+T x S(W), where T is the "evolutionary temperature" T infinity square root of d/lnN and S(W) is the entropy as a function of W, and the "evolutionary force" X is identical with d(G(W)/T)/dW, that is caused by the mutation and selection pressure. It is known that a single adaptive walker rapidly climbs on the fitness landscape up to the stationary state where a "mutation-selection-random drift balance" is kept. In our interpretation, the walker tends to the maximal free fitness state, driven by the evolutionary force X. Our major findings are as follows: First, near the stationary point W*, the "climbing rate" J as the expected fitness change per generation is described by J approximately L x X with L approximately V/2, where V is the variance of fitness distribution on a local landscape. This simple relationship is analogous to the well-known Einstein relation in Brownian motion. Second, the "biological information gain" (DeltaG/T) through adaptive walk can be described by combining the Shannon's information gain (DeltaS) and the "fitness information gain" (DeltaW/T).
Galán, Juan-Carlos; González-Candelas, Fernando; Rolain, Jean-Marc; Cantón, Rafael
2013-01-01
Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.
Galán, Juan-Carlos; González-Candelas, Fernando; Rolain, Jean-Marc; Cantón, Rafael
2013-01-01
Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem. PMID:23404545
Evo-devo of human adolescence: beyond disease models of early puberty
2013-01-01
Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891
Maidment, Susannah C R; Henderson, Donald M; Barrett, Paul M
2014-11-01
The exceptionally rare transition to quadrupedalism from bipedal ancestors occurred on three independent occasions in ornithischian dinosaurs. The possible driving forces behind these transitions remain elusive, but several hypotheses-including the development of dermal armour and the expansion of head size and cranial ornamentation-have been proposed to account for this major shift in stance. We modelled the position of the centre of mass (CoM) in several exemplar ornithischian taxa and demonstrate that the anterior shifts in CoM position associated with the development of an enlarged skull ornamented with horns and frills for display/defence may have been one of the drivers promoting ceratopsian quadrupedality. A posterior shift in CoM position coincident with the development of extensive dermal armour in thyreophorans demonstrates this cannot have been a primary causative mechanism for quadrupedality in this clade. Quadrupedalism developed in response to different selective pressures in each ornithischian lineage, indicating different evolutionary pathways to convergent quadrupedal morphology.
Intraspecific competition favours niche width expansion in Drosophila melanogaster.
Bolnick, D I
2001-03-22
Ecologists have proposed that when interspecific competition is reduced, competition within a species becomes a potent evolutionary force leading to rapid diversification. This view reflects the observation that populations invading species-poor communities frequently evolve broader niches. Niche expansion can be associated with an increase in phenotypic variance (known as character release), with the evolution of polymorphisms, or with divergence into many species using distinct resources (adaptive radiation). The relationship between intraspecific competition and diversification is known from theory, and has been used as the foundation for some models of speciation. However, there has been little empirical proof that niches evolve in response to intraspecific competition. To test this hypothesis, I introduced cadmium-intolerant Drosophila melanogaster populations to environments containing both cadmium-free and cadmium-laced resources. Here I show that populations experiencing high competition adapted to cadmium more rapidly than low competition populations. This provides experimental confirmation that competition in a population can drive niche expansion onto new resources for which competition is less severe.
Structural frequency functions for an impulsive, distributed forcing function
NASA Technical Reports Server (NTRS)
Bateman, Vesta I.
1987-01-01
The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.
Effect of coriolis force on forced response magnification of intentionally mistuned bladed disk
NASA Astrophysics Data System (ADS)
Kan, Xuanen; Xu, Zili; Zhao, Bo; Zhong, Jize
2017-07-01
Blade manufacturing tolerance and wear in operation may induce mistuning, and mistuning will lead to vibration localization which will result in destruction of bladed disk. Generally, intentional mistuning has been widely investigated to control the maximum forced response. On the other hand, it should be noted that the bladed disk with high rotational speed is obviously subjected to the Coriolis force. However, the Coriolis force is not included in intentionally mistuned bladed disk in previous studies. Therefore, this paper is to study the effect of the Coriolis force on forced response magnification of intentionally mistuned bladed disk. Finite element method is used to calculate the harmonic response of the intentionally mistuned bladed disk with and without the Coriolis force. The effects of intentional mistuning strength and different integer harmonic order on the response magnification factor with the Coriolis force are discussed. It should be pointed out that, when the integer harmonic order is 1, 3 and 5, the response magnification factor with the effect of the Coriolis force increase by 3.9%, 3.53% and 3.76% respectively compared to the system of non-Coriolis force. In addition, forced response magnification factor of intentionally mistuned bladed disk with and without the Coriolis force under different rotational speed is researched in contrast. It shows that, when the rotational speed is 3000 rpm, the response magnification factor with the Coriolis force increases by 0.65% compared to the system of non-Coriolis force, while the response magnification factor with the Coriolis force decreases by 6.28% compared to the system of non-Coriolis force when the rotational speed is 12000 rpm.
Kingston, S E; Martino, P; Melendy, M; Reed, F A; Carlon, D B
2018-03-01
A key component to understanding the evolutionary response to a changing climate is linking underlying genetic variation to phenotypic variation in stress response. Here, we use a genome-wide association approach (GWAS) to understand the genetic architecture of calcification rates under simulated climate stress. We take advantage of the genomic gradient across the blue mussel hybrid zone (Mytilus edulis and Mytilus trossulus) in the Gulf of Maine (GOM) to link genetic variation with variance in calcification rates in response to simulated climate change. Falling calcium carbonate saturation states are predicted to negatively impact many marine organisms that build calcium carbonate shells - like blue mussels. We sampled wild mussels and measured net calcification phenotypes after exposing mussels to a 'climate change' common garden, where we raised temperature by 3°C, decreased pH by 0.2 units and limited food supply by filtering out planktonic particles >5 μm, compared to ambient GOM conditions in the summer. This climate change exposure greatly increased phenotypic variation in net calcification rates compared to ambient conditions. We then used regression models to link the phenotypic variation with over 170 000 single nucleotide polymorphism loci (SNPs) generated by genotype by sequencing to identify genomic locations associated with calcification phenotype, and estimate heritability and architecture of the trait. We identified at least one of potentially 2-10 genomic regions responsible for 30% of the phenotypic variation in calcification rates that are potential targets of natural selection by climate change. Our simulations suggest a power of 13.7% with our study's average effective sample size of 118 individuals and rare alleles, but a power of >90% when effective sample size is 900. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Evolutionary Diagnosis of non-synonymous variants involved in differential drug response
2015-01-01
Background Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their ability to modulate the drug response. Results We found that the available data on the link between drug response and nsSNV is rather modest. There were only 31 distinct drug response-altering (DR-altering) and 43 distinct drug response-neutral (DR-neutral) nsSNVs in the whole Pharmacogenomics Knowledge Base (PharmGKB). However, even with this modest dataset, it was clear that existing bioinformatics tools have difficulties in correctly predicting the known DR-altering and DR-neutral nsSNVs. They exhibited an overall accuracy of less than 50%, which was not better than random diagnosis. We found that the underlying problem is the markedly different evolutionary properties between positions harboring nsSNVs linked to drug responses and those observed for inherited diseases. To solve this problem, we developed a new diagnosis method, Drug-EvoD, which was trained on the evolutionary properties of nsSNVs associated with drug responses in a sparse learning framework. Drug-EvoD achieves a TPR of 84% and a TNR of 53%, with a balanced accuracy of 69%, which improves upon other methods significantly. Conclusions The new tool will enable researchers to computationally identify nsSNVs that may affect drug responses. However, much larger training and testing datasets are needed to develop more reliable and accurate tools. PMID:25952014
Fournier-Level, A; Neumann-Mondlak, A; Good, R T; Green, L M; Schmidt, J M; Robin, C
2016-05-01
Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long-term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field-derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self-organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress-responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade-offs in benign environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
The molecular biology and evolution of feline immunodeficiency viruses of cougars
Poss, Mary; Ross, Howard; Rodrigo, Allen; Terwee, Julie; VandeWoude, Sue; Biek, Roman
2008-01-01
Feline immunodeficiency virus (FIV) is a lentivirus that has been identified in many members of the family Felidae but domestic cats are the only FIV host in which infection results in disease. We studied FIVpco infection of cougars (Puma concolor) as a model for asymptomatic lentivirus infections to understand the mechanisms of host-virus coexistence. Several natural cougar populations were evaluated to determine if there are any consequences of FIVpco infection on cougar fecundity, survival, or susceptibility to other infections. We have sequenced full length viral genomes and conducted a detailed analysis of viral molecular evolution on these sequences and on genome fragments of serially sampled animals to determine the evolutionary forces experienced by this virus in cougars. In addition, we have evaluated the molecular genetics of FIVpco in a new host, domestic cats, to determine the evolutionary consequences to a host-adapted virus associated with cross-species infection. Our results indicate that there are no significant differences in survival, fecundity or susceptibility to other infections between FIVpco-infected and uninfected cougars. The molecular evolution of FIVpco is characterized by a slower evolutionary rate and an absence of positive selection, but also by proviral and plasma viral loads comparable to those of epidemic lentiviruses such as HIV-1 or FIVfca. Evolutionary and recombination rates and selection profiles change significantly when FIVpco replicates in a new host. PMID:18295904
Evolutionary Effect on the Embodied Beauty of Landscape Architectures.
Zhang, Wei; Tang, Xiaoxiang; He, Xianyou; Chen, Guangyao
2018-01-01
According to the framework of evolutionary aesthetics, a sense of beauty is related to environmental adaptation and plasticity of human beings, which has adaptive value and biological foundations. Prior studies have demonstrated that organisms derive benefits from the landscape. In this study, we investigated whether the benefits of landscape might elicit a stronger sense of beauty and what the nature of this sense of beauty is. In two experiments, when viewing classical landscape and nonlandscape architectures photographs, participants rated the aesthetic scores (Experiment 1) and had a two-alternative forced choice aesthetic judgment by pressing the reaction button located near to (15 cm) or far from (45 cm) the presenting stimuli (Experiment 2). The results showed that reaction of aesthetic ratings for classical landscape architectures was faster than those of classical nonlandscape architectures. Furthermore, only the reaction of beautiful judgment of classical landscape architecture photograph was significantly faster when the reaction button was in the near position to the presenting photograph than those in the position of far away from the presenting photograph. This finding suggests a facilitated effect for the aesthetic perception of classical landscape architectures due to their corresponding components including water and green plants with strong evolutionary implications. Furthermore, this sense of beauty for classical landscape architectures might be the embodied approach to beauty based on the viewpoint of evolutionary aesthetics and embodied cognition.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Pollinator-mediated assemblage processes in California wildflowers.
Briscoe Runquist, R; Grossenbacher, D; Porter, S; Kay, K; Smith, J
2016-05-01
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator-mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co-occurrence patterns to determine the role of pollinator-mediated processes in structuring plant communities dominated by congeners. We surveyed three species-rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co-flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44-48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co-occurrence. Together, it appears that pollinators influence community assemblage in these three clades. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Differential Adhesion between Moving Particles as a Mechanism for the Evolution of Social Groups
Garcia, Thomas; Brunnet, Leonardo Gregory; De Monte, Silvia
2014-01-01
The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality. PMID:24586133
Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C
2015-01-01
Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai
2018-04-01
Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah
2012-02-01
This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate students in response to two different evolution instruments (the EGALT-F and EGALT-P) that contained prompts that differed in various surface features (such as species and traits). We tested human-SIDE scoring correspondence under a series of different training and testing conditions, using Kappa inter-rater agreement values of greater than 0.80 as a performance benchmark. In addition, we examined the effects of response length on scoring success; that is, whether SIDE scoring models functioned with comparable success on short and long responses. We found that SIDE performance was most effective when scoring models were built and tested at the individual item level and that performance degraded when suites of items or entire instruments were used to build and test scoring models. Overall, SIDE was found to be a powerful and cost-effective tool for assessing student knowledge and performance in a complex science domain.
Evolutionary heritage influences Amazon tree ecology.
Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R
2016-12-14
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.
Evolutionary heritage influences Amazon tree ecology
Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.
2016-01-01
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517
Rampersad, Sephra N; Perez-Brito, Daisy; Torres-Calzada, Claudia; Tapia-Tussell, Raul; Carrington, Christine V F
2013-06-22
C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical.
2013-01-01
Background C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. Results The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. Conclusions The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical. PMID:23800297
Turning randomness into meaning at the molecular level using Muller's morphs
Henson, Kathleen; Cooper, Melanie M.; Klymkowsky, Michael W.
2012-01-01
Summary While evolutionary theory follows from observable facts and logical inferences (Mayr, 1985), historically, the origin of novel inheritable variations was a major obstacle to acceptance of natural selection (Bowler, 1992; Bowler, 2005). While molecular mechanisms address this issue (Jablonka and Lamb, 2005), analysis of responses to the Biological Concept Inventory (BCI) (Klymkowsky et al., 2010), revealed that molecular biology majors rarely use molecular level ideas in their discourse, implying that they do not have an accessible framework within which to place evolutionary variation. We developed a “Socratic tutorial” focused on Muller's categorization of mutations' phenotypic effects (Muller, 1932). Using a novel vector-based method to analyzed students' essay responses, we found that a single interaction with this tutorial led to significant changes in thinking toward a clearer articulation of the effects of mutational change. We suggest that Muller's morphs provides an effective framework for facilitating student learning about mutational effects and evolutionary mechanisms. PMID:23213431
Comparative genomics explains the evolutionary success of reef-forming corals
Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas PM; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G
2016-01-01
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001 PMID:27218454
Hormonally active phytochemicals and vertebrate evolution.
Lambert, Max R; Edwards, Thea M
2017-06-01
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.
Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul
2017-08-29
RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.
The response analysis of fractional-order stochastic system via generalized cell mapping method.
Wang, Liang; Xue, Lili; Sun, Chunyan; Yue, Xiaole; Xu, Wei
2018-01-01
This paper is concerned with the response of a fractional-order stochastic system. The short memory principle is introduced to ensure that the response of the system is a Markov process. The generalized cell mapping method is applied to display the global dynamics of the noise-free system, such as attractors, basins of attraction, basin boundary, saddle, and invariant manifolds. The stochastic generalized cell mapping method is employed to obtain the evolutionary process of probability density functions of the response. The fractional-order ϕ 6 oscillator and the fractional-order smooth and discontinuous oscillator are taken as examples to give the implementations of our strategies. Studies have shown that the evolutionary direction of the probability density function of the fractional-order stochastic system is consistent with the unstable manifold. The effectiveness of the method is confirmed using Monte Carlo results.
Evolutionary neurobiology and aesthetics.
Smith, Christopher Upham
2005-01-01
If aesthetics is a human universal, it should have a neurobiological basis. Although use of all the senses is, as Aristotle noted, pleasurable, the distance senses are primarily involved in aesthetics. The aesthetic response emerges from the central processing of sensory input. This occurs very rapidly, beneath the level of consciousness, and only the feeling of pleasure emerges into the conscious mind. This is exemplified by landscape appreciation, where it is suggested that a computation built into the nervous system during Paleolithic hunter-gathering is at work. Another inbuilt computation leading to an aesthetic response is the part-whole relationship. This, it is argued, may be traced to the predator-prey "arms races" of evolutionary history. Mate selection also may be responsible for part of our response to landscape and visual art. Aesthetics lies at the core of human mentality, and its study is consequently of importance not only to philosophers and art critics but also to neurobiologists.
Experimental evolution of protozoan traits in response to interspecific competition.
terHorst, C P
2011-01-01
Decades of experiments have demonstrated the ecological effect of competition, but experimental evidence for competitive effects on trait evolution is rare. I measured the evolution of six protozoan traits in response to competitors from the inquiline community of pitcher plants. Replicate populations of Colpoda, a ciliated protozoan, were allowed to evolve in response to intra- and interspecific competition for 20 days (approximately 100 generations), before traits were measured in two common garden environments. Populations that evolved with interspecific competition had smaller cell sizes, produced fewer cysts and had higher population growth rates relative to populations grown in monoculture. The presence of interspecific competitors led to differential lineage sorting, most likely by increasing the strength of selection. These results are the first to demonstrate protozoan evolution in response to competition and may have implications for species coexistence in this system. © 2010 The Author. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory
Zhuang, Qian; Di, Zengru; Wu, Jinshan
2014-01-01
Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502
Simple versus complex models of trait evolution and stasis as a response to environmental change
NASA Astrophysics Data System (ADS)
Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott
2015-04-01
Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.
Warner, Daniel A
2014-11-01
Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable phenotypic diversity observed within populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids.
He, Susu; Chandler, Michael; Varani, Alessandro M; Hickman, Alison B; Dekker, John P; Dyda, Fred
2016-12-06
The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as transposons and integrons have been strongly associated with the rapid spread of genes responsible for antibiotic resistance. Understanding the consequences of their actions allowed us to establish unambiguous evolutionary relationships between plasmids in the analysis set. Copyright © 2016 He et al.
2018-01-01
Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules’ residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly. PMID:29629870
Stucki, J W; Compiani, M; Caplan, S R
1983-09-01
Experimental investigations showed linear relations between flows and forces in some biological energy converters operating far from equilibrium. This observation cannot be understood on the basis of conventional nonequilibrium thermodynamics. Therefore, the efficiencies of a linear and a nonlinear mode of operation of an energy converter (a hypothetical redox-driven H+ pump) were compared. This comparison revealed that at physiological values of the forces and degrees of coupling (1) the force ratio permitting optimal efficiency was much higher in the linear than in the nonlinear mode and (2) the linear mode of operation was at least 10(6)-times more efficient that the nonlinear one. These observations suggest that the experimentally observed linear relations between flows and forces, particularly in the case of oxidative phosphorylation, may be due to a feedback regulation maintaining linear thermodynamic relations far from equilibrium. This regulation may have come about as the consequence of an evolutionary drive towards higher efficiency.
Erkosar, Berra; Kolly, Sylvain; van der Meer, Jan R; Kawecki, Tadeusz J
2017-10-24
Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. IMPORTANCE Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and survival. Thus, despite its ancient evolutionary history, the reliance of animal hosts on their microbial partners can be surprisingly flexible and may be relaxed by short-term evolution. Copyright © 2017 Erkosar et al.
Precipitation Response to Regional Radiative Forcing
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.
2012-01-01
Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.
The Adaptive Calibration Model of stress responsivity
Ellis, Bruce J.; Shirtcliff, Elizabeth A.
2010-01-01
This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350
Shared signals and the potential for phylogenetic espionage between plants and animals.
Schultz, Jack C
2002-07-01
Until recently, the study and understanding of plant and animal signalling and response mechanisms have developed independently. Recent biochemical and molecular work is producing a growing list of elements involved in responses to biotic and abiotic stimuli that are very similar across kingdoms. Some of the more interesting examples of these include prostaglandin/octadecanoid-mediated responses to wounding, steroid-based signalling systems, and pathogen-recognition mechanisms. Some of these similarities probably represent evolutionary convergence; others may be ancestral to plants and animals. Ecological and evolutionary implications of such overlaps include the existence of pathogens that can cause disease in plants and animals, the ability of herbivores to manipulate plant responses, usurpation of microbial mechanisms and genes by herbivorous animals and plants, evolution of plant defenses exploiting shared signals in animals, and the medicinal use of plants by humans. Comparative study of the signalling and response mechanisms used by plants, animals, and microbes provides novel and useful insights to the ecology and evolution of interactions across kingdoms.
The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats
Satyaki, P. R. V.; Cuykendall, Tawny N.; Wei, Kevin H-C.; Brideau, Nicholas J.; Kwak, Hojoong; Aruna, S.; Ferree, Patrick M.; Ji, Shuqing; Barbash, Daniel A.
2014-01-01
Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background. PMID:24651406
NASA Astrophysics Data System (ADS)
Weymer, Bradley A.; Wernette, Phillipe; Everett, Mark E.; Houser, Chris
2018-06-01
Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, United States, reveal that the EMI apparent conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA) process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q). We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.
EVOLUTIONARY AND ECOLOGICAL EFFECTS OF MULTIGENERATIONAL EXPOSURES TO ANTHROPOGENIC STRESSORS
Biological and ecological responses to stress are dictated by duration and frequency, as well as instantaneous magnitude. Conditional compensatory responses at the physiological and behavioral levels, referred to as ?acclimation', may mitigate effects on individuals experiencing ...
Why an extended evolutionary synthesis is necessary
2017-01-01
Since the last major theoretical integration in evolutionary biology—the modern synthesis (MS) of the 1940s—the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the ‘-omics’ revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology. PMID:28839929
Semenov, Mikhail A; Terkel, Dmitri A
2003-01-01
This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.
Ecological and evolutionary traps
Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.
2002-01-01
Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.
Kim, Hyeongmin; Lee, Taeheon; Park, WonCheoul; Lee, Jin Woo; Kim, Jaemin; Lee, Bo-Young; Ahn, Hyeonju; Moon, Sunjin; Cho, Seoae; Do, Kyoung-Tag; Kim, Heui-Soo; Lee, Hak-Kyo; Lee, Chang-Kyu; Kong, Hong-Sik; Yang, Young-Mok; Park, Jongsun; Kim, Hak-Min; Kim, Byung Chul; Hwang, Seungwoo; Bhak, Jong; Burt, Dave; Park, Kyoung-Do; Cho, Byung-Wook; Kim, Heebal
2013-01-01
The modern horse (Equus caballus) is the product of over 50 million yrs of evolution. The athletic abilities of the horse have been enhanced during the past 6000 yrs under domestication. Therefore, the horse serves as a valuable model to understand the physiology and molecular mechanisms of adaptive responses to exercise. The structure and function of skeletal muscle show remarkable plasticity to the physical and metabolic challenges following exercise. Here, we reveal an evolutionary layer of responsiveness to exercise-stress in the skeletal muscle of the racing horse. We analysed differentially expressed genes and their co-expression networks in a large-scale RNA-sequence dataset comparing expression before and after exercise. By estimating genome-wide dN/dS ratios using six mammalian genomes, and FST and iHS using re-sequencing data derived from 20 horses, we were able to peel back the evolutionary layers of adaptations to exercise-stress in the horse. We found that the oldest and thickest layer (dN/dS) consists of system-wide tissue and organ adaptations. We further find that, during the period of horse domestication, the older layer (FST) is mainly responsible for adaptations to inflammation and energy metabolism, and the most recent layer (iHS) for neurological system process, cell adhesion, and proteolysis. PMID:23580538
Piou, Cyril; Prévost, Etienne
2013-03-01
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history. © 2012 Blackwell Publishing Ltd.
Information Operations, an Evolutionary Step for the Mexican Armed Forces
2007-12-01
Marcela Sanchez. “Building On Plan Colombia,” Washington Post , 4 November 2006, Final Edition, A23. 72 Counterinsurgency. It is important to...Revolucionario (EPR), Ejército Revolucionario del Pueblo Independiente (ERPI), Comando Jaramillista Morelense of 23 May (CJM-23), Ejército Villista...the insurgency was influenced by Mexico’s transition from modernity to post modernity -- specifically its membership in NAFTA. If the country had
States of Terror: Understanding Evolving Islamist Terrorist Organizations and the Threat They Pose
2016-09-01
Afghanistan, for instance, a force of religious students (talibs) became politically known as the Taliban and then as the official national government of...motivated by religious , political, or other ideological beliefs, to instill fear and coerce governments or societies in pursuit of goals that are usually...several well-documented evolutionary stages. The first stage included the shift from nationalist-centered terrorism to religious terrorism. The next
Swaminathan, Sivakumar; Morrone, Dana; Wang, Qiang; Fulton, D. Bruce; Peters, Reuben J.
2009-01-01
Biosynthetic gene clusters are common in microbial organisms, but rare in plants, raising questions regarding the evolutionary forces that drive their assembly in multicellular eukaryotes. Here, we characterize the biochemical function of a rice (Oryza sativa) cytochrome P450 monooxygenase, CYP76M7, which seems to act in the production of antifungal phytocassanes and defines a second diterpenoid biosynthetic gene cluster in rice. This cluster is uniquely multifunctional, containing enzymatic genes involved in the production of two distinct sets of phytoalexins, the antifungal phytocassanes and antibacterial oryzalides/oryzadiones, with the corresponding genes being subject to distinct transcriptional regulation. The lack of uniform coregulation of the genes within this multifunctional cluster suggests that this was not a primary driving force in its assembly. However, the cluster is dedicated to specialized metabolism, as all genes in the cluster are involved in phytoalexin metabolism. We hypothesize that this dedication to specialized metabolism led to the assembly of the corresponding biosynthetic gene cluster. Consistent with this hypothesis, molecular phylogenetic comparison demonstrates that the two rice diterpenoid biosynthetic gene clusters have undergone independent elaboration to their present-day forms, indicating continued evolutionary pressure for coclustering of enzymatic genes encoding components of related biosynthetic pathways. PMID:19825834
NASA Astrophysics Data System (ADS)
Watson, Gregory S.; Blach, Jolanta A.
2002-11-01
The optical properties of insect nano-structures have been extensively studied. In particular, nano-scale ordered arrays have been reported from studies of the corneal surfaces of some insects and of insect wings showing anti-reflective properties. These arrays have been ascribed to evolutionary adaptation and survival value arising from increased visual capacity and better camouflage against predators. In this study we show that the Atomic Force Microscope (AFM) can effectively reveal and quantify the three dimensional structures of nano-arrays on moth eyes and cicada wings. It is also shown that the arrays present an ideal surface for in situ characterisation of the AFM probe/tip. In addition, a new structure is presented which has been discovered on a termite wing. The structure is similar to that found on the cicada wing, but has a much larger 'lattice parameter' for the ordered array. The function(s) of the array is unknown at present. It could be effective as an anti-reflective coating, but would then be active in the infra-red region of the light spectrum. Alternatively, it may confer evolutionary advantage by virtue of its mechanical strength, or it may improve the aerodynamics of flying. The study demonstrates that natural selection may be a rich source of 'smart' structures.
Genealogical evidence for epidemics of selfish genes.
Ingvarsson, Par K; Taylor, Douglas R
2002-08-20
Some genetic elements spread infectiously in populations by increasing their rate of genetic transmission at the expense of other genes in the genome. These so-called selfish genetic elements comprise a substantial portion of eukaryotic genomes and have long been viewed as a potent evolutionary force. Despite this view, little is known about the evolutionary history of selfish genetic elements in natural populations, or their genetic effects on other portions of the genome. Here we use nuclear and chloroplast gene genealogies in two species of Silene to show the historical pattern of selection on a well known selfish genetic element, cytoplasmic male sterility. We provide evidence that evolution of cytoplasmic male sterility has been characterized by frequent turnovers of mutations in natural populations, thus supporting an epidemic model for the evolution of selfish genes, where new mutations repeatedly arise and rapidly sweep through populations.
NASA Astrophysics Data System (ADS)
Gerace, Giuliana
What mechanisms induce and support cooperation in social interaction? Traditional rational-choice perspective has resulted ineffective to keep track of complex real-world dynamics of cooperation. On the other hand, perspectives based on the justification of fairness preferences as internalized behavioural forces driving realistic cooperative interactions are notoriously incomplete and rather fuzzy with respect to their theoretical foundations. After considering recognized evolutionary accounts of the emergence and resilience of social standards, we endorse the view according to which the key to understanding evolutionary dynamics of social engagement is to be found in individual motivational attitudes to interaction. But, beyond any psychological implications, we suggest not exiting from the "logic of reciprocity" in considering the rationality of preferences for social interaction. Preliminary supporting experimental evidence is provided.
Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan
2012-01-01
Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207
Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†
Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.
2003-01-01
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons. PMID:12966138
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142
Saito, Shigeru; Ohkita, Masashi; Saito, Claire T.; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio
2016-01-01
Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis. The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. PMID:27022021
The evolution of a social construction: the case of male homosexuality.
Adriaens, Pieter R; De Block, Andreas
2006-01-01
Male homosexuality has been viewed by evolutionary psychologists as a Darwinian paradox, and by other social scientists as a social construction. We argue that it is better understood as an evolutionary social construction. Male homosexuality as we now know it is an 18th-century invention, but nonexclusive same-sex sexual behavior has a long evolutionary history. According to the alliance-formation hypothesis, same-sex sexuality evolved by natural selection because it created or strengthened male-male alliances and allowed low-status males to reposition themselves in the group hierarchy and thereby increase their reproductive success. This hypothesis makes sense of some odd findings about male homosexuality and helps to explain the rise in exclusive male homosexuality in the 18th century. The sociohistorical conditions around 1700 may have resulted in an increase in same-sex sexual behavior. Cultural responses to same-sex sexuality led to the spread of exclusive homosexual behavior and to the creation of a homosexual identity. Understanding male homosexuality as an evolutionary social construction can help us move beyond the traditionally polarized debate between evolutionary psychologists and social constructionists.
The locus of sexual selection: moving sexual selection studies into the post-genomics era.
Wilkinson, G S; Breden, F; Mank, J E; Ritchie, M G; Higginson, A D; Radwan, J; Jaquiery, J; Salzburger, W; Arriero, E; Barribeau, S M; Phillips, P C; Renn, S C P; Rowe, L
2015-04-01
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Limited evolutionary rescue of locally adapted populations facing climate change.
Schiffers, Katja; Bourne, Elizabeth C; Lavergne, Sébastien; Thuiller, Wilfried; Travis, Justin M J
2013-01-19
Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change.
Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja
2015-11-01
Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.
Tracy, Karen E; Kiemnec-Tyburczy, Karen M; DeWoody, J Andrew; Parra-Olea, Gabriela; Zamudio, Kelly R
2015-06-01
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.
Genomics in a changing arctic: critical questions await the molecular ecologist
Wullschleger, Stan D.; Breen, Amy L.; Iversen, Colleen M.; ...
2015-04-20
Molecular ecology is poised to tackle a host of interesting questions in the coming years. Of particular importance to the molecular ecologist are new technologies and analytical approaches that provide opportunities to address questions previously unapproachable.The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. Thesemore » questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.« less
Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen Vibrio shilonii AK1.
Strauss, Chloe; Long, Hongan; Patterson, Caitlyn E; Te, Ronald; Lynch, Michael
2017-08-22
Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii , which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO 2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification. IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii . Copyright © 2017 Strauss et al.
Genomics in a changing arctic: critical questions await the molecular ecologist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wullschleger, Stan D.; Breen, Amy L.; Iversen, Colleen M.
Molecular ecology is poised to tackle a host of interesting questions in the coming years. Of particular importance to the molecular ecologist are new technologies and analytical approaches that provide opportunities to address questions previously unapproachable.The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. Thesemore » questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.« less
Khannoon, Eraqi R.; Endlein, Thomas; Russell, Anthony P.; Autumn, Kellar
2014-01-01
The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures. PMID:24285195
He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing
2016-12-01
RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente
2017-12-01
Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Bagley, Justin C; Johnson, Jerald B
2014-01-01
A central goal of comparative phylogeography is determining whether codistributed species experienced (1) concerted evolutionary responses to past geological and climatic events, indicated by congruent spatial and temporal patterns (“concerted-response hypothesis”); (2) independent responses, indicated by spatial incongruence (“independent-response hypothesis”); or (3) multiple responses (“multiple-response hypothesis”), indicated by spatial congruence but temporal incongruence (“pseudocongruence”) or spatial and temporal incongruence (“pseudoincongruence”). We tested these competing hypotheses using DNA sequence data from three livebearing fish species codistributed in the Nicaraguan depression of Central America (Alfaro cultratus, Poecilia gillii, and Xenophallus umbratilis) that we predicted might display congruent responses due to co-occurrence in identical freshwater drainages. Spatial analyses recovered different subdivisions of genetic structure for each species, despite shared finer-scale breaks in northwestern Costa Rica (also supported by phylogenetic results). Isolation-with-migration models estimated incongruent timelines of among-region divergences, with A. cultratus and Xenophallus populations diverging over Miocene–mid-Pleistocene while P. gillii populations diverged over mid-late Pleistocene. Approximate Bayesian computation also lent substantial support to multiple discrete divergences over a model of simultaneous divergence across shared spatial breaks (e.g., Bayes factor [B10] = 4.303 for Ψ [no. of divergences] > 1 vs. Ψ = 1). Thus, the data support phylogeographic pseudoincongruence consistent with the multiple-response hypothesis. Model comparisons also indicated incongruence in historical demography, for example, support for intraspecific late Pleistocene population growth was unique to P. gillii, despite evidence for finer-scale population expansions in the other taxa. Empirical tests for phylogeographic congruence indicate that multiple evolutionary responses to historical events have shaped the population structure of freshwater species codistributed within the complex landscapes in/around the Nicaraguan depression. Recent community assembly through different routes (i.e., different past distributions or colonization routes), and intrinsic ecological differences among species, has likely contributed to the unique phylogeographical patterns displayed by these Neotropical fishes. PMID:24967085
The role of inflammation in depression: from evolutionary imperative to modern treatment target.
Miller, Andrew H; Raison, Charles L
2016-01-01
Crosstalk between inflammatory pathways and neurocircuits in the brain can lead to behavioural responses, such as avoidance and alarm, that are likely to have provided early humans with an evolutionary advantage in their interactions with pathogens and predators. However, in modern times, such interactions between inflammation and the brain appear to drive the development of depression and may contribute to non-responsiveness to current antidepressant therapies. Recent data have elucidated the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression. Here, we detail our current understanding of these pathways and discuss the therapeutic potential of targeting the immune system to treat depression.
Experimental Evolution as a High-Throughput Screen for Genetic Adaptations.
Cooper, Vaughn S
2018-06-27
Experimental evolution is a method in which populations of organisms, often microbes, are founded by one or more ancestors of known genotype and then propagated under controlled conditions to study the evolutionary process. These evolving populations are influenced by all population genetic forces, including selection, mutation, drift, and recombination, and the relative contributions of these forces may be seen as mysterious. Here, I describe why the outcomes of experimental evolution should be viewed with greater certainty because the force of selection typically dominates. Importantly, any mutant rising rapidly to high frequency in large populations must have acquired adaptive traits in the selective environment. Sequencing the genomes of these mutants can identify genes or pathways that contribute to an adaptation. I review the logic and simple mathematics why this evolve-and-resequence approach is a powerful way to find the mutations or mutation combinations that best increase fitness in any new environment. Copyright © 2018 Cooper.
Structure of a viscoplastic theory
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.
Empirical verification of evolutionary theories of aging.
Kyryakov, Pavlo; Gomez-Perez, Alejandra; Glebov, Anastasia; Asbah, Nimara; Bruno, Luigi; Meunier, Carolynne; Iouk, Tatiana; Titorenko, Vladimir I
2016-10-25
We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.
Peto's paradox and the promise of comparative oncology
Nunney, Leonard; Maley, Carlo C.; Breen, Matthew; Hochberg, Michael E.; Schiffman, Joshua D.
2015-01-01
The past several decades have seen a paradigm shift with the integration of evolutionary thinking into studying cancer. The evolutionary lens is most commonly employed in understanding cancer emergence, tumour growth and metastasis, but there is an increasing realization that cancer defences both between tissues within the individual and between species have been influenced by natural selection. This special issue focuses on discoveries of these deeper evolutionary phenomena in the emerging area of ‘comparative oncology’. Comparing cancer dynamics in different tissues or species can lead to insights into how biology and ecology have led to differences in carcinogenesis, and the diversity, incidence and lethality of cancers. In this introduction to the special issue, we review the history of the field and outline how the contributions use empirical, comparative and theoretical approaches to address the processes and patterns associated with ‘Peto's paradox’, the lack of a statistical relationship of cancer incidence with body size and longevity. This burgeoning area of research can help us understand that cancer is not only a disease but is also a driving force in biological systems and species life histories. Comparative oncology will be key to understanding globally important health issues, including cancer epidemiology, prevention and improved therapies. PMID:26056361
Evaluating phylogenetic congruence in the post-genomic era.
Leigh, Jessica W; Lapointe, François-Joseph; Lopez, Philippe; Bapteste, Eric
2011-01-01
Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures.
Evaluating Phylogenetic Congruence in the Post-Genomic Era
Leigh, Jessica W.; Lapointe, François-Joseph; Lopez, Philippe; Bapteste, Eric
2011-01-01
Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures. PMID:21712432
Evolutionary Divergence in Brain Size between Migratory and Resident Birds
Sol, Daniel; Garcia, Núria; Iwaniuk, Andrew; Davis, Katie; Meade, Andrew; Boyle, W. Alice; Székely, Tamás
2010-01-01
Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better. PMID:20224776
Bad to the bone: facial structure predicts unethical behaviour
Haselhuhn, Michael P.; Wong, Elaine M.
2012-01-01
Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour. PMID:21733897
Optimizing a reconfigurable material via evolutionary computation
NASA Astrophysics Data System (ADS)
Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.
2015-08-01
Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.
Sexual Selection Halts the Relaxation of Protamine 2 among Rodents
Lüke, Lena; Vicens, Alberto; Serra, Francois; Luque-Larena, Juan Jose; Dopazo, Hernán; Roldan, Eduardo R. S.; Gomendio, Montserrat
2011-01-01
Sexual selection has been proposed as the driving force promoting the rapid evolutionary changes observed in some reproductive genes including protamines. We test this hypothesis in a group of rodents which show marked differences in the intensity of sexual selection. Levels of sperm competition were not associated with the evolutionary rates of protamine 1 but, contrary to expectations, were negatively related to the evolutionary rate of cleaved- and mature-protamine 2. Since both domains were found to be under relaxation, our findings reveal an unforeseen role of sexual selection: to halt the degree of degeneration that proteins within families may experience due to functional redundancy. The degree of relaxation of protamine 2 in this group of rodents is such that in some species it has become dysfunctional and it is not expressed in mature spermatozoa. In contrast, protamine 1 is functionally conserved but shows directed positive selection on specific sites which are functionally relevant such as DNA-anchoring domains and phosphorylation sites. We conclude that in rodents protamine 2 is under relaxation and that sexual selection removes deleterious mutations among species with high levels of sperm competition to maintain the protein functional and the spermatozoa competitive. PMID:22216223
Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L
2005-05-22
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.
Some results on ethnic conflicts based on evolutionary game simulation
NASA Astrophysics Data System (ADS)
Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin
2014-07-01
The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.
Evolution and Ontogeny of Stress Response to Social Challenges in the Human Child
ERIC Educational Resources Information Center
Flinn, Mark V.
2006-01-01
The stress response systems of the human child are highly sensitive to social challenges. Because stress hormones can have negative developmental and health consequences, this presents an evolutionary paradox: Why would natural selection have favored mechanisms that elevate stress hormone levels in response to psychosocial stimuli? Two…
Integrating Evolutionary and Molecular Genetics of Aging
Flatt, Thomas; Schmidt, Paul S.
2010-01-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612
Integrating evolutionary and molecular genetics of aging.
Flatt, Thomas; Schmidt, Paul S
2009-10-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.
Sikkink, Kristin L; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C
2015-05-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. © 2015 The Author(s).
Sikkink, Kristin L.; Reynolds, Rose M.; Cresko, William A.; Phillips, Patrick C.
2017-01-01
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks. PMID:25809411
Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan
2014-01-01
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520
Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment
Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.
2018-01-01
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574
Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?
NASA Technical Reports Server (NTRS)
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Celine; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas
2015-01-01
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to di?erent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to di?erences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.
Do responses to different anthropogenic forcings add linearly in climate models?
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; ...
2015-10-14
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However,more » we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Lastly, our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.« less
Silva, Inês N.; Santos, Mário R.; Zlosnik, James E. A.; Speert, David P.; Buskirk, Sean W.; Bruger, Eric L.; Waters, Christopher M.
2016-01-01
ABSTRACT Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o− epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient’s lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient’s lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression. PMID:27822534
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Saad, Gad
2007-01-01
From an evolutionary perspective, suicide is a paradoxical phenomenon given its fatal consequences on one's reproductive fitness. That fact notwithstanding, evolutionists have typically used kin and group selection arguments in proposing that suicide might indeed be viewed as an adaptive behavioral response. The current paper posits that in some instances, suicide might be construed as the ultimate maladaptive response to "crushing defeats" in domains of great evolutionary import (e.g., mating). Specifically, it is hypothesized that numerous sex-specific triggers of suicide are universally consistent because they correspond to dire sex-specific attacks on one's reproductive fitness (e.g., loss of occupational status is much more strongly linked to male suicides). More generally, it is proposed that many epidemiological aspects of suicide are congruent with Darwinian-based frameworks. These include the near-universal finding that men are much more likely to commit suicide (sexual selection theory), the differential motives that drive men and women to commit suicide (evolutionary psychology), and the shifting patterns of suicide across the life span (life-history theory). Using data from the World Health Organization and the World Bank, several evolutionary-informed hypotheses, regarding the correlation between male-to-female suicide ratios and average per capita Gross National Income, are empirically tested. Overall, the findings are congruent with Darwinian-based expectations namely as economic conditions worsen the male-to-female suicide ratio is exacerbated, with the negative correlation being the strongest for the "working age" brackets. The hypothesized evolutionary outlook provides a consilient framework in comprehending universal sex-specific triggers of suicide. Furthermore, it allows suicidologists to explore new research avenues that might remain otherwise untapped if one were to restrict their research interests on the identification of proximate causes of suicide. Global clinical and epidemiological data emphasizing other universally robust triggers of suicide would afford additional support for the postulated framework.
The effects of differing response-force requirements on fixed-ratio responding of rats.
Alling, K; Poling, A
1995-01-01
Rats were exposed to two-component multiple schedules of food delivery. In the first experiment, 15 responses were required to produce food in both components. A downward force of 0.25 N (25 g) was always required to operate the response lever in one component. In the other, the required force was 0.25, 0.50, 1.00, or 2.00 N (25, 50, 100, or 200 g). In the second experiment, 0.25 N of force operated the lever in one component, but in the other, the force requirement for five consecutive responses at the beginning, middle, or end of each ratio was increased from 0.25 to 2.00 N. In the third experiment, the number of responses required to produce food was reduced from 15 to 5, and then to 1. Again, the effects of altering response force from 0.25 to 2.00 N were examined. In general, as response force increased in all experiments, mean response rates decreased and mean interresponse times increased. PMID:7751836
Evolutionary history predicts plant defense against an invasive pest.
Desurmont, Gaylord A; Donoghue, Michael J; Clement, Wendy L; Agrawal, Anurag A
2011-04-26
It has long been hypothesized that invasive pests may be facilitated by the evolutionary naïveté of their new hosts, but this prediction has never been examined in a phylogenetic framework. To address the hypothesis, we have been studying the invasive viburnum leaf beetle (Pyrrhalta viburni), which is decimating North American native species of Viburnum, a clade of worldwide importance as understory shrubs and ornamentals. In a phylogenetic field experiment using 16 species of Viburnum, we show that old-world Viburnum species that evolved in the presence of Pyrrhalta beetles mount a massive defensive wound response that crushes eggs of the pest insect; in contrast, naïve North American species that share no evolutionary history with Pyrrhalta beetles show a markedly lower response. This convergent continental difference in the defensive response of Viburnum spp. against insect oviposition contrasts with little difference in the quality of leaves for beetle larvae. Females show strong oviposition preferences that correspond with larval performance regardless of continental origin, which has facilitated colonization of susceptible North American species. Thus, although much attention has been paid to escape from enemies as a factor in the establishment and spread of nonnative organisms, the colonization of undefended resources seems to play a major role in the success of invasive species such as the viburnum leaf beetle.
Wendling, Carolin C.; Wegner, K. Mathias
2015-01-01
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges. PMID:25716784
Reusch, Thorsten B H
2014-01-01
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches. PMID:24454551
Evolutionary response when selection and genetic variation covary across environments.
Wood, Corlett W; Brodie, Edmund D
2016-10-01
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.
Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost
2012-02-01
We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.